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Abstract

Let L be any number field or p-adic field and consider F := (f1, . . . , fk) where
f1, . . . , fk ∈ L[x1, . . . , xn] and no more than µ distinct exponent vectors occur in the
monomial term expansions of the fi. We prove that F has no more than
1 +

(
Cn(µ − n)3 log(µ − n)

)n
geometrically isolated roots in Ln, where C is an explicit

and effectively computable constant depending only on L. This gives a significantly
sharper arithmetic analogue of Khovanski’s Theorem on Real Fewnomials and a higher-
dimensional generalization of an earlier result of Hendrik W. Lenstra, Jr. for the special
case of a single univariate polynomial. We also present some further refinements of our
new bounds and an explicit generalization of a bound of Lipshitz on p-adic complex
roots. Connections to non-Archimedean amoebae and computational complexity (in-
cluding additive complexity and solving for the geometrically isolated rational roots)
are discussed along the way. We thus provide the foundations for an effective arithmetic
analogue of fewnomial theory.

1 Introduction and Main Results

A consequence of Descartes’ Rule (a classic result dating back to 1637) is that any real
univariate polynomial with exactly µ ≥ 1 monomial terms has at most 2µ − 1 real roots.
This has since been generalized by Askold Georgevich Khovanski during 1979–1987 (see
[Kho80] and [Kho91, Pg. 123]) to certain systems of multivariate sparse polynomials and
even fewnomials. (Sparse polynomials are sometimes also known as lacunary polynomials
and, over R, are a special case of fewnomials — a more general class of real analytic functions
of parameterized complexity [Kho91].) Here we provide ultrametric and thereby arithmetic
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analogues for both results: we give explicit upper bounds, independent of the degrees of the
underlying polynomials, for the number of geometrically isolated roots of sparse polynomial
systems over any ppp-adic field and, as a consequence, over any number field. (Recall that
a point x in an algebraic set Z defined over a field L is geometrically isolated iff x is a
zero-dimensional component of the algebraic set obtained from replacing L by its algebraic
closure L.) For convenience, let us henceforth respectively refer to these cases as the local
case and the global case.

Suppose now that f1, . . . , fk∈L[x±1
1 , . . . , x±1

n ]\{0} where L is a field to be specified later,
and µ is the total number of distinct exponent vectors appearing in f1, . . . , fk, assuming all
polynomials are written as sums of monomials. We call F := (f1, . . . , fk) a µµµ-sparse k × nk × nk × n
polynomial system over LLL and, for any extension L′ of L, we let ZL′(F ) denote the set
of x∈ (L′)n such that f1(x) = · · · = fk(x) = 0. Khovanski’s results take L= R and yield an
explicit upper bound for the number of non-degenerate roots, in the non-negative orthant,
of any µ-sparse n × n polynomial system [Kho80, Kho91]. With some extra work (e.g.,
[Roj00b, Cor. 3.2]) his results imply an upper bound of 2O(n)nO(µ)2O(µ2) on the number of
topologically isolated roots (i.e., roots that are themselves connected components of ZR(F ))
of F in Rn, and this is asymptotically the best general upper bound currently known. In
particular, since it is easy to show that the last bound can in fact be replaced by 1 when
µ≤n (see, e.g., [LRW03, Thm. 3, Part (b)]), one should focus on understanding the behavior
of the maximum number of topologically isolated real roots for n fixed and µ≥n + 1. For
example, is the dependence on µ polynomial for fixed n? This turns out to be an open
question, but we can answer the arithmetic analogue (i.e., where L is any p-adic field or
any number field) affirmatively and explicitly. Recall that ⌊t⌋ is the greatest integer not
exceeding t.

Theorem 1 Let p be any (rational) prime and d, δ positive integers. Suppose L is any degree
d algebraic extension of Qp or Q, and let L∗ := L \ {0}. Also let F be any µ-sparse k×n
polynomial system over L and define B(L, µ, n) to be the maximum number of geometrically
isolated roots in (L∗)n of such an F in the local case, counting multiplicities.

Then B(L, µ, n)=0 (if µ≤n or k<n) and

B(L, µ, n)≤u(µ, n)(pd − 1)n

⌊{

c(µ − n)n

[

1 + d logp

(
d(µ − n)

log p

)]}n⌋

B(L, µ, n)≤u(µ, n)(pd − 1)n

⌊{

c(µ − n)n

[

1 + d logp

(
d(µ − n)

log p

)]}n⌋

B(L, µ, n)≤u(µ, n)(pd − 1)n

⌊{

c(µ − n)n

[

1 + d logp

(
d(µ − n)

log p

)]}n⌋

(if µ≥n + 1 and k≥n),

where u(µ, n) is µ − 1, max {1, 9(µ − 3)2}, or ((µ − n)(µ − n + 1)/2)n, according as n=1,
n=2, or n≥3; c := e

e−1
≤1.582 and logp(·) denotes the base p logarithm function.

Furthermore, moving to the global case, let us say a root x∈Cn of F is of degree ≤δ≤δ≤δ
over L iff every coordinate of x lies in an extension of degree ≤ δ of L, and let us define
A(L, δ, µ, n) to be the maximum number of geometrically isolated roots of F in (C∗)n of degree
≤δ over L, counting multiplicities. Then A(L, δ, µ, n)=0 (if µ≤n or k<n) and

A(L, δ, µ, n)≤u(µ, n)2ndδ+1

⌊{

c(µ − n)n

[

1 + 2d2δ2 log2

(
d2δ2(µ − n)

log 2

)]}n⌋

A(L, δ, µ, n)≤u(µ, n)2ndδ+1

⌊{

c(µ − n)n

[

1 + 2d2δ2 log2

(
d2δ2(µ − n)

log 2

)]}n⌋

A(L, δ, µ, n)≤u(µ, n)2ndδ+1

⌊{

c(µ − n)n

[

1 + 2d2δ2 log2

(
d2δ2(µ − n)

log 2

)]}n⌋

(if µ≥n + 1 and k≥n).

Our bounds can be sharpened even further: This is detailed in Corollary 1 and Propo-
sitions 1 and 2 of Sections 3 and 3.1, and Corollary 2 and Propositions 3 and 4 of Section
4. The proof of Theorem 1 essentially reduces to a result — Theorem 2 of Section 1.1,
our second main theorem — on the distribution of p-adic complex roots close to the point
(1, . . . , 1). The proof of the latter result in turn follows from a beautiful but overlooked
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result of A. L. Smirnov on the distribution of the norms of p-adic complex roots [Smi97,
Thm. 3.4] (cf. Section 1.1 below).

Remark 1 At the expense of underestimating some multiplicities (e.g., roots on the coor-
dinate hyperplanes may have multiplicities > 1 counted as 1 instead), we can easily obtain
upper bounds for the number of geometrically isolated roots of F in Ln (in the local case) and
the number of geometrically isolated roots in Cn of degree ≤δ over L (in the global case): By
simply setting all possible subsets of variables to zero, we easily obtain respective upper bounds

of 1 +
n∑

j=1

(
n
j

)

B(L, µ, j)≤1 + 2nB(L, µ, n) and 1 +
n∑

j=1

(
n
j

)

A(L, δ, µ, j)≤1 + 2nA(L, δ, µ, n). Of

course, since many of the monomial terms of F will vanish upon setting an xi to 0, these
bounds will usually be larger than really necessary. ⋄

Example 1 Consider the following 2 × 2 system over Q2:

f1(x, y) :=α1 + α2x
u2yv2 + α3x

u3yv3

f2(x, y) :=β1 + β2x
a2yb2 + · · · + βmxamybm

which is µ-sparse for some µ ≤ m + 2. Theorem 1 and an elementary calculation then
tell us that such an F has no more than 90.1m2(m − 1)2(1 + log2(1.45m)))290.1m2(m − 1)2(1 + log2(1.45m)))290.1m2(m − 1)2(1 + log2(1.45m)))2 geometrically
isolated roots, counting multiplicities, in (Q∗

2)
2 (and (Q∗)2 as well, via the natural embedding

Q →֒ Q2). In particular, m = 3 =⇒ F is at worst 5-sparse and has no more than 314283142831428
such roots, regardless of u2, v2, u3, v3, a2, b2, a3, b3. Explicit bounds independent of the total
degrees of f1 and f2 appear to have been unknown before, even for special case m=3. Sharper
bounds, based on refinements of Theorem 1 (cf. Corollary 1 and Proposition 1) appear in
Remark 9 and Example 6, respectively of Sections 3 and 3.1. ⋄

Remark 2 If we replace Q2 by R in the last example, then the best previous upper bounds
were 4(2m − 2)4(2m − 2)4(2m − 2) for all m≥4 and a tight bound of 202020 in the special case m=3. Interestingly,
the latter bounds, which follow easily from [LRW03, Thm. 1], in fact allow us to take real
exponents and count topologically isolated roots, but without multiplicities. (Khovanski’s
Theorem on Real Fewnomials [Kho91, Cor. 7, Sec. 3.12, Pg. 80], which only counts non-
degenerate roots, implies an upper bound of 995328 for m = 3.) However, this real analytic
upper bound exceeds our arithmetic bound for all m≥30, where both bounds begin to exceed
2.8 billion. ⋄

Example 2 Another consequence of Theorem 1 is that for fixed L, we now know log B(L, µ, n)
and log A(L, δ, µ, n) to within a constant factor: the upper bound is clearly O(n log µ), with
the implied constant depending on δ and the degree of L over Q2 or Q. To get a lower
bound, simply consider the µ-sparse n × n polynomial system F = (f1, . . . , fn) where fi =
∏m−1

j=1 (xi − j) for all i and µ = 1 + n(m − 1). Clearly then, this F has exactly (m − 1)n

geometrically isolated roots in Nn. So m ≥ n + 1 ≥ 3 =⇒ µ − 1 ≥ n2, which in turn
implies that log B(L, µ, n) and log A(L, δ, µ, n) are never smaller than 1

4
n log µ for all L as

in Theorem 1. Let us emphasize, however, that finding optimal upper bounds for B(L, µ, n)
and A(L, δ, µ, n) remains an intriguing open problem. Curiously, much less is known about
the analogous growth-rate when L is replaced by the usual Archimedean completion R of Q. ⋄
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A weaker version of Theorem 1 with non-explicit bounds was derived earlier in [Roj01b].
In particular, explicit bounds were known previously only in the speical case n=1 [Len99b,
Props. 7.1, 7.2, and 8.1], which we summarize below.

Lenstra’s Theorem Following the notation above, we have

B(L, µ, 1)≤1.582 · (pd − 1)(µ − 1)2
(

1 + d log(d(µ−1)/ log p)
log p

)

and
A(L, δ, µ, 1)<4.565 · (µ − 1)2(dδ + 10)2dδ(log(dδ(m − 1)) + 0.367). �

All our bounds (save the global case) match the best bounds of [Len99b] in the special
case n = 1. We should also note that the bounds of [Len99b, Props. 7.1 and 7.2; and Sec.
8] are actually slightly sharper than our paraphrase above. Also, to streamline the proof of
our multivariate generalization, we left our bound on A(L, δ, µ, n) in Theorem 1 a bit loose.
To repent for these loosenings, we give a sharper bound for the global case, agreeing with
Lenstra’s best univariate bound when n=1, in Corollary 2 of Section 4.

Philosophically, the approach of [Len99b] was more algebraic (low degree factors of poly-
nomials) while our point of view here is more geometric (geometrically isolated rational points
of low degree in a hypersurface intersection). Also, Lenstra derived a higher-dimensional
generalization but in a direction different than ours: bounds for the number of hyperplanes
(defined over L) in a hypersurface defined by a single µ-sparse n-variate polynomial [Len99b,
Prop. 6.1].) In particular, the only other results known for k > 1 or n > 1 were derived via
rigid analytic geometry and model theory, and in our notation imply a non-effective bound
of B(Qp, µ, n)<∞ (see the seminal works [DvdD88, Lip88]).

Our approach is simpler and is based on a higher-dimensional generalization (Theorem
2 of the next section) of an earlier root count for univariate sparse polynomials over certain
algebraically closed fields [Len99b, Thm. 3]. Indeed, aside from the introduction of some
higher-dimensional convex geometry, our proof of Theorem 1 is structurally quite similar to
Lenstra’s proof of the special case n=1 in [Len99b]: reduce the global case to the local case,
then reduce the local case to a refined result over the p-adic complex numbers.

We now describe two results used in our proofs which may be of broader interest.

Remark 3 Throughout this paper, the intersection multiplicity of a geometrically isolated
root x of a k × n polynomial system F is considered in the following sense: For k = n we
simply use the coefficient of x in the intersection product of n divisors in the Chow ring of
(

L
∗
)n

[Ful98, Ex. 7.1.10, Pg. 123]. This multiplicity then turns out to always be a positive

integer (see, e.g., [Ful98, Prop. 7.1 (a)] or [Roj99b, Thm. 3]). For k>n, the theory of
[Ful98] no longer applies, but our multiplicities remain positive and integral (cf. Lemma 1). ⋄

Remark 4 The numerical calculations and illustrations throughout this paper were done
with the assistance of Maple, Matlab, and Geomview, and the software for these calculations
is freely downloadable from the author’s web-site at http://www.math.tamu.edu/~rojas/list2.html . ⋄

1.1 The Distribution of p-adic Complex Roots

For any (rational) prime p, let Cp denote the completion (with respect to the extended p-adic
metric) of the algebraic closure of Qp. Theorem 1 follows from a careful application of two
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results on the distribution of roots of F in (C∗
p)

n. The first result strongly limits the number
of roots that can be p-adically close to the point (1, . . . , 1). The second result strongly limits
the number of distinct valuation vectors which can occur for the roots of F .

Theorem 2 Let F be any µ-sparse k×n polynomial system over Cp. Also let r1, . . . , rn >0,
r := (r1, . . . , rn), and let ordp : Cp −→ Q ∪ {+∞} denote the usual p-adic valuation (cf.
Definition 1), normalized so that ordpp=1, e.g., ordp0=+∞ and ordp(p

kr)=k whenever r is
a unit in Zp and k∈Q. Finally, let Cp(µ, n, r) denote the maximum number of geometrically
isolated roots (x1, . . . , xn)∈Cn

p of F with ordp(xi − 1)≥ ri for all i, counting multiplicities.
Then Cp(µ, n, r)=0 (if µ≤n or k<n) and

Cp(µ, n, r)≤

⌊{

c(µ − n)

[

r1 + · · · + rn + logp

(
(µ − n)n

r1 · · · rn logn p

)]}n/ n∏

i=1

ri

⌋

Cp(µ, n, r)≤

⌊{

c(µ − n)

[

r1 + · · · + rn + logp

(
(µ − n)n

r1 · · · rn logn p

)]}n/ n∏

i=1

ri

⌋

Cp(µ, n, r)≤

⌊{

c(µ − n)

[

r1 + · · · + rn + logp

(
(µ − n)n

r1 · · · rn logn p

)]}n/ n∏

i=1

ri

⌋

(if µ≥n + 1 and k≥n), where c := e
e−1

≤1.582.
Furthermore, when k = n we can obtain a more refined bound as follows: Let [n] :=

{1, . . . , n}, let mi denote the number of distinct exponent vectors in fi, m := (m1, . . . ,mn),
and N := (N1, . . . , Nn) where, for each i, Ni ⊆ [n] is the set of all j such that xj appears
with nonzero exponent in some monomial term of fi. Then, letting Cp(m, N, r) denote the
obvious analogue of Cp(µ, n, r), we have Cp(m, N, r)=0 (if mi≤1 for some i) and

Cp(m, N, r)≤




cn

n∏

i=1






(mi − 1)





(
∑

j∈Ni

rj

)

+ logp




(mi − 1)#Ni

(
∏

j∈Ni
rj

)

log#Ni p









/

ri










Cp(m,N, r)≤




cn

n∏

i=1






(mi − 1)





(
∑

j∈Ni

rj

)

+ logp




(mi − 1)#Ni

(
∏

j∈Ni
rj

)

log#Ni p









/

ri










Cp(m, N, r)≤




cn

n∏

i=1






(mi − 1)





(
∑

j∈Ni

rj

)

+ logp




(mi − 1)#Ni

(
∏

j∈Ni
rj

)

log#Ni p









/

ri












(if m1, . . . ,mn≥2), where # denotes the operation of taking set cardinality.

A simple corollary of these bounds is that the number of roots in a fixed finite extension of
Qp with given “first digit” can be bounded solely in terms of µ (or m) and n (cf. Section 3).
Note also that our upper bounds are decreasing functions of p, so we in fact have a universal
upper bound of C2(µ, n, r) (or C2(m, N, r)) for the number of geometrically isolated roots of
F in (C∗

p)
n p-adically close to (1, . . . , 1).

The bounds above also appear to be new: the only previous results in this direction
appear to have been Lenstra’s derivation of the special case n = 1 [Len99b, Thm. 3] and
an earlier observation of Leonard Lipshitz [Lip88, Thm. 2] equivalent to the non-explicit
bound Cp(µ, n, (1, . . . , 1))<∞. It is also interesting to note that Theorem 2 gives a sharper
and more general p-adic analogue of Khovanski’s Theorem on Complex Fewnomials [Kho91,
Thm. 1, Sec. 3.13, Pg. 82–83]. (The latter result gives an elegant upper bound on the number
of non-degenerate roots lying in an angular sector of (C∗)n.) However, the angular metaphor
is reversed here: whereas Khovanski derived his Theorem on Complex Fewnomials via a
clever reduction to his Theorem on Real Fewnomials, we prove our p-adic bound (Theorem
1) from our “digital” bound over Cp (Theorem 2).

The final bound over Cn
p we state is a toric arithmetic-geometric result of A. L. Smirnov.

Definition 1 For any a=(a1, . . . , an)∈Zn, let xa :=xa1
1 · · ·xan

n . Writing any f ∈L[x1, . . . , xn]
as
∑

a∈Zn cax
a, we call Supp(f) :={a | ca 6=0} the support of f . Also, let π : Rn+1 −→ Rn

be the natural projection forgetting the xn+1 coordinate and, for any n-tuple of polytopes P =
(P1, . . . , Pn), define π(P ) := (π(P1), . . . , π(Pn)). Finally, a non-Archimedean valuation

5



on LLL is any function ord : L −→ R ∪ {+∞} satisfying (i) ord(xy) = ord(x) + ord(y), (ii)
ord(x)=+∞ ⇐⇒ x=0, (iii) ord(x + y)≥max(ord(x), ord(y)). ⋄

Definition 2 For any k × n polynomial system F over L, its kkk-tuple of Newton poly-

topes with respect to the valuation ordordord, N̂ewt(F ) :=
(

N̂ewt(f1), . . . , N̂ewt(fk)
)

, is

defined as follows: N̂ewt(fi) := Conv({(a, ord(ca)) | a ∈ Supp(fi)})⊂ Rn+1, where Conv(S)
denotes the convex hull of (i.e., smallest convex set containing) a set S ⊆ Rn+1. Also, for
any w∈Rn and any closed subset B⊂Rn, the face of BBB with inner normal www, Bw, is the
set of points x∈B that minimize the inner product w ·x. We call a face lower (resp. upper)
iff the last coordinate of any of its inner normals is positive (resp. negative). Finally, for
any k-tuple (B1, . . . , Bk) of closed subsets of Rn, we let (B1, . . . , Bk)

w :=(Bw
1 , . . . , Bw

k ). ⋄

Smirnov’s Theorem [Smi97, Thm. 3.4] Let K be any algebraically closed field with a non-
Archimedean valuation ord(·). Then, for any n × n polynomial system F over K, the number of
geometrically isolated roots (x1, . . . , xn)∈(K∗)n of F satisfying ordxi =ri for all i (counting multiplicities)

is no more than M
(

π
(

N̂ewt(F )r̂
))

, where r̂ :=(r1, . . . , rn, 1), M(·) denotes mixed volume [BZ88, DGH98]

(normalized so that M (Conv ({O, e1, . . . , en}) , . . . , Conv ({O, e1, . . . , en})) = 1), and ei is
the ith standard basis vector of Rn. �

Remark 5 For convenience, we will use the notation Newtp in place of N̂ewt when the
underlying valuation is ordp. ⋄

Example 3 Consider, 3-adically, the following 8-sparse 2 × 2 system over Q:

f1(x, y) := 3 + 16x2 + 7y + 10x7y5 + 48x6y7

f2(x, y) := −48 + 45x2 − 18y7 − 49xy3 + 6x2y7

Rather than work with the individual 3-adic Newton polytopes of F , it is sometimes conve-
nient to instead work with the Minkowski sum

Q := Newt3(f1) + Newt3(f2) :={q1 + q2 | qi∈Newt3(fi) for all i} .

It is then easily checked that M
(
π
(
Newt3(F )r̂

))
>0 =⇒ r̂ is an inner normal of a facet of

Q (e.g., via [DGH98, Prop. 2]). So we can use the projections of these facets under π to
keep track of which valuation vectors are possible for our F . In particular, we can illustrate
the lower hull of Q and the projections of its facets as follows:
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r̂=
(

1
2
, 1, 1

)

r̂=(0, 0, 1)

r̂=
(

2
9
,− 7

18
, 1
)

r̂=
( 10 7,−

1 7,1)

r̂=
(

1
2
,−3

8
, 1
)

r̂=
( −11 7,1 7,1)

r̂=
(
−1

2
, 1

2
, 1
)

r̂=
(

1
2
,−2

3
, 1
)

r̂=
(

1
6
,− 7

24
, 1
)

r̂=
(

1
7
, 2

7
, 1
)

Recalling that a vertical segment of length a and a polygon with horizontal width b have mixed
area ab (see, e.g., [BZ88, Ch. 4, Sec. 19.4]), one then sees that there are exactly 4 values of r̂
for which M

(
π
(
Newt3(F )r̂

))
> 0: r̂ ∈

{(
−1

2
, 1

2
, 1
)
,
(

1
7
, 2

7
, 1
)
,
(

1
6
,− 7

24
, 1
)
,
(

1
2
,−2

3
, 1
)}

. Also,
the corresponding values of M

(
π
(
Newt3(F )r̂

))
are 20, 7, 24, and 12. So by Smirnov’s

Theorem, there are no more than 63 geometrically isolated roots of F in (C∗
3)

2. (Note that
the classical Bézout’s Theorem gives an upper bound of 13 · 9=117.) Furthermore, any such
geometrically isolated root must have valuation vector in

{
(−1

2
, 1

2
), (1

7
, 2

7
), (1

6
,− 7

24
), (1

2
,−2

3
)
}
,

and the number of geometrically isolated roots with one of these valuation vectors is no more
than 20, 7, 24, or 12, respectively. ⋄

Remark 6

1. The number of possible distinct valuation vectors for a geometrically isolated root of
an n-variate polynomial system F can thus be combinatorially bounded from above as
a function depending solely on n and the number of exponent vectors (cf. Section 3).

2. The number of geometrically isolated roots of F in (C∗
p)

n with given valuation vector
thus depends on the support and coefficients of F — not just on the number of exponent
vectors.

3. It is thus only the lower faces of the p-adic Newton polytopes that matter in counting
geometrically isolated roots or valuation vectors thereof. ⋄

We prove Theorem 2 in Section 5. A bit earlier, in Sections 3 and 4, we respectively prove
the local and global cases of Theorem 1. However, let us first point out some connections
between our results, non-Archimedean amoebae [Kap00], and algorithmic complexity theory
[Pap95, Roj00a, Roj01a].
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Remark 7 Mixed volumes in arbitrary dimensions can be computed by various practical and
freely downloadable software implementations, e.g., those by Ioannis Z. Emiris, Birk Huber,
Tien-Yien Li, or Jan Verschelde, easily accessible via a search on www.google.com . One
should also be aware that although the Minkowski sum of the Newtp(fi) is a useful conceptual
device for n≤3, it is almost never used for computing mixed volumes in practice: one usually
works with n-tuples of edges of the Newtp(fi). ⋄

2 Applications to Complexity and Connections to Amoe-

bae

Thanks to our results, we now know in particular that the maximum number of geometrically
isolated rational roots of any polynomial system over Q depends polynomially on the number
of distinct exponent vectors, provided the number of variables is fixed. Here we point out that
similar but looser bounds are possible relative to an even smaller computational invariant
called additive complexity. Furthermore, we will see that new separations of complexity
classes (closely related to P and NP) will occur if these alternative bounds can be sharpened
sufficiently.

We also point out an alternative perspective on Smirnov’s Theorem via the recent idea
of non-Archimedean amoebae.

2.1 Few Integral Roots Implies a Separation

Instead of expansions into monomial terms (a.k.a. the sparse encoding), let us consider the
straight-line program (SLP) encoding for a univariate polynomial [BCSS98, Sec. 7.1]:
That is, suppose we have f ∈ Z[x1] expressed as a sequence of the form (1, x1, q2, . . . , qN),
where qN = f and for all i≥ 2 we have that qi is a sum, difference, or product of some pair
of elements (qj, qk) with j, k < i. Let τ(f) denote the smallest possible value of N − 1, i.e.,
the smallest length for such a computation of f . Clearly, τ(f) is no more than the number
of monomial terms of f , and is often dramatically smaller.

The Shub-Smale τττ-Theorem [BCSS98, Thm. 3, Pg. 127] Suppose there is an absolute
constant κ such that for all nonzero f ∈Z[x1], the number of distinct roots of f in Z is no
more than (τ(f) + 1)κ. Then PC 6=NPC. �

In other words, an analogue (regarding complexity theory over C) of the famous unsolved

P
?
= NP question from computer science (regarding complexity theory over the ring Z/2Z)

would be settled. The question of whether PC
?
= NPC remains open as well but it is known

that PC = NPC =⇒ NP ⊆ BPP. (This observation is due to Steve Smale and was first
published in [Shu93].) The complexity class BPP is central in randomized complexity and
the last inclusion, while widely disbelieved, is also an open question. (It should also be
noted that computer scientists currently believe that BPP (not P) is the complexity class
that truly captures what we can compute. Indeed, it is a basic fact that BPP ⊇ P and
there is even suspicion that P=BPP [IW97].) The implications of PC 6=NPC for classical
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complexity are still not clear. However, there are results implying that the truth of PC 6=NPC

would provide some evidence that P 6=NP [Koi96, Roj03a].
The truth of the hypothesis of the τ -theorem, also know as the τττ-conjecture, is yet

another open problem, even for κ=1. Note however that the τ -conjecture fails for κ<1: the
polynomial (x − 2)(x − 22) · · · (x − 22j

) clearly has j + 1 integral roots but SLP complexity
O(j).

A reasonable but unsuccessful approach toward the τ -conjecture would be to use the
obvious embedding of Z in R, because over R there are already results in this direction for
univariate polynomials involving an even sharper encoding: For any f ∈R[x], let its additive
complexity, σ(f), be the minimal number of additions and subtractions necessary to express
f as an elementary algebraic expression (involving x and any real constants) with integer
exponents, where the additions and subtractions in a repeated subexpression are counted
only once. For example, f(x)=(10x401 − (x9 + 2)100)97 + 243(x9 + 2)8736 has σ(f)≤3 (since
x9+2 occurs twice), and it is clear that τ(f)≥3 (since f(2)≥21024 and τ(n)≥ log2 log2 n for all
n∈N). More generally, it is easily checked that σ(f)≤τ(f) for all f ∈Z[x1]. Remarkably, one
can bound the number of non-degenerate real roots of f solely in terms of σ(f) [BC76, Gri82],

and the best current upper bound is Jean-Jacques Risler’s (σ(f)+2)3σ(f)+12(9σ(f)2+5σ(f)+2)/2

[Ris85, Pg. 181, Line 6]. Unfortunately, there are examples of f ∈ Z[x1] with σ(f) = O(r)
and at least 2r real roots [Roj00a, Sec. 3, Pg. 13]. So additive complexity, at least over R, is
too efficient an encoding to be useful in settling the τ -conjecture.

However, one could embed Z in another complete field — Q2 — instead. A consequence of
our arithmetic fewnomial bounds here is the following bound which, while still not polynomial
in σ(f) or τ(f), is much sharper than its preceding real analogue:

Theorem 3 (See [Roj02, Introduction and Thm. 3].) Abusing notation slightly, let σ(f)
denote the additive complexity of any f ∈ Q2[x1] \ {0}. Then the maximum number of
geometrically isolated roots of f in Q2 is exactly 1 or 3 (according as σ(f) is 0 or 1), no
greater than 15, 25089, or 3235713 (according as σ(f) is 2, 3, or 4), and no greater than
1 + σ(f)!σ(f)2(22.5)σ(f) for σ(f)≥5. �

Note that Risler’s bound over R reduces to 4, 20736, 274877906944, 5497558138880000000000,
or 126315281744229461505151771531542528, according as σ(f) is 0, 1, 2, 3, or 4. In par-
ticular, Theorem 3 yields the sharpest current upper bound on the number of rational and
integral roots for a large class of univariate polynomials (see [Roj02] for further discussion).
Extensions to multivariate systems of SLP’s, as well as other p-adic fields and roots of
bounded degree over a number field, are also included in [Roj02, Thm. 3]. We also note
that the numbers in Theorem 3 above are slightly better than those appearing in the pub-
lished version of [Roj02] but are derived in the updated version available from the author’s
web-page.

Unlike the analogous question over R, the existence of a lower bound exponential
in σ(f)σ(f)σ(f), on the number of 2-adic rational roots of f , is still open. In particular, whether
the upper bound from Theorem 3 can be reduced to a quantity polynomial in σ(f) is an
open question of the utmost interest. Indeed, the only obstructions to reworking Theorem
1 in terms of additive complexity appear to be (a) the apparent dependence of the norms
of the p-adic complex roots on the underlying Newton polytopes (vis-à-vis our application
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of Smirnov’s Theorem) and (b) the unknown existence of an analogue of Theorem 2 for a
sharper encoding.

2.2 Root Heights Can Be Exponential for the Multivariate Case

As for actually finding all the geometrically isolated rational roots of F , there is both good
news and bad news: The bad news is that one can not have a polynomial time algorithm
(relative to the sparse encoding) for n>1. The good news is that there is a polynomial time
algorithm (relative to the sparse encoding) for n=1, and that the counter-examples for n>1
are very simple.

In particular, if we take L=Q and measure the input size simply as the number of digits
needed to write the coefficients and exponents of F in, say, binary; then it possible for a
geometrically isolated rational root of F to have bit size exponential in the bit size of F .
(The bit size of an integer is thus implicitly the number of digits in its binary expansion,
and the bit size of a rational number can be taken as the maximum of the bit sizes of its
numerator and denominator, written in lowest terms.) For instance, consider k=n=2, µ=4,
and F :=(x1 − xD

2 , x2 − 2). This particular example clearly has bit size O(log D) but its one
rational root (2D, 2) has a first coordinate of bit size D — exponential in the bit size of F .
Thus one can’t even write the output in polynomial time relative to the sparse encoding.

On the other hand, it is a fortunate accident that the absolute logarithmic height of
a complex root of F of degree ≤δ over L is polynomial in the bit size of F for n=1 and L a
number field [Len99a, Prop. 2.3]. This is what permits a clever polynomial time algorithm
that finds the roots of F of degree ≤δ over L when n=1 and L and δ are fixed [Len99a, first
theorem]. (Lenstra’s algorithm has complexity exponential in δ and the degree of L over Q,
but is considerably faster than the well-known Lenstra-Lenstra-Lovasz factoring algorithm
[LLL82]: the latter algorithm would only solve xD + ax + b = 0 over the rationals in time
exponential in log D.) For n>1 it thus appears that the only way to achieve a polynomial
time algorithm would be to allow a more efficient encoding of the output than expanding
into digits. In particular, it is an open question, even for n=2, whether one can always find
SLP’s of length polynomial in the bit size of F for the geometrically isolated rational roots
of F .

Alternatively, one can simplify the question of solving and ask how many geometrically
isolated rational roots F has, or whether F has any geometrically isolated rational roots
at all. This was addressed in [Roj01a, Thms. 1.3 and 1.4] where it was shown that the
truth of the Generalized Riemann Hypothesis implies that detecting a strong form of non-
solvability over the rationals (transitivity of the underlying Galois group) can be done within
the complexity class PNP

NP

, provided the underlying complex zero set is finite. In the latter
result, n is allowed to be part of the input and can thus vary.

2.3 Skinny Amoebae Versus Subdivisions

Here we briefly illustrate an alternative, arguably simpler point of view for Smirnov’s Theo-
rem. Mikhail M. Kapranov’s idea of non-Archimedean Amoebae gives an elegant com-
binatorial description of the valuation vectors determined by a single algebraic hypersurface
over any algebraically closed field with a (rational) non-Archimedean valuation. So, to some
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extent, we can substitute the polyhedral subdivisions from Section 1.1 with an intersection
of piecewise linear hypersurfaces in Rn. This approach leads to a much simpler proof of
Smirnov’s Theorem and is detailed further in [Roj03b].

Definition 3 Given a polytope Q⊆Rn, its (inner) normal fan, Fan(Q), is the collection
of cones defined by the (inner) normals of the faces of Q. The codimension 111 skeleton of
Fan(Q), denoted Fan1(Q), is then simply the union of all the cones of Fan(Q) corresponding
to the edges of Q. Also, following the notation of Definition 1, we call the projected inter-
section π

(
Fan1(Q) ∩ {xn+1 =1}

)
the amoeba of QQQ. Finally, for any algebraically closed

field K with a discrete valuation and any polynomial f ∈K[x1, . . . , xn], the amoeba of fff ,

Amoeba(f), is then simply the amoeba of N̂ewt(f). ⋄

We note that in [Kap00], the amoeba of f was defined via a Legendre transform (a.k.a.

support function [Zie95]) of the lower hull of N̂ewt(f). It is easy to see that both defintions
are equivalent.

Kapranov’s Non-Archimedean Amoeba Theorem [Kap00] Following the notation above,
ord(K)⊆Q =⇒ ord(ZK(f) ∩ (K∗)n)=Amoeba(f) ∩ ord(K)n. �

Example 4 Returning to Example 3 of Section 1.1, let us compare the projected lower hulls
of Newt3(f1), Newt3(f2), and Newt3(f1f2) with Amoeba(f1), Amoeba(f2), and Amoeba(f1) ∩ Amoeba(f2):

ord3(ZC3(f1))

(0, 0)

I
(

1
2
, 1
)

6

-

(
2
9
,− 7

18

)

R�

ord3(ZC3(f2))

(
1
2
,−3

8

)

?

(
10
7
,−1

7

)

-

(
−11

7
, 1

7

)
�

(
−1

2
, 1

2

)

6
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r̂=
(
−1

2
, 1

2
, 1
)

r̂=
(

1
2
,−2

3
, 1
)

r̂=
(

1
6
,− 7

24
, 1
)

r̂=
(

1
7
, 2

7
, 1
)

I 6

-

R� ?

-

�

6

(
−1

2
, 1

2

)

(
1
7
, 2

7

)

(
1
6
,− 7

24

)

(
1
2
,−2

3

)

We thus see that the allowable valuation vectors for the geometrically isolated roots of F in
(C∗

3)
2 are contained in the intersection of two piecewise linear curves. ⋄

Remark 8 Note that although amoebae provide an elegant conceptual simplification, the
assignment of correct multiplicities to amoebic intersections still requires some additional

combinatorial work in general: simply consider any F with dim ZCp
(F ) = 0, N̂ewt(f1) =

· · · = N̂ewt(fn), and n≥ 2. For example, the 3-adic amoebae of x + y − 1 and 2x + 4y − 8
are identical, one-dimensional, and thus fail to predict the sole valuation vector of ZC3(x +
y − 1, 2x + 4y − 8)={(−2, 3)}. ⋄

3 Proving the Local Case of Theorem 1

Here we will assume that L is any degree d algebraic extension of Qp. The following lemma
will help us reduce to the case k=n.

Lemma 1 Suppose F :=(f1, . . . , fk) is any k × n polynomial system over L with k>n and
let D be the maximum of the degrees of the fi and S⊆Z any set of cardinality greater than
kDn. Then there is an n × k matrix [aij] with entries in S such that
G :=(a11f1 + · · · + a1kfk, . . . , an1f1 + · · · + ankfk) =⇒ [ZCp

(F )⊆ZCp
(G) and ZCp

(G)\ZCp
(F ) is finite].

Proof: The analogous statement where one works with roots of F in Cn instead follows
easily from the first assertion of [GH93, Sec. 3.4.1, Pg. 233] and the development there. The
proof there only makes use of the fact that C is algebraically closed, and thus applies to the
case at hand over Cp. �

We will also need the following basic fact on the roots of sparse polynomial systems over
most infinite fields.

Lemma 2 Suppose F is a µ-sparse k × n polynomial system over a field L with an em-
bedded copy of Z and let G(L, µ, k, n) denote the maximum number of geometrically iso-
lated roots in Ln of such an F . Then [k < n or µ ≤ n] =⇒ G(L, µ, k, n) = 0. Also,
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G(L, µ, k, n)≤G(L, (µ1, . . . , µn)), where µ1, . . . , µn ≤ µ − n + 1 and G(L, (m1, . . . ,mn)) de-
notes the maximum number of geometrically isolated roots in Ln of an n × n polynomial
system of type (m1, . . . ,mn) over L.

Proof: By [Har77, Affine Dimension Theorem, Prop. 7.1, Pg. 48], k < n =⇒ ZL(F ) is
positive-dimensional; so it is clear that there are no geometrically isolated roots whatsoever
when k<n. As for the case µ≤n, one easily obtains by Gauss-Jordan elimination that F is
equivalent to either a system of type (1, . . . , 1) or a system of k′ equations in >k′ monomials.
So the first part of our lemma follows, employing a monomial change of variables in the latter
case of our reduction (cf. Section 3.1).

To prove the second assertion, note that we can now assume that k ≥ n. In the event
that k>n, Lemma 1 allows us to replace F by a new n×n polynomial system (with no new
exponent vectors) which has at least as many geometrically isolated roots as our original F .
In fact, by basic linear algebra again (and since Z →֒ L by assumption), we can assume that
our new system still has exactly µ distinct exponent vectors. So we can assume k=n.

To conclude, we need only apply another round of Gauss-Jordan elimination to obtain a
new system, equivalent to F , with ≤µ − n + 1 exponent vectors in each of its polynomials. �

Finally, we will need the following result characterizing when mixed volumes vanish.

Lemma 3 [DGH98, Prop. 2]
Given polytopes P1, . . . , Pn⊂Rn, we have M(P1, . . . , Pn)>0 ⇐⇒ there are linearly indepen-
dent vectors v1, . . . , vn with vi parallel to an edge of Pi for each i. �

Proof of the Local Case of Theorem 1: The first portion follows immediately from
Lemma 2. In particular, we can assume henceforth that k = n, µ≥ n + 1, and (if desired)
that F is of type (m1, . . . ,mn) where m1, . . . ,mn≤µ − n + 1.

Lemma 3 then tells us that M
(
π
(
Newtp(F )r̂

))
> 0 ⇐⇒ there are linearly independent

vectors v1, . . . , vn, with vi parallel to an edge of Newtp(fi)
r̂ for all i. So let λi be the number

of lower edges of Newtp(fi). Clearly then, there are no more than λ1 · · ·λn possible values
for an r ∈Rn with r̂ = (r, 1) and M

(
π
(
Newtp(F )r̂

))
> 0, so let us now find explicit upper

bounds on the λi.
If n=1 then we clearly have λ1≤µ− 1, and this is a sharp bound for all µ. If n≥3 then

we have the obvious bound of λi≤µ(µ−1)/2 for all i, and it is not hard to generate examples
showing that this bound is sharp for all µ as well [Ede87, Thm. 6.5, Pg. 101]. If n=2 then
note that the number of edges of Newtp(fi) is clearly not decreased if we triangulate the
boundary of Newtp(fi). Since each edge of the resulting complex is incident to exactly two
2-faces, Euler’s relation [Ede87, Thm. 6.8, Pg. 103] then immediately implies that λi≤3µ−6
for all i, which is easily seen to be sharp for all µ≥3.

Having an explicit upper bound on λ1 · · ·λn, Smirnov’s Theorem then tells us that we
immediately obtain an explicit upper bound on the number of possible valuation vectors of
a geometrically isolated root of F in (C∗

p)
n. To see that u(µ, n) serves as an upper bound on

the number of valuation vectors as well, simply recall that F could also be modified to have
at least n − 1 fewer monomial terms in each of its polynomials, thanks to Lemma 2.

So let us now temporarily fix (r1, . . . , rn) :=r and see how many roots of F in (L∗)n can
have valuation vector r. Following the notation of Theorem 2, let Rp :={x∈Cp | |x|p≤1} be
the ring of algebraic integers of Cp, let Mp :={x∈Cp | |x|p <1} be the unique maximal ideal
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of Rp, FL :=(Rp ∩ L)/(Mp ∩ L), and let ρ be any generator of the principal ideal Mp ∩ L
of Rp ∩ L. Also let eL := maxy∈L∗ {|ordpy|

−1} and qL := #FL. (The last two quantities are
respectively known as the ramification degree and residue field cardinality of L, and
satisfy eL, logp qL∈N and eL logp qL = d [Kob84, Ch. III].) Since ordpρ=1/eL, it is clear that

r a valuation vector of a root of F in (L∗)n =⇒ r∈
(

1
eL

Z
)n

.

Fixing a set AL⊂Rp of representatives for FL (i.e., a set of qL elements of Rp∩L, exactly
one of which lies in Mp, whose image mod Mp ∩ L is FL), we can then write any xi ∈ L

uniquely as
+∞∑

j=e
L

ri

a
(i)
j ρj for some sequence of a

(i)
j ∈AL [Kob84, Corollary, Pg. 68]. Note in

particular that xi

a(i)ρe
L

ri thus lies in Rp\Mp for any a(i)∈AL\Mp.

Let rL := (1/eL, . . . , 1/eL
︸ ︷︷ ︸

n

). Theorem 2 then implies that the number of geometrically

isolated roots (x1, . . . , xn)∈(C∗
p)

n of F satisfying

(ordpx1, . . . , ordpxn)=r and
x1

a(1)ρeLr1
≡ · · · ≡

xn

a(n)ρeLrn
≡1 (mod Mp)

is no more than Cp((µ − n + 1, . . . , µ − n + 1
︸ ︷︷ ︸

n

), [n]n, rL). Furthermore, since Mp∩L⊂Mp, we

obtain the same statement if we restrict to roots in (L∗)n and use congruence mod Mp ∩ L
instead.

Since there are qL−1 possibilities for each a
(i)
0 , our last observation tells us that the num-

ber of geometrically isolated roots (x1, . . . , xn)∈(L∗)n of F satisfying (ordpx1, . . . , ordpxn)=r
is no more than (qL − 1)nCp((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, rL). So the total number of ge-

ometrically isolated roots of F in (L∗)n is no more than

u(µ, n)(qL − 1)nCp((µ − n + 1, . . . , µ − n + 1
︸ ︷︷ ︸

n

), [n]n, rL).

Since eL≤d and qL≤pd, an elementary calculation yields our desired bound. �

A simple consequence of our last proof is that, when k = n, there is a natural injection
of the set of possible valuation vectors of the geometricaly isolated roots of F into the set of
n-tuples of the form (E1, . . . , En) where Ei is an edge of Newtp(fi) for all i. So, noting that
we could have also left the supports of F unchanged and applied the second bound from
Theorem 2 instead when k=n, we also clearly have the following improved bound.

Corollary 1 Following the notation above, k=n implies an improved bound of

B(L, µ, n) ≤ Λ(F )(qL − 1)n min






Cp(m, N, reL), Cp((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, reL)






Λ(F )(qL − 1)n min






Cp(m, N, reL), Cp((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, reL)






Λ(F )(qL − 1)n min






Cp(m, N, reL), Cp((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, reL)






,

where Λ(F )=min {u(µ, n),
∏n

i=1 λi}, λi is the number of lower edges of Newtp(fi), Cp(m, N, r)
is as defined in Theorem 2, re := (1/e, . . . , 1/e

︸ ︷︷ ︸

n

), and qL and eL are respectively the residue

field cardinality and ramification index of L. �
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Remark 9 Returning to Example 1, observe that Newt2(f1) has ≤3 edges and that Newt2(f2)
has ≤3(m−2) edges (cf. our use of Euler’s formula in the proof of the local case of Theorem
1). So we in fact have Λ(F )≤9(m − 2) for all m≥3. Corollary 1 then implies an improved
upper bound of 456(m − 1)(m − 2)

(
1 + log2

(
m−1
0.693

))
456(m − 1)(m − 2)

(
1 + log2

(
m−1
0.693

))

456(m − 1)(m − 2)
(
1 + log2

(
m−1
0.693

))
for the number of roots of F in (Q∗

2)
2,

e.g., 230423042304 when m=3. Note that our refined bound is smaller than the real analytic bound
of 4(2m − 2) (cf. Remark 2 of Section 1) for all m≥18, where the two bounds begin to exceed
695000. ⋄

Example 5 It is entirely possible that the maximum number of geometrically isolated roots
in (L∗)n of a µ-sparse n×n polynomial system over L is actually larger for L=Q2 than for
L=R, for small µ and n. In particular, a univariate trinomial over R clearly has at most
4 roots in R∗. However, 3x10

1 + x2
1 − 4 has exactly 6 roots in Q∗

2 and this is the maximum
possible for univariate trinomials over Q2 [Len99b, Prop. 9.2]. ⋄

Remark 10 It is easily checked that B(L, 2, 1) is exactly the number of roots of unity in L.
Lenstra, in an example after Proposition 7.2 of [Len99b], has observed that the latter number
in turn is (qL − 1)psL, where sL is a non-negative integer for which (p − 1)psL−1 divides eL.
In particular, the quantity psL is the number of roots of unity of L that have order a pth

power [Len99b, final remark]. ⋄

3.1 Simpler Sharper Bounds

Before moving on to the global case of Theorem 1, let us point out two simpler and sharper
bounds for B(L, µ, n) when F is of a very special form.

First, defining xA := (xa11
1 · · ·xan1

n , . . . , xa1n

1 · · ·xann
n ), it is easy to see that xAB = (xA)B

for any n × n matrices A = [aij] and B with integer entries. We call the map x 7→ xA a
monomial change of variables and it is easy to see the following:
[The function mA(x) :=xA is an automorphism of (L∗)n and has inverse mA−1(x)=xA−1

with all exponents integral] ⇐⇒ det A=±1.
Let us also call any collection L1 $ · · · $Ln =Qn of n subspaces of Qn, with dim Li = i for all
i, a complete flag. Note that any integral polytope Q⊆Rn naturally generates a subspace
of Qn via the set of linear combinations of all differences of its vertices.

It is then clear that the well-known Hermite factorization of integer matrices (see,
e.g., [Smi61], [Jac85, Ch. 3.7], or [vdK00]) implies that the Newton polytopes of F generate
a complete flag iff [k = n and there is an invertible monomial change of variables and a
permutation σ of [n], such that fσ(i)(x

A)∈L[x1, . . . , xi] for all i]. We call such an F pyra-
midal [LRW03, Dfn. 4]. Note also that if µ = n + 1, a simple application of Gauss-Jordan
elimination will either immediately reduce F to a binomial system (i.e., a system of type
(2, . . . , 2)) or a system of k′ equations in > k′ monomials. The following refined formula is
then immediate.

Proposition 1 Following the notation of Theorem 1 and Corollary 1, restricting to µ=n+1
or pyramidal F respectively yields B(L, µ, n)=B(L, 2, 1)nB(L, µ, n)=B(L, 2, 1)nB(L, µ, n)=B(L, 2, 1)n and B(L, µ, n)=

∏n
i=1 B(L,mi, 1)B(L, µ, n)=

∏n
i=1 B(L,mi, 1)B(L, µ, n)=

∏n
i=1 B(L,mi, 1). �

Example 6 Taking m = 2 in Example 1 makes F at worst 4-sparse and 2 × 2, and The-
orem 1 thus implies that F has no more than 2304 geometrically isolated roots in (Q∗

2)
2.

Corollary 1 gives us an upper bound of 231. However, Proposition 1 (along with the bound
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B(Q2, 2, 1) ≤ 2 (cf. Theorem 1) and the equality B(Q2, 3, 1) = 6 [Len99b, Prop. 9.2]) im-
plies a sharp bound of 121212. In particular, note that F := (3x10

1 + x2
1 − 4, x2

2 − 1) has exactly
12 roots in (Q∗

2)
2 (cf. Example 5), and that the corresponding optimal bound over (R∗)2

would instead be 8 [LRW03, Thm.3]. ⋄

Example 7 Let F be any n× n binomial system over Q2. Then our pyramidal bound from
Proposition 1 is exactly 2n, while the upper bound from Corollary 1 is (c(1 − log2 log 2)n)n≥(2.418 · n)n. ⋄

Now let Newt(fi) :=Conv(Supp(fi)) denote the Newton polytope of fififi with respect
to the trivial valuation, and set Newt(F ) := (Newt(f1), . . . , Newt(fn)). Note that this
kind of Newton polytope, for an n-variate polynomial, lies in Rn instead of Rn+1.

Proposition 2 Following the notation of Theorem 1 and Corollary 1, restricting to F with
M(Newt(F ))=0 yields B(L, µ, n)=0B(L, µ, n)=0B(L, µ, n)=0. �

The proposition of course follows from the fact that there are no roots in (C∗
p)

n at all for
such F , which in turn is an immediate consequence of the monotonicity of mixed volume
with respect to containment [BZ88] and Smirnov’s Theorem.

Remark 11 Note that the hypotheses for the two preceding refined bounds can in fact be
checked within a number of arithmetic operations polynomial in µ and n: For the pyramidal
bound, one can simply use Gaussian elimination to determine the dimensions of the Newton
polytopes (corresponding to the trivial valuation) of F and then similarly check the contain-
ments in the flag condition if necessary. For the vanishing mixed volume bound, one can
use matroid intersection to check the condition from Lemma 3 within O(µn1.616) arithmetic
operations [Roj99a, Lem. 1]. One can even assert polynomial bit complexity as well (in µ,
n, and the bit-sizes of the exponents of F ) for the two preceding hypothesis checks. See, e.g.,
[BCSS98, Sec. 15.5] and [Ili89] for further details. ⋄

In closing our refinements of the local case of Theorem 1, it should be clear that one can of
course combine and interweave Corollary 1 and Propositions 1 and 2 to obtain even sharper
upper bounds on B(L, µ, n) for various families of F , e.g., F which, while not pyramidal,
have a subsystem which is pyramidal.

4 Proving the Global Case of Theorem 1

Let us start with a construction from [Len99b, Sec. 8] for the univariate case: First, fix a
group homomorphism Q −→ C∗

2, written r 7→ 2r, with the property that 21 =2. To construct
2r for an arbitrary rational r, choose 21/n! inductively to be an nth root of 21/(n−1)!, and then
define 2a/n! to be the ath power of 21/n! for any a∈Z. Clearly, ord2(2

r) = r for each r ∈Q.
For j, e∈N we then define the subgroups Ue and Tj of C∗

2 by Ue := {x | ordp(x − 1)≥ 1/e}

and Tj :={ζ | ζ2j−1 =1}. Note that Ue ⊆ Ue′ if e≤e′, and Tj ⊆Tj′ if j divides j′.
What we now show is that in addition to having few roots in (Q∗

2)
n, F has few roots in

another suprisingly large piece of (C∗
2)

n.
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Lemma 4 Let e, j ∈ N. Also let F be a µ-sparse n × n polynomial system over C2, mi

the number of exponent vectors of fi, m := (m1, . . . ,mn), re = (1/e, . . . , 1/e
︸ ︷︷ ︸

n

), Ni the set

of all j such that xj appears with nonzero exponent in some monomial term of fi, and
N := (N1, . . . , Nn). Then, following the notation of Theorem 2 and Corollary 1, F has no
more than

Λ(F )(2j − 1)n min






C2(m, N, re), C2((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, re)







geometrically isolated roots in the subgroup (2Q · Tj · Ue)
n of (C∗

2)
n.

Proof: First note that the case n=1, in slightly different notation, is exactly Lemma 8.2 of
[Len99b]. The proof there generalizes quite easily to our higher-dimensional setting.

By Lemma 2 of Section 3, we can assume (if desired) that F is of type (m′
1, . . . ,m

′
n) with

m′
1, . . . ,m

′
n≤µ − n + 1. So by Theorem 2, F has no more than

min






C2(m, N, re), C2((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, re)







geometrically isolated roots in Un
e . By the change of variables (x1, . . . , xn) 7→ (α1y1, . . . , αnyn)

we then easily obtain the same upper bound for the number of roots of F in any coset of
Un

e . Since T n
j clearly has order (2j − 1)n, F thus has no more than

(2j − 1)n min






C2(m, N, re), C2((µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

), [n]n, re)







geometrically isolated roots in any coset (2r1TjUe) × · · · × (2rnTjUe). Smirnov’s Theorem
then implies, via our proofs of the local case of Theorem 1 and Corollary 1 (cf. Section 3),
that a geometrically isolated root x∈ (C∗

2)
n of F can produce no more than Λ(F ) possible

distinct values for (r1, . . . , rn) :=(ord2x1, . . . , ord2xn). So we are done. �

To at last prove the global case of Theorem 1, let us quote another useful result of Lenstra.
Recall that ⌈x⌉ is the least integer greater than x.

Lemma 5 [Len99b, Lem. 8.3] Let n∈N and let L be a finite algebraic extension of Q2 of
degree ≤D. Then there is a j∈ [D] such that L∗⊆2QTjU⌈d/j⌉d. �

Proof of the Global Case of Theorem 1:
Since Q naturally embeds in Q2, we can assume that L is a subfield of C2 of finite degree
over Q2. Then every root of F in (C∗

2)
n of degree ≤ δ over L lies in (L

′∗)n, where L′ is an
extension of Q2 of degree at most D :=dδ. So by Lemma 5, any such root of F also lies in
⋃D

j=1(2
QTjU⌈D/j⌉D). The first part of the global case of Theorem 1 then follows immediately

from Lemma 2 of Section 3, and we can assume henceforth that k = n, µ ≥ n + 1, and (if
desired) that F is of type (m′

1, . . . ,m
′
n) where m′

1, . . . ,m
′
n≤µ − n + 1.
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From Lemma 4 it now follows that the number of roots of F of degree ≤ δ over L is no
more than

D∑

j=1

u(µ, n)(2j − 1)nC2



(µ − n + 1, . . . , µ − n + 1
︸ ︷︷ ︸

n

), [n]n,

(
1

⌈D/j⌉D
, . . . ,

1

⌈D/j⌉D

)


 .

Since 2j − 1 ≤ 2j and C2(µ, n, (r, . . . , r)) is a decreasing function of r, we thus obtain by
geometric series that

A(L, δ, µ, n) ≤ u(µ, n)2ndδ+1C2



(µ − n + 1, . . . , µ − n + 1
︸ ︷︷ ︸

n

), [n]n,

(
1

d2δ2
, . . . ,

1

d2δ2

)


 .

So by Theorem 2 and an elementary calculation we are done. �

By leaving the last sum in our proof above unsimplified, and noting that we could have
left the supports of F unchanged throughout our proof if k =n, we immediately obtain the
following improvement of Theorem 2.

Corollary 2 Following the notation of Theorem 1 and Lemma 4, if k =n then we have an
improved bound of

A(L, δ, µ, n) ≤ Λ(F )
dδ∑

j=1

(2j − 1)n min
{
C2

(
m, N, r⌈dδ/j⌉dδ

)
, C2

(
m(µ, n), [n]n, r⌈dδ/j⌉dδ

)}
A(L, δ, µ, n) ≤ Λ(F )

dδ∑

j=1

(2j − 1)n min
{
C2

(
m, N, r⌈dδ/j⌉dδ

)
, C2

(
m(µ, n), [n]n, r⌈dδ/j⌉dδ

)}

A(L, δ, µ, n) ≤ Λ(F )
dδ∑

j=1

(2j − 1)n min
{
C2

(
m, N, r⌈dδ/j⌉dδ

)
, C2

(
m(µ, n), [n]n, r⌈dδ/j⌉dδ

)}
,

where Λ(F ) is as defined in Corollary 1 of Section 3, Cp(m, N, r) is as defined in Theorem
2, and m(µ, n) :=(µ − n + 1, . . . , µ − n + 1

︸ ︷︷ ︸

n

). �

To conclude, note that we can immediately give global analogues of Propositions 1 and
2 from Section 3.1. We omit the proofs since the proofs given for the local versions were in
fact independent of the (infinite) field L.

Proposition 3 Following the notation of Theorem 1 and Corollary 1, restricting to µ=n+1
or pyramidal F respectively yields A(L, δ, µ, n)≤A(L, δ, 2, 1)nA(L, δ, µ, n)≤A(L, δ, 2, 1)nA(L, δ, µ, n)≤A(L, δ, 2, 1)n and A(L, δ, µ, n)≤

∏n
i=1 A(L, δ,mi, 1)A(L, δ, µ, n)≤

∏n
i=1 A(L, δ,mi, 1)A(L, δ, µ, n)≤

∏n
i=1 A(L, δ,mi, 1). �

Proposition 4 Following the notation of Theorem 1 and Corollary 1, restricting to F with
M(Newt(F ))=0 yields A(L, δ, µ, n)=0A(L, δ, µ, n)=0A(L, δ, µ, n)=0. �

Again, just as for the local case, it should be clear that one can combine and interweave
Corollary 2 and Propositions 3 and 4 to obtain even sharper upper bounds on A(L, δ, µ, n)
for various families of F .

5 Proving Theorem 2

Conceptually, our proof is fairly direct: We will apply Smirnov’s Theorem to the shifted
polynomial system G(x1, . . . , xn) :=F (1 + x1, . . . , 1 + xn) to count how many roots of F are
close to (1, . . . , 1). That the resulting bound is actually independent of the degrees of the fi,
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for n=1, was apparently first observed by Lenstra in [Len99b, Thm. 3]. That this continues
to hold for general n is a bit more involved and requires some facts from convex geometry
which we will summarize shortly.

However, let us first motivate our approach by seeing a simple illustration of how Cp(µ, n, r)
is well-defined. Smirnov’s Theorem and our earlier observations on the vanishing of mixed
volume easily imply that Cp(µ, n, r) will be small provided the lower hull of

Newtp (
∏n

i=1 fi(1 + x1, . . . , 1 + xn))
is the graph (in Rn+1) of a slowly decreasing function on the non-negative orthant of Rn (cf.
Example 3). That the individual Newtp(fi) are gently “scalloped” on the bottom in this
sense can be observed quite easily.

Example 8 Let {ai, bi, c
′
i, c

′′
i }

7
i=1 be independent uniformly distributed random variables such

that the ai and bi are chosen from {0, . . . , 11}, the c′i are chosen from {0, . . . , 1000}, and the
c′′i are chosen from {0, . . . , 11}. Consider then the family of random 7-sparse polynomials
defined by

f(x, y) := c1x
a1yb1 + c2x

a2yb2 + c3x
a3yb3 + c4x

a4ya4 + c5x
a5yb5 + c6x

a6yb6 + c7x
a7yb7 ,

where ci :=c′i3
c′′i . Clearly, Newt3(f(1+x, 1+y)) can have many more faces than Newt3(f(x, y)).

However, for arithmetic reasons we will see below, the lower hull of Newt3(f(1 + x, 1 + y))
will be surprisingly simple. Here are 3 such random Newt3(f(1 + x, 1 + y)) alongside their
respective lower hulls:
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(The origin is the lowest corner in each bounding box, and each bounding box is contained in
the non-negative octant.) So we in fact see that for all but one of the above random f , the
lower hull of Newt3(f(1 + x, 1 + y)) is actually the graph of an increasing function. Put
another way, we have just seen experimental evidence that it is unlikely that a pair of such
random f will have roots in the open 3-adic unit polydisc centered at (1, 1). ⋄

Let us now recall a clever observation of Lenstra on binomial coefficients, factorials, and
least common multiples. Recall that a|b means that a and b are integers with a dividing b
and that δij denotes the Kronecker delta (which is 0 or 1 according as i 6=j or i=j).

Definition 4 [Len99b, Sec. 2] For any non-negative integers m and t define dm(t) to be the
least common multiple of all integers that can be written as the product of at most m pairwise
distinct positive integers that are at most t (and set dm(t) :=1 if m=0 or t=0). ⋄

Lemma 6 [Len99b, Sec. 2] Following the notation of Definition 4, we have the following:

(a) dm(t)|t!

(b) m≥ t =⇒ dm(t)= t!

(c) 0≤ i≤m<t =⇒ i!|dm(t)

(d) t≥1 =⇒ ordpdm(t)≤m⌊logp t⌋

Furthermore, if A⊂Z is any set of cardinality m, then there are rational numbers
γ0(A, t), . . . , γm−1(A, t) such that:

1. the denominator of γj(A, t) divides dm−1(t)/j! if t≥m and γj(A, t)=δjt otherwise.

2.

(
a
t

)

=
∑m−1

j=0 γj(A, t)

(
a
j

)

for all a∈A. �

Note that we set

(
0
0

)

=1 and

(
a
t

)

=0 for all t>a.

Once we show that the p-adic Newton polytopes of G are sufficiently well-behaved, Lem-
mata 7 and 8 below will help us complete the proof of Theorem 2.

Lemma 7 Let c := e
e−1

(so c≤1.582) and t1, r1, . . . , tn, rn >0. Then
n∑

i=1

(riti − (µ − 1) logp ti) ≤ (µ − 1)
n∑

i=1

ri =⇒
n∑

i=1

riti ≤ c(µ − 1)

[(
n∑

i=1

ri

)

+ logp

(
(µ−1)n

r1···rn logn p

)]

.
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Proof: Here we make multivariate extensions of some observations of Lenstra from [Len99b,
Prop. 7.1]: First note that it is easily shown via basic calculus that 1− log x

x
assumes its min-

imum (over the positive reals), 1/c, at x = e. So for all x > 0 we have x ≥ (log x) + x/c.
Letting t, r>0, w := µ−1

r log p
, and x := t/w, we then obtain

rt≥rwx≥rw((log x) + x/c)=rw(log t) − rw(log w) + rt/c=(µ − 1)(logp t) − (µ − 1) logp

(
µ−1

r log p

)

+ rt/c.

Substituting r=ri, t= ti, and summing over i then implies

(⋆)
n∑

i=1

riti ≥ (µ − 1)

(
n∑

i=1

logp ti

)

− (µ − 1) logp

(
(µ − 1)n

r1 · · · rn logn p

)

+
1

c

n∑

i=1

riti.

Now suppose that

(⋆⋆)
n∑

i=1

riti > c(µ − 1)

[(
n∑

i=1

ri

)

+ logp

(
(µ − 1)n

r1 · · · rn logn p

)]

.

Substituting (⋆⋆) into the last sum of the right hand side of our inequality (⋆) then tells
us that
n∑

i=1

riti >(µ − 1)

(
n∑

i=1

logp ti

)

− (µ − 1) logp

(
(µ−1)n

r1···rn logn p

)

+ (µ − 1)

[(
n∑

i=1

ri

)

+ logp

(
(µ−1)n

r1···rn logn p

)]

.

So we obtain
n∑

i=1

riti > (µ− 1)

(
n∑

i=1

logp ti

)

+ (µ− 1)

(
n∑

i=1

ri

)

, which can be rearranged into

(⋆ ⋆ ⋆)
n∑

i=1

(riti − (µ − 1) logp ti) > (µ − 1)
n∑

i=1

ri.

So (⋆⋆) =⇒ (⋆ ⋆ ⋆), and we conclude simply by taking the contrapositive. �

The following lemma is a simple consequence of the basic properties of polytopes, their
faces, and their mixed volumes [BZ88].

Lemma 8 Following the notation of Section 1.1, let G :=(g1, . . . , gn) be any n×n polynomial
system and let r :=(r1, . . . , rn) be such that ri >0 for all i. Also let

w(gi, r) := π







⋃

ŝ:=(s1,...,sn,1)
si≥ri for all i

Newtp(gi)
ŝ







for all i.

Then
∑

ŝ:=(s1,...,sn,1)
si≥ri for all i

M
(
π
(
Newtp(G)ŝ

))
≤M(Conv(w(g1, r)), . . . , Conv(w(gn, r))). In particu-

lar, if Qi ⊆ {(t1, . . . , tn) ∈ Rn | r1t1 + · · · rntn ≤ αi and tj ≥ 0 for all j} for all i ∈ [n], then
M(Q1, . . . , Qn)≤

∏n
i=1

αi

ri
. �

Note that the union and sum above are clearly finite since for a Newton polytope there are
only finitely many inner facet normals with last coordinate 1.
Proof of Theorem 2:
The first portion follows immediately from Lemma 2 of Section 3, and we can assume
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henceforth that k = n, µ ≥ n + 1, and (if desired) that F is of type (m′
1, . . . ,m

′
n) where

m′
1, . . . ,m

′
n≤µ− n + 1. In particular, it is now clear that the bound on Cp(m, N, r) implies

the bound on Cp(µ, n, r). So it suffices to prove the final bound of the theorem. Noting
that mi ≤ 1 for some i =⇒ F has no roots in (C∗

p)
n at all, we can also clearly assume that

m1, . . . ,mn≥2.
Let us now set gi(x1, . . . , xn) :=fi(1 + x1, . . . , 1 + xn) for all i and G :=(g1, . . . , gn). It is

then clear that the number of geometrically isolated roots of F with ordp(xi−1)≥ri for all i
is the same as the number of geometrically isolated roots of G in (C∗

p)
n with ordpxi≥ri for all

i, and multiplicities are preserved by this change of variables. Smirnov’s Theorem then tells
us that the latter number (counting multiplicities) is exactly

∑

ŝ:=(s1,...,sn,1)
si≥ri for all i

M
(
π
(
Newtp(G)ŝ

))
.

Now let us define, for any N ⊆ [n], the following scaled n-simplex in Rn:

S(m,N, r) :=







(t1, . . . , tn)∈Rn

∣
∣
∣
∣
∣
∣
∣

n∑

i=1

riti ≤ c(m − 1)






(
∑

i∈N

ri

)

+ logp






(m − 1)#N

 

Q

i∈N

ri

!

log#N p









 and ti≥0 for 1 ≤ i ≤ n







.

By Lemma 8, and the fact that the mixed volume of integral polytopes is always a non-
negative integer, we have that M(S(m1, N1, r), . . . , S(mn, Nn, r)) is bounded above by




cn

n∏

i=1






(mi − 1)





(
∑

j∈Ni

rj

)

+ logp




(mi − 1)#Ni

(
∏

j∈Ni
ri

)

log#Ni p









/

ri












where, for all i, Ni is as in the statement of Theorem 2. Since S(m,N, r) is always convex,
and since w(gi, r) is a union of convex hulls of subsets of Supp(gi), we also have that for all
i, w(gi, r) ∩ Supp(gi)⊆S(mi, Ni, r) =⇒ Conv(w(gi, r))⊆S(mi, Ni, r).

Let us now fix any i∈ [n] and permute coordinates so that Ni =[ν]. To avoid a profusion
of indices, let us temporarily abuse notation slightly for the next 6 paragraphs by respectively
writing f , g, and m in place of fi, gi, and mi. We then observe the following, thanks to the
monotonicity of the mixed volume with respect to containment [BZ88]:

To prove Theorem 2, we need only show that w(g, r) ∩ Supp(g)⊆S(m, [ν], r)w(g, r) ∩ Supp(g)⊆S(m, [ν], r)w(g, r) ∩ Supp(g)⊆S(m, [ν], r).

To do the latter, we will first prove that the valuations of the coefficients of g satisfy a “slow
decay” condition, and then use convexity of the gently sloping lower faces of Newtp(f) to
prove our desired assertion.

Letting Di := degxi
f , it is clear that we can write g(x) :=

∑

t∈
Qn

i=1{0,...,Di}
btx

t, where

bt :=
∑

a∈A ca

∏n
i=1

(
ai

ti

)

, f(x)=
∑

a=(a1,...,an)∈A

cax
a (with every ca nonzero), t=(t1, . . . , tn), and

A := Supp(f). Since f 6= 0 we have g 6= 0 and thus not all the bt vanish. Note also that
Di > 0 ⇐⇒ i ≤ ν, thanks to our earlier permutation of coordinates. So D1 = · · · = Dn =
0 =⇒ ν =0 and f is a nonzero constant. So in this case, F has no roots in (C∗

p)
n at all and

our asserted formula vanishes in agreement. So we can assume henceforth that ν ≥ 1 and
t :=(t1, . . . , tν), and thus Supp(g)⊆

∏ν
i=1{0, . . . , Di}.

By Lemma 6 there are rational numbers {γ
(i)
α (ti)}, with (i, α) ∈ [ν] × {0, . . . , µ − 1}, such

that for all a=(a1, . . . , an)∈A and t∈
∏ν

i=1{0, . . . , Di} we have
(

ai

ti

)

=
∑µ−1

α=0 γ
(i)
α (ti)

(
ai

α

)

and
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the denominators of the {γ
(i)
α (ti)} not too divisible by p. To see why, note that for all

t∈
ν∏

i=1

{0, . . . , Di},

bt =
∑

a∈A

ca

ν∏

i=1

(
ai

ti

)

=
∑

a∈A

ca

ν∏

i=1

m−1∑

ji=0

(

γ
(i)
ji

(ti)

(
ai

ji

))

=
∑

a∈A

ca

∑

j∈{0,...,m−1}ν

ν∏

i=1

(

γ
(i)
ji

(ti)

(
ai

ji

))

=
∑

j∈{0,...,m−1}ν

(
ν∏

i=1

γ
(i)
ji

(ti)

)
∑

a∈A

ca

ν∏

i=1

(
ai

ji

)

=
∑

j∈{0,...,m−1}ν

(
ν∏

i=1

γ
(i)
ji

(ti)

)

bj.

So the coefficients {bt}t∈
Qν

i=1{0,...,Di} of g are completely determined by a smaller set of
coefficients corresponding to the exponents of g lying in {0, . . . ,m − 1}ν . Even better, Lemma

6 tells us that ti≤m − 1 =⇒ γ
(i)
ji

(ti)=0 for all ji 6= ti. So we in fact have:
(♥) ti≤m − 1 =⇒ the recursive sum for bt has no terms corresponding to any j with ji 6= ti.

Given this refined recursion for bt we can then derive that ordpbt decreases slowly and
in a highly controlled manner: First note that our recursion, combined with (♥) and the
ultrametric inequality, implies that

(⋆) ordpbt ≥min
j∈Jt

{

ordp(bj) +
ν∑

i=1

ordpγ
(i)
ji

(ti)

}

for all t∈

ν∏

i=1

{0, . . . , Di},

where Jt is the set of all j ∈{0, . . . ,m − 1}ν with ji = ti for all i∈ [ν] satisfying ti ≤m − 1.
Then, by the definition of a face with inner normal (s, 1), we have

(t, bt)∈Newtp(g)(s,1) =⇒

(
ν∑

i=1

siti

)

+ ordpbt≤

(
ν∑

i=1

siji

)

+ ordpbj for all j∈

ν∏

i=1

{0, . . . , Di}.

So for all such j we must have ordpbj ≥ ordpbt +
∑ν

i=1 si(ti − ji). In particular, we obtain
(⋆⋆) [(t, bt) ∈ Newtp(g)(s,1) and ti≥ji and si≥ri for all i] =⇒ ordpbj ≥ ordpbt +

∑ν
i=1 ri(ti − ji).

Since t ∈ Supp(g) and (t, ordpbt) ∈ Newtp(g)(s,1) implies that ordpbt < ∞, we can thus
combine (⋆) and (⋆⋆) to obtain that

t∈w(g, r) ∩ Supp(g) =⇒ ordpbt≥min
j∈Jt

{

ordp(bt) +
ν∑

i=1

(

ri(ti − ji) + ordpγ
(i)
ji

(ti)
)
}

.

Cancelling and rearranging terms, we thus obtain that t∈w(g, r) ∩ Supp(g) =⇒

ν∑

i=1

riti ≤ max
j∈Jt

{
ν∑

i=1

(

jiri − ordp(γ
(i)
ji

(ti)
)
}

.

Since Lemma 6 tells us that −ordpγ
(i)
ji

(ti)≤(m − 1)(logp ti) − ordp(ji!) for all i and ti∈{0, . . . , Di},
we then obtain

(♣)
ν∑

i=1

(
riti − (m − 1) logp ti

)
≤ max

j∈Jt

{
ν∑

i=1

(jiri − ordp(ji!))

}

≤ (m − 1)
ν∑

i=1

ri.
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So by Lemma 7 we obtain that w(g, r) ∩ Supp(g)⊆S(m, [ν], r) and we are done. �

It immediately follows that we can give an even sharper bound via the first inequality of
(♣) from our last proof:

Corollary 3 Following the notation of Theorem 2, let T (m,N, r) be the subset of the non-
negative orthant of Rn defined by{

(t1, . . . , tn)∈Rn

∣
∣
∣
∣
∣

∑

i∈N

(
riti − (m − 1) logp ti

)
≤ max

j∈Jt

{
∑

i∈N

(jiri − ordp(ji!))

}

and
ti≥0 for i ∈ N
ti =0 for i 6∈ N

}

,

where Jt is the set of all j ∈{0, . . . ,m − 1}n with ji = ti for all i∈ [n] satisfying ti ≤m − 1.
Then we have an improved bound of

Cp(µ, n, r)≤




M(Conv(T (µ − n + 1, [n], r)), . . . , Conv(T (µ − n + 1, [n], r)

︸ ︷︷ ︸

n

))




Cp(µ, n, r)≤




M(Conv(T (µ − n + 1, [n], r)), . . . , Conv(T (µ − n + 1, [n], r)

︸ ︷︷ ︸

n

))




Cp(µ, n, r)≤




M(Conv(T (µ − n + 1, [n], r)), . . . , Conv(T (µ − n + 1, [n], r)

︸ ︷︷ ︸

n

))






and, if k=n, a more refined bound of

Cp(m, N, r)≤⌊M(Conv(T (m1, N1, r)), . . . , Conv(T (mn, Nn, r)))⌋Cp(m, N, r)≤⌊M(Conv(T (m1, N1, r)), . . . , Conv(T (mn, Nn, r)))⌋Cp(m, N, r)≤⌊M(Conv(T (m1, N1, r)), . . . , Conv(T (mn, Nn, r)))⌋. �

For n=1 our last corollary agrees with an earlier explicit bound of Lenstra [Len99b, Prop.
7.1]. We also point out that a sufficiently good generalization of mixed volume to n-tuples
of non-convex sets would allow us to sharpen our last bound by removing the convex hulls
from its statement.
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