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Abstract: Many applications require a method for translating a large list of bond angles and bond lengths to precise
atomic Cartesian coordinates. This simple but computationally consuming task occurs ubiquitously in modeling
proteins, DNA, and other polymers as well as in many other fields such as robotics. To find an optimal method,
algorithms can be compared by a number of operations, speed, intrinsic numerical stability, and parallelization. We
discuss five established methods for growing a protein backbone by serial chain extension from bond angles and bond
lengths. We introduce the Natural Extension Reference Frame (NeRF) method developed for Rosetta’s chain extension
subroutine, as well as an improved implementation. In comparison to traditional two-step rotations, vector algebra, or
Quaternion product algorithms, the NeRF algorithm is superior for this application: it requires 47% fewer floating point
operations, demonstrates the best intrinsic numerical stability, and offers prospects for parallel processor acceleration.
The NeRF formalism factors the mathematical operations of chain extension into two independent terms with orthogonal
subsets of the dependent variables; the apparent irreducibility of these factors hint that the minimal operation set may

have been identified. Benchmarks are made on Intel Pentium and Motorola PowerPC CPUs.
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Introduction

The backbones of common biological polymers such as proteins
and nucleic acids consist of consecutively linked (bonded) series
of atoms occupying a three-dimensional structure (Fig. 1). Math-
ematically, this structure can be represented by the Cartesian
coordinates of the atoms or alternatively, as bond lengths and
angles. The former is the natural basis describing physical force
fields and dielectric densities while the latter is more natural to
chemical description of covalent and hydrogen bonding as well as
certain kinds of experimental information.

Ab initio protein structure modeling algorithms search through
many atomic conformations on a potential surface. Some methods,

such as Rosetta'?

and Dyana,® generate perturbations or trial
moves in angle space and then convert these to Cartesian atom
positions where radially dependent potential functions or force
fields can be evaluated. This conversion, dubbed “refolding,” can
dominate the time it takes to evaluate a trial move; Rosetta typi-
cally spends one-quarter to half of its CPU time refolding. Thus,
efficient conversion of bond-centric torsion angles to Cartesian

representations are of vital interest. Numerical accuracy is also

essential because a typical protein chain can loop back on itself,
bringing two atoms separated by thousands of intervening swiv-
eling bonds into the range of van der Waals forces, which vary
sharply over hundredths of an angstrom.

A straightforward procedure to convert from torsion angles to
Cartesian coordinates is to work from one end of the chain to the
other, sequentially placing one bonded atom at a time in relation to
the previously placed ones. All that is necessary to place a partic-
ular atom is the Cartesian coordinates of the three previous atoms
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Figure 1. Schematic of the peptide backbone. A peptide’s nitrogen
(N), alpha carbon (Ca), carbon (C) are shown in black, while its
oxygen (O) and side chain (R) atoms are in grey. Three backbone
torsion angles (psi, phi, omega) are shown. Each peptide subunit has
three bond angles, three bond lengths, and three torsion angles. This
peptide-centric picture is irrelevant to the algorithms: all methods
merely place the next consecutive atom with each iteration using just
the bond angle with the previous two atoms, and the torsion angle
about the bond between the previous two atoms.

in the chain and three bond parameters: bond length of the new
bond, bond angle relative to the previous bond, and torsion angle
about the previous bond.

Intuitively, and in common practice, this is done by first placing
the new atom a bond length away from the previous atom in line
with the previous bond axis (see Fig. 2). Then this new bond is
rotated so that the position agrees with the desired bond and
torsion angles. The rotation is done in two steps, first setting the
angle between the two bonds, then swiveling about the previous
bond to the correct torsion angle. Similar to a previous study,” this
work evaluates three such two step algorithms—General Rota-
tions, Quaternions,” and the Rodrigues-Gibbs formula.®” Another
study,8 based on the Denavit-Hartenberg method, makes a number
of assumptions such that all bond angles and planar torsion angles
are constant. Our methods remain more generally applicable to
sequential rotations about any axis, not just the customary two
torsion angles.

A perhaps less intuitive but algorithmically simpler strategy for
conversion of torsion angles to Cartesian coordinates is to first
place the new atom in a default coordinate system where the
position can be easily computed from just the angles alone, and
then rotate this coordinate system in a single step into the reference
frame of orientation defined by the three previous atoms. We call
this the Natural Extension Reference Frame (NeRF) algorithm.
This approach requires just over half as many operations as the
other two step methods mentioned above (Table 1). In addition to
a much smaller operation count, we find that this method also has
greater intrinsic numerical stability and improved prospects for
parallelization.

This work provides a critical analysis of the NeRF algorithm.
The method itself is well proven because it is the refolding engine
written for the Rosetta structure prediction algorithm. It is literally

applied trillions of times per year and is the most frequently called
subroutine in our labs."®'° In this study we show that this scheme
as implemented in Rosetta is, in fact, excessively cautious numer-
ically. Here we introduce an even faster variant, the Self-Normal-
izing Natural Extension Reference Frame (SN-NeRF) by removing
unneeded renormalization steps that account for 30% of the oper-
ations.

As part of our analysis, we make a practical comparison of
NeRF and SN-NeRF approaches to the three aforementioned two-
step methods for converting rapidly from the bond-centric basis to
the Cartesian representation. Analogous situations occur in the
placement of multijointed robot arms and in spherical coordinate
random-walk problems, which are the consecutive summation of a
series of vectors described in spherical-polar coordinates. Evalu-
ations are made between the five algorithms by totaling their
floating point operation counts, benchmarking their speed, and
indicating prospects for parallelization.

Figure 2. The spherical to Cartesian coordinate transformation. In the
two-step procedures the next atom is first placed at a point D, which
is an extension along the BC bond axis by the new bond length. This
point is first rotated about the point C in the ABC plane by the bond
angle to the position D,. Then it is rotated about the BC bond axis by
the torsion angle to D,. In the NeRF methods, the atom is placed
directly into an XYZ coordinate system at the point D,. This coordi-
nate system is then transformed so that the XY plane lies in the ABC
plane. This transformation is applied to D,.
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Table 1. Benchmarks and Floating Point Operation Counts.

Two-step vector methods

Natural reference methods

General rotation Rodriguez-Gibbs Quaternion NeRF SN-NeRF

Intel B/S (relative) 723 (0.78) 797 (0.86) 732 (0.79) 728 (0.78) 930 (1.0)

PPC B/S (relative) 325 (0.78) 348 (0.83) 411 (0.98) 300 (0.72) 418 (1.0)
Square roots 2 2 1 3 1
Sin/Cos 4 4 4 4 4
Division 9 9 9 9 6
Multiplication 59 59 64 37 31
Add/Sub 55 50 47 34 24
Total 129 124 125 87 66

Left of the table shows the number of protein backbones built per second on two different computing platforms (Intel
and PPC). The ratio of these rates to the fastest algorithm (SN-NeRF) is given in parentheses. Right shows the number
of floating point operations, by kind, for one iteration of the atom placement algorithm. Notably, SN-NeRF has the

lowest operation-count in every category.

Methods

As shown in Figure 1, the repeating “peptide” unit of a protein
backbone consists of three atoms (nitrogen, alpha carbon, and
carbonyl carbon) whose positions can be described by three bond
lengths, three bond angles, and three torsion angles.'' By conven-
tion, when four consecutive atoms lie in a plane, the torsion angle
of the middle bond is 0°.

Because all of the methods we describe are exact and nominally
produce the same result for a given input, they are simply different
factorings of a single underlying mathematical transformation.
Because of differing variable representation, the methods differ in
intrinsic numerical stability, which permits some methods to
achieve the same accuracy using fewer operations. We can there-
fore observe differences in their efficiency and speed. For peda-
gogical purposes we can divide the algorithms into two groups:
two-step vector rotation and the one-step NeRF formulation. We
compare three implementations of the two-step method and two
implementations of the NeRF method.

A single iteration of any of the algorithms is the placement of
the next atom D following three previous atoms A, B, and C in the
chain (Fig. 2). The inputs for each iteration are the Cartesian
positions of the sequentially bonded atoms (A, B, and C), the
bond length from atom C to D (bond.j), the bond angle with
vertex C (anglegz ), and the torsion angle around the bond from
B to C (torsiong). Additionally, two of the methods exploit the
chained nature of the buildup by accepting as input the bond length
from B to C (bondg.), which is supplied in the previous atom
placement iteration. The output of all methods is the Cartesian
position of the fourth sequentially bonded atom in the chain, D.
For convenience, we define the vectors along bonds as AB = B -
A and BC = C — B and the corresponding unit vector as bc =

BC/|BC|.

Two-Step Vector Rotations

To distinguish the three two-step algorithms, we refer to them as
General-Rotation, Rodrigues—Gibbs, and Quaternion. In these

methods, the atom D is initially placed at 50, a distance bond,

away from atom C extending along the (EZ‘) bond axis (see Fig. 2).
This atom is then rotated around C in the ABC plane (i.e., about
normal 7i) by the bond angle, ., where:

AB X be
n=——— (D
|AB X be]
The atom is then rotated a second time around the BC by tor-
siong .

Because both rotations are about atom C, it’s efficient to treat
it as the origin, so the initial placement of the D atom is 13(, =
(bondp) * be. After the rotations this is then offset by C to obtain
the final D.

General Rotation (Gen. Rot.)

The General Rotation method'*'? calculates a rotation matrix for
a vector around an arbitrary rotation axis unit vector i, by a
particular magnitude 6. The general formula is

M(i, 0) = 1 cos 6+ ai(1 — cos 6) + i sin 0 )

where 7 is the antisymmetric or skew-symmetric matrix of i7,, and

I is the identity matrix. In matrix form this equation reads

(1 —cO)+co il —cO) —usd ii(l—ch) +is6
i, (1 —c0) +usd w(l—cO) +co uai(l—s0)—iso
(1 —c0) —u,s0 @il —c) +isd  w(l —ch) +ch
where s = sin and ¢ = cos.

Two such matrices are sequentially applied to f)o, first for
angle,.,, with # = 7 and then for torsion,. with & = be. It is
faster to apply the separate rotation matrices to ﬁo sequentially
rather than combining the rotations into one transformation before

applying it.
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Rodrigues-Gibbs Formulation (RG)

This vector algebra transformation®” does not use rotation matri-
ces. The formula for rotating any vector K about axis i by angle
0is

K' =K cos 6+ i X Ksin 6+ (K- @)i(1 — cos 6)

As before, this must be done twice per atom: once to apply the
bond angle, and again to apply the torsion angle to D,,.

Quaternion Rotation

Quaternion Rotations® compactly represent the transformation of a
rotation around an arbitrary axis # by a particular magnitude 6 as
a four element vector Q(0, @) = (s, v) = (s, x, y, z), where

s =cos 5, 71=(x,y,z)=sin§12

To apply a Quaternion transformation one computes the following
rotation matrix and applies this to the vector.

sSSPy + 2 2xy + 2s7 2xz — 25y
2xy — 25z sF—xr+yr =2 2yz + 2sx
2xz + 2sy 2yz — 2sx sP—xr—yr+ 2

Unlike rotation matrices, when applying multiple transforma-
tions it is faster to combine two Quaternions and apply the net
rotation matrix to the vector than it is to iteratively compute the
two implied rotation matrices and apply them sequentially. To
combine Quaternions

Q% Qr = (5185, — 1 * Dy, 817, + 8301 + 0y X D) 3)

This new Quaternion is applied to 130. For completeness, we note
that there is an alternative vector algebra Quaternion rotation
method but it is not as efficient as the matrix method.?

Natural Extension Reference Frame

Rather than initially placing D along an extension of the BC bond
axis, we compute the position of atom D in a special coordinate
reference frame. Then, we transform this frame to the proper
orientation that lines up with the existing A, B, and C coordinates.
The problem now factors elegantly, because the first placement
operation depends only on the angles and bond length, and the
transformation only depends upon the A, B, and C atom positions.

Natural Extension Reference Frame (NeRF)

This is the method used by the Rosetta structure modeling algo-
rithm.> We use a frame of reference where atom C is at the origin,
atom B on the negative x-axis, and atom A lies in the xy-plane.
Then, the initial position of the D atom is given by the usual
spherical coordinate representation

D, = (R cos(0), R cos(¢)sin(6), R sin(¢)sin(6))
where
R = bondcp, 0= anglegep, ¢ = torsionBC.

This initial placement is independent of the positions of A, B, and
C and depends solely on the bond angles and length. To obtain the
final position of D we transform this frame to the protein chain’s
frame of reference by M. That is, D :AM[)2 + C, where the
component vectors form the columns of M:

M=[be, Axbe, A 4)

This final transformation depends solely upon the locations of A,
B, and C and is independent of the bond parameters.

Self-Normalizing Natural Extension Reference Frame
(SN-NeRF)

In the NeRF implementation in Rosetta, the first two columns of
the matrix M are explicitly normalized as follows:

Mﬁﬁxlfc 5
‘Ea YA X bel ©)

. . BC
M,=bc=—

Both of these operations are quite stringent and can be relaxed. The

calculation of |BC| can simply be replaced with bond, the bond
length supplied in the previous iteration. Also, by construction, the
magnitude of the crossproduct 77 X be is 1; thus, it does not need
any normalization. The original algorithm was overcautious, and
included both of these normalizations to avoid possible rotation
matrix skew or nonunitarity created by cumulative errors (see
Discussion).

Enumeration of Operations

Each of the aforementioned methods for building a protein back-
bone was concretely implemented in a computer program where
the number of mathematical operations were counted. Table 1
tallies additions/subtractions, multiplications, divisions, square
roots, and sine/cosine calls for each, separately. We note that in
general the relative time expense of these operations varies by
processor architecture. A previous study of only the three two-step
vector methods® did not differentiate between the high cost of
trigonometric and square root operations and the relatively low
cost of additions/subtractions in their operation count, nor did it
provide accurate calculations of the operations necessary for each
implementation. Our practical implementation provides a precise
operation count based on the realistic requirements for a folding
algorithm.

Speed Test

Tests were run on a Linux based 800 MHz Intel® Pentium III
processor and an Apple Macintosh G4 (667 MHz). The build-rate
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of each algorithm was evaluated by constructing the minimal
backbone (N, Ca, C) of an arbitrarily chosen protein 1fug (chain
A of S-Adenosylmethionine Synthetase)' from torsion parameters
and bond lengths. The program constructed this 383 residue (1149
atom) backbone 10,000 times per trial. Rates reported are based on
elapsed real time, not processor time, using timers in the code itself
to remove any overhead of the test harness from the folding
algorithm. Any unaccounted overhead was sufficiently amortized
to be undetectable: plotting the number of builds per trial from
5000 to 40,000 against the elapsed time produced a line intercept-
ing the origin with an R? of 0.99 (data not shown). The initial three
atoms of the first residue in the chain were prepositioned; thus, the
first atom to be built was the second amino acid’s nitrogen (Fig. 1).
The number of structures built per second is also reported in Table
1, and the number of atoms placed per second is 1146 times this
value.

Results

The “Total” column of Table 1 shows the number of floating point
operations necessary to add a single atom. The SN-NeRF method
has roughly half as many operations (66) as the two-step vector
methods (over 123). As shown in Table 1, the SN-NeRF method
builds 930 * 3 model proteins per second. The next fastest method
is the RG formulation, which builds 12.3% fewer models. The
other three algorithms all build approximately 22% under intel
architecture. All methods can rebuild the protein from the bond
lengths, bond angles, and torsion angles computed from the orig-
inal PDB file. These methods return the rebuilt PDB coordinates
with 0.000016 A Root-Mean-Square-Deviation from the original
crystal coordinates. The NeRF algorithm runs considerably slower
than expected based solely on a judgment of the number of
operations. Even removing the complier optimization flags still
shows a disproportionate relationship between the operation count
and the build-rate, suggesting that hardware pipelining of floating
point instructions is playing a role, which is difficult to analyze.

Discussion

We show the SN-NeRF to be the fastest performing method for
refolding atoms. This superiority is due to the difference in com-
putational complexity, as discussed above and shown in Table 1.
The removal of two square roots, six multiplications, three divi-
sions, and 10 additions in the SN-NeRF method results in a 22%
decrease in the time required to build models over the original
NeRF algorithm. This decrease in number of computations is due
to the fact that the SN-NeRF method is self-normalized. However,
this normalization cannot be applied to all methods.
Accumulated rounding errors plague attempts to self-normalize
the Gen. Rot. and RG methods. The results of these errors is the
failure to generate an orthonormal matrix. The Quaternion method
goes to extra lengths to make its matrix orthonormal, while the
Gen. Rot. and RG methods do not. Both the Quaternion and
SN-NeRF methods (by virtue of being orthonormal) are able to
self-normalize with bond length,, and bond length,- that are
stored in memory. The SN-NeRF method generates its three or-

thonormal vectors prior to self-normalizing, thus eliminating any
possibility for such errors.

We attribute the origin of the discrepancy in the operation
count vs. the benchmark speed to efficiencies gained from hard-
ware pipelining of instructions. In the methods with higher oper-
ation counts, more work than necessary is done. However, in these
methods the computation of the rotation matrices tends to involve
combinations of previously used variables, rather than the results
of a dependent series of calculations. In the SN-NeRF method, as
written, the extraneous operations are fewer but a greater number
of lines depend on the results from a previous line. Thus, the
higher count algorithms may not be paying the full price for their
excess because the independent calculations pipeline more effi-
ciently in the CPU.

Building a long chain by serial extension is intolerant of round-
off errors, that introduce cumulative skew and stretch into the net
rotation matrix. When creating a 3 X 3 rotation matrix by inde-
pendently filling in all of the elements, one has not explicitly
addressed this issue. In the NeRF formalism, the M matrix is
constructed in a way to assure orthogonal and unit-vector columns.
For example, My is computed from the crossproduct of the other
two rows (assuring orthogonality), both of which are orthogonal
unit vectors themselves. In the NeRF or nonself-normalizing ver-
sion, this is explicitly normed as well. One could, of course, add
these explicit orthonormalizations to the construction of the Gen.
Rot. or RG matrices, but this would further inflate their operation
counts. Because the NeRF methods are orthonormal by construc-
tion, their intrinsic numerical stability allows them to pay no price
for achieving the same accuracy with a lower operation count.
Each time one combines multiple terms, particularly in subtrac-
tion, one is losing precision when small differences of large
numbers occur. Thus, the matrix methods with their noncompact
representation invite this effect. Conversely, by making the My
dependent on the other columns we avoid some of this redundancy.

Parallelization and Suggested Improvements

Despite, having just indicated that our as-written implementation
may not be pipelining well, this is not an intrinsic limitation. In
fact, we believe the NeRF formalism actually lends itself better
than the other methods to the various types of parallelization:
multiprocessor, pipeline, or vector. First, because the calculation
factors out the terms that depend solely on the bond parameters,
the initial atom placements ﬁz can be done independently for all
the residues on as many processors as are available. In other
algorithms, you cannot compute the next initial position EO until
the last atom placement is complete, making it less friendly to
parallelization. The best one could do would be to precompute all
the trigonometric evaluations. Next, most of the NeRF method,
even the filling out of the rotation matrix, is conveniently written
in terms of vector operations like crossproducts and norms. This
strongly suggests explicitly rewriting the algorithm to take advan-
tage of vector processing opportunities, such as SIMD-type oper-
ations found on many modern math processors (e.g., MMX, SSE2,
and Altivec). We did not do so because this would involve non-
ANSI C++ compiler and language specific functions calls or
externally optimized libraries.
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Thus, we believe the latent speed implicit in the lower opera-
tion count for the NeRF methods could be recovered by rewriting
the chain extension protocol to first compute all the initial place-
ments. Their independence would pipeline well. Then, the NeRF
methods could explicitly exploit the vector parallelization of the
processors. Moreover, in the case of multiple parallel processors,
the factorization is better suited to this role more than the other
methods. In all these ways, the NeRF formalism more easily
exploits parallelization.

Each of the methods share the same number of trigonometric
operations, and thus all the methods could benefit from reducing
the cost of these calls. For example, many compilers support
extensions that compute the sine and cosine simultaneously. More-
over, in applications like Rosetta, often the angles are discrete and
known ahead of time, permitting the calculations to be replaced by
precomputed look-up tables. If these time-dominant operations
were greatly reduced, the lower operation count of the SN-NeRF
method would become even more distinct in our benchmark of
speed.

Perhaps the largest latent gain lies in exploiting the superior
intrinsic stability of the SN-NeRF formalism by switching to
single precision from the double precision used in this work. Not
only will all the calculations be more swift but vector processing
instructions can pack twice as many floats into their vector size.
Some of these improvements may be available to compilers with
better optimizing routines without rewriting the program.

For our applications, in conjunction with Rosetta, we could not
use nonstandard C+ + functions nor use lower precision variables.
We assume this is true of the major uses of chain-building algo-
rithms. Thus, the scope of this study was kept to ANSI-standard
code, and we did not further explore these options.

Conclusion

After a rigorous study, we conclude that the SN-NeRF buildup
method is best for calculating Cartesian coordinates from torsion
space parameters. Both the RG formulation and the Gen. Rot.
algorithm are susceptible to round-off error. We believe that the
most practical and effective approach to calculating Cartesian

coordinates is to step through the protein systematically. Atomic
positions are determined as you walk down the protein backbone
and then used in subsequent calculations. We would also like to
point out that although we used only a minimal protein backbone
for testing in this study, these general methods are applicable to
protein side chains, or any atoms described by torsion parameters,
without modification. Programs and source code are available by
contacting the corresponding author.
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