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ABSTRACT

Suppose F := (f1, . . . , fn) is a system of random n-variate
polynomials with fi having degree ≤di and the coefficient of
xa1
1 · · ·xan

n in fi being an independent complex Gaussian of

mean 0 and variance di!

a1!···an!(di−
∑

n
j=1 aj)!

. Recent progress

on Smale’s 17th Problem by Lairez — building upon sem-
inal work of Shub, Smale, Beltrán, Pardo, Bürgisser, and
Cucker — has resulted in a deterministic algorithm that finds
a single (complex) approximate root of F using just NO(1)

arithmetic operations on average, where N :=
∑n

i=1
(n+di)!
n!di!

(= n(n+maxi di)
O(min{n,maxi di)}) is the maximum possible

total number of monomial terms for such an F . However,
can one go faster when the number of terms is smaller, and
we restrict to real coefficient and real roots? And can one
still maintain average-case polynomial-time with more gen-
eral probability measures?

We show that the answer is yes when F is instead a bi-
nomial system — a case whose numerical solution is a key
step in polyhedral homotopy algorithms for solving arbitrary
polynomial systems. We give a deterministic algorithm that
finds a real approximate root, or correctly decides there
are none, using just O(n3 log2(nmaxi di)) arithmetic oper-
ations on average. Furthermore, our approach allows Gaus-
sians with arbitrary variance. We also discuss briefly the ob-
structions to maintaining average-case time polynomial in
n logmaxi di when F has more terms.
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1 INTRODUCTION

Polynomial system solving has occupied a good portion of
research in algebraic geometry for centuries, and inspired nu-
merous algorithms in engineering and optimization. In recent
years, homotopy continuation (see, e.g., [5, 33, 34, 38, 55])
has emerged as one of the most practical and efficient ap-
proaches to leverage high performance computing for the
approximation of roots of large polynomial systems.

A refinement particularly useful for sparse systems is poly-
hedral homotopy [25, 30, 60]. To be brutally concise, polyhe-
dral homotopy reduces the solution of an arbitrary polyno-
mial system to (a) solving a finite collection of binomial sys-
tems to high precision and then (b) iterating a finite collec-
tion of rational functions. A complete, average-case complex-
ity analysis of polyhedral homotopy thus implies an average-
case complexity upper bound on solving binomial systems.
(See also [18] for a more in-depth discussion on the impor-
tance of binomial systems.)

A geometric aspect common to both polyhedral homo-
topy and older homotopy methods is the deformation of a
start system G (or a collection of start systems {Gi}), with
known roots, into the system F one is trying to solve. Put
another way, homotopy algorithms approximate the motion
of the roots of a one-parameter family of polynomial sys-
tems (called a homotopy path), where the resulting path has
end-points G and F . As studied in [6, 7, 9, 17, 29, 47, 48],
average-case complexity analysis for classical homotopy al-
gorithms hinges on careful probabilistic condition number
estimates for the start system G, followed by further prob-
abilistic condition number estimates for systems along the
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homotopy path.1 Since binomial systems play the role of
start systems in polyhedral homotopy, it is thus crucial to
know the probability that a binomial system is easy to solve.
Our main theorem, on average-case complexity, is a step in
this direction.

Since solving arbitrary polynomial systems is a numeri-
cal problem involving solutions of unknown minimal spac-
ing, we will need to incorporate the cost of approximating
well enough to distinguish distinct solutions. A recent and
elegant way to handle this is via the notion of approximate
root in the sense of Smale. In what follows, we use | · | for
the standard ℓ2-norm on Cn.

Definition 1.1. [13, 50] Given any analytic function F :
Cn −→ Cn, we define the Newton endomorphism of F to
be NF (z) := z − F ′(z)−1F (z), where we think of F (z) as
a column vector and we identify the derivative F ′(z) with

the matrix of partial derivatives
[

∂fi
∂xj

]∣

∣

∣

x=z
. We call ζ ∈Cn

a non-degenerate root of F if and only if F ′(ζ) is invert-
ible. Given z0 ∈ Cn, we then define its sequence of New-
ton iterates (zn)n∈N∪{0} via the recurrence zn+1 :=NF (zn)
(for all n ≥ 0). We then call z0 an approximate root of
F in the sense of Smale (with associated true root ζ) if
and only if F has a non-degenerate root ζ ∈ Cn satisfying

|zn − ζ|≤
(

1
2

)2n−1

|z0 − ζ| for all n≥1. ⋄
In essence, once one has an approximate root in the sense

above, one can easily compute coordinates within any de-
sired ε>0 of the coordinates of a true root, simply by iterat-
ing Newton’s method O

(

log log 1
ε

)

many times. The special

case F (z1) :=z21−2 already shows that one needs Ω
(

log log 1
ε

)

arithmetic operations to compute
√
2 within ε [16]. So one

can arguably consider an approximate root to be the gold
standard for specifying a true root. In particular, one no
longer has to worry about finding the minimal root spacing
of F (to find the right ε to separate distinct roots), since
an approximate root in the sense of Smale is guaranteed to
converge almost optimally fast to a unique true root.

Of course, this begs the question of how one can possi-
bly find an approximate root. This is the crux of Smale’s
17th Problem (see [51, 52] and Section 1.1 below), which was
recently positively solved by Lairez [29]. (See also the semi-
nal work of Shub and Smale [48], Beltrán and Shub [9, 47],
Beltrán and Pardo [6–8], and Bürgisser and Cucker [17].)
Roughly, Lairez’s discovery was an algorithm that, for a cer-
tain class of random polynomial systems, finds a single (com-
plex) approximate root in polynomial-time on average. We
now introduce some more terminology to be precise:

Definition 1.2. Suppose A1, . . . ,An⊂Zn are finite sub-
sets and {ci,a | i ∈ {1, . . . , n} and a ∈ Ai for all i} is a col-
lection of independent complex (resp. real) Gaussians with
mean 0 and the variance of ci,a equal to w2

i,a. Letting a :=
(a1, . . . , an), x

a :=xa1
1 · · ·xan

n , and fi(x) :=
∑

a∈Ai
ci,ax

a, we

1The condition number is a measure of the sensitivity of the roots
of a system to perturbation of its coefficients. The condition number
is thus another important measure of the complexity of numerical
solving.

call F := (f1, . . . , fn) an n × n complex (resp. real) random
polynomial system with support (A1, . . . ,An). ⋄

Lairez’s Theorem. [29, Thm. 23]2 Following the nota-
tion above, let d1, . . . , dn∈N,

Ai :=
{

(a1, . . . , an)∈(N ∪ {0})n
∣

∣

∣

∑n
j=1 aj ≤di

}

for all i,

and w2
i,a :=

di!

a1!···an!(di−
∑

n
j=1 aj)!

. Then one can find a (com-

plex) approximate root of a complex random F using just

O(nd3/2N(N+n3)) arithmetic operations on average, where

N :=
∑n

i=1
(di+n)!
di!n!

and d :=maxi di. �

Note that restricting the support (A1, . . . ,An) is a way to
consider sparsity for one’s polynomial system. In particular,
one can think of Lairez’s Theorem as solving Smale’s 17th

Problem in the “dense” case, since Lairez assumes that all
monomial terms up to a given degree appear (with probabil-
ity 1) in each polynomial fi. Indeed, one should note that
Smale never specified what kind of probability measure one
should use in his 17th Problem [51, 52]. So Smale’s 17th Prob-
lem actually includes sparse systems if some of the random
coefficients have mean, and all higher moments, equal to 0.
Smale also observed in [51, 52] that one can pose a more
difficult analogue of his 17th problem over the real numbers.

Remark 1.3. It is worth noting that the number of nonzero
complex roots of a complex (or even real) random polyno-
mial system as above attains a unique value with probabil-
ity 1, once A1, . . . ,An are fixed. (This follows easily from
a classical result of Bernstein [10, 44], relating the mixed
volume of Newton polytopes with counting complex roots.)
Counting real roots for real random systems is more subtle
however: One can easily show that, for any continuous pos-
itive probability measure on the coefficients, having at least
one di ≥ 2 (in the setting of Lairez’s Theorem) implies that
at least two different possible real root counts can occur with
positive probabilities (see, e.g., [20]). For instance, if c0, c1,
and c2 are independent real Gaussians of any positive vari-
ance, the probability that c0 + c1x + c2x

2 has exactly k real
roots is positive for each k∈{0, 2}. ⋄

Observe that
∑n

i=1
(di+n)!
di!n!

is exactly the maximal possible

total number of monomial terms in an n × n polynomial
system where fi has degree di. Note also that just evaluating
a monomial of degree d takes Ω(log d) arithmetic operations:
Simply consider the straight-line program complexity of the
integer 2d (see, e.g., [15, 36, 37]). One should pay attention
to the evaluation complexity of F since Lairez’s algorithm
uses Newton iteration, which in turn requires evaluating F
(and its Jacobian) many times. So one can then naturally
ask, in the spirit of real fewnomial theory [26]: Can one find
a real approximate root of F (or decide whether there are

no real roots) using, say, (t log d)O(1) arithmetic operations
on average, when t is the total number of monomial terms of
F and d :=maxi di? (See also [45] for an earlier statement of

2We have paraphrased a bit: Lairez’s main theorem is stated in terms
of homogeneous polynomials, and he counts square roots as arithmetic
operations as well. Via the techniques of, say, [7], one can easily derive
our affine statement.



this problem.) This would be a significant new speed-up. For
instance, the special case t=O(n) is already quite non-trivial
since there are standard algebraic tricks (e.g., the bottom of
the first page of [21]) to reduce arbitrary polynomial systems
to trinomial systems.

Our main theorem thus solves a special case of a refined
version of Smale’s 17th Problem, and serves as a starting
point for a deeper study of the randomized complexity of
solving arbitrary real sparse polynomial systems.

Theorem 1.4. Suppose A = [ai,j ] ∈ Zn×n and all the
entries of A have absolute value at most d. Suppose also
that ci,j is an independent real Gaussian with mean 0 and
variance w2

i,j , for each (i, j) ∈ {1, . . . , n} × {0, 1}. Let F :=

(f1, . . . , fn) with fi(x) :=ci,0+ci,1 ·xa1,i

1 · · ·xan,i
n , and set r :=

maxi max
{
∣

∣

∣

wi,0

wi,1

∣

∣

∣
,
∣

∣

∣

wi,1

wi,0

∣

∣

∣

}

. Then, on average, one can find

a real approximate root of F (or correctly determine there
are no real roots) using just O

(

n2 log2(nd)[1 + n log log(er)]
)

arithmetic operations and O(nω+1 log2(dn)) bit operations,
where ω is any upper bound on the matrix multiplication ex-
ponent.

We prove Theorem 1.4 in Section 3. The best current upper
bound on ω, as of May 2019, is Legall’s estimate 2.3728639
[31] (see also [2, 59]).

At a high level, the algorithm underlying our main the-
orem has three phases: (I) perform integer linear algebra
on the exponent vectors to find a monomial change of vari-
ables reducing the input system F to the diagonal form
(xd1

1 − c1, . . . , x
dn
n − cn), (II) decide if there are real roots,

(III) if there are real roots, solve each binomial by a com-
bination of bisection and Newton iteration (based on [61]),
paying close attention to how each pair (di, ci) affects the
required accuracy. Phases (I) and (II) are well-known in the
computational toric geometry community (see, e.g., [18, 21,
25]). Although [18] contains many useful algorithmic details
on solving binomial systems, including a discussion of nu-
merical implementations, the computational complexity of
binomial system solving does not appear to have been ana-
lyzed yet from the point of view of average-case complexity
or approximate roots in the sense of Smale. Our primary con-
tribution is thus a new analysis of Phase (III), particularly
with respect to average-case complexity in the Gaussian set-
ting.

The complexity of Phase (I) accounts for the bit com-
plexity estimate in Theorem 1.4, thanks to earlier work of
Storjohann on fast linear algebra over Z (see [54, 56] and
Section 2.1 below). Phase (II) is an elementary algebra ex-
ercise and actually has negligible (deterministic) complexity
compared to our main bound. Step (III) is accomplished by
a hybrid algorithm of Ye that allows quick approximation of
rational powers of a real number [61]. The final key ingre-
dient to establishing the average-case complexity of Phase
(III) is estimating the expected value of linear combinations
of logarithms of absolute values of standard real Gaussians
(see Propositions 2.8 and 2.9 in Section 2.3 below). We were

unable to find any explicit asymptotics for such expectations,
so we derive these in the latter half of Section 2.3.

We will explain some of the subtleties behind extending
Theorem 1.4 to systems with arbitrary supports in Section
1.2 below. First, however, let us briefly review the original
statement of Smale’s 17th Problem.

1.1 Quick Review of Smale’s 17th Problem

Smale’s 17th Problem [51, 52] elegantly summarizes the sub-
tleties behind polynomial system solving:

Can a zero of n complex polynomial equations
in n unknowns be found approximately, on
the average, in polynomial-time with a uni-
form algorithm?

[Emphases added.] We clarify the notion of “polynomial-
time” below. As motivation, let us first see how the empha-
sized terms highlight fundamental difficulties in polynomial
system solving:

“a zero”: We can not expect a fast algorithm approximating
all the roots since, for n ≥ 2, there may be infinitely
many. In which case, for d1≥3 (e.g., the case of elliptic
curves [53]), the roots will likely not admit a rational
parametrization. When there are only finitely many
roots, systems like (x2

1 − 1, . . . , x2
n − 1) show that the

number of roots can be exponential in n.
“found approximately”: Even restricting to integer coef-

ficients, the number of digits of accuracy needed to
separate distinct roots can be exponential in n, e.g.,

((2x1 − 1)(3x1 − 1), x2 − x2
1, . . . , xn − x2

n−1)

has roots with nth coordinates 1

22
n−1 and 1

32
n−1 . So,

especially for irrational coefficients, we need a more ro-
bust notion of approximation than digits of accuracy.
(Hence’s Smale’s definition of approximate root from
[50].)

“on the average”: Restricting to integer coefficients, dis-
tinguishing between a system having finitely many or
infinitely many roots is NP-hard (see, e.g., [27, 41]).
Furthermore, as already long known in the numerical
linear algebra community (e.g., results on the distribu-
tion of eigenvalues of random matrices [19, 57]), even
if the number of roots is finite, the accuracy needed to
separate distinct roots can vary wildly as a function of
the coefficients. So averaging over all inputs allows us
to amortize the complexity of potentially intractable
instances.

The original statement of Smale’s 17th Problem measures
time (or complexity) as the total number of (a) (exact) field
operations over C, (b) comparisons over R, and (c) bit oper-
ations [51]. (The underlying computational model is a BSS
machine over R [13], which is essentially a classical Tur-
ing machine [3, 39, 49], augmented so that it can perform
any field operation or comparison over R in one time step.)
Polynomial-time was then meant as polynomial in the num-
ber of (nonzero) coefficients of F . Smale thus interpreted the



number of coefficients (which can be as high as
∑n

i=1

(

di+n
n

)

for F as specified above) as the input size.

Remark 1.5. The precise probability distribution over which
one averages was never specified in Smale’s original state-
ment [51, 52]. In all the literature so far on the problem (see,
e.g., [6–9, 17, 29, 47, 48]), the Bombieri-Weyl measure was
used: This is the choice of variances involving multinomial
coefficients written earlier. ⋄
While the Bombieri-Weyl measure satisfies some very nice
group invariance properties (see, e.g., [12, 23, 28, 48]), there
is currently no widely-accepted notion of a “natural” prob-
ability distribution for a random polynomial. For instance,
there are several different distributions of interest already for
the matrix eigenvalue problem (see, e.g., [1, 19, 43]). More
to the point, much work has gone into finding useful proper-
ties of the roots of random polynomials that are distribution
independent (see, e.g., [11, 22, 58]).

The meaning of uniform algorithm is more technical and
is formalized in [13] (see also [3, 39, 49] for the classical
Turing case). Roughly, uniformity refers to having a single
implementation that can handle all input sizes, as opposed
to having different implementations for each input size.

1.2 Current Obstructions to Fully

Incorporating Sparsity

As we’ll see from the proof of our main theorem, solving
an n × n system of Gaussian random binomials of degree
d can be reduced to solving n univariate binomials of de-
gree (nd)O(n), where the underlying coefficients are no longer
Gaussian but have reasonably estimable means. Algebraically,
this will imply that the underlying field extension (where one
adjoins the coordinates of the solutions to the field generated
by the coefficients) is always a radical extension.

A natural next step then is to consider n × n unmixed
(n+ 1)-nomial systems:

(c1,0+c1,1x
a1+· · ·+c1,nx

an , . . . , cn,0+cn,1x
a1+· · ·+cn,nx

an),

where ai :=(a1,i, . . . , an,i) for all i. Via Gauss-Jordan Elimi-
nation, one can reduce such a system to a binomial system
without affecting the roots. Unfortunately, if one starts with
a system of the form above, with Gaussian ci,j , the resulting
binomial system no longer has Gaussian coefficients. So one
needs to consider binomial systems with coefficient distribu-
tions more general than Gaussian, and we do this in a sequel
to this paper.

Going a bit farther, n × n unmixed (n + 2)-nomial sys-
tems yield an interesting complication: The underlying field
extensions need no longer be radical, even if n= 1. A sim-
ple example is x5

1 − 2x1 + 10, which has Galois group S5

over Q. However, earlier results from [45] indicate that it
should be possible to find real approximate roots quickly on
average, at least for univariate trinomials. (One should also
observe Sagraloff’s recent dramatic speed-ups for the worst-
case arithmetic complexity of ε-approximating real roots of
univariate sparse polynomials [46].) We conjecture that find-
ing a real approximate root (or determining that there are

no real roots) for a real Gaussian n × n unmixed (n + 2)-

nomial system is still possible in time (n log d)O(1) on aver-
age, and hope to address this problem in the future. An in-
teresting intermediate complication is that just counting the
real roots within average-case time (n log d)O(1) is already
an open question for t≥n+ 3 (see, e.g., [4]).

2 BACKGROUND

In what follows, for any n × n matrix A∈ Zn×n, we define
xA to be the vector of monomials

(

x
a1,1

1 · · ·xan,1
n , . . . , x

a1,n

1 · · ·xan,n
n

)

.

We call the substitution x= zA a monomial change of vari-
ables. The following proposition is elementary.

Proposition 2.1. We have that xAB = (xA)B for any
A,B ∈ Zn×n. Also, for any field K, the map defined by
m(x) = xU , for any unimodular matrix U ∈ Zn×n, is an
automorphism of (K∗)n :=(K \ {0})n. �

Our main approach to solving binomial systems is to re-
duce them to systems of the form (xd1

1 − c1, . . . , x
dn
n − cn)

via a monomial change of variables, and then prove that the
distortion of the ci resulting from perturbing the original
coefficients is controllable. Later on, we will also detail how
a Gaussian distribution on the original coefficients implies
that the ci still have well-behaved distributions. But now we
will focus on quantifying our monomial changes of variables.

2.1 Linear Algebra Over Z

Definition 2.2. Let GLn(Z) denote the set of all ma-
trices in Zn×n with determinant ±1 (the set of unimodular
matrices). Given any M ∈Zn×n, we call any identity of the
form UMV =S with U, V ∈GLn(Z) and S diagonal a Smith
factorization. In particular, if S = [si,j ] and we require ad-
ditionally that si,i ≥ 0 and si,i|si+1,i+1 for all i∈ {1, . . . , n}
(setting sn+1,n+1 :=0), then S is uniquely determined and is
called the Smith normal form of M . ⋄

Remark 2.3. Although the Smith normal form is unique,
the Smith factorization certainly need not be unique. For in-

stance,

[

0 0
0 0

]

=

[

1 u
0 1

] [

0 0
0 0

] [

1 v
0 1

]

for all u, v ∈ Z.

Note, however, that this need not contradict there being some
factorization with small entries. ⋄

Theorem 2.4. [56, Ch. 6 & 8, pg. 128] For any A =
[ai,j ]∈Zn×n, a Smith factorization of A yielding the Smith
normal form of A can be computed within

O
(

nω+1 log2(nmaxi,j |ai,j |)
)

bit operations. Furthermore, the entries of all matrices in
this factorization have bit size O(n log(nmaxi,j |ai,j |)). �

2.2 From Approximate Roots of

Univariate Binomials to Systems

We begin with an important observation from the middle
author’s doctoral dissertation, building upon earlier work of
Smale [50] and Ye [61].



Lemma 2.5. [40, Thm. 4.10] Let d∈N satisfy d≥2, c>0,
and f(x1) :=xd

1−c. Then we can find an approximate root of
f using O

(

(log d)(log log
(

demax
{

c, c−1
}))

field operations
over R. �

Since a monomial change of variables enables us to replace
an arbitrary binomial system by a simpler, diagonal system
of univariate binomials, it’s enough to bound how the roots
are distorted under such a change of variables. The following
lemma gives us the bounds we need.

Lemma 2.6. Suppose c1, . . . , cn ∈ C∗ and A ∈ Zn×n has
columns a1, . . . , an and entries of absolute value at most d.
Also let σ :=maxi{| log |ci||}, let UAV =S be the Smith Fac-
torization of A, and let (γ1, . . . , γn) := (c1, . . . , cn)

V . Then
the following bounds hold:

1. maxi | log |γi||≤n4+3n/2d3nσ.
2. If ζ=(ζ1, . . . , ζn)∈(C∗)n is a root of F then

maxi | log |ζi||≤nO(n)dO(n)σ. �

Lemma 2.6 follows easily from the second bound of Theorem
2.4, upon observing that xA=c implies that zS=(γ1, . . . , γn)
where x = zU . By combining Lemma 2.6 with Theorem
2.4 and multivariate Taylor’s Theorem with Remainder (see,
e.g., [24]), we then easily obtain the following estimate:

Proposition 2.7. Following the notation above, let Rn
+

denote the positive orthant and let |(y1, . . . , yn)|∞ denote the
ℓ∞-norm maxi |yi| of the vector y = (y1, . . . , yn). Suppose
also that ζ, µ, x, z ∈Rn

+ satisfy µS = γ, ζ = µU , and x= zU .

Then log |x− ζ|∞=eO(n log(dn))σ + log |z − µ|∞. �

2.3 A Key Probabilistic Estimate

Let Z be a standard real Gaussian random variable and let
Y := log |Z|. It is not difficult to check that Y has density

ρY (t) :=
√

2
π
e−v(t),−∞ < t < ∞, where v(t) := e2t

2
− t. In-

deed, this follows by differentiating the distribution function
of Y , FY (t) := P(−et ≤ |Z| ≤ et) = 1− 2Φ(−et). Note that
v is a convex function. Let α := E[Y ] and let τ be the stan-
dard deviation of Y . (α≈−0.635181... and τ ≈ 1.110720...,
according to the 2018 version of Maple.) Consider the cen-
tered random variable W := Y −α. Let a :=(a1, . . . , ak)∈Rk,
and let Wa :=a1W1 + · · ·+ akWk where Wi are independent
copies of W . Let Xa := max{eWa , e−Wa}. We then have the
following:

Proposition 2.8. Let a= (a1, . . . , ak) ∈ Rk and assume

that
∑k

i=1 ai = 0. Then Wa is a log-concave random variable
with expectation 0 and standard deviation γ := |a|τ . We also
have

P(log log(eXa) ≥ t) ≤ e
− et−1

2γ for t ≥ log(1 + γ). (1)

Moreover,

E[log log(eXa)] ≤ 2 + log(1 + γ). (2)

Proof: Since v is a convex function the density ρY is log-
concave and, by a theorem of Borell [14], the law of the

random variable Y is log-concave, i.e., for all compact sets
A,B and λ ∈ (0, 1) one has

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ, (3)

where µ is the measure on R induced by the density ρY . Also,
W is a log-concave random variable and, by the Prékopa-
Leindler inequality [32, 42], Wa is also log-concave. We have

that E[Wa] =
∑k

i=1 aiE[Yi] = α
∑k

i=1 ai = 0 and, since the
Wi are independent,

var(Wa) =

k
∑

i=1

a2
i var(Yi) = τ2

k
∑

i=1

a2
i = τ2a2.

Another well-known result of Borell (see e.g., [35]) then states
that if µ is a log-concave probability measure, K is a sym-
metric closed convex set in Rn, and δ := µ(K) ≥ 1

2
, then for

all t > 1 we have the following:

1− µ(tA) ≤ δ

(

1− δ

δ

)
t+1
2

. (4)

In particular, if X is a log-concave random variable with
mean 0 and variance γ2, then we have the following:

P(|X| ≥ s) ≤ e
− s

2γ , for s ≥ γ. (5)

Indeed, let A := {|x| ≤ 2γ}. Then, by Chebychev’s Inequal-
ity, we have that P(A) = δ ≥ 3

4
. Using (4), we obtain:

P(|X| ≥ tγ) = 1−P(tA) ≤ δ

(

1− δ

δ

)
t+1
2

≤
(

1

3

)
t+1
2

≤ e−
t
2 ,

(6)
for t≥1. So we can estimate as follows:

P(log log(eXa) ≥ t) = P

(

Xa ≥ ee
t−1

)

= P

({

Va ≥ ee
t−1

}

∪
{

Va ≤ e−(et−1)
})

= P

(

Va ≥ ee
t−1

)

+ P

(

Va ≤ e−(et−1)
)

= P
(

Wa ≥ et − 1
)

+ P
(

Wa ≤ −(et − 1)
)

= P
(

|Wa| ≥ et − 1
)

≤ e
− et−1

2γ ,

provided et − 1 ≥ γ, where we have also used (6). Finally,
since eXa ≥ e, we have log log(eXa) ≥ 0 and thus

E[log log(eXa)] ≤
∫ ∞

0

P(log log(eXa) ≥ t) dt

≤
∫ log(1+γ)

0

dt+

∫ ∞

log(1+γ)

e
− et−1

2γ dt

≤ log(1 + γ) +

∫ ∞

γ

1

1 + s
e
− s

2γ ds

= log(1 + γ) +

∫ ∞

1
2

2γ

1 + 2γx
e−xdx

≤ log(1 + γ) +
2γ

1 + γ

∫ ∞

0

e−xdx ≤ 2 + log(1 + γ). �



Proposition 2.9. Let a∈Rk satisfy
∑k

i=1 ai = 0 and as-

sume t≥e2≈7.3890.... Then

log log t ≤ E log log{tXa}
≤ log log(t/e) + 2 + log 2 + log(1 + τ |a|),

where τ ≈ 1.110720... is the standard deviation of a random
variable of the form log |Z|, where Z is a standard real Gauss-
ian random variable.

Proof: Note that a + b≤2ab for all a, b≥1. Since eXa ≥ e
and t/e ≥ e, using (2) we get

E log log(tXa) = E log(log(t/e) + log(eXa))

≤ E log(2(log(t/e)) log(eXa))

= log(2) + log log(t/e) + E log log(eXa)

≤ log(2) + log log(t/e) + 2 + log(1 + τ |a|).
Finally, since Xa ≥ 1 and t ≥ e2, we have log log(tXa) ≥
log log t. �

3 THE PROOF OF THEOREM 1.4

First note that the ci,j are all nonzero with probability 1,
so we may assume (since we are considering average-case
complexity) that all the ci,j are nonzero. In which case, we
can focus solely on roots in (R∗)n.

Now note that by Proposition 2.1, we can easily decide
whether our input binomial system F has a real root: If F
is diagonal, i.e., if F =(c1,0 + c1,1x

d1
1 , . . . , cn,0 + cn,1x

dn
n ) for

some d1, . . . , dn∈N, then F has a real root if and only if the
following condition holds: ci,0ci,1 < 0 for all i with di even
and nonzero, and ci,0 = −ci,1 for all i with di = 0. Should
this condition be true, each orthant of Rn contains at most
1 root of F (if all the di are nonzero), or F has infinitely
many roots in any orthant where F vanishes (if some di is
zero). (See [21] or [18, Sec. 3] for a more precise description
of the case where F has infinitely many roots in (R∗)n.) In
the latter case, F has free variables that we may set to 1,
yielding a j × j binomial system with j < n and real roots
that are coordinate projections of the roots of F .

If F is not diagonal, then after computing a Smith fac-
torization UAV =S (which accounts for our stated bit com-
plexity bound, thanks to Theorem 2.4), we can reduce to the
diagonal case and simply check n inequalities and equalities.
If there are no real roots, no further work needs to be done.

So let us now assume that there are real roots. Without
loss of generality (flipping signs of certain ci,j as needed), we
may assume there is a root in the positive orthant Rn

+, and
try to approximate a root there. So we may now assume that
we are trying to approximate the roots of

G :=(z
s1,1
1 − γ1, . . . , z

sn,n
n − γn)

where
(γ1, . . . , γn) :=(−c1,0/c1,1, . . . ,−cn,0/cn,1)

V

lies in Rn
+, and the si,i are the diagonal entries of the Smith

normal form S of A. In particular, we need to approximate
a root µ of G in Rn

+ closely enough so that ζ := µU is an
approximate root of F .

A slight complication arises: Some of the si,i may be 0,
thus making the Jacobian of G have rank too low for New-
ton iteration to be well-defined. However, this is easily dis-
pensed with by setting zi = 1 for all i with si,i = 0. This
has the effect of reducing our problem to solving the j × j
system G′ := (z

s1,1
1 − γ1, . . . , z

sj,j
j − γj), where j ≤ n and

m(x) := (x
s1,1
1 , . . . , x

sj,j
j ) is a surjective endomorphism on

(C∗)j . So we can ultimately obtain approximate roots, sim-
ply by applying Newton iteration to G′ instead of G. Thus,
let us assume without loss of generality that all the si,i are
non-zero (and thus detA 6=0).

Proposition 2.7 then tells us that to find an approximate
root of F , it suffices to find an approximate root of G, but
with tighter precision. In particular, the necessary number of
additional Newton iterations is O(n log(dn)), and each New-
ton iteration for G requires O(n log d) arithmetic operations.
So the additional work is bounded from above by our main
arithmetic complexity bound. Lemma 2.5 applied to G then
implies that to derive our average-case complexity bound, it
suffices to compute an upper bound on the expectation of
the following quantity:

B :=
∑n

i=1

[

(log si,i) log log
(

si,iemax
{

|γi|,
∣

∣γ−1
i

∣

∣

})]

.

We are almost ready to apply our probabilistic estimate
Proposition 2.9, save for the fact that the γi are monomials in
real Gaussians that need not have variance 1. However, from
the definition of γ, we see that we in fact have (γ1, . . . , γn) :=
(

w1,0

w1,1
, . . . ,

wn,0

wn,1

)V

⊙
(

−c′1,0
c′1,1

, . . . ,
−c′n,0

c′
n,1

)V

, where ⊙ denotes

the natural coordinate-wise multiplication in (R∗)n, and the
c′i,j are real Gaussians with mean 0 and variance 1. Using
the inequality a + b≤ 2ab for a, b≥ 1, we then see that it is
enough to estimate the expectation of B in the special case
where all the ci,j have variance 1, provided we also add the
quantity

T :=
∑n

i=1(log si,i) log log
(

emax
{

w′
i, w

′−1
i

})

to our estimate, where (w′
1, . . . , w

′
n) :=

(

w1,0

w1,1
, . . . ,

wn,0

wn,1

)V

.

We now conclude via Proposition 2.9 and Theorem 2.4:
Proposition 2.9 tells us that the expectation of B is no
greater than
∑n

i=1(log si,i) [log log (max{si,i, e}) + 2 + log(2) + log (1 + τ |vi|)],

where vi is the ith column of V . Theorem 2.4, and the fact
that

∑n
i=1 log |si,i| = log | detA| = O(n log(dn)) (thanks to

Hadamard’s classical inequality on the determinant), imply
that the last quantity is no greater than

O
(

n log(dn)
∑n

i=1

(

log(n log(dn)) + log
(

1 + τ
√
neO(n log(dn))

)))

= O(n log(dn)n log(n log(dn))). So we obtain that the expec-
tation of B is O

(

n2 log2(dn))
)

.
Similarly, by Theorem 2.4 and Lemma 2.6, T is no greater

than
∑n

i=1(log |si,i|) log log
(

e
(

re
O(n log(dn))

)n)

.

So T =O(n log(dn))n log
(

neO(n log(dn)) log(er)
)

= O(n log(dn))n [O(n log(dn)) + log log(er)]



= O
(

n3 log2(dn) log log(er)
)

,
and we are done. �
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