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Abstract

We present algorithms revealing new families of polynomials admitting sub-exponential
detection of p-adic rational roots, relative to the sparse encoding. For instance, we
prove NP-completeness for the case of honest n-variate (n+1)-nomials and, for certain
special cases with p exceeding the Newton polytope volume, constant-time complexity.
Furthermore, using the theory of linear forms in p-adic logarithms, we prove that the
case of trinomials in one variable can be done in NP. The best previous complexity
upper bounds for all these problems were EXPTIME or worse. Finally, we prove
that detecting p-adic rational roots for sparse polynomials in one variable is NP-hard
with respect to randomized reductions. The last proof makes use of an efficient con-
struction of primes in certain arithmetic progressions. The smallest n where detecting
p-adic rational roots for n-variate sparse polynomials is NP-hard appears to have been
unknown.

1 Introduction

Paralleling earlier results over the real numbers [BRS09], we study the complexity of detecting
p-adic rational roots for sparse polynomials. We find complexity lower bounds over Qp

hitherto unattainable over R (see Thm. 1.2 and Prop. 1.3 below), as well as new algorithms
over Qp with complexity close to that of recent algorithms over R (see Thm. 1.4 below).

More precisely, for any commutative ring R with multiplicative identity, we let FEASR
— the R-feasibility problem (a.k.a. Hilbert’s Tenth Problem over R [DLPvG00]) — denote
the problem of deciding whether an input polynomial system F ∈ ⋃k,n∈N(Z[x1, . . . , xn])

k

has a root in Rn. Observe that FEASR, FEASQ, and {FEASFq
}q a prime power are central prob-

lems respectively in algorithmic real algebraic geometry, algorithmic number theory, and
cryptography.

Algorithmic results over the p-adics are useful in many settings: polynomial-time fac-
toring algorithms over Q[x1] [LLL82], computational complexity [Roj02, Che04, Koi11], the
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study of prime ideals in number fields [Coh94, Ch. 4 & 6], elliptic curve cryptography [Lau04],
and the computation of zeta functions [CDV06, LW08, Cha08]. Also, much work has gone
into using p-adic methods to algorithmically detect rational points on algebraic curves via
variations of the Hasse Principle1 (see, e.g., [C-T98, Poo06]). We discuss further theoretical
motivation in Section 1.2 below. Nevertheless, our knowledge of the complexity of deciding
the existence of solutions for sparse polynomial equations over Qp is surprisingly coarse:
good bounds for the number of solutions over Qp in one variable weren’t even known until
the late 1990s [Len99].

Definition 1.1 Let FEASQprimes
denote the problem of deciding, for an input Laurent polyno-

mial system F ∈⋃k,n∈N
(

Z
[

x±1
1 , . . . , x±1

n

])k
and an input prime p, whether F has a p-adic

rational root. Also let P⊂N denote the set of primes, p∈P, and, when I is a family of such
pairs (F, p), we let FEASQprimes

(I) denote the restriction of FEASQprimes
to inputs in I.

When aj ∈Zn, the notation aj = (a1,j, . . . , an,j), x
aj = x

a1,j
1 · · · xan,j

n , and x= (x1, . . . , xn)
will be understood. Also, when f(x) :=

∑m
j=1 cix

aj with cj ∈ R \ {0} for all j, and the
aj ∈ Zn are pair-wise distinct, we call f an n-variate m-nomial (over R), and we define
Supp(f) := {a1, . . . , am} to be the support of f . We also define Newt(f) — the (standard)
Newton polytope of f — to be the convex hull of2 Supp(f) and let Vf denote its n-dimensional
volume, normalized so that [0, 1]n has volume 1.

Let size(f) :=
∑m

i=1 log2 [(2 + |ci|)(2 + |a1,i|) · · · (2 + |an,i|)] and, when F := (f1, . . . , fk),

size(F ) :=
∑k

i=1 size(fi). The underlying input sizes for FEASQprimes
and FEASQprimes

(I) shall
then be size(F ) + log p, but for FEASQp

(and any prime p) we will instead use size(F ) as
the input size. Finally, we let Fn,m denote the set of all n-variate m-nomials and, for any
m≥n + 1, we let F∗

n,m⊆Fn,m denote the subset consisting of those f with Vf > 0. We call
any f ∈F∗

n,m an honest n-variate m-nomial (or honestly n-variate). ⋄
As an example, it is clear that upon substituting y1 := x2

1x2x
7
3x

3
4, the dishonestly 4-variate

trinomial −1+7x2
1x2x

7
3x

3
4−43x198

1 x99
2 x693

3 x297
4 (with support contained in a line segment) has a

root in (Q∗
p)

4 if and only if the honest univariate trinomial −1 + 7y1 − 43y991 has a root in Q∗
p.

Via the use of Hermite Normal Form (as in Section 3 below), it is then easy to see that there
is no loss of generality in restricting to F∗

n,n+k (with k≥ 1) when studying the algorithmic
complexity of sparse polynomials. Note also that the degree, deg f , of a polynomial f can

sometimes be exponential in size(f) for certain families of f , e.g., d≥2size(1+5x126
1 +xd

1)−16.
While there are now randomized algorithms of expected complexity polynomial in

deg(f) + size(f) + log p for factoring f ∈ Z[x1] over Qp[x1] [CG00] (see also [Chi91]), no
such algorithms are known to have complexity polynomial in just size(f) + log p. Our first
result shows that the existence of such algorithms would imply a collapse close to P=NP.

Theorem 1.2
If FEASQprimes

(Z[x] × P) ∈ZPP then NP⊆ZPP. Moreover, if the Wagstaff Conjecture is
true, then the stronger implication FEASQprimes

(Z[x]× P)∈P =⇒ P=NP holds

1If F (x1, . . . , xn)=0 is any polynomial equation and ZK is its zero set in Kn, then the Hasse Principle
is the assumption that [ZC smooth, ZR 6=∅, and ZQp

6=∅ for all primes p] implies ZQ 6=∅ as well. The Hasse
Principle is a theorem when ZC is a quadric hypersurface or a curve of genus zero, but fails in subtle ways
already for curves of genus one (see, e.g., [Poo01]).

2i.e., smallest convex set containing...
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The complexity class ZPP satisfies P ⊆ ZPP ⊆ NP and consists of decision problems
admitting polynomial-time Las Vegas randomized algorithms (see Section 2, or [Pap95] for
an excellent textbook treatment). The Wagstaff Conjecture is the assertion that, for any
δ > 0, the least prime congruent to k mod N is bounded above by ϕ(N) log2+δ N , where
ϕ(N) is the number of integers in {1, . . . , N} relatively prime to N . (See the paragraph
containing Inequality (1) in [Wag79] and the discussion in [BS96, Ch. 8, pp. 223–224 & 252–
255].) This conjectural bound is unfortunately much stronger than the known implications
of the Generalized Riemann Hypothesis.

The least n making FEASQprimes
(Z[x1, . . . , xn] × P) be NP-hard appears to have been

unknown. Theorem 1.2 thus comes close to settling this problem. In particular, while is not
hard to show that the broader problem FEASQprimes

is NP-hard, the proof of Theorem 1.2 in
Section 6 make essential use of a deep result of Alford, Granville, and Pomerance [AGP94]
on primes in random arithmetic progressions. (See also Theorem 1.9 in Section 1.2 below).

One can also ask for the smallest k making it NP-hard to detect p-adic rational roots of
honest n-variate (n+ k)-nomials. Curiously, k=1 suffices.

Proposition 1.3 For any prime p we have that FEASQp

(

⋃

n∈N
F∗

n,n+1

)

is NP-hard.

The preceding result, mentioned to Rojas by Bjorn Poonen during a conversation at the
Extensions of Hilbert’s Tenth Problem workshop at the American Institute of Mathematics
(March 21–25, 2005), does not appear to have been published. So we paraphrase Poonen’s
proof in Section 7 below. We find Poonen’s result particularly interesting because NP-
hardness occurs much less abruptly over the real numbers: we have instead the containment

FEASR

(

⋃

n∈N
F∗

n,n+1

)

∈NC1 [BRS09, Thm. 1.3]. (Recall that NC1⊆P.) In particular, NP-

hardness of real root detection for n-variate (n+k)-nomials is only known for k=Ω(nε) with
any ε>0 [BRS09, Thm. 1.3]. We discuss the case of fixed n in Section 1.1 below.

Our next main result reveals faster algorithms than previously known for detecting p-adic
rational roots of certain sparse polynomials.

Theorem 1.4
0. FEASQprimes

(F1,m × P)∈P for m∈{0, 1, 2}.
1. For any fixed prime p we have FEASQp

(F1,3)∈NP.
2. There is a countable union of algebraic hypersurfaces E $ Z[x1]×P, with natural density

0, such that FEASQprimes
((Z[x1]× P) \ E)∈NP.

3. (a) FEASQprimes

((
⋃

n∈NF∗
n,n+1

)

× P
)

∈NP.
(b) Letting Q :={c0 + c1x

2
1 + · · ·+ cnx

2
n | n∈N; c0, . . . , cn∈Z \ {0}} × P, we have FEASQprimes

(Q)∈P.
(c) Let W ⊂

(
⋃

n∈NF∗
n,n+1

)

× P denote the subset consisting of those (f, p) with

f(x)=c0+c1x
d1
1 +· · ·+cnx

dn
n , d1, . . . , dn∈N, n≥2, p≥(n!Vf )

2/(n−1), and p not dividing
n!Vf or any coefficient of f . Then for any such (f, p)∈W, f always has a root in Qn

p ,
i.e., FEASQprimes

(W) is doable in constant time.

1.1 What is New About the Algorithms in Theorem 1.4?

As evinced by Parts (b) and (c) of Assertion (3) of Theorem 1.4, algorithms for
FEASQprimes

((
⋃

n∈NF∗
n,n+1

)

× P
)

clearly complement classical results on quadratic forms (see,
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e.g., [Ser73, Ch. IV]) and the Weil Conjectures (see, e.g., [Wei49, FK88]). More to the point,
the best previous complexity upper bound for FEASQprimes

((
⋃

n∈NF∗
n,n+1

)

× P
)

appears to be
quadruply exponential, via an extension of Hensel’s Lemma by Birch and McCann [BMc67]
(see also [Gre74]).

The aforementioned real counter-part to Assertion (3) of Theorem 1.4 again presents
interesting subtleties: simple tricks involving monomial changes of variables suffice to prove
the dramatically sharper upper bound of FEASR

(
⋃

n∈N F∗
n,n+1

)

∈NC1 over R [BRS09, Thm.
1.3], but these tricks are obstructed over Qp (see Example 1.7 below). Assertion (3) is
thus much harder to prove and Proposition 1.3 shows that not much better is possible.
Further speed-ups for detecting p-adic rational roots of n-variate (n + 1)-nomials appear
to hinge on a better understanding of the analogous problem over certain finite rings. In
particular, by our development in Section 3.1, the truth of the following conjecture would
imply FEASQprimes

(

F∗
n,n+1

)

∈P for any fixed n.

Conjecture 1 Suppose ℓ, n ∈ N and p is a prime. Then FEASZ/pℓZ(F∗
n,n+1) admits a

(deterministic) algorithm with complexity (log(p) + ℓ+ size(f))O(n).

Note that brute-force search easily attains a complexity bound of pℓnsize(f)O(1). Also, basic
group theory (see, e.g., Lemma 3.1 in Section 3 below) yields the n=1 case of the conjecture.
So the key difficulty in Conjecture 1 is the dependence on pℓ when n≥2.

While the real counter-part to Assertion (0) of Theorem 1.4 is easy to prove, FEASR(F1,3)∈
P — a stronger real counter-part to Assertion (1) — was proved only recently [BRS09,
Thm. 1.3] using linear forms in logarithms [Nes03]. It is thus worth noting that the proof of
Assertion (1) in Section 5 uses linear forms in p-adic logarithms [Yu94] at a critical juncture,
and suggests an approach to a significant speed-up.

Corollary 1.5 Fix a prime p, let ℓ≥1, and suppose FEASZ/pℓZ(F1,3) admits a (deterministic)

algorithm3 with complexity (ℓ+ size(f))O(1). Then FEASQp
(F1,3)∈P.

The truth of the hypothesis to our corollary above appears to be an open question. (Note
that brute-force search easily leads to an algorithm of complexity pℓsize(f)O(1), so the
main issue here is the dependence on ℓ.) Paraphrased in our notation, Erich Kaltofen
asked in 2003 whether FEASZ/pZ(F1,3) admits a (deterministic) algorithm with complexity
(log(p) + size(f))O(1) [Kal03].4

Since trinomials are (1+ 2)-nomials, it is worth noting the related real complexity upper
bound FEASR(F∗

n,n+2) ∈P for any fixed n ∈N [BRS09, Thm. 1.3]. In fact, the proof there
inspired our proof of Assertion (1) of Theorem 1.4, so it would be most interesting to extend
our p-adic techniques here to the multivariate case.

Conjecture 2 For any fixed n∈N and any prime p, we have FEASQp
(F∗

n,n+2)∈NP.

As for general univariate polynomials, the best previous complexity upper bound for
FEASQprimes

(Z[x1] × P) relative to the sparse input size appears to have been EXPTIME

[MW99]. In particular, both FEASQprimes
(F1,4 × P)

?∈NP and FEASR(F1,4)
?∈NP are still open

3All algorithms discussed here are based on Turing machines [GJ79, Pap95].
4David A. Cox also independently asked Rojas the same question in august of 2004.
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questions [BRS09, Sec. 1.2]. However, high probability speed-ups over R paralleling Assertion
(2) are now known for FEASR(F1,4) [BHPR11, Thm. 1.4]. For clarity, here is an example
illustrating Assertion (2).

Example 1.6 Let T denote the family of pairs (f, p)∈Z[x1]× P with f(x1)=a+ bx11
1 + cx17

1 + x31
1

and let T ∗ :=T \ E where E is the set of pairs (f, p) where f does not admitting a succinct
certficate for p-adic rational feasibility. According to Assertion (2) of Theorem 1.4, E has
natural density 0. More precisely, there is a sparse 61×61 structured matrix S (cf. Lemma 4.3
in Section 4 below), whose entries lie in {0, 1, 31, a, b, 11b, c, 17c}, such that (f, p)∈T ∗ ⇐⇒
p 6 | detS. So FEASQprimes

(T ∗) ∈NP and Corollary 4.6 in Section 4 below then tells us that
for large coefficients, T ∗ occupies almost all of T . In particular, letting T (H) (resp. T ∗(H))
denote those pairs (f, p) in T (resp. T ∗) with |a|, |b|, |c|, p≤H, we obtain

#T ∗(H)
#T (H)

≥
(

1− 244
2H+1

)

(

1− 1+61 log(4H) logH
H

)

.

In particular, one can check via Maple that
(−973 + 21x11

1 − 2x17
1 + x31

1 , p)∈T ∗

for all but 352 primes p. ⋄

1.2 Related Work, a Topological Observation, Weil’s Conjecture,
and Primes in Arithmetic Progression

Let us first recall that Emil Artin conjectured around 1935 that, for any prime p, homoge-
neous polynomials of degree d in n>d2 variables always have non-trivial roots in Qn

p [Art65].
(The polynomials x2

1 + · · · + x2
n show that Artin’s conjecture is resoundingly false over the

real numbers.) Artin’s conjecture was already known to be true for d= 2 [Has24] and, in
1952, the d= 3 case was proved by Lewis [Lew52]. However, in 1966, Terjanian disproved
the conjecture via an example with (p, d, n)=(2, 4, 18).

The Ax-Kochen Theorem from 1965 provided a valid correction of Artin’s conjecture:
for any d, there is a constant pd such that for all primes p>pd, any homogeneous degree d
polynomial in n>d2 variables has a p-adic rational root [AK65, H-B10]. The hard cases of
FEASQprimes

thus appear to consist of high degree polynomials with few variables and p small.
It is interesting to observe that while it is easier for a polynomial in many variables to

have roots over Qp than over R, deciding the existence of roots appears to be much harder
over Qp than over R. In particular, while Tarski showed in 1939 that FEASR is decidable
[Tar51], FEASQp

wasn’t shown to be decidable until work of Cohen in the 1960s [Coh69].
Now, the best general complexity upper bounds appear to be PSPACE for FEASR [Can88]
and quadruply exponential for FEASQp

[BMc67, Gre74].
While the univariate problems FEASR(F1,2) and FEASQprimes

(F1,2) are now both known to
be in P, their natural multivariate extensions FEASR

(
⋃

n∈N F∗
n,n+1

)

and FEASQp

(
⋃

n∈N F∗
n,n+1

)

already carry nuances distinguishing the real and p-adic settings: topological differences
between the real and p-adic zero sets of polynomials in F∗

n,n+1 force the underlying feasibility
algorithms to differ. Concretely, positive zero sets for polynomials in F∗

n,n+1 are always either

empty or non-compact. This in turn allows one to solve FEASR
(
⋃

n∈NF∗
n,n+1

)

by simply
checking signs of coefficients, independent of the exponents [BRS09, Thm. 1.3]. On the
other hand, solving FEASQp

(
⋃

n∈N F∗
n,n+1

)

depends critically on the exponents (see Corollary
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3.2 of Section 3), and the underlying hypersurfaces in Qn
p can sometimes consist of just a

single isolated point.

Example 1.7 Consider f(x1, x2) := 1 + 2x2
1 − 3x2

2. Then it is easy to see that (1, 1) is the
unique root of f in F2

7. Via Hensel’s Lemma (see Section 2 below), the root (1, 1)∈F2
7 can

then be lifted to a unique root of f in Q2
7. In particular, by checking valuations, any root of

f in Q2
7 must be the lift of some root of f in F2

7, and thus (1, 1) is the only root of f in Q2
7.

⋄

Our last example illustrates the importance of finite fields in studying p-adic rational
roots. Deligne’s Theorem on zeta functions over finite fields (née the Weil Conjectures)
is the definitive statement on the connection between point counts over finite fields and
complex geometry (see, e.g., [FK88]). The central result that originally motivated the Weil
Conjectures will also prove useful in our study of FEASQprimes

.

Theorem 1.8 [Wei49, Pg. 502] Let p be any prime, d1, . . . , dn ∈ N, and let c0, . . . , cn be
integers not divisible by p. Then, defining f(x) := c0 + c1x

d1
1 + · · · + cnx

dn
n , the number, N ,

of roots of f in Fn
p satisfies |N − pn−1| ≤ (

∏n
i=1(gcd(di, p− 1)− 1)) p(n−1)/2. �

Finally, it is worth noting that our univariate NP-hardness proof requires the efficient
construction of primes in certain arithmetic progressions. The following result, inspired by
earlier work of von zur Gathen, Karpinski, and Shparlinski (see [vzGKS96, Fact 4.9]), may
be of independent interest.

Theorem 1.9 For any δ>0, ε∈(0, 1/2), and n∈N, we can find — within

O
(

(n/ε)
3
2
+δ + (n log(n) + log(1/ε))7+δ

)

randomized bit operations — a sequence P = (pi)
n
i=1 of consecutive primes and c ∈ N such

that p := 1 + c
∏n

i=1 pi satisfies log p = O(n log(n) + log(1/ε)) and, with probability ≥ 1 − ε,
p is prime.

2 Complexity Classes and p-adic Basics

Let us first recall briefly the following complexity classes (see also [Pap95] for an excellent
textbook treatment):

NC1 The family of functions computable by Boolean circuits with size polynomial5 in the
input size and depth O(logi InputSize).

ZPP The family of decision problems admitting a randomized polynomial-time algorithm
giving a correct answer, or a report of failure, the latter occuring with probability
≤ 1

2
. Such algorithms are frequently called Las Vegas algorithms because one is never

cheated (by a false answer, when an answer is given).6

5Note that the underlying polynomial depends only on the problem in question (e.g., matrix inversion,
shortest path finding, primality detection) and not the particular instance of the problem.

6This now classical appellation likely involves some regional bias.
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PSPACE The family of decision problems solvable within time polynomial in the input size,
provided a number of processors exponential in the input size is allowed.

The following containments are standard:
NC1 ⊆ P ⊆ ZPP ⊆ NP ⊆ PSPACE ⊆ EXPTIME.

The properness of each adjacent inclusion above (and even the properness of P⊆PSPACE)
is a major open problem [Pap95].

Recall that for any ring R, we denote its unit group by R∗. For any prime p and x∈Z,
recall that the p-adic valuation, ordpx, is the greatest k such that pk|x. We can extend
ordp(·) to Q by ordp

a
b
:= ordp(a) − ordp(b) for any a, b∈Z; and we let |x|p := p−ordpx denote

the p-adic norm.
Recall also that, in any ring, xn can be computed using just O(log n) bit operations

and multiplication of powers of x, via recursive squaring [BS96, Thm. 5.4.1, pg. 103]. By
considering the smallest k for which p2

k

divides an x∈Z, and then repeating this calculation
for x

p2
k (employing recursive squaring along the way), one can then compute ordpx efficiently.

Recalling also that arithmetic in finite rings can done efficiently [BS96, Ch. 5], we have the
following statement:

Proposition 2.1 Suppose p is any prime, ℓ∈N, and x∈Z. Then we can compute ordpx in
time polynomial in size(x). Furthermore, all field operations in Z/pℓZ can be done within a
number of bit operations polynomial in log

(

pℓ
)

. �

The norm | · |p defines a natural metric satisfying the ultrametric inequality and Qp is, to put
it tersely, the completion of Q with respect to this metric. This metric, along with ordp(·),
extends naturally to the field of p-adic complex numbers Cp, which is the metric completion
of the algebraic closure of Qp [Rob00, Ch. 3].

It will be useful to recall some classical invariants for treating quadratic polynomials over Qp.

Definition 2.2 [Ser73, Ch. I–IV, pp. 3–39] For any prime p and a ∈ Z we define the

Legendre symbol,
(

a
p

)

, to be +1 or −1 according as a has a square root mod p or not.

Also, for any b ∈ Z, we let the (p-adic) Hilbert symbol, (a, b)p, be +1 or −1 according as
ax2 + by2=z2 has a solution in P2

Qp
or not. Finally, for any f(x)=c0 + c1x

2
1 + · · ·+ cnx

2
n∈

Z[x1, . . . , xn], we define df :=
∏n

i=1 ci and εf :=
∏

1≤i<j≤n(ci, cj)p. ⋄

Theorem 2.3 [Ser73, Thm. 1, pg. 20 & Cor., pp. 37] Following the notation of Definition
2.2, let j :=ordpa and k :=ordpb. Then the Hilbert symbol (a, b)p is exactly

(i) (−1)jk(
p−1
2

mod 2)
(

a/pj

p

)k (
b/pk

p

)j

, or

(ii) (−1)Z(a,b) where Z(a, b) :=
(

a/2j−1
2

)(

b/2k−1
2

)

+ j
(

(b/2k)2−1
8

)

+k
(

(a/2j)2−1
8

)

mod 2,

according as p 6=2 or p=2.
Finally, f has a root in Qp if and only if one of the following conditions holds:

1. n=1, µ :=ordp(c0/c1) is even, and
(

−c0/(c1pµ)
p

)

=1.

2. n=2 and (−c0,−df )p=εf (viewing c0 and df as elements of Qp/(Q∗
p)

2).
3. n=3 and either c0 6= df or c0= df and (−1,−df )= εf (viewing c0 and df as elements of

Qp/(Q∗
p)

2).
4. n≥4. �
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A key tool we will use throughout this paper is Hensel’s Lemma, suitably extended to
multivariate Laurent polynomials.

Hensel’s Lemma Suppose f ∈Zp

[

x±1
1 , . . . , x±1

n

]

and ζ0∈Zn
p satisfies ordp

∂f
∂xi

(ζ0)= ℓ<+∞
for some i ∈ {1, . . . , n}, and f(ζ0)≡ 0 (mod p2ℓ+1). Then there is a root ζ ∈ Zn

p of f with

ζ≡ζ0 (mod pℓ) and ordp
∂f
∂xi

(ζ)=ordp
∂f
∂xi

(ζ0). �

The special case of polynomials appears as Theorem 1 on the bottom of Page 14 of [Ser73].
(See also [BMc67].) The proof there extends almost verbatim to Laurent polynomials.

3 From Binomials to (n + 1)-nomials: Proving

Assertions (0) and (3) of Theorem 1.4

Let us first recall the following standard lemma on taking radicals in certain finite groups.

Lemma 3.1 (See, e.g., [BS96, Thm. 5.7.2 & Thm. 5.6.2, pg. 109]) Given any cyclic group
G, a∈G, and an integer d, the following 3 conditions are equivalent:

1. The equation td=a has a solution t∈G.
2. The order of a divides #G

gcd(d,#G)
.

3. a#G/ gcd(d,#G)=1.
Also, F∗

q is cyclic for any prime power q, and (Z/pℓZ)∗ is cyclic for any (p, ℓ) with p an odd

prime or ℓ≤2. Finally, for ℓ≥3, (Z/2ℓZ)∗=
{

±1,±5,±52,±53, . . . ,±52
ℓ−2−1 mod 2ℓ

}

. �

A direct consequence of Lemma 3.1 and Hensel’s Lemma is the following characterization
of univariate binomials with p-adic rational roots.

Corollary 3.2 Suppose c∈Q∗
p and d∈Z \ {0}. Let k :=ordpc, ℓ :=ordpd, and (if p=2 and

d is even) d′=
(

d
2ℓ

)−1
(mod 22ℓ−1). Then the equation xd=c has a solution in Qp iff d|ordpc

and one of the following two conditions hold:

(a) p is odd and
(

c
pk

)pℓ(p−1)/ gcd(d,p−1)

=1 (mod p2ℓ+1).

(b) p=2 and either (i) d is odd, or (ii)
(

c
pk

)d′

=1 (mod 8) and
(

c
pk

)d′2max{ℓ−2,0}

=1 (mod 22ℓ+1).

In particular, these conditions can be checked in time polynomial in log(d) + log(p) when
log c=(log(d)+ log(p))O(1). Furthermore, when ordpc=0, xd=c has a root in Qp if and only
if xd=c has a root in (Z/p2ℓ+1Z)∗.

Proof: Replacing x by 1/x, we can clearly assume d>0. Clearly, any p-adic root ζ of xd− c
satisfies dordpζ=ordpc. This accounts for the condition preceding Conditions (a) and (b).

Replacing x by pordpc/dx (which clearly preserves the existence of roots in Q∗
p) we can

assume further that ordpc=ordpζ=0. Moreover, ordpf
′(ζ)=ordp(d) + (d− 1)ordpζ=ordpd.

So by Hensel’s Lemma, xd− c has a root in Q∗
p if and only if xd− c has a root in (Z/p2ℓ+1Z)∗.

Lemma 3.1 then tells us the order of the group (Z/p2ℓ+1)∗, and how to decide solvability
therein, thus accounting for Condition (a) when p is odd.

Condition (b) then follows routinely: First, one observes that exponentiating by an odd
power is an automorphism of (Z/22ℓ+1)∗, and thus xd − c has a root in (Z/22ℓ+1Z)∗ if and
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only if x2ℓ − cd
′
does. Should ℓ=0 then one has a root regardless of c. Otherwise, cd

′
must

be a square for there to be a root. Since ord2c=0, c is odd and [BS96, Ex. 38, pg. 192] tells
us that cd

′
is a square in (Z/2ℓZ)∗ if and only if cd

′
=1 (mod 8). Invoking Lemma 3.1 once

more on the the cyclic subgroup {1, 52, 54, 56, . . . , 522ℓ−1−2}, it is clear that Condition (b) is
exactly what we need when p=2.

The asserted time bound then follows immediately from Proposition 2.1. The final as-
sertion follows immediately from setting k=0 in the conditions we’ve just derived. �

At this point, the proof of Assertion (0) of Theorem 1.4 is trivial. By combining our last
result with a classical integral matrix factorization, Assertion (3) then also becomes easy to
prove. So let us first motivate the connection between n-variate (n+1)-nomials and matrices.

Proposition 3.3 Suppose K is any field of characteristic 0 and f is any honest n-variate
(n+1)-nomial over K of the form f(x) :=c0+c1x

a1 + · · ·+cnx
an. Then, letting A denote the

matrix whose columns are a1, . . . , an, letting x=(x1, . . . , xn)∈ (K∗)n, and defining fi :=
∂f
∂xi

for all i, we have:

[f1(x), . . . , fn(x)]=[c1x
a1 , . . . , cnx

an ]AT







x−1
1

. . .

x−1
n






.

In particular, all the roots of f in (K∗)n are non-degenerate.

Proof: The first assertion is routine. For the second assertion, observe that if ζ ∈ (K∗)n is
any root of f then, thanks to our first assertion, the vector [f1(ζ), . . . , fn(ζ)] can not vanish
because detA 6=0 (thanks to the condition of honesty). �

Definition 3.4 Let Zn×n denote the set of n × n matrices with all entries integral, and let
GLn(Z) denote the set of all matrices in Zn×n with determinant ±1 (the set of unimodular
matrices). Recall that any n×n matrix [uij ] with uij=0 for all i>j is called upper triangular.

Given any M ∈Zn×n, we then call an identity of the form UM = H, with H=[hij]∈Zn×n

in row echelon form and U ∈GLn(Z), a Hermite factorization of M . Also, if we have the
following conditions in addition:

1. the left-most nonzero entry in any row of H is positive.

2. for any i, hi,j the left-most nonzero entry of row i =⇒ 0≤hi′,j<hi,j for all i′<i.

then we call H the Hermite normal form of M .
Also, given any identity of the form UMV = S with U, V ∈GLn(Z) and S diagonal a

Smith factorization. In particular, if S = [si,j] and we require additionally that si,i ≥ 0 and
si,i|si+1,i+1 for all i∈{1, . . . , n} (setting sn+1,n+1 :=0), then S is uniquely determined and is
called the Smith normal form of M .

Finally, defining xA = (x
a1,1
1 · · · xan,1

n , . . . , xa1,n · · · xan,n
n ), we call any map defined by

x 7→ xA a monomial change of variables. ⋄

Proposition 3.5 We have that xAB = (xA)B for any A,B ∈ Zn×n. Also, for any field K,
the map defined by m(x)=xU , for any unimodular matrix U ∈Zn×n, is an automorphism of
(K∗)n. Finally, for any column vector v∈Zn, the smallest valuation of an entry of Uv is k
if and only if the smallest valuation of an entry of v is k. �
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Theorem 3.6 [Sto00, Ch. 6 & 8, pg. 128] For any A = [ai,j] ∈ Zn×n, the Hermite and
Smith factorizations of A can be computed within O

(

n3.376 log2(nmaxi,j |ai,j|)
)

bit operations.
Furthermore, the entries of all matrices in the Hermite and Smith factorizations have bit size
O(n log(nmaxi,j |ai,j|)). �

Lemma 3.7 Following the notation of Definition 3.4 and Proposition 3.5, suppose detA 6=0,

c1, . . . , cn ∈Q∗
p, c := (c1, . . . , cn), c

′ := (c′1, . . . , c
′
n) :=

(

c1
pordpci

, . . . , cn
pordpcn

)

, L := maxi ordpsi,i,

and let v1, . . . , vn be the columns of V . Then xA=c has a solution in (Q∗
p)

n if and only if (a)
(ordpc1, . . . , ordpcn)vi=0 mod si,i for all i and (b) xA=c′ has a solution in ((Z/p2L+1)∗)n. In
particular, the existence of a solution in (Q∗

p)
n for xA=c can be decided in time polynomial

in n and log(nmaxi,j |ai,j|).

Proof: The necessity of Condition (a) follows immediately from Proposition 3.5 upon ob-
serving that the valuations of the vector xA are exactly the entries of [ordpx1, . . . , ordpxn]A.
Conversely, should Condition (a) hold, we can reduce to the case where ordpci=0 for all i.
So let us assume the last condition.

Observe now that xA= c if and only if xAV = c′. Upon substituting x := yU , we see that
the latter equation holds if and only if yUAV = cV . In other words, yS = cV . By Proposition
3.5, the last system has a solution in (Q∗

p)
n if and only if the first system does. By Corollary

3.2 we thus see that Condition (b) is necessary and sufficient.
To prove the asserted complexity bound, note that we can find U , V , and S within the

asserted time bound, thanks to Theorem 3.6. Note also that we can find the p-parts of the si,i
in polynomial time (by Proposition 2.1) so we can compute L in polynomial-time. Applying
Corollary 3.2 n times, we can then decide in P whether yS=cV has a root in (Q∗

p)
n. �

A final ingredient we will need is a method to turn roots of Laurent polynomials on
coordinate subspaces to roots in the algebraic torus.

Lemma 3.8 Suppose f̄ ∈Qp[x
±1
1 , . . . , x±1

n ], c∈Q∗
p, α :=(α1, . . . , αn+1)∈Zn+1 with αn+1>0,

and f̄ has a non-degenerate root in (Q∗
p)

n (resp. (Zp \ {0})n). Then the Laurent polynomial
f(x1, . . . , xn, xn+1) := f̄(x1, . . . , xn) + cxα has a non-degenerate root of f in (Q∗

p)
n+1 (resp.

(Zp \ {0})n+1). �

Proof: First note that the roots of f̄ (resp. f) in (Q∗
p)

n (resp. (Q∗
p)

n+1) are unaffected if
f̄ (resp. f) is multiplied by any monomial. Furthermore, if αn+1 = 1 then the zero set of
f is (up to rescaling) merely the graph of f̄ and the lemma follows immediately from the
Schwartz-Zippel Lemma: pick any (ζ1, . . . , ζn) ∈ (Q∗

p)
n with f̄(ζ1, . . . , ζn) 6= 0 and then the

desired non-degenerate root of f is simply
(

ζ1, . . . , ζn,− f̄(ζ1,...,ζn)

cζ
α1
1 ···ζαn

n

)

. So we may also assume

αn+1≥2.
Let ζ = (ζ1, . . . , ζn) ∈ (Q∗

p)
n be the stated non-degenerate root of f̄ . Observe that

∂f̄
∂xi

(ζ1, . . . , ζn) =
f
∂xi

(ζ1, . . . , ζn, 0) for all i ∈ {1, . . . , n}. So (ζ, 0) is a non-degenerate root

of f . By the Implicit Function Theorem for analytic (i.e., C∞) functions over Qn+1
p [Glo06,

Thm. 7.4, pg. 237], there must then be a (non-degenerate) root (ζ ′1, . . . , ζ
′
k, p

ℓ) of f for any
sufficiently large ℓ∈N, with ζ ′i −→ ζi for all i∈{1, . . . , k} as ℓ−→ +∞. Thus, we can find a
non-degenerate root of f in (Q∗

p)
n+1. In conclusion, note that if ζ were in (Zp \ {0})n then

the same argument yields a root in (Zp \ {0})n+1. �
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Remark 3.9 Note that Example 1.7 from Section 1.2 shows that the converse of Lemma
3.8 need not hold. On the other hand, for honest n-variate (n + 1)-nomials over the real
numbers, both the corresponding analogue of Lemma 3.8 and its converse do hold [BRS09,
Cor. 2.6]. ⋄

Henceforth, we will let O denote the origin in whatever vector space we are working with.

Definition 3.10 Suppose K is a field, f ∈ K[x±1
1 , . . . , x±1

n ], Supp(f) = {a1, . . . , am} has
cardinality m, the coefficient of xai in f is ci for all i, and w∈Rn. Let Supp(f)w denote the
intersection of Supp(f) with the face of Newt(f) with inner normal w. We then define the
initial term polynomial of f with respect to the weight w to be Initw(f) :=

∑

ai∈Supp(f)w
cix

ai. ⋄

Initial term polynomials are a natural (and classical) generalization of the lowest (or highest)
degree part of a polynomial. As another example, following the notation above, suppose
J⊆ {1, . . . , n} is such that, for all j∈J , the jth coordinates of a1, . . . , am are all nonnegative.
Then substituting xj = 0 into f for all j ∈ J results in an initial term polynomial of f . In
particular, f is an initial term polynomial of f (using the weight O).

Corollary 3.11 Suppose f is an honest n-variate (n + 1)-nomial over Qp. Then f has a
root in (Q∗

p)
n if and only if some initial term polynomial of f with at least 2 terms has a root

in (Q∗
p)

n.

Proof: The (=⇒) direction is trivial since f is an initial term polynomial by default. So let
us focus on the (⇐=) direction.

Since the roots of f (and any of its initial term polynomials) in (Q∗
p)

n are unaffected by
multiplying by monomials, we can write f(x)=c0 + c1x

a1 + · · ·+ cnx
an with c0, . . . , cn∈Q∗

p,
and also assume (reordering terms if need be) that the initial term polynomial from the
hypothesis is of the form f̄(x)=c0 + c1x

a1 + · · ·+ crx
ar for some r<n. By Proposition 3.5,

f̄(x) has a root in (Q∗
p)

n if and only if f̄
(

xU
)

has a root in (Q∗
p)

n (and likewise for f). So via
the Hermite Factorization, we may assume that the matrix A whose columns are a1, . . . , an is
upper-triangular. In other words, we may also assume that f̄ is independent of xr+1, . . . , xn,
and that the (r + 1)st coordinate of ar+1 is positive. Letting (ζ1, . . . , ζn)∈ (Q∗

p)
n denote the

non-degenerate root of f̄ from the hypothesis, we then obtain that (ζ1, . . . , ζr, 0, . . . , 0) is
also a non-degenerate root of f̄ . By Lemma 3.8 (and induction) we then obtain that f must
have a root in (Q∗

p)
n. �

3.1 The Proofs of Assertions (0) and (3) of Theorem 1.4

Assertion (0): First note that the case m≤1 is trivial: such a univariate m-nomial has no
roots in Qp if and only if it is a nonzero constant.

The case m=2 then follows immediately from Corollary 3.2. �

Assertion (3):
Part (a): First note that if ζ=(ζ1, . . . , ζn)∈Qn

p is a root of f then, modulo a permutation
of coordinates, ζ∈(Q∗

p)
r×{0}n−r for some r. In particular, ζ thus induces a root in (Q∗

p)
n of

some initial term polynomial f̄ of f (upon replacing {0}n−r by, say, {1}n−r). Furthermore,
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by Corollary 3.11, such a root of f̄ in turn induces a root of f in (Q∗
p)

n. So it suffices to
certify the existence of a root in (Q∗

p)
n for some initial term polynomial of f̄ of f .

As before, since the roots of f (and its initial term polynomials) are unaffected by mul-
tiplying by monomials, we may assume that f̄ has a nonzero constant term. (Note also that
enforcing this assumption induces at worst a factor of 2 growth in the absolute values of the
entries of A.) Furthermore, by Theorem 3.6, we may assume that f̄ ∈F∗

r,r+1 for some r≤n.
So let us assume without loss of generality that r=n, f̄(x)=f(x)=c0 + c1x

a1 + · · ·+ cnx
an ,

and the matrix A with columns a1, . . . , an is upper-triangular.
Now set L := maxi ordp(ci) + maxi ordpsi,i where the si,i denote the diagonal entries of

the Smith Normal Form of A. Our certificate for f having a root in (Q∗
p)

n will then be a

root µ0∈(Z/p2L+1Z)n \ {O} of the mod p2L+1 reduction of h̄(x) := ḡ(x±1
1 , . . . , x±1

n ), for some
choice of reciprocals, where ḡ(x) :=x−ai f̄(x) for some i, and f̄ is an initial term polynomial
of f with at least 2 terms. We will now show that f has a root ζ ∈ (Q∗

p)
n if and only if a

certificate of the preceding form exists.
To prove the (=⇒) direction, let us first clarify the choice of reciprocals in ḡ(x±1

1 , . . . , x±1
n ):

we place an exponent of −1 for all j where ζj ∈Qp \ Zp. Clearly then, with the preceding
choice of reciprocals, f(x±1

1 , . . . , x±1) has a root µ ∈ (Zp \ {0})n. The choice of i to define
h̄(x) is also simple to pin down: pick any i with ordp(µ

ai) minimal. The roots of h(x) :=
x−aif(x±1

1 , . . . , x±1
n ) in (Q∗

p)
n are clearly independent of i.

To clarify the choice of f̄ let us first write h(x) :=γ0+γ1x
α1+ · · ·+γnx

αn . The γi are then
a re-ordering of the ci, the αi are differences of columns of A, and the matrix A′ with columns
α1, . . . , αn is non-singular and has entries no larger in absolute value than twice those of A.
We also have that ordp(µ

αi) ≥ 0 for all i by construction. Moreover, by the ultrametric
property (applied to the sum γ0 + (γ1µ

α1 + · · · + γnµ
αn)), the root µ of h must satisfy

ordp(γiµ
ai)≤ordpγ0≤maxk ordpck≤L for some i. (Otherwise ordph(µ) = ordpγ0<+∞). By

Propositions 3.3 and 3.5, and the Smith factorization of the matrix A′, we must then have
ordphj(µ)≤ordp(γ0) + maxi ordp(2si,i)≤L=O(size(f)) for some j, where hj=

∂h
∂xj

.

Clearly then, there are ui1 , . . . , uir ∈Zp \ {0} with r≥ 1, L≥ ordpuij ≥ ordpγij for all j,

γ0 + ui1 + · · · + uir = 0, and (µαi1 , . . . , µαir ) =
(

ui1

ci1
, . . . , uir

cir

)

. So define f̄ to be the sum of

terms of f corresponding to picking the i1, . . . , ir terms of h. By Lemma 3.7, µ then has a
well-defined mod p2L+1 reduction µ0 ∈ (Z/p2L+1Z)n \ {O} that is a root of the mod p2L+1

reduction of h̄. So the (=⇒) direction is proved.
To prove the (⇐=) direction, let us suppose that the mod p2L+1 reduction of h̄(x) :=

ḡ(x±1
1 , . . . , x±1

n ) has a root µ0 ∈ (Z/p2L+1Z)n \ {O} for some choice of signs, some choice
of i, and some choice of initial term polynomial f̄ of f so that ḡ(x) = x−ai f̄(x). Writing
h̄(x)=γ0 + γi1x

αi1 + · · ·+ γirx
αir as before, it is clear that ordp(γiµ

αi)≤ordpγ0 for some i by
the ultrametric inequality. So then, by Proposition 3.3, ordph̄

′(µ)≤L, and then by Hensel’s
Lemma, h̄ has a root µ′∈Zn

p \ {O}. By Corollary 3.11, h(x) :=γ0+ γ1x
α1 + · · ·+ γnx

αn must
then have a root µ ∈ (Zp \ {O})n. So by the definition of h, it is then clear that defining
ζi=µ±1

i for a suitable choice of signs, ζ :=(ζ1, . . . , ζn) is a root of f . �

Part (b): Since the Legendre symbol
(

a
p

)

can be evaluated within O((log a)(log p)) bit

operations [BS96, Thm. 5.9.3, pg. 113], the criteria from Theorem 2.3 can clearly be checked
in time polynomial in size(f). �
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Part (c): By the succinct certificates we used to prove Part (a), the existence of a root of f in
Qn

p is implied by the existence of a root of f in Fn
p if ordp|c0|= · · · =ordp|cn|=ordp(n!Vf )=0.

By Theorem 1.8, a root for f in Fn
p is guaranteed if n ≥ 2, p does not divide any ci, and

p≥(n!Vf )
2/(n−1). �

Remark 3.12 The hypotheses of Theorem 1.8 clearly allow a slightly better lower bound for
the p guaranteeing that f have a root in Qn

p . Also, it is likely that Assertion (c) remains true
if f is any Laurent polynomial in F∗

n,n+1. Proving this requires a refinement of Theorem 1.8
that, to the best of our knowledge, has not yet appeared in the literature. ⋄

4 Discriminants, p-adic Newton Polygons, and

Assertion (2) of Theorem 1.4

The intuition behind the speed-up of Assertion (2) is that the hardness of instances of
FEASQprimes

(Z[x1]×P) is governed by numerical conditioning, quite similar to the sense long
known in numerical linear algebra (and extended more recently to real feasibility [CS99]).
More concretely, the classical fact that Newton iteration converges more quickly for a root
ζ∈C of f with f ′(ζ) having large norm (i.e., a well-conditioned root) persists over Qp.

To prepare for our next proof, let us first clarify the statement about natural density 0
in Assertion (2) of Theorem 1.4.

Definition 4.1 Letting # denote set cardinality and S ⊆ T ⊆N, we say that S has (natural)

density µ in T if and only if lim
t→∞

#S∩{1,...,t}
#T∩{1,...,t} =µ. ⋄

Now let (Z × (N ∪ {0}))∞ denote the set of all infinite sequences of pairs ((ci, ai))
∞
i=1 with

ci = ai = 0 for i sufficiently large. Note then that Z[x1] admits a natural embedding into
(Z× (N∪ {0}))∞ by considering coefficient-exponent pairs in order of increasing exponents,
e.g., a + bx99 + x2001 7→ ((a, 0), (b, 99), (1, 2001), (0, 0), (0, 0), . . .). Then natural density for
a set of pairs I ⊆ Z[x1] × P then simply means the corresponding natural density within
(Z× (N ∪ {0}))∞ × P .

The exceptional set to Assertion (2) can be made more precise once one introduces the
A-discriminant. But first we must introduce the resultant and some quantitative estimates.

Definition 4.2 (See, e.g., [GKZ94, Ch. 12, Sec. 1, pp. 397–402].) Suppose
f(x1) = a0 + · · · + adx

d
1 and g(x1) = b0 + · · · + bd′x

d′

1 are polynomials with indeterminate
coefficients. We define their Sylvester matrix to be the (d+ d′)× (d+ d′) matrix

S(d,d′)(f, g) :=



















a0 · · · ad 0 · · · 0
. . . . . .

0 · · · 0 a0 · · · ad
b0 · · · bd′ 0 · · · 0

. . . . . .

0 · · · 0 b0 · · · bd′

























d′ rows







d rows

and their Sylvester resultant to be Res(d,d′)(f, g) :=detS(d,d′)(f, g). ⋄
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Lemma 4.3 Following the notation of Definition 4.2, assume f, g∈K[x1] for some field K,
and that ad and bd′ are not both 0. Then f = g=0 has a root in the algebraic closure of K
if and only if Res(d,d′)(f, g)=0. More generally, we have Res(d,d′)(f, g)=ad

′

d

∏

f(ζ)=0

g(ζ) where

the product counts multiplicity. Finally, if we assume further that f and g have complex
coefficients of absolute value ≤H, and f (resp. g) has exactly m (resp. m′) monomial terms,
then |Res(d,d′)(f, g)|≤md′/2m′d/2Hd+d′. �

The first 2 assertions are classical (see, e.g., [BPR06, Thm. 4.16, pg. 107], [RS02, pg. 9], and
[GKZ94, Ch. 12, Sec. 1, pp. 397–402]). The last assertion follows easily from Hadamard’s
Inequality (see, e.g., [Mig82, Thm. 1, pg. 259]).

We are now ready to introduce discriminants.

Definition 4.4 Let A :={a1, . . . , am}⊂N∪{0} and f(x1) :=
∑m

i=1 cix
ai
1 , where 0≤a1< · · · <

am and the ci are algebraically independent indeterminates. We then define the (normalized)
A-discriminant of f , ∆̄A(f), to be

Res(ām−ā2,ām)

(

∂f̄
∂x1

/

xā2−1
1 , f̄

)/

cām−ām−1
m ,

where āi := (ai − a1)/g for all i, f̄(x1) :=
∑m

i=1 cix
āi
1 , and g :=gcd(a2 − a1, . . . , am − a1) (see

also [GKZ94, Ch. 12, pp. 403–408]). ⋄

Remark 4.5 Note that when A={0, . . . , d} we have
∆̄A(f)=Res(d−1,d)(f

′, f)/cd=(−1)a3(a3−a2)Res(d,d−1)(f, f
′)/cd,

i.e., for dense polynomials, the A-discriminant agrees with the classical discriminant, written
∆(f) in [GKZ94, Ch. 12], up to an explicit sign factor. ⋄

The claim of natural density 0 in Assertion (2) of Theorem 1.4 can then be made explicit
as follows.

Corollary 4.6 For any subset A= {a1, . . . , am} ⊂N ∪ {0} with 0 = a1 < · · · < am, let TA
denote the family of pairs (f, p)∈Z[x1] × P with f(x1) =

∑m
i=1 cix

ai
1 and let T ∗

A denote the
subset of TA consisting of those pairs (f, p) with p 6 |∆̄A(f). Also let TA(H) (resp. T ∗

A(H))
denote those pairs (f, p) in TA (resp. T ∗

A) where |ci|≤H for all i∈ [m] and p≤H. Finally,
let d :=am/ gcd(a2, . . . , am). Then for all H≥17 we have

#T ∗
A(H)

#TA(H)
≥
(

1− (2d−1)m
2H+1

)(

1− 1+(2d−1) log(mH) logH
H

)

.

In particular, we will see in the proof of Assertion (2) of Theorem 1.4 that the exceptional
set E is merely the complement of the union

⋃

A T ∗
A as A ranges over all finite subsets of

N ∪ {0}. Our corollary above is proved in Section 8.2.
Another bit of background we’ll need to prove Assertion (2) of Theorem 1.4 is some

arithmetic tropicalia.

Definition 4.7 Given any polynomial f(x1) :=
∑m

i=1 cix
ai
1 ∈Z[x1], we define its p-adic New-

ton polygon, Newtp(f), to be the convex hull of the points {(ai, ordpci) | i ∈ {1, . . . ,m}}.
Also, a face of a polygon Q⊂R2 is called lower if and only if it has an inner normal with
positive last coordinate, and the lower hull of Q is simply the union of all its lower edges.
Finally, the polynomial associated to summing the terms of f corresponding to points of the
form (ai, ordpci) lying on a lower face of Newtp(f) is called a (p-adic) lower polynomial. ⋄
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Example 4.8 For f(x1) := 36− 8868x1 + 29305x2
1 − 35310x3

1 + 18240x4
1 − 3646x5

1 + 243x6
1,

the polygon Newt3(f) has exactly 3 lower
edges and can easily be verified to resemble
the illustration to the right. The polyno-
mial f thus has exactly 2 lower binomials,
and 1 lower trinomial. ⋄

Note that the standard Newton polygon can be identified with the variant of the preceding
construction that instead employs the trivial valuation (which sends all nonzero field elements
to 0 and 0 to +∞).

A remarkable fact true over Cp but false over C is that the norms of roots can be
determined completely combinatorially.

Lemma 4.9 (See, e.g., [Rob00, Ch. 6, sec. 1.6].) The number of roots of f in Cp with
valuation v, counting multiplicities, is exactly the horizontal length of the lower face of
Newtp(f) with inner normal (v, 1). �

Example 4.10 In Example 4.8 earlier, note that the 3 lower edges have respective horizontal
lengths 2, 3, and 1, and inner normals (1, 1), (0, 1), and (−5, 1). Lemma 4.9 then tells us
that f has exactly 6 roots in C3: 2 with 3-adic valuation 1, 3 with 3-adic valuation 0, and
1 with 3-adic valuation −5. Indeed, one can check that the roots of f are exactly 6, 1, and
1

243
, with respective multiplicities 2, 3, and 1. ⋄

4.1 The Proof of Assertion (2) of Theorem 1.4

Let f ∈Z[x1], A := Supp(f), and assume A= {a1, . . . , am}. Since the roots of f in Q∗
p are

unaffected by multiplying f by a monomial, and since the existence of 0 as a root of f is
clearly checkable in constant time, we may assume that 0 = a1 < a2 < · · · < am. Via the
reciprocal polynomial f ∗(x1) := xdeg f

1 f(1/x1), it is then enough to show that, for most f ,
having a root in Zp\{0} admits a succinct certificate. (Indeed, f has a root in Q∗

p if and only
if [f has a root in Zp \ {0} or f ∗ has a root in Zp \ {0}].) Multiplying by another monomial
if necessary, we can of course still continue to assume that 0= a1 <a2 < · · · <am. Letting
g :=gcd(a2, . . . , am), we will also assume temporarily that g=1 and handle the case g>1 at
the end of our proof.

Since convex hulls in the plane can be computed in quasi-linear time [OSvK00], it is clear
by Proposition 2.1 that Newtp(f) can be computed in polynomial-time. Let ci denote the
coefficient of xai

1 in f . Since ordpci≤ logp ci≤ size(ci), note also that every root ζ ∈Cp of f
satisfies |ordpζ|≤2maxi size(ci)≤2size(f).

Since ordp(Zp) =N ∪ {0}, we can clearly assume that Newtp(f) has an edge with non-
positive integral slope, for otherwise f would have no roots in Zp \ {0}. Letting φ(x1) :=
f ′(x1)/x

a2−1
1 , and letting ζ be any nonzero p-adic integer root of f , note that ordpf

′(ζ) =
(a2 − 1)ordp(ζ) + ordpφ(ζ). Note also that ∆̄A(f)=Res(am,am−a2)(f, φ) so if p 6 |∆̄A(f) then
f and φ have no common roots in the algebraic closure of Fp, by Lemma 4.3. In particular,
p 6 |∆̄A(f) =⇒ φ(ζ) 6≡ 0 mod p; and thus p 6 |∆̄A(f, φ) =⇒ ordpf

′(ζ) = (a1 − 1)ordp(ζ).
Furthermore, by the convexity of the lower hull of Newtp(f), it is clear that ordp(ζ) ≤
ordpc0−ordpci

ai
where (ai, ordpci) is the rightmost vertex of the lower edge of Newtp(f) with
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least (non-positive and integral) slope. Clearly then, ordp(ζ)≤ 2maxi logp |ci|
a1

. So p 6 | ∆̄A(f)
=⇒ ordpf

′(ζ)≤2size(f).
Our fraction of inputs admitting a succinct certificate will then correspond precisely to

those (f, p) such that p 6 |∆̄A(f). In particular, let us define E to be the union of all pairs
(f, p) such that p|∆̄A(f), as A ranges over all finite subsets of N ∪ {0}. It is then easily
checked that E is a countable union of hypersurfaces, and the density 0 statement follows
immediately from Corollary 4.6.

Now fix ℓ=4size(f)+1. Clearly then, by Hensel’s Lemma, for any (f, p)∈(Z[x1]×P)\E ,
f has a root ζ ∈Zp if and only if f has a root ζ0∈Z/pℓZ. Since log

(

pℓ
)

=O(size(f) log p)=
O((size(f) + log p)2), and since arithmetic in Z/pℓZ can be done in time polynomial in log(pℓ)
[BS96, Ch. 5], we have thus at last found our desired certificate: a root ζ0 ∈ (Z/pℓZ)∗ of f
with ℓ=4size(f) + 1.

To conclude, let us address the case g > 1: by our preceding construction, a certificate
that clearly works for this case will simply be a root ζ0∈(Z/pℓZ)∗ of f (with ℓ=4size(f)+1)
also satisfying the condition that xg− ζ0 has a root in (Z/pℓZ)∗ (thanks to the binomial case
of Assertion (0) of Theorem 1.4). �

5 Degenerate Trinomials, Linear Forms in p-adic

Logarithms, and Assertion (1) of Theorem 1.4

We will first need to recall the concept of a gcd-free basis. In essence, a gcd-free basis is
nearly as powerful as factorization into primes, but far easier to compute.

Definition 5.1 [BS96, Sec. 8.4] For any subset {α1, . . . , αN} ⊂ N, a gcd-free basis for
{α1, . . . , αN} is a pair of sets

(

{γi}ηi=1, {eij}(i,j)∈[N ]×[η]

)

such that (1) gcd(γi, γj) = 1 for all
i 6=j, and (2) αi=

∏η
j=1 γ

eij
j for all i. ⋄

Theorem 5.2 Following the notation of Definition 5.1, we can compute a gcd-free basis for
{α1, . . . , αN} (with η linear in N+maxi logαi) in time linear in N+maxi log

2 αi. In particu-

lar, if u1, . . . , uN ∈ Z then we can decide αu1
1 · · ·αuN

N
?
= 1 in time linear in

N + (maxi log(αi) + maxi log(ui))
2. �

The first assertion of Theorem 5.2 follows immediately from [BS96, Thm. 4.8.7, Sec. 4.8] and
the naive bounds for the complexity of integer multiplication. The second assertion then
follows immediately by checking whether the linear combinations

∑N
i=1 eijui are all 0 or not.

We now make some final observations about the roots of trinomials before proving
Assertion (1) of Theorem 1.4. Recall that a degenerate root of f is a ζ ∈ Cp with f(ζ) =
f ′(ζ)=0.

Lemma 5.3 Suppose f(x1) = c1 + c2x
a2
1 + c3x

a3
1 ∈ F1,3, A := {0, a2, a3}, 0 < a2 < a3, and

gcd(a2, a3)=1. Then:

(0) ∆̄A(f) = aa33 ca3−a2
1 ca23 − aa22 (a3 − a2)

a3−a2(−c2)
a3.

(1) ∆̄A(f) 6=0 ⇐⇒ f has no degenerate roots in Cp. In which case, we also have

∆̄A(f)=
(

c3
c1

)a2−1
∏

f(ζ)=0

f ′(ζ)= (−1)a3(a3−a2)
∏

f(ζ)=0

(a2c2 + a3c3ζ
a3−a2).
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(2) Deciding whether f has a degenerate root in Cp can be done in time polynomial in
size(f) + log p.

(3) If f has a degenerate root ζ ∈C∗
p then (ζa2 , ζa3)= c1

a3−a2

(

−a3
c2
, a2
c3

)

. In particular, such a

ζ is unique and lies in Q.
(4) The polynomial q(x1) :=(a3 − a2)− a3x

a2
1 + a2x

a3
1 has 1 as its unique degenerate root and

satisfies lim
x1→1

q(x1)
(x1−1)2

=a2a3(a3−a2)/2 and ∆̄{0,...,a3−2}

(

q(x1)
(x1−1)2

)

= a3(a2a3(a3−a2))
a3−4J ,

where J=O(a22a
3
3(a3 − a2)

2) is a nonzero integer.

Proof of Lemma 5.3:

Part (0): One simply mimicks the argument from [GKZ94, pp. 406–407]. �

Part (1): The first assertion follows directly from Definition 4.4 and the vanishing criterion
for Res(a3,a3−a2) from Lemma 4.3. To prove the second assertion, observe that the product
formula from Lemma 4.3 implies that ∆̄A(f) = (−1)a3(a3−a2)ca3−a2

3

∏

f(ζ)=0

(a2c2 + a3c3ζ
a3−a2).

Combining with the basic identity
∏

f(ζ)=0

ζ =(−1)a3 c1
c3
, and the fact that a23 = a3 mod 2 and

−1=1 mod 2, we are done. �

Part (2): From Part (1) it suffices to detect the vanishing of ∆̄A(f). However, while Part
(0) implies that one can evaluate ∆̄A(f) with a small number of arithmetic operations, the
bit-size of ∆̄A(f) can be quite large. Nevertheless, we can decide within time polynomial
in size(f) whether these particular ∆̄A(f) vanish for integer ci via gcd-free bases (invoking
Theorem 5.2). �

Part (3): It is easily checked that if ζ ∈ Cp is a degenerate root of f then the vec-

tor [c1, c2ζ
a2 , c3ζ

a3 ] must be a right null vector for the matrix M :=

[

1 1 1
0 a2 a3

]

. Since

[a3 − a2,−a3, a2] is clearly a right null vector for M , [c1, c2ζ
a2 , c3ζ

a3 ] must then be a mutiple
of [a3−a2,−a3, a2]. Via the extended Euclidean algorithm [BS96, Sec. 4.3], we can then find
A and B (also of size polynomial in size(f)) with Aa2 + Ba3=1. So then we obtain that
(

c2ζa2

c1

)A (
c3ζa3

c1

)B

=
cA2 cB3
cA+B
1

ζ=
(

−a3
a3−a2

)A (
a2

a3−a2

)B

. �

Part (4): That 1 is a root of q is obvious. Uniqueness follows directly from Part (3) and
our assumption that gcd(a2, a3) = 1. The limit formula follows easily from two application
of L’Hôpital’s Rule.

To prove the final assertion, first note that a routine long division reveals that q(x1)
(x1−1)2

has
coefficients rising by one arithmetic progression and then falling by another. Explicitly,

q(x1)

(x1 − 1)2
=

(

a2−1
∑

i=1

(a3 − a2)ix
i−1
1

)

+

(

a3−a2
∑

i=1

(a3 − a2 + 1− i)a2x
a2−2+i
1

)

.

Definition 4.2 then implies that ∆̄{0,...,a3−2}

(

q(x1)
(x1−1)2

)

is exactly 1
a2

times the determinant

of the following quasi-Toeplitz matrix which we will call M:










a3 − a2 2(a3 − a2) · · · (a2 − 1)(a3 − a2) (a3 − a2)a2 · · · 2a2 a2 0 · · · 0
. . . . . . . . . . . . . . . . . .

1 · 2 · (a3 − a2) 2 · 3 · (a3 − a2) · · · (a2 − 2)(a2 − 1)(a3 − a2) (a2 − 1)(a3 − a2)a2 · · · (a3 − 2) · 1 · a2 0 · · · 0
. . . . . . . . . . . . . . . . . .











,
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where there are exactly a3 − 3 (resp. a3 − 2) shifts of the first (resp. second) detailed row.

Letting f(x1) :=
q(x1)

(x1−1)2
, note in particular that the entries of the first a3 − 3 (resp. last

a3 − 2) rows correspond to the coefficients of xi
1f(x1) (resp. x

i
1f

′(x1)) for i∈{0, . . . , a3 − 4}
(resp. i ∈ {0, . . . , a3 − 3}). We can clearly replace any polynomial by itself plus a linear
combination of the others and rebuild our matrix M with these new polynomials, leaving
detM unchanged (thanks to invariance under elementary row operations). So let us now
look for useful linear combinations of xif and xjf ′.

Observe that
q(x1)

x1 − 1
=

a2−1
∑

i=0

(a2 − a3)x
i
1 +

a3−1
∑

i=a2

a2x
i
1 and

q′(x1)

x1 − 1
= a2a3x

a2−1
1 + · · ·+ a2a3x

a3−2
1 ,

so
q(x1)

(x1 − 1)
− 1

a3

x1q
′(x1)

(x1 − 1)
=

a2−1
∑

i=0

(a2 − a3)x
i
1.

Since (x1 − 1)f(x1) =
q(x1)
x1−1

it would thus be useful to obtain q′(x1)
x1−1

as a polynomial linear
combination of f and f ′. Toward this end, observe that

x1f
′−f ′ + 2f = (x1 − 1)f ′ + 2f

=
(x1 − 1)2q′ − 2(x1 − 1)q

(x1 − 1)3
+

2(x1 − 1)q

(x1 − 1)3

=
(x1 − 1)2q′

(x1 − 1)3
=

q′

(x1 − 1)
.

It is then prudent to replace each xi
1f row with the coefficients of

xi
1

(

f +
(

2
a3

− 1
)

x1f − x1

a3
f ′ +

x2
1

a3
f ′
)

,

for i ∈ {0, . . . , a3 − 5}. There are a3 − 4 such new rows, each divisible by a3 − a2, so
(a3 − a2)

a3−4 divides detM. Similarly, we can replace each xi
1f

′ row with the coefficients of
xi
1(f

′−xf ′−2f), for i∈{0, . . . , a3−4}. Each of these polynomials is divisible by a2a3. There
are a3 − 3 of these rows — and they are distinct from the other a3 − 4 rows we modified
earlier — so (a2a3)

a3−3 also divides detM.
We are thus left with showing that the matrix whose rows correspond to the coefficient

vectors of the polynomials
x
a2
1 −1

x1−1
, . . . , xa3−5

1
x
a2
1 −1

x1−1
, xa3−4

1 f, xa2−1
1

x
a3−a2
1 −1

x1−1
, . . . , xa2+a3−5

1
x
a3−a2
1 −1

x1−1
, xa3−3

1 f ′,

has determinant O(a22(a3 − a2)
2a33). Roughly, our last matrix has the following form:































1 · · · 1
1 · · · 1

. . . . . .

1 · · · 1
a3 − a2 · · · · · · a2

1 · · · 1
. . . . . .

1 · · · 1
2(a3 − a2) · · · · · · (a3 − 2)a2































Via a simple sequence of O(a3) elementary row and column operations, restricted to subtrac-
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tions of a column from another column and subtractions of a row from another row, we can
then reduce our matrix to a (2a3 − 5)× (2a3 − 5) permutation matrix with the a3

rd row and
(2a3 − 5)th row resembling the corresponding rows above. In particular, these 2 new rows
have entries at worst O(a3) times larger than before. Clearly then, our final determinant is
a nonzero integer with absolute value O(a22(a3 − a2)

2a33). �
We now quote the following important result on lower binomials.

Theorem 5.4 (See [AI11, Thm. 3.10 & Prop. 4.4].) Suppose (f, p)∈Z[x1]×P, (v, 1) is an
inner normal to a lower edge E of Newtp(f), the lower polynomial g corresponding to E is
a binomial with exponents {ai, aj}, and p does not divide ai − aj. Then the number of roots
ζ∈Qp of f with ordpζ=v is exactly the number of roots of g in Q∗

p. �

Finally, we recall a deep theorem from Diophantine approximation that allows us to
carefully bound from above the p-adic valuation of certain high degree binomials.

Yu’s Theorem. [Yu94, pg. 242] Suppose p∈N is any prime;
α+
1

α−
1

, . . . , α
+
m

α−
m
∈Q \ {0} are frac-

tions in lowest terms; and β1, . . . , βm are integers not all zero. Then
(

α+
1

α−
1

)β1

· · ·
(

α+
m

α−
m

)βm

6=1

implies that ordp

(

(

α+
1

α−
1

)β1

· · ·
(

α+
m

α−
m

)βm

− 1

)

is strictly less than

22000
(

9.5(m+1)√
log p

)2(m+1)

(p− 1) log(10mh) logmax{3,maxi |βi|}
∏m

i=1 max{log |α±
i |, log p},

where h=max{maxi log |α±
i |, log p, 1} and the imaginary part of log lies in (−π, π]. �

Let us call any Newtp(f) such that f has no lower m-nomials with m ≥ 3 generic.
Oppositely, we call Newtp(f) flat if it is a line segment. Finally, if p|(ai − aj) with {ai, aj}
the exponents of some lower binomial of f then we call Newtp(f) ramified. We will see later
that certain ramified cases are where one begins to see the surprising complexity behind
proving FEASQp

(F1,3)∈NP, including the need for Yu’s Theorem above.

5.1 The Proof of Assertion (1) of Theorem 1.4

Our underlying certificate will ultimately be a root ζ0 ∈ Z/pℓZ for f (or a slight variant
thereof) with ℓ = O(p(size(f)/ log p)4 log size(f)). Certain cases will force us to use tools
that can currently only yield complexity upper bounds of the preceding magnitude.

Let us write f(x1) = c1 + c2x
a2
1 + c3x

a3
1 . Just as in Section 4.1, we may assume c1 6= 0

and reduce to certifying roots in Zp. We may also assume that the rightmost (or only) lower
edge of f is a horizontal line segment at height 0. (And thus ordpc1≥0 in particular.) This
is because, as already observed earlier in the proof of Assertion (2) of Theorem 1.4, we can
compute Newtp(f) in time polynomial in size(f)+ log p. So we can rescale f (in polynomial-
time) without increasing size(f). More precisely, if Newtp(f) has no lower edges of integral
slope then we can immediately conclude that f has no roots in Qp by Lemma 4.9. So,
replacing f by the reciprocal polynomial f ∗ if necessary, we may assume that the rightmost

lower edge of f has integral slope and then set g(x1) := p−ordpc2f

(

p
ordp(c2)−ordp(c3)

a3−a2 x1

)

. The

lower hull of Newtp(g) then clearly has the desired shape, and it is clear that f has a root in
Qp if and only if g has a root in Qp. In particular, it is easily checked that size(g)≤size(f).
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To simplify our proof we will assume that gcd(a2, a3) = 1 (unless otherwise noted), and
recover the case gcd(a2, a3)>1 at the very end of our proof. The vanishing of ∆̄A(f), which
can be detected in P thanks to Lemma 5.3, then determines 2 cases:

Case (a): ∆̄A(f) 6=0∆̄A(f) 6=0∆̄A(f) 6=0
Since gcd(a2, a3)=1 we may clearly assume that p divides at most one of {a2, a3, a3 − a2}.
The shape of the lower hull of Newtp(f) (which we’ve already observed can be computed in
time polynomial in size(f) + log p) then determines 2 subcases:

If Newtp(f) has lower hull a line segment then we may also assume (by rescaling f as
detailed above) that p 6 |c1, c3 and e :=ordpc2≥0.

When p divides either a2 or a3 − a2 then we can easily find certificates for solvability of
f over Qp: If e=0 then p 6 |∆̄A(f) by Lemma 5.3 (since p 6 |a3) and thus f has no degenerate
roots mod p. So Hensel’s Lemma implies that we can use a root of f in Z/pZ as a certificate
for f having a root in Qp. If e>0 then we can in fact detect roots in Qp for f in P by the
binomial case, thanks to Theorem 5.4.

So let us now assume p does not divide a2 or a3 − a2, and set e′ := ordpa3. If e > e′

then observe that f ′(x) = a3c3x
a3−1 mod pe. By Lemma 4.9, any putative root ζ ∈Qp of f

must satisfy ordpζ=0. So f ′(ζ) 6=0 mod pe and Hensel’s Lemma implies that a root of f in
Z/p2e+1Z is clearly a certificate for f having a root in Qp. Our certificate can also clearly be
verified in time polynomial in size(f) + log p since size(p2e+1)≤(2e+ 1) log p≤size(f) log p.

If e<e′ then f ′(x)=a2c2x
a2−1 mod pe

′
. Similar to the last paragraph, f ′(ζ) 6=0 mod pe

′

and we then instead employ a root of f in Z/pℓZ with ℓ=2e′+1 as a certificate for f having
a root in Qp.

Now, if e=e′, observe that ordpf
′(ζ)=ordp

f ′(ζ)
ζa2−1 since Lemma 4.9 tells us that ordpζ=0

for any root ζ∈Cp. Since ∆̄A(f) 6=0, Lemma 5.3 then tells us that ordp(a2c2 + a3c3ζ
a3−a2)<+∞.

So ordpf
′(ζ) < +∞ for any root ζ∈Cp of f and then Lemma 5.3 tells us that

ordp

∏

f(ζ)=0
f ′(ζ)
ζa2−1 =

∑

f(ζ)=0 ordpf
′(ζ)=ordp

(

(a3 − a2)
a3−a2aa22 ca32 − (−a3)

a3ca3−a2
1 ca23

)

= a3e+ ordp

(

(

a3−a2
c1

)a3−a2 (
a2
c3

)a2 (
c2
−a3

)a3
− 1

)

.

(since p ∤ (c1c3)).
So by the m=3 case of Yu’s Theorem we obtain

∑

f(ζ)=0 ordpf
′(ζ)=a3e+O(p(size(f)/ log p)4 log size(f)).

Now, since pe|c2, a3, we have ordpf
′(ζ)≥ e for any root ζ ∈Cp of f . So all roots ζ ∈Cp of f

must satisfy ordpf
′(ζ) = e+O(p(size(f)/ log p)4 log size(f))

= O(size(f)) +O(p(size(f)/ log p)4 log size(f)) = O(p(size(f)/ log p)4 log size(f)).
In other words, a root of f in Z/pO(p(size(f)/ log p)4 log size(f))Z suffices as a certificate, thanks to
Hensel’s Lemma.

If the lower hull of Newtp(f) is not a line segment then (by rescaling f as detailed
above), we may also assume that p|c1 but p ∤ c2, c3. Since gcd(a2, a3) = 1, we may also
assume (via rescaling and/or reciprocals) that p ∤ a2a3, i.e., if p divides the length of any
lower edge of Newtp(f) then it is the rightmost (now horizontal) edge.

Via Theorem 5.4 and the binomial case of Assertion (0) we can easily decide (within time
polynomial in size(f)+ log p) the existence of a root of f in Zp with valuation v, where (v, 1)
is an inner normal of the left lower edge of Newtp(f). So now we need only efficiently detect
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roots in Zp of valuation 0. Toward this end, let us now set e :=ordpc1 and e′ :=ordp(a3−a2).
Clearly, e>0 or else we would be in the earlier case where Newtp(f) has lower hull a single
edge.

If e > e′ then f(x) = c2x
a2 + c3x

a3 mod pe and thus f ′(ζ) = a2c2ζ
a2−1 + a3c

′
3ζ

a3−1 =
−a2c3ζ

a3−1 + a3c3ζ
a3−1 = c3(a3 − a2)ζ

a3−1 mod pe for any root ζ ∈ Cp of f . So f ′(ζ) 6= 0
mod pe for any root ζ ∈Zp of valuation 0 and thus, by Hensel’s Lemma, we can certify the
existence of such a ζ in NP by a root of f in Z/p2e+1Z.

If e<e′ then f ′(x)=a2c2x
a2−1 + a3c3x

a3−1=a3c2x
a2−1 + a3c3x

a3−1 mod pe
′
since a3=a2

mod pe
′
. So f ′(ζ)= a3c2ζ

a2−1 − a3(c1ζ
−1 + c2ζ

a2−1)=−a3c1
ζ

6=0 mod pe
′
for any root ζ ∈Cp

of f . So a root of f in Z/p2e
′+1Z serves as a certificate for a root of f in Zp.

Finally, if e = e′, observe that f ′(x) = a2c2x
a2−1 + a3c3x

a3−1 and there are exactly a2
(resp. a3 − a2) roots of f in Cp of valuation e

a2
(resp. 0) by Lemma 4.9. Using the fact that

p 6 |a2a3c2c3, it is then easy to see that ordpf
′(ζ) =

(

a2−1
a2

)

e for any root ζ ∈Cp of f with

valuation e
a2
.

The value of ordpf
′(ζ) is harder to control when ζ ∈Cp is root of valuation 0. So let us

observe that, at such a ζ, f ′(ζ)= a3c1
ζ

+ f ′(ζ) mod pe and thus:

(⋆) f ′(ζ)= a3c1
ζ

+ a2c2ζ
a2−1 + a3c3ζ

a3−1= a3c1
ζ

+ a3c2ζ
a2−1 + a3c3ζ

a3−1= a3
ζ
f(ζ)=0 mod pe,

since e= e′ and a2 = a3 mod pe
′
. So e≤ ordpf

′(ζ) at any such ζ. Similar to our earlier flat
case, Part (1) of Lemma 5.3 then implies the following:

ordp∆̄A(f)=−(a2 − 1)e+
∑

f(ζ)=0

f ′(ζ)=
∑

f(ζ)=0
ordζ=0

f ′(ζ).

On the other hand, since e=ordp(a3−a2)=ordpc1, Part (0) of Lemma 5.3 combined with the
m=3 case of Yu’s Theorem implies that ordp∆̄A(f)=(a3 − a2)e+O(p(size(f)/ log p)4 log size(f)).
So any root ζ∈Cp of f having valuation 0 must satisfy
ordpf

′(ζ)≤e+O(p(size(f)/ log p)4 log size(f))≤size(f) +O(p(size(f)/ log p)4 log size(f)).
So again, a root of f in Z/pO(p(size(f)/ log p)4 log size(f))Z suffices as a certificate, thanks to Hensel’s
Lemma.

Remark 5.5 Note that if Newtp(f) is unramified as well as generic, then Theorem 5.4
implies that we can in fact decide the existence of roots in Qp for f in P. ⋄

Case (b): ∆̄A(f)=0∆̄A(f)=0∆̄A(f)=0
First note that, independent of gcd(a2, a3), a degenerate root of f in Qp admits a very simple
certificate: a ζ∈Z/p4size(f)+1Z satisfying c2(a3− a2)ζ

a2 + c1a3=c3(a3− a2)ζ
a3 − c1a2=0 mod

p4size(f)+1. Thanks to Lemma 5.3 and our proof of Assertion (0) in Section 3, it is clear that
the preceding 2× 1 binomial system has a solution if and only if f has a degenerate root in
Qp.

So now we resume our assumption that gcd(a2, a3)=1 and build certificates for the non-
degenerate roots of f in Zp. Toward this end, observe that the proof of Lemma 5.3 tells us that
the unique degenerate root ζ of f lies in Q∗ and satisfies [c1, c2ζ

a2 , c3ζ
a3 ]=γ[a3− a2,−a3, a2]

for some γ∈Q. Clearly then, q(x1)=
1
γ
f(ζx1), and f has exactly the same number of roots

in Qp as q does.
So we can henceforth restrict to the special case f(x1)= (a3 − a2) − a3x

a2
1 + a2x

a3
1 , and

let r(x1) :=
f(x1)

(x1−1)2
and ∆̄ := ∆̄{0,...,a3−2}(r). Should p 6 |a2a3(a3 − a2) then f is clearly flat
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and thus all the roots of f have valuation 0. Part (4) of Lemma 5.3 then tells us that
ordp∆̄ = O(log(a2) + log(a3)) = O(size(f)) and thus the product formula from Lemma 4.3
implies that ordpr

′(ζ)=O(size(f)) at any root ζ ∈Cp of r. So a root ζ0∈Z/pO(size(f))Z of r
suffices as a certificate for f to have a root inQp other than 1. (Note also that by construction,
r can clearly be evaluated mod pO(size(f)) within a number of arithmetic operations quadratic
in size(f) + log p.)

So let us now assume that p divides exactly one number from {a2, a3, a3−a2}. (Otherwise,
p would divide all 3 numbers, thus contradicting the assumption gcd(a2, a3)=1.)

If p|a3 then f is clearly flat and, by Lemma 4.9, every root of r has valuation 0. This
implies ordpr

′(ζ)≥ 0 at any root ζ ∈Cp of r. So by the product formula from Lemma 4.3
and Part (4) of Lemma 5.3, combined with the fact that ordpt≤ logp t for any integer t, we
obtain that

ordp∆̄=(a3 − 3)ordp(a2) +
∑

r(ζ)=0

ordpr
′(ζ)=(a3 − 4)ordp(a2) +O(log(a2) + log(a3)).

So ordpr
′(ζ)=O(log(a2) + log(a3))=O(size(f)) at any root ζ ∈Cp and we can again use a

root ζ0∈Z/pO(size(f))Z of r as a certificate for f to have a root in Qp other than 1.

Replacing f by the reciprocal polynomial f ∗ if need be, we are left with the case
p|(a3 − a2). By Lemma 4.9, f clearly has exactly a2 (resp. a3 − a2) roots of valuation
ordp(a3−a2)

a2
(resp. 0) in Cp.

Since p 6 |a2, Theorem 5.4 tells us that we can apply the binomial case of Assertion (0) of

Theorem 1.4 to detect roots of f in Qp with valuation ordp(a3−a2)

a2
in polynomial-time. So let

us now focus on roots ζ∈Cp \ {1} of f having valuation 0.
For any such root, we then obtain ordpf

′(ζ)≥ordp(a3 − a2), thanks to identity (⋆) from

the non-degenerate case. Note also that r′(ζ) = f ′(ζ)
(ζ−1)2

− 2 f(ζ)
(ζ−1)3

= f ′(ζ)
(ζ−1)2

. Employing the
product formula from Lemma 4.3 we then obtain

ordp∆̄=

(

∑

r(ζ)=0

ordpf
′(ζ)

)

− 2ordp

∏

r(ζ)=0

(ζ − 1)=

(

∑

r(ζ)=0

ordpf
′(ζ)

)

− 2ordpr(1)

since p 6 |a2. Part (4) of Lemma 5.3 tells us that ordpr(1) is ordp(a3−a2) or ordp(a3−a2)−1,
according as p≥3 or p=2. So applying Part (4) of Lemma 5.3 one last time we obtain

∑

r(ζ)=0

ordpf
′(ζ) = (a3 − 4)ordp(a3 − a2) +O(log(a2) + log(a3)) + 2ordp(a3 − a2).

Now note that f ′(ζ) = a2a3ζ
a2−1(ζa3−a2 − 1). Since f has exactly a2 roots of valuation

ordp(a3−a2)

a2
, we thus obtain

∑

r(ζ)=0
ordpζ=0

ordpf
′(ζ) = (a3 − 2)ordp(a3 − a2) +O(logp(a2) + logp(a3))− (a2 − 1)ordp(a3 − a2)

= (a3 − a2 − 1)ordp(a3 − a2) +O(logp(a2) + logp(a3)).

Since ordpf
′(ζ)≥ordp(a3−a2) at a valuation 0 root ζ∈Cp of f , and there are exactly a3−a2

such roots, the value of ordpf
′(ζ) at such a root must therefore admit an upper bound of

ordpf
′(ζ)=−ordp(a3 − a2) +O(logp(a2) + logp(a3))=O(size(f)).

So we can certify a non-degenerate root ζ ∈ Qp \ {1} of f with valuation 0 by a root
ζ0∈Z/pO(size(f))Z of r mod pO(size(f)) not divisible by p.
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Wrapping up the case gcd(a2, a3) > 1: From our preceding arguments, we see that we
are left with certifying the existence of non-degenerate roots in the case g :=gcd(a2, a3)>1.
Fortunately, this is simple: we merely find a non-degenerate root ζ0 ∈ Z/pℓZ of
f̄ :=c1+ c2x

a2/g+ c3x
a3/g as before (with ℓ depending on the case f̄ falls into), also satisfying

the condition that xg − ζ0 has a root in Z/pℓZ. Thanks to Corollary 3.2, we are done. �

6 NP-hardness in One Variable: Proving Theorem 1.2

We will first need to develop two key ingredients: (A) Plaisted’s beautiful connection between
Boolean satisfiability and roots of unity, and (B) an algorithm for constructing moderately
small primes p with p− 1 having many prime factors.

6.1 Roots of Unity and NP-Completeness

Let us define [n] := {1, . . . , n}. Recall that any Boolean expression of one of the following
forms:

(♦) yi ∨ yj ∨ yk, ¬yi ∨ yj ∨ yk, ¬yi ∨ ¬yj ∨ yk, ¬yi ∨ ¬yj ∨ ¬yk, with i, j, k∈ [3n],
is a 3CNFSAT clause. A satisfying assigment for an arbitrary Boolean formula B(y1, . . . , yn)
is an assigment of values from {0, 1} to the variables y1, . . . , yn which makes the equality
B(y1, . . . , yn)=1 true. Let us now refine slightly Plaisted’s elegant reduction from 3CNFSAT

to feasibility testing for univariate polynomial systems over the complex numbers [Pla84,
Sec. 3, pp. 127–129].

Definition 6.1 Letting p̄ :=(p1, . . . , pn) denote any strictly increasing sequence of primes, let
us inductively define a semigroup homomorphism ρp̄ — the Plaisted morphism with respect
to p̄ — from certain Boolean expressions in the variables y1, . . . , yn to Z[x], as follows:7

(0) Dp̄ :=
∏n

i=1 pi, (1) ρp̄(0) := 1, (2) ρp̄(yi) := xDp̄/pi − 1, (3) ρp̄(¬B) := (xDp̄ − 1)/ρp̄(B),
for any Boolean expression B for which ρp̄(B) has already been defined, (4) ρp̄(B1 ∨ B2) :=
lcm(ρp̄(B1), ρp̄(B2)), for any Boolean expressions B1 and B2 for which ρp̄(B1) and ρp̄(B2)
have already been defined. ⋄
Lemma 6.2 [Pla84, Sec. 3, pp. 127–129] Suppose p̄= (pi)

n
k=1 is an increasing sequence of

primes with log(pk)=O(kγ) for some constant γ. Then, for all n∈N and any clause C of
the form (♦), we have size(ρp̄(C)) polynomial in nγ. In particular, ρp̄ can be evaluated at
any such C in time polynomial in n. Furthermore, if K is any field possessing Dp̄ distinct
Dp̄

th roots of unity, then a 3CNFSAT instance B(y) := C1(y) ∧ · · · ∧ Ck(y) has a satisfying
assignment if and only if the univariate polynomial system FB :=(ρp̄(C1), . . . , ρp̄(Ck)) has a
root ζ∈K satisfying ζDp̄ − 1. �

Plaisted actually proved the special case K = C of the above lemma, in slightly different
language, in [Pla84]. However, his proof extends verbatim to the more general family of
fields detailed above.

A simple consequence of the resultant is that vanishing at a Dth root of unity is alge-
braically the same thing over C or Qp, provided p lies in the right arithmetic progression.

7Throughout this paper, for Boolean expressions, we will always identify 0 with “False” and 1 with
“True”.
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Lemma 6.3 Suppose D∈N, f ∈Z[x], and p is any prime congruent to 1 mod D. Then f
vanishes at a complex Dth root of unity ⇐⇒ f vanishes at a Dth root of unity in Qp.

Remark 6.4 Note that x2 + x+ 1 vanishes at a 3rd root of unity in C, but has no roots at
all in F5 or Q5. So our congruence assumption on p is necessary. ⋄

Proof of Lemma 6.3: First note that by our assumption on p, Qp has D distinct Dth roots
of unity: This follows easily from Hensel’s Lemma and Fp having D distinct Dth roots of
unity. Since Z →֒ Qp and Qp contains all D

th roots of unity by construction, the equivalence
then follows directly from Lemma 4.3. �

Finally, let us recall a folkloric way (see, e.g., Plaisted’s proof of Theorem 5.1 in [Pla84])
to reduce systems of univariate polynomial equations to a single polynomial equation.

Proposition 6.5 Given any f1, . . . , fk ∈ Z[x1], let d := maxi deg fi and define f̃(x1) to be
xd
1(f1(x1)f1(1/x1) + · · ·+ fk(x1)fk(1/x1)). Then f1= · · · =fk=0 has a root on the complex

unit circle if and only if f̃ has a root on the complex unit circle.

Proof: Trivial, upon observing that for any x1 ∈ C with |x1| = 1 and i ∈ [k] we have
fi(x1)fi(1/x1)= |fi(x1)|2. �

6.2 Random Primes in Arithmetic Progressions: Proving
Theorem 1.9

The result below allows us to prove Theorem 1.9 and further tailor Plaisted’s clever reduction
to our purposes. We let π(x) denote the number of primes ≤ x, and let π(x;M, 1) denote
the number of primes ≤x that are congruent to 1 mod M .

The AGP Theorem (very special case of [AGP94, Thm. 2.1, pg. 712]) There exist x0>0
and an ℓ ∈ N such that for each x ≥ x0, there is a subset D(x) ⊂ N of finite cardinality ℓ
with the following property: If M ∈ N satisfies M ≤ x2/5 and a 6 |M for all a ∈ D(x) then

π(x;M, 1)≥ π(x)
2ϕ(M)

. �

For those familiar with [AGP94, Thm. 2.1, pg. 712], the result above follows immediately
upon specializing the parameters there as follows:

(A, ε, δ, y, a)=(49/20, 1/2, 2/245, x, 1)
(see also [vzGKS96, Fact 4.9]).

The AGP Theorem enables us to construct random primes from certain arithmetic pro-
gressions with high probability. An additional ingredient that will prove useful is the famous
AKS algorithm for deterministic polynomial-time primality checking [AKS02]. Consider now
the following algorithm.

Algorithm 6.6
Input: A constant δ > 0, a failure probability ε ∈ (0, 1/2), a positive integer n, and the
constants x0 and ℓ from the AGP Theorem.
Output: An increasing sequence p̄=(pj)

n
j=1 of primes, and c∈N, such that p :=1+c

∏n
i=1 pi

24



satisfies log p=O(n log(n) + log(1/ε)) and, with probability 1− ε, p is prime. In particular,
the output always gives a true declaration as to the primality of p.

Description:
0. Let L :=⌈2/ε⌉ℓ and compute the first nL primes p1, . . . , pnL in increasing order.
1. Define (but do not compute) Mj :=

∏jn
k=(j−1)n+1 pk for any j ∈N. Then compute ML, Mi

for a uniformly random i∈ [L], and x :=max
{

x0, 17, 1 +M
5/2
L

}

.

2. Compute K :=⌊(x− 1)/Mi⌋ and J :=⌈2 log(2/ε) log x⌉.
3. Pick uniformly random c ∈ [K] until one either has p := 1 + cMi prime, or one has J

such numbers that are each composite (using primality checks via the AKS algorithm
along the way).

4. If a prime p was found then output
“1 + c

∏in
j=(i−1)n+1 pj is a prime that works!”

and stop. Otherwise, stop and output
“I have failed to find a suitable prime. Please forgive me.” ⋄

Remark 6.7 In our algorithm above, it suffices to find integer approximations to the under-
lying logarithms and square-roots. In particular, we restrict to algorithms that can compute
the log2 L most significant bits of logL, and the 1

2
log2 L most significant bits of

√
L, using

O((logL)(log logL) log log logL) bit operations. Arithmetic-Geometric Mean Iteration and
(suitably tailored) Newton Iteration are algorithms that respectively satisfy our requirements
(see, e.g., [Ber03] for a detailed description). ⋄

Proof of Theorem 1.9: It clearly suffices to prove that Algorithm 6.6 is correct, has a
success probability that is at least 1− ε, and works within

O
(

(

n
ε

)
3
2
+δ

+ (n log(n) + log(1/ε))7+δ
)

randomized bit operations, for any δ>0. These assertions are proved directly below. �

Proving Correctness and the Success Probability Bound for Algorithm 6.6: First
observe that M1, . . . ,ML are relatively prime. So at most ℓ of the Mi will be divisible by
elements of D(x). Note also that K≥1 and 1+ cMi≤1+KMi≤1+ ((x− 1)/Mi)Mi=x for
all i∈ [L] and c∈ [K].

Since x≥ x0 and x2/5 ≥ (x − 1)2/5 ≥
(

M
5/2
i

)2/5

=Mi for all i ∈ [L], the AGP Theorem

implies that with probability at least 1 − ε
2
(since i ∈ [⌈2/ε⌉ℓ] is uniformly random), the

arithmetic progression {1 + Mi, . . . , 1 + KMi} contains at least π(x)
2ϕ(Mi)

≥ π(x)
2Mi

primes. In

which case, the proportion of numbers in {1 +Mi, . . . , 1 +KMi} that are prime is π(x)
2KMi

>
π(x)

2+2KMi
> x/ log x

2x
= 1

2 log x
, since π(x)>x/ log x for all x≥ 17 [BS96, Thm. 8.8.1, pg. 233]. So

let us now assume that i is fixed and Mi is not divisible by any element of D(x).

Recalling the inequality
(

1− 1
t

)ct ≤ e−c (valid for all c ≥ 0 and t ≥ 1), we then see
that the AGP Theorem implies that the probability of not finding a prime of the form

p=1 + cMi after picking J uniformly random c∈ [K] is bounded above by
(

1− 1
2 log x

)J

≤
(

1− 1
2 log x

)2 log(2/ε) log x

≤e− log(2/ε)= ε
2
.
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In summary, with probability ≥1− ε
2
− ε

2
=1− ε, Algorithm 6.6 picks an i with Mi not

divisible by any element of D(x) and a c such that p :=1 + cMi is prime. In particular, we
clearly have that

log p=O(log(1 +KMi))=O(n log(n) + log(1/ε)). �

Complexity Analysis of Algorithm 6.6: Let L′ := nL and, for the remainder of our
proof, let pi denote the ith prime. Since L′≥6, we have that

pL′ ≤ L′(log(L′) + log logL′)
by [BS96, Thm. 8.8.4, pg. 233]. Recall that the primes in [L] can be listed simply by deleting
all multiples of 2 in [L], then deleting all multiples of 3 in [L], and so on until one reaches

multiples of
⌊√

L
⌋

. (This is the classic sieve of Eratosthenes.) Recall also that one can

multiply an integer in [µ] and an integer [ν] within
O((log µ)(log log ν)(log log log ν) + (log ν)(log log µ) log log log µ)

bit operations (see, e.g., [BS96, Table 3.1, pg. 43]). So let us define the function λ(a) :=
(log log a) log log log a.
Step 0: By our preceding observations, it is easily checked that Step 0 takes O(L′3/2 log3 L′)
bit operations.
Step 1: This step consists of n − 1 multiplications of primes with O(logL′) bits (resulting
in ML, which has O(n logL′) bits), multiplication of a small power of ML by a square root of
ML, division by an integer with O(n logL′) bits, a constant number of additions of integers
of comparable size, and the generation of O(logL) random bits. Employing Remark 2.4
along the way, we thus arrive routinely at an estimate of

O (n2(logL′)λ(L′) + log(1/ε)λ(1/ε)))
for the total number of bit operations needed for Step 1.
Step 2: Similar to our analysis of Step 1, we see that Step 2 has bit complexity

O((n log(L′) + log(1/ε))λ(n logL′)).
Step 3: This is our most costly step: Here, we require

O(logK)=O(n log(L′) + log(1/ε))
random bits and J=O(log x)=O(n log(L′) + log(1/ε)) primality tests on integers with

O(log(1 + cMi))=O(n log(L′) + log(1/ε))
bits. By an improved version of the AKS primality testing algorithm [AKS02, LP05] (which
takes O(N6+δ) bit operations to test an N bit integer for primality), Step 3 can then clearly
be done within

O
(

(n log(L′) + log(1/ε))7+δ
)

bit operations, and the generation of O(n log(L′) + log(1/ε)) random bits.
Step 4: This step clearly takes time on the order of the number of output bits, which is
just O(n log(n) + log(1/ε)) as already observed earlier.

Conclusion: We thus see that Step 0 and Step 3 dominate the complexity of our algorithm,
and we are left with an overall randomized complexity bound of

O
(

L′3/2 log3(L′) + (n log(L′) + log(1/ε))7+δ
)

= O
(

(

n
ε

)3/2
log3(n/ε) + (n log(n) + log(1/ε))7+δ

)

= O
(

(

n
ε

)
3
2
+δ

+ (n log(n) + log(1/ε))7+δ
)

randomized bit operations. �
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6.3 The Proof of Theorem 1.2

We will prove a (ZPP) randomized polynomial-time reduction from 3CNFSAT to
FEASQprimes

(Z[x] × P), making use of the intermediate input families {(Z[x])k | k ∈N} × P
and Z[x]× {xD − 1 | D∈N} × P along the way.

Toward this end, suppose B(y) := C1(y) ∧ · · · ∧ Ck(y) is any 3CNFSAT instance. The
polynomial system (ρp̄(C1), . . . , ρp̄(Ck)), for p̄ the first n primes (employing Lemma 6.2),
then clearly yields FEASC({(Z[x])k | k∈N})∈P =⇒ P=NP. Composing this reduction with
Proposition 6.5 we then immediately obtain FEASC(Z[x]×{xD−1 | D∈N})∈P =⇒ P=NP.

We now need only find a means of transferring from C to Qp. This we do by preceding
our reductions above by a judicious (possibly new) choice of p̄: by applying Theorem 1.9
with ε=1/3 (cf. Lemma 6.3) we immediately obtain the implication

FEASQprimes
((Z[x]× {xD − 1 | D∈N})× P)∈ZPP =⇒ NP⊆ZPP.

To conclude, observe that any root (x, y)∈Q2
p\{(0, 0)} of the quadratic form x2−py2 must

satisfy 2ordpx=1+ 2ordpy (an impossibility). So the only p-adic rational root of x2 − py2 is
(0, 0) and we easily obtain a polynomial-time reduction from
FEASQprimes

((Z[x] × {xD − 1 | D ∈ N}) × P) to FEASQprimes
(Z[x] × P): simply map any

instance (f(x), xD − 1, p) of the former problem to (f(x)2 − (xD − 1)2p, p). So we have
proved the first implication.

To prove the second (conditional) implication, we simply repeat our last proof, replacing
our AGP Theorem-based algorithm with a simple brute-force search. More precisely, letting
D :=2 ·3 · · · pn, we simply test the integers 1+kD for primality, starting with k=1 until one
finds a prime. If Wagstaff’s Conjecture is true then we need not proceed any farther than

k=O
(

ϕ(D)
D

log2 D
)

. (Note that 1
2
≤ ϕ(D)

D
< 1 for all D≥ 2.) Using the AKS algorithm, this

brute-force search clearly has (deterministic) complexity polynomial in logD which in turn
is polynomial in n. �

7 The Proof of Proposition 1.3

Let us first recall that in the Subset Sum Problem one is given nonzero integers c1, . . . , cn
and one must decide whether there is a non-empty subset I ⊆ {1, . . . , n} with

∑

i∈I ci = 0.
Using

∑n
i=1 log(2+ |ci|) (or the number of bits needed to specify c1, . . . , cn) as the underlying

input size, the Subset Sum Problem is then NP-complete [GJ79].
We will present a polynomial-time reduction from the Subset Sum Problem to

FEASQp

(

⋃

n∈N
F∗

n,n+1

)

, thereby proving Proposition 1.3.

Proof of Proposition 1.3 (Poonen): Suppose we fix a prime p. Then, given any
instance of the Subset Sum Problem as described above, we can create an instance of

FEASQp

(

⋃

n∈N
F∗

n,n+1

)

as follows: Let ℓ ≥ 3 be the smallest integer such that pℓ exceeds
∑n

i=1 |ci|. Also let P := pℓ−1(p − 1), which is the order of (Z/pℓZ)∗ (cf. Lemma 3.1). By
Proposition 2.1, we can construct ℓ and P in polynomial-time. We then consider the poly-
nomial f(x) :=c1x

P
1 + · · ·+ cnx

P
n , which clearly has size linear in the size of our Subset Sum

instance. Note also that by homogeneity, f has a non-trivial root in Qn
p if and only if f has
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a root (x1, . . . , xn)∈Zn
p with ordpxi=0 for some i. In particular, for each j, the value of xP

j

mod pℓ is 0 or 1 according as ordpxj>0 or ordpxj=0.
Now, should f have such a root in Zn

p , then f must have a root in (Z/pℓZ)n. A root of f
in Qn

p thus induces a non-empty I with
∑

i∈I ci=0 mod pℓ. By our choice of ℓ, this in turn
implies that

∑

i∈I ci=0 as an integer.
Conversely, a non-empty I with

∑

i∈I ci=0 in Z implies a zero-one vector x=(x1, . . . , xn)
that is a root of f in Zn and thus a root of f in Qn

p .
We have thus shown that a Subset Sum instance can always be converted in polynomial-

time to a particular kind of n-variate n-nomial f (with size linear in the Subset Sum Instance)
such that the Subset Sum Instance has a “Yes” answer if and only if f has a root in Qn

p . The

latter decision problem can then be reduced to n instance of FEASQp

(

⋃

n∈N
F∗

n,n+1

)

as follows:

merely check if any of the dehomogenizations f(1, x2, . . . , xn), . . . , f(x1, . . . , xn−1, 1) have a
root in Qn−1

p . Each of these dehomogenizations is an honest (n− 1)-variate n-nomial, so we
are done. �

8 The Final Corollaries

8.1 Proof of Corollary 1.5

Our proof of Assertion (1) of Theorem 1.4 is, in retrospect, a polynomial-time reduction from
FEASQprimes

(F1,3) to FEASZ/pℓZ(F1,3) with ℓ=O(p(size(f)/ log p)4 log size(f)). Combining this
reduction with the hypothesis of Corollary 1.5 then clearly implies that FEASQp

(F1,3) can be
solved in time polynomial in p+ (size(f)/ log p)4 log size(f), so we are done. �

8.2 Proof of Corollary 4.6

By Lemma 4.3 we know that ∆̄A(f) has degree at most 2d − 1 in the coefficients of f . We
also know that for any fixed f ∈ TA(H), ∆̄A(f) is an integer as well, and is thus divisible
by no more than 1 + (2d − 1) log(mH) primes. (The last assertion follows from Lemma
4.3 again, and the elementary fact that an integer N has no more than 1 + logN distinct
prime factors.) Recalling that π(x)>x/ log x for all x≥17 [BS96, Thm. 8.8.1, pg. 233], we
thus obtain that the fraction of primes ≤H dividing a nonzero ∆̄A(f) is bounded above by
1+(2d−1) log(mH)

H/ logH
.

Now by the Schwartz-Zippel Lemma [Sch80], ∆̄A(f) vanishes for at most (2d−1)m(2H)m−1

selections of coefficients from {−H, . . . , H}. In other words, ∆̄A(f)= 0 for a fraction of at

most (2d−1)m
2H+1

of the polynomials in TA(H).
Combining our last two fractional bounds, we are done. �
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