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Non-dimensionalization

As with difference equations, we can non-dimensionalize differential
equations to obtain more convenient forms of the equations we're
working with.

Suppose we want to non-dimensionalize the logistic equation
dy
i
In this case, we'll replace both t and y with dimensionless variables.
For this, we set

ry(1—=2).

t }’(t)
= — Y = —

T A’ (7) B’

where A must be chosen as a constant with dimension time and B

must be chosen as a constant with dimension biomass.



Non-dimensionalization

Writing y(t) = BY (1), we can use the chain rule to compute

dy pd., \_gdvdr B

Yoy =Bl _ Py,
gt By =B =Y

This allows us to express the logistic equation as

B, BY ;- BY
We can choose B = K and A = 1/r to obtain the
non-dimensionalized equation

Y =Y(1-Y)

Notice that by introducing two dimensionless constants we were
able to eliminate two parameters. We see that in contrast to the
non-dimensionalized discrete logistic model, there can't be any
interesting bifurcation analysis for this model. l.e., solutions behave
qualitatively the same for all values of the parameters r and K.



Equilibrium Points

For a single autonomous differential equation

dy
Y f *
Y — 1), Q
we say that a value y is an equilibrium point if
f(y)=0.
Notice particularly that y(t) = y solves (*) for all t. l.e., we have
do
d{ —0 and f(§)=0,

so (*) is always satisfied.

Equilibrium points for differential equations are the analogues of
fixed points for difference equations.



Stability

Definition. Suppose y is an equilibrium point for the autonomous
differential equation

dy

- =f 0) = yo.
dt (}/), y( ) Yo

(i) We say that y is stable if given any € > 0 there exists § > 0 so

that

o -9l <d = |y(t) -y <e
for all t > 0.

(i) We say that y is asymptotically stable if y is stable, and there
exists some dg > 0 so that

(1) =>.

(iii) If y is not stable, then we say that y is unstable.

Yo —y| <o = t_':Tooy



The Phase Line and Stability

The phase variables for an equation are those that determine all
future behavior. For example, for a pendulum the phase variables
would be position and velocity. For a single first-order autonomous
differential equation, the phase variable is simply y. l.e., if you
know the value of y at some time then you can determine the value
of y at all other times.

Example 1. Find the equilibrium point for our respiration model
dy _
dt

and classify it as asymptotically stable, stable (and not
asymptotically stable), or unstable.

= .86 — 15.14y,

As noted in a previous lecture, the equilibrium point y solves

0=.86—15.14) — § = .06 L.



The Phase Line and Stability

Notice that if y < y then % > 0, while if y > ¥ then % < 0. We

can record this information on a “phase line."
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We conclude that y = .06 is asymptotically stable. In fact, we can
say something stronger. Given any value yp € R, the solution y(t)

to

d
di; = 86 —15.14y, y(0) = yo

will satisfy
lim y(t)=y.

t—00



The Phase Line and Stability

Example 2. Find all equilibrium points for the non-dimensionalized
logistic model

dy

(1 —

g~ Y1-y),
and classify the stability of each.
First, the equilibrium points satisfy the equation

0=y(l-y) = y=0,1.

In this case, we have the following:

0 —= — <0
y < dt<

0 1 —= = >0
<y< i

>1 — — <0.
Y dr



The Phase Line and Stability

We can summarize this information on a phase line.
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We conclude that y = 0 is unstable and y = 1 is asymptotically
stable.



The Phase Line and Stability

In general, two other cases are possible, both unstable:
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Linearization

As with fixed points, we can also classify the stability of equilibrium
points by a criterion on /(). In order to identify this criterion,
let's suppose y is an equilibrium point for the autonomous
differential equation

Y f(y),

i y(0) = yo.

If we substitute
y(t) =y +z(t)
into this equation, we find
z=f(P+2)=fQ)+f(P)z+e(z9).
Here, f() = 0 and €(z; ¥) is small, so we approximately have

zz="Ff(9)z, z(0)=z=yo— .



Linearization

From the previous slide,
zz=1(9)z, z(0)=z0=yo— 9.

This equation is precisely the Malthusian model with r = f/(y), and
we know its solution is

2(t) = ze" )t
We see that if f/(y) < 0, then

im z(t) =0 = lim y(t)=y.

In this case, we have asymptotic stability.
On the other hand, if f'(§) > 0, then z(t) will grow as t increases,

and we can conclude instability. If f/(y) = 0, stability will be
determined by higher order terms, so the criterion is inconclusive.



Linearization

In fact, this criterion is clear from the phase line.
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Linearization

Example. Let's use the derivative criterion to classify stability of
the equilibrium points y = 0,1 for the non-dimensionalized logistic

model,

dy
— =y(1 —y).
o y(1—y)

We see that
fY)=y(l—y)=y—y> = f(y)=1-2y.

We now check: For § =0, we have f/(0) =1>0,s0 y =0is
unstable. For y =1, f/(1) = —1, so y = 1 is asymptotically stable.



Periodic Solutions

We've already observed that there can't be any interesting
bifurcation analysis for the logistic model, and that this is in
contrast to the discrete logistic model. A key difference between
the two cases is that while the discrete logistic model has 2-cycle
solutions, 4-cycle solutions, etc., there are no periodic solutions to
the logistic model.

In fact, the following is true: Single autonomous first-order ODE
cannot have non-constant periodic solutions. To see this, suppose
the autonomous ODE

dy
Y _F
W)

has a periodic solution y(t) so that
y(t) = y(t+P),

where P is the solution’s period.



Periodic Solutions

le., if y(to) = yo, then y(to + P) = y(to) = yo.
y(to +2P) = y(to + P) = yp etc.

We'll show that in this case, y(t) must be constant for all t. To this
end, we fix any T € R, multiply our equation y’ = f(y) by y/, and
integrate the resulting equation from T to T + P. That is, we write

T+P T+P

Y6 = fy(0)y'(t) = / Y'(t)zde/ fFy(t))y'(t)dt.
T T

If we set

Fn = [ " F(x)d,

then F'(y) = f(y). This allows us to write

T+P T+P
[ rowwe = [ S Fvea

T



Periodic Solutions

We see that
T+P T+P
[ vwra= [T S rpoen
t=T+P
=F((e)|_ = F(T +P) = F(y(T)) = 0.
But if ip
/ y'(t)*dt =0
.

for all T € R, then we must have that y/(t) =0 for all t € R. l.e,,
y(t) is constant for all t.



Recovery Times

Consider an autonomous ODE

dy

—=f y 0) = )

=), y(0) =y
with equilibrium point y. Suppose y is asymptotically stable, but y
has been moved away from y to yp. (E.g., this might model a
population after harvesting or a resource that's been depleted.)

The recovery time T is the amount of time required for y(t) to
reduce its distance to y by a factor of % Precisely, T is defined so
that

1

AT =9)=<00-9) = ¥(T) =9+ (0~ 9)

(Recall that to four decimal places, e = 2.7183.) In order to find a
value for T, we use the method of separation of variables.



Recovery Times

That is, we (formally) write our ODE as
dy
fy)

and then we integrate both sides
y(T) T
/ & / dt=T.
y(0) f(y) 0

J+2(v0—9)
T = / &
Yo f(y)

dt,

We see that



Recovery Times

Example. For the respiration model
dy _
dt

suppose O, drops from the equilibrium value y = .06 L to
yo = .01 L, and compute the associated recovery time.

= .86 — 15.14y, y(0) = yo,

In this case,
1
y(M=9p+= (yo— 9)=.06+ - (01—06) .04

(rounding to two decimal places). We need to compute

.04 d 1 04
y
T = — In|.86 — 15.14
/(Jl %6 1514y 1514 ™ Y] o1
186151408 o
= — n =. min.
15.14 86 — 15.14 « .01 !

|.e., about 4.2 seconds.



