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In memory of Herman Auerbach, 26 October 1901 – 17 August 1942.

1. Introduction. Between September 4 and November 6 in 1936 Herman Auerbach posed...

Problem #148. Let P (x1, . . . , xn) denote a polynomial with real coefficients. Consider the
set of points defined by the equation P (x1, . . . , xn) = 0. A necessary and sufficient condi-
tion for this set not to cut the Euclidean (real) space is: All the irreducible factors of the
polynomial P in the real domain should be always nonnegative or always nonpositive.

We will interpret “not to cut” to mean that the real zero set of P has (non-empty) path-
connected complement. We are unaware of any published solution to Problem #148 so we
provide a self-contained solution below, using a reduction to...

Lemma 1.1. If Q∈R[x1, x2] and each irreducible factor of Q (in R[x1, x2]) is either always
nonnegative on R

2 or always nonpositive on R
2 then the complement of the real zero set of

Q is path-connected.

The example (x1 − x2)
2 shows the necessity of the sign condition on the irreducible factors.

2. From Auerbach’s Problem to Recent Research. Problem #148 naturally
leads to important recent advances in parts of algorithmic algebraic geometry: polynomial
factorization and nonnegativity.
Algorithms that are practical and efficient (as of early 2015) for multivariate

polynomial factorization over C are detailed in [Gao03, CL07]. Algorithms that take
numerical instability into account (in the coefficients and/or the final answer) appear in
[SVW04, Che04, GKMYZ04, KMYZ08, Zen09]. Definitive references for background on
algebraic sets (over R and/or C), and algorithms for determining their topological structure,
include [BCR98, SW05, BPR10].
For an arbitrary f ∈ R[x1] with degree D and exactly t monomial terms, all general

algorithms for factorization over R have complexity super-linear in the degree D. However,
since such an f has at most 2t − 1 real roots (thanks to Descartes’ Rule) one can ask for
faster algorithms to just count, say, the degree 1 factors when t is fixed. Such algorithms,
with complexity polynomial in logD (and the total bit size of all the coefficients when
f ∈ Z[x1]), appear in [BRS09, BHPR11] (counting bit operations, for t ≤ 4) and [Sag14]
(counting field operations, for any fixed t). Deciding the existence of a real root for f ∈Z[x1]
(with coefficients of modulus at most 2h) using just (t+h+logD)O(1) bit operations remains
an open problem.
For f ∈ Z[x1, x2], deciding whether an input degree 1 polynomial divides f can be done

using just (t+h+logD)O(1) operations [Ave09]. Grenet has recently found similar complexity
bounds for finding bounded degree factors of multivariate sparse polynomials over arbitrary
number fields [Gre15]. A deeper discussion of the role of sparsity in real analytic geometry can
be found in [Kho91] and a remarkable connection between real roots of structured univariate
polynomials and the P vs. NP problem can be found in [KPT15].
While nonnegative univariate polynomials are always sums of squares of polynomials,

Theodore Motzkin observed in 1967, via the concrete example x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2 +1, that

this equivalence fails for multivariate polynomials. The relationship between nonnegativity
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and sums of squares was advanced by Hilbert and Artin and, more recently, quantitative
estimates have been derived for how often nonnegative polynomials are sums of squares
of polynomials. Such estimates are important because, when a polynomial is a sum of
squares, its minimum can be found efficiently via semi-definite programming. This beautiful
intersection of optimization, real algebraic geometry, and convexity is detailed in [BPT12]
and the references therein.

3. Reducing Auerbach’s Problem to a Simplified Bivariate Case. Our key
reduction to Lemma 1.1 hinges on the following fact:

Lemma 3.2. (Special case of [Sch00, Thm. 17, Pg. 75, Sec. 1.9]) Suppose x1, . . . , xn, w1, . . . , wn−1,
y1, . . . , yn−1 are algebraically independent indeterminates and P ∈ R[x1, . . . , xn] \R[x1] is
irreducible in R[x1, . . . , xn]. Then there is a polynomial Φ∈R[w1, . . . , wn−1, y1, . . . , yn−1]\{0}
with the following property: If α2, β2, . . . , αn, βn ∈ R and Φ(α2, . . . , αn, β2, . . . , βn) 6= 0 then
P (x1, α2x2 + β2, . . . , αnx2 + βn) is irreducible in R[x1, x2]. �

Lemma 3.2 is due to Schinzel, extends to arbitrary fields, and refines a 1931 result of Franz
[Fra31]. Variations of Lemma 3.2 date back work of Hilbert [Hil92] and have been used
in numerous factorization algorithms since the 1980s (see, e.g., [Kal85]) to reduce general
multivariate factorization problems to bivariate factorization.

Solution to Problem #148: The case n=1 follows immediately upon observing that, up
to real affine transformations, the only irreducible non-constant polynomials in R[x1] are x1

and x2
1 + 1. So assume n≥2 and let Z be the zero set of P in R

n.
(Sufficiency): Suppose each irreducible factor of P is either always nonnegative on R

n or
always nonpositive on R

n. Let u=(u1, . . . , un) and v=(v1, . . . , vn) lie in R
n\Z. Since Z is

closed, u (resp. v) in fact lies in an open neighborhood U (resp. V ) of points contained in
the same connected component of Rn\Z as u (resp. v). Since the complement of any real
algebraic hypersurface is open, Lemma 3.2 implies we can find α2, β2, . . . , αn, βn such that
the specialization Q(x1, x2) :=P (x1, α2x2 + β2, . . . , αnx2 + βn) satisfies: (a) each irreducible
factor Pi of P specializes to an irreducible factor Qi of Q and (b) Pi is nonnegative on all
of Rn (resp. nonpositive on all of Rn) if and only if Qi is nonnegative on all of R2 (resp.
nonpositive on all of R2). In particular, the condition Φ 6= 0 from Lemma 3.2 enables us
to pick (β2, . . . , βn) arbitrarily close to (u2, . . . , un), and (α2, . . . , αn) arbitrarily close to
(v2 − u2, . . . , vn − un), so that both Q(u1, 0) and Q(v1, 1) are nonzero.
Let W denote the zero set of Q in R

2 and note that
H := {(x1, α2x2 + β2, . . . , αnx2 + βn)}(x1,x2)∈R2 ⊂ R

n

is a real 2-plane with the pair (H,H ∩ Z) affinely equivalent to (R2,W ). By Lemma 1.1
(and Conditions (a) and (b)), R2\W is path-connected, and thus H \Z is path-connected.
Moreover, by our choice of the αi and βi, both U and V intersect H\Z. So U and V , and
thus u and v, are connected by a path in R

n\Z. �
(Necessity): Suppose now that Rn\Z is path-connected, but P has an irreducible factor Pi

attaining both positive and negative values on R
n. Then Pi must be positive (resp. negative)

at some point u+ (resp. u−) in R
n\Z since R

n\Z is open. By assumption, there is a path
in γ : [0, 1] −→ R

n \Z connecting u+ and u−. In particular, Pi(γ(0))Pi(γ(1)) < 0, so by
the Intermediate Value Theorem, Pi(γ(s)) = 0 for some s∈ (0, 1). In other words, γ([0, 1])
intersects Z, which is a contradiction. �
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One can give a much shorter solution to Auerbach’s Problem, applying to arbitrary real-
closed fields as well: Combine a higher-dimensional version of Proposition 3.3 below with
[BCR98, Thm. 4.5.1]. The latter result, on real principal ideals, dates back to [DE70].
Under Auerbach’s sign condition on irreducible factors, our solution leads to the following

construction for a path connecting any distinct u, v∈R
n\Z: Pick a random w∈R

n and let
Γ be the path obtained by joining the line segments uw and wv. Then Γ lies in R

n\Z with
probability 1 (with respect to any bounded, continuous positive probability measure) or high
probability (with respect to the uniform measure on {−N, . . . , N}n for N sufficiently large).
This can be made precise by observing that the polynomial Φ from Lemma 3.2 has degree
O(d2) (see, e.g., [Lec07, Thm. 6]).

To prove Lemma 1.1 we will apply the following two facts:

Proposition 3.3. If X⊂R
2 is finite then R

2\X is path connected. Moreover, we can connect
any two points of R2\X with a smooth quadric curve Γ⊂R

2\X. �

Lemma 3.4. Suppose f, g∈C[x1, x2] have respective degrees d and e, and no common factor
of positive degree. Then f=g=0 has no more than de solutions in C

2. �

Proposition 3.3 follows easily by using an invertible affine map to reduce to the special case
of connecting (0, 0) and (1, 0) via the graph of cx1(1 − x1) for suitable c: The finiteness of
X guarantees that all but finitely many c will work. Lemma 3.4 is a special case of Bézout’s
Theorem (see, e.g., [Sha94]) but can also be easily derived from the basic properties of the
univariate resultant (see, e.g., [Sch00, App. B]).

Proof of Lemma 1.1: Let W denote the real zero set of Q in R
2. By Proposition 3.3 it

clearly suffices to prove that, under the hypotheses of Lemma 1.1, W is finite. It clearly
suffices to restrict to the special case where Q is non-constant and irreducible in R[x1, x2].
Note also that the irreducibility of Q and the assumption on the sign of Q are invariant
under composition with any invertible real affine map.

Consider now any root ζ=(ζ1, ζ2)∈R
2 of Q. If δ :=

(

∂Q

∂x1

(ζ), ∂Q

∂x2

(ζ)
)

6=0 then, by composing

with a suitable invertible real affine map, we may assume δ=(1, 0). In particular, by Taylor
expansion, we see that Q changes sign in a non-empty horizontal line segment containing ζ.
Therefore, every root of ζ of Q must satisfy ∂Q

∂x1

(ζ)= ∂Q

∂x2

(ζ)=0.

Let Q1 · · ·Qr be the factorization of Q over C[x1, x2] into factors of positive degree,
irreducible in C[x1, x2]. The Galois group G := Gal(C/R) has order 2, is generated by

complex conjugation (·), and acts naturally on the Qi. In particular, G acts trivially on
Qi if and only if Qi ∈R[x1, x2]. So r must be even when r≥ 2, since Q is irreducible over
R[x1, x2]. Furthermore, r ≤ 2 since QiQ̄i is invariant under complex conjugation. So we
either have r=1 (with Q irreducible over C[x1, x2]) or r=2 (with Q̄1 6=Q1 = Q̄2 6=Q2). A
simple calculation then shows that, in either case, ∂Q

∂x1

has no common factors with Q. So
W is finite by Lemma 3.4. �
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