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Non-dimensionalization

As with difference equations, we can non-dimensionalize differential
equations to obtain more convenient forms of the equations we’re
working with.

Suppose we want to non-dimensionalize the logistic equation
dy

dt
= ry(1− y

K
).

In this case, we’ll replace both t and y with dimensionless variables.
For this, we set

τ =
t

A
, Y (τ) =

y(t)

B
,

where A must be chosen as a constant with dimension time and B
must be chosen as a constant with dimension biomass.



Non-dimensionalization

Writing y(t) = BY (τ), we can use the chain rule to compute

dy

dt
= B

d

dt
Y (τ) = B

dY

dτ

dτ

dt
=

B

A
Y ′(τ).

This allows us to express the logistic equation as

B

A
Y ′ = rBY (1− BY

K
) =⇒ Y ′ = rAY (1− BY

K
).

We can choose B = K and A = 1/r to obtain the
non-dimensionalized equation

Y ′ = Y (1− Y ).

Notice that by introducing two dimensionless constants we were
able to eliminate two parameters. We see that in contrast to the
non-dimensionalized discrete logistic model, there can’t be any
interesting bifurcation analysis for this model. I.e., solutions behave
qualitatively the same for all values of the parameters r and K .



Equilibrium Points

For a single autonomous differential equation

dy

dt
= f (y), (*)

we say that a value ŷ is an equilibrium point if

f (ŷ) = 0.

Notice particularly that y(t) ≡ ŷ solves (*) for all t. I.e., we have

dŷ

dt
= 0 and f (ŷ) = 0,

so (*) is always satisfied.

Equilibrium points for differential equations are the analogues of
fixed points for difference equations.



Stability

Definition. Suppose ŷ is an equilibrium point for the autonomous
differential equation

dy

dt
= f (y), y(0) = y0.

(i) We say that ŷ is stable if given any ε > 0 there exists δ > 0 so
that

|y0 − ŷ | < δ =⇒ |y(t)− ŷ | < ε

for all t ≥ 0.

(ii) We say that ŷ is asymptotically stable if ŷ is stable, and there
exists some δ0 > 0 so that

|y0 − ŷ | < δ0 =⇒ lim
t→+∞

y(t) = ŷ .

(iii) If ŷ is not stable, then we say that ŷ is unstable.



The Phase Line and Stability

The phase variables for an equation are those that determine all
future behavior. For example, for a pendulum the phase variables
would be position and velocity. For a single first-order autonomous
differential equation, the phase variable is simply y . I.e., if you
know the value of y at some time then you can determine the value
of y at all other times.

Example 1. Find the equilibrium point for our respiration model

dy

dt
= .86− 15.14y ,

and classify it as asymptotically stable, stable (and not
asymptotically stable), or unstable.

As noted in a previous lecture, the equilibrium point ŷ solves

0 = .86− 15.14ŷ =⇒ ŷ = .06 L.



The Phase Line and Stability

Notice that if y < ŷ then dy
dt > 0, while if y > ŷ then dy

dt < 0. We
can record this information on a “phase line.”

We conclude that ŷ = .06 is asymptotically stable. In fact, we can
say something stronger. Given any value y0 ∈ R, the solution y(t)
to

dy

dt
= .86− 15.14y , y(0) = y0

will satisfy
lim
t→∞

y(t) = ŷ .



The Phase Line and Stability

Example 2. Find all equilibrium points for the non-dimensionalized
logistic model

dy

dt
= y(1− y),

and classify the stability of each.

First, the equilibrium points satisfy the equation

0 = ŷ(1− ŷ) =⇒ ŷ = 0, 1.

In this case, we have the following:

y < 0 =⇒ dy

dt
< 0

0 < y < 1 =⇒ dy

dt
> 0

y > 1 =⇒ dy

dt
< 0.



The Phase Line and Stability

We can summarize this information on a phase line.

We conclude that ŷ = 0 is unstable and ŷ = 1 is asymptotically
stable.



The Phase Line and Stability

In general, two other cases are possible, both unstable:



Linearization

As with fixed points, we can also classify the stability of equilibrium
points by a criterion on f ′(ŷ). In order to identify this criterion,
let’s suppose ŷ is an equilibrium point for the autonomous
differential equation

dy

dt
= f (y), y(0) = y0.

If we substitute
y(t) = ŷ + z(t)

into this equation, we find

zt = f (ŷ + z) = f (ŷ) + f ′(ŷ)z + ε(z ; ŷ).

Here, f (ŷ) = 0 and ε(z ; ŷ) is small, so we approximately have

zt = f ′(ŷ)z , z(0) = z0 = y0 − ŷ .



Linearization

From the previous slide,

zt = f ′(ŷ)z , z(0) = z0 = y0 − ŷ .

This equation is precisely the Malthusian model with r = f ′(ŷ), and
we know its solution is

z(t) = z0e
f ′(ŷ)t .

We see that if f ′(ŷ) < 0, then

lim
t→+∞

z(t) = 0 =⇒ lim
t→+∞

y(t) = ŷ .

In this case, we have asymptotic stability.

On the other hand, if f ′(ŷ) > 0, then z(t) will grow as t increases,
and we can conclude instability. If f ′(ŷ) = 0, stability will be
determined by higher order terms, so the criterion is inconclusive.



Linearization

In fact, this criterion is clear from the phase line.



Linearization

Example. Let’s use the derivative criterion to classify stability of
the equilibrium points ŷ = 0, 1 for the non-dimensionalized logistic
model,

dy

dt
= y(1− y).

We see that

f (y) = y(1− y) = y − y2 =⇒ f ′(y) = 1− 2y .

We now check: For ŷ = 0, we have f ′(0) = 1 > 0, so ŷ = 0 is
unstable. For ŷ = 1, f ′(1) = −1, so ŷ = 1 is asymptotically stable.



Periodic Solutions

We’ve already observed that there can’t be any interesting
bifurcation analysis for the logistic model, and that this is in
contrast to the discrete logistic model. A key difference between
the two cases is that while the discrete logistic model has 2-cycle
solutions, 4-cycle solutions, etc., there are no periodic solutions to
the logistic model.

In fact, the following is true: Single autonomous first-order ODE
cannot have non-constant periodic solutions. To see this, suppose
the autonomous ODE

dy

dt
= f (y)

has a periodic solution y(t) so that

y(t) = y(t + P),

where P is the solution’s period.



Periodic Solutions

I.e., if y(t0) = y0, then y(t0 + P) = y(t0) = y0,
y(t0 + 2P) = y(t0 + P) = y0 etc.

We’ll show that in this case, y(t) must be constant for all t. To this
end, we fix any T ∈ R, multiply our equation y ′ = f (y) by y ′, and
integrate the resulting equation from T to T +P . That is, we write

y ′(t)2 = f (y(t))y ′(t) =⇒
∫ T+P

T
y ′(t)2dt =

∫ T+P

T
f (y(t))y ′(t)dt.

If we set
F (y) =

∫ y

0
f (x)dx ,

then F ′(y) = f (y). This allows us to write∫ T+P

T
f (y(t))y ′(t)dt =

∫ T+P

T

d

dt
F (y(t))dt.



Periodic Solutions

We see that∫ T+P

T
y ′(t)2dt =

∫ T+P

T

d

dt
F (y(t))dt

=F (y(t))
∣∣∣t=T+P

t=T
= F (y(T + P))− F (y(T )) = 0.

But if ∫ T+P

T
y ′(t)2dt = 0

for all T ∈ R, then we must have that y ′(t) ≡ 0 for all t ∈ R. I.e.,
y(t) is constant for all t.



Recovery Times

Consider an autonomous ODE
dy

dt
= f (y), y(0) = y0,

with equilibrium point ŷ . Suppose ŷ is asymptotically stable, but y
has been moved away from ŷ to y0. (E.g., this might model a
population after harvesting or a resource that’s been depleted.)

The recovery time T is the amount of time required for y(t) to
reduce its distance to ŷ by a factor of 1

e . Precisely, T is defined so
that

(y(T )− ŷ) =
1
e
(y0 − ŷ) =⇒ y(T ) = ŷ +

1
e
(y0 − ŷ).

(Recall that to four decimal places, e = 2.7183.) In order to find a
value for T , we use the method of separation of variables.



Recovery Times

That is, we (formally) write our ODE as

dy

f (y)
= dt,

and then we integrate both sides∫ y(T )

y(0)

dy

f (y)
=

∫ T

0
dt = T .

We see that

T =

∫ ŷ+ 1
e
(y0−ŷ)

y0

dy

f (y)
.



Recovery Times

Example. For the respiration model

dy

dt
= .86− 15.14y , y(0) = y0,

suppose O2 drops from the equilibrium value ŷ = .06 L to
y0 = .01 L, and compute the associated recovery time.

In this case,

y(T ) = ŷ +
1
e
(y0 − ŷ) = .06+

1
e
(.01− .06) = .04

(rounding to two decimal places). We need to compute

T =

∫ .04

.01

dy

.86− 15.14y
= − 1

15.14
ln |.86− 15.14y |

∣∣∣.04

.01

= − 1
15.14

ln | .86− 15.14 ∗ .04
.86− 15.14 ∗ .01

| = .07 min.

I.e., about 4.2 seconds.


