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1 Introduction

From the point of view of numerical analysis, it is not only the number of
complex solutions of a polynomial system which make it hard to solve numer-
ically but the sensitivity of its roots to small perturbations in the coefficients.
This is formalized in the condition number, µ(f, ζ) (cf. Definition 3 and Sec-
tion 1.1 below), which dates back to work of Alan Turing (Tur36). In essence,
µ(f, ζ) measures the sensitivity of a solution ζ to perturbations in a problem
f , and a large condition number is meant to imply that f is intrinsically hard
to solve numerically. Such analysis of numerical conditioning, while having
been applied for decades in numerical linear algebra (see, e.g., (Dem97)), has
only been applied to computational algebraic geometry toward the end of the
twentieth century (see, e.g., (SS93b)).

Here we use Kähler geometry to analyze the numerical conditioning of sparse
polynomial systems, thus setting the stage for more realistic complexity bounds
for the numerical solution of polynomial systems. Our bounds generalize some
earlier results of Kostlan (Kos93) and Shub and Smale (SS96) on the more
restrictive dense case, and also yield new formulae for the expected number of
roots (real and complex) in a region. The appellations “sparse” and “dense”
respectively refer to either (a) taking into account the underlying monomial
term structure or (b) ignoring this finer structure and simply working with
degrees of polynomials.

Since many polynomial systems occurring in practice have rather restricted
monomial term structure, sparsity is an important consideration and we there-
fore strive to state our complexity bounds in terms of this refined infor-
mation. In particular, it is now understood that algorithmic algebraic ge-
ometry can be sped up tremendously by taking advantage of sparsity, e.g.,
(Roj00; Som02; MPR03; Lec03). Here, we demonstrate analogous improve-
ments in a context closer to numerical analysis.

To give the flavor of our results, let us first make some necessary definitions.
We must first formalize the spaces of polynomial systems we work with and
how we measure perturbations in the spaces of problems and solutions.

Definition 1 Given any finite subset A⊂ Z
n, let FC(A) (resp. FR(A)) denote

the vector space of all polynomials in C[x1, . . . , xn] (resp. R[x1, . . . , xn]) of
the form

∑

a∈A
cax

a where the notation xa := xa1
1 · · ·xan

n is understood. For any

finite subsets A1, . . . , An ⊂ Z
n we then let A := (A1, . . . , An) and FC(A) :=

FC(A1) × · · · × FC(An) (resp. FR(A) :=FR(A1) × · · · × FR(An)). ⋄

The n-tuple A will thus govern our notion of sparsity as well as the perturba-
tions allowed in the coefficients of our polynomial systems. It is then easy to
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speak of random polynomial systems and the distance to the nearest degener-
ate system. Recall that a degenerate root of f is simply a root of f having
Jacobian of rank <n.

Definition 2 By a complex (resp. real) random sparse polynomial
system we will mean a choice of A := (A1, . . . , An) and an assignment of a
probability measure to each FC(Ai) (resp. FR(Ai)) as follows: endow FC(Ai)
(resp. FR(Ai)) with an independent complex (resp. real) Gaussian distribution
having mean O and a (positive definite and diagonal) variance matrix Ci.
Finally, let the discriminant variety, Σ(A), denote the closure of the set of
all f ∈FC(A) (resp. f ∈FR(A)) with a degenerate root and define Fζ(A) :=
{f ∈ FC(A) | f(ζ) = O} (resp. Fζ(A) := {f ∈ FR(A) | f(ζ) = O}) and
Σζ(A) :=Fζ(A) ∩ Σ(A). ⋄

A classic result from numerical linear algebra (the Eckart-Young Theorem
(GvL96)) relates the condition number of a linear systemAx=b to the distance
of A to the set of singular matrices. Our first main result below generalizes
this to sparse polynomial systems.

Definition 3 If A = {a1, . . . , am} has cardinality m, and C = [cij] is any
positive definite diagonal m×m matrix, then we define a norm on FC(A) by
‖g‖2

C :=
∑m

i=1 c
−1
ii |gi|2 where g(x)=

∑m
i=1 gix

ai. Also, if mi is the cardinality of
Ai and Ci is an mi × mi positive definite diagonal matrix for all i, then we

define a norm on FC(A) by ‖f‖2 :=
n∑

i=1
‖f i‖2

Ci
, and a metric dP on the product

of projective spaces P(FC(A)) := P(FC(A1)) × · · · × P(FC(An)) by dP(f, g) :=
n∑

i=1
min
λ∈C∗

‖f i−λgi‖
Ci

‖f i‖Ci

. 3 Finally, if C1 = · · · = Cn = C and A1 = · · · = An = A,

then we define the condition number of f at a root ζ, µ(f, ζ), as the

operator norm
∥
∥
∥DG|f

∥
∥
∥ := max

‖ḟ‖=1

∥
∥
∥DG|f ḟ

∥
∥
∥

C
, where G is the unique branch of

the implicit function satisfying G(f)=ζ and g(G(g))=O for all g sufficiently
near f , and DG is the derivative of G. 4 ⋄

Theorem 1 If A :=(A, . . . , A
︸ ︷︷ ︸

n

) then µ(f, ζ)= 1
d(f,Σζ(A))

. Furthermore,

Prob
[

µ(f, ζ)≥ 1
ε

for some root ζ∈(C∗)n of f
]

≤ n3(n2 + n)(n2 + n− 1)(n+ 1)Vol(A)ε4,

3 Each of the terms in the sum defining dP corresponds to the square of the sine
of the Fubini (or angular) distance between f i and gi. Therefore, dP is never larger
than the Hermitian distance between points in FC(A), but is a correct first-order
approximation of the distance when g → f in P(FC(A)) (compare with (BCSS98,
Ch. 12)). Note also that we implicitly used the natural embedding of P(FC(Ai))
into the unit hemisphere of FC(Ai).
4 We set the condition number µ(f, ζ) :=+∞ in the event that Df does not have
full rank and G thus fails to be uniquely defined.
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where f is a complex random sparse polynomial system, m denotes the num-
ber of points in A, and Vol(A) denotes the volume of the convex hull of A
(normalized so that Vol(O, e1, . . . , en)=1).

The above theorem is in fact a simple corollary of two much more general
theorems (Theorems 4 and 5) which also include as a special case an analo-
gous result of Shub and Smale in the dense case (BCSS98, Thm. 1, Pg. 237).
We also note that theorems such as the one above are natural precursors to
explicit bounds on the number of steps required for a homotopy algorithm
(SS93b) to solve f . We will pursue the latter topic in a future paper. Indeed,
one of our long term goals is to provide a rigorous and explicit complexity
analysis of the numerical homotopy algorithms for sparse polynomial systems
developed by Verschelde et. al. (VVC94), Huber and Sturmfels (HS95), and
Li and Li (LL01).

The framework underlying our first main theorem involves Kähler geometry,
which is the intersection of Riemannian metrics and symplectic and complex
structures on manifolds. For technical reasons, we will mainly work with log-
arithmic coordinates. That is, we will let T n be the n-fold product of cylin-
ders (R× (R mod 2π))n⊂C

n, and use coordinates p+ iq :=(p1 + iq1, . . . , pn +
iqn) ∈ T n to stand for a root ζ := exp(p + iq) := (ep1+iq1 , . . . , epn+iqn) of f .
Roots with zero coordinates can be handled by then working in a suitable
toric compactification and this is made precise in Section 2. 5 On a more
concrete level, we can give new formulae for the expected number of roots of
f in a region U .

Theorem 2 Let A1, . . . , An be finite subsets of Z
n and U ⊆T n be a measur-

able region. Pick positive definite diagonal variance matrices C1, . . . , Cn and
consider a complex random polynomial system as in Definition 2, for some
(A1, C1, . . . , An, Cn). Then there are natural real 2-forms ωA1 , . . . , ωAn

on T n

such that the expected number of roots of f in expU ⊆ (C∗)n is exactly

(−1)n(n−1)/2

πn

∫

U
ωA1 ∧ · · · ∧ ωAn

.

In particular, when U=(C∗)n, the above expression is exactly the mixed volume
of the convex hulls of A1, . . . , An (normalized so that the mixed volume of n
standard n-simplices is 1).

See (BZ88; SY93) for the classical definition of mixed volume and its main
properties. The result above generalizes the famous connection between root
counting and mixed volumes discovered by David N. Bernshtein (Ber76).

5 The idea of working with roots of polynomial systems in logarithmic coordinates
seems to be extremely classical, yet it gives rise to interesting and surprising con-
nections (see the discussions in (MZ01a; MZ01b; Vir01)).
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The special case of unmixed systems with identical coefficient distributions
(A1 = · · · = An, C1 = · · · = Cn) recovers a particular case of Theorem 8.1
in (EK95). However, comparing Theorem 2 and (EK95, Theorem 8.1), this is
the only overlap since neither theorem generalizes the other. The very last as-
sertion of Theorem 2 (for uniform variance Ci =I for all i) was certainly known
to Gromov (Gro90), and a version of Theorem 2 was known to Kazarnovskii
(Kaz81, p. 351) and Khovanskii (Kho91, Prop. 1, Sec. 1.13). In (Kaz81), the
supports Ai are even allowed to have complex exponents. However, uniform
variance is again assumed. His method may imply this special case of The-
orem 2, but the indications given in (Kaz81) were insufficient for us to re-
construct a proof. Also, there is some intersection with a result by Passare
and Rullg̊ard (Theorem 5 in (PR00) and Theorem 20 in (Mikh01)). However,
the latter result is about a more restrictive choice of the domain U and a
more general class of functions (holomorphic instead of polynomial) under a
different averaging process.

As a consequence of our last result, we can also give a coarse estimate on the
expected number of real roots in a region.

Theorem 3 Let U be a measurable subset of R
n with Lebesgue volume λ(U).

Then, following the notation above, suppose instead that f is a real random
polynomial system. Then the average number of real roots of f in expU ⊂ R

n
+

is bounded above by

(4π2)−n/2
√

λ(U)

√∫

(p,q)∈U×[0,2π)n
(−1)n(n−1)/2ωA1 ∧ · · · ∧ ωAn

.

This bound is of interest when n and U are fixed, in which case the expected
number of positive real roots grows as the square root of the mixed volume.

1.1 Stronger Results Via Mixed Metrics

Note that while FC(A) admits a natural Hermitian structure, the solution-
space T n admits n different natural Hermitian structures (one from each
support Ai, as we shall see in the next section). This complicates defining
µ(f, p+ iq) for general A. Nevertheless, we can extend our earlier provisional
definition to many additional cases, and give useful bounds on the resulting
generalized condition number.

Theorem 4 (Condition Number Theorem) If (p, q)∈ T n is a non-degenerate
root of f then, following the preceding notation,

max
‖ḟ‖≤1

min
i

‖DGf ḟ‖Ci
≤ 1

dP(f,Σ(p,q))
≤ max

‖ḟ‖≤1
max

i
‖DGf ḟ‖Ci

.
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In particular, if A1 = · · · = An and C1 = · · · = Cn, then

max
‖ḟ‖≤1

min
i

‖DGf ḟ‖Ci
= max

i
max
‖ḟ‖≤1

‖DGf ḟ‖Ci
=

1

dP(f,Σ(p,q))

and we can define µ(f ; (p, q)) to be any of the three last quantities.

This generalizes (BCSS98, Thm. 3, Pg. 234) which is essentially equivalent to
the last assertion above, in the special case where Ai is an n-column matrix
whose rows {Aα

i }α consist of all partitions of di into n non-negative integers

and Ci =Diagα

(

(di−1)!

(Ai)α
1 !(Ai)α

2 !···(Ai)α
n !(di−

∑n

j=1
(Ai)α

j
)!

)

— in short, the case where one

considers complex random polynomial systems with f i a degree di polynomial
and the underlying probability measure is invariant under a natural action
of the unitary group U(n + 1) on the space of roots. The last assertion of
Theorem 4 also bears some similarity to Theorem D of (Ded96) where the
notion of metric is considerably loosened to give a statement which applies to
an even more general class of equations. However, our philosophy is radically
different: we consider the inner product in FC(A) as the starting point of our
investigation and we do not change the metric in the fiber F(p,q). Theorem 4
thus gives us some insight about reasonable intrinsic metric structures on T n.

Recall that TpM denotes the tangent space at p of a manifold M . In view
of the preceding theorem, we can define a restricted condition number with
respect to any measurable sub-region U ⊂ T n as follows:

Definition 4 We let µ(f ;U) := 1
min(p,q)∈U dP(f,Σ(p,q))

. Also, via the natural GL(n)-

action on T(p,q)T n defined by (ṗ, q̇) 7→ (Lṗ, Lq̇) for any L ∈ GL(n), we define
the mixed dilation of the tuple (ωA1 , · · · , ωAn

) as:

κ(ωA1 , · · · , ωAn
; (p, q)) := min

L∈GL(n)
max

i

max‖u‖=1(ωAi
)(p,q)(Lu, JLu)

min‖u‖=1(ωAi
)(p,q)(Lu, JLu)

,

where J : TT n −→ TT n is the canonical complex structure (MS98; CCL99)
of T n. Finally, we define κU := sup(p,q)∈U κ(ωA1 , · · · , ωAn

; (p, q)), provided the
supremum exists, and κU :=+∞ otherwise. ⋄

We can then bound the expected number of roots with condition number
µ > ε−1 on U in terms of the mixed volume form, the mixed dilation κU and
the expected number of ill-conditioned roots in the linear case. The linear
case corresponds to the point sets and variance matrices below:
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ALin
i =













0 · · · 0

1
. . .

1













CLin
i =













1

1
. . .

1













where both matrices have n columns.

Theorem 5 (High Probability Estimate of the Condition Number)
Let νLin(n, ε) be the probability that a complex random system of n polynomi-
als in n variables has condition number larger than ε−1. Let νA(U, ε) be the
probability that µ(f, U) > ε−1 for a complex random polynomial system f with
supports A1, · · · , An and variance matrices C1, · · · , Cn. Then

νA(U, ε) ≤
∫

U

∧
ωAi

∫

U

∧
ωALin

i

νLin(n,
√
κUε).

Our final main result concerns the distribution of the real roots of a real
random polynomial system. Let νR(n, ε) be the probability that a real random
linear system of n polynomials in n variables has condition number larger than
ε−1.

Theorem 6 Let A = A1 = · · · = An and C = C1 = · · · = Cn and let U ⊆ R
n

be measurable. Let f be a real random polynomial system. Then,

Prob
[

µ(f, U) > ε−1
]

≤ E(U) νR(n, ε)

where E(U) is the expected number of real roots on U .

Note that E(U) depends on C, so even if we make U = R
n we may still

obtain a bound depending on C. Shub and Smale showed in (SS93a) that
the expected number of real roots in the dense case (with a particular choice
of probability measure) is exactly the square root of the expected number of
complex roots. The sparse analogue of this result seems hard to prove even in
the general unmixed case: Explicit formulæ for the unmixed case are known
only in certain special cases, e.g., certain systems of bounded multi-degree
(Roj96; McL02). Hence our last theorem can be interpreted as another step
toward a fuller generalization.
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2 Symplectic Geometry and Polynomial Systems

2.1 Some Basic Definitions and Examples

For the standard definitions and properties of symplectic structures, complex
structures, Riemannian manifolds, and Kähler manifolds, we refer the reader
to (MS98; CCL99). A treatment focusing on toric manifolds can be found in
(Gui94, Appendix A). We briefly review a few of the basics before moving on
to the proofs of our theorems.

Definition 5 (Kähler manifolds) Let M be a complex manifold, with com-
plex structure J and a strictly positive symplectic (1, 1)-form ω on M (consid-
ered as a real manifold). We then call the triple (M,ω, J) a Kähler manifold.
⋄

Example 1 (Affine Space) We identify C
m with R

2m and use coordinates
Zi = X i +

√
−1Y i. The canonical 2-form ωZ =

∑m
i=1 dXi ∧ dYi makes C

m

into a symplectic manifold.

The natural complex structure J is just the multiplication by
√
−1. The triple

(Cm, ωZ , J) is a Kähler manifold. ⋄

Example 2 (Projective Space) Projective space P
m−1 admits a canonical

2-form defined as follows. Let Z = (Z1, · · · , Zm) ∈ (Cm)∗, and let [Z] = (Z1 :
· · · : Zm) ∈ P

m−1 be the corresponding point in P
m−1. The tangent space

T[Z]P
m−1 may be modeled by Z⊥ ⊂ TZC

m. Then we can define a two-form on
P

m−1 by setting:

ω[Z](u, v) = ‖Z‖−2ωZ(u, v) ,

where it is assumed that u and v are orthogonal to Z. The latter assumption
tends to be quite inconvenient, and most people prefer to pull ω[Z] back to C

m

by the canonical projection π : Z 7→ [Z]. It is standard to write the pull-back
τ = π∗ω[Z] as:

τZ = −1

2
dJ∗d

1

2
log ‖Z‖2 ,

using the notation dη =
∑

i
∂η
pi

∧ dpi + ∂η
qi

∧ dqi, and where J∗ denotes the
pull-back by J .

Projective space also inherits the complex structure from C
m. Then ω[Z] is a

strictly positive (1, 1)-form. The corresponding metric is called Fubini-Study
metric in C

m or C
m−1. ⋄

Remark 1 Some authors prefer to write
√
−1∂∂̄ instead of −1

2
dJ∗d. They

then assume the notation ∂η =
∑

i
∂η
Zi

∧ dZi and ∂̄η =
∑

i
∂η
Z̄i

∧ dZ̄i, and then
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write τZ as

√
−1

2

(∑

i dZi ∧ dZ̄i

‖Z‖2
−
∑

i ZidZ̄i ∧
∑

j Z̄jdZj

‖Z‖4

)

. ⋄

Example 3 (Toric Kähler Manifolds from Point Sets) Let A be any m× n
matrix with integer entries whose row vectors have n-dimensional convex hull
and let C be any positive definite diagonal m×m matrix. Define the map V̂A

from C
n into C

m by

V̂A : z 7→ C1/2










zA1

...

zAm










.

We can also compose with the projection into projective space to obtain a
slightly different map VA = π ◦ V̂A : C

n → P
m−1 defined by VA : z 7→ [V̂A(z)].

When C is the identity, the Zariski closure of the image of VA is called the
Veronese variety and the map VA is called the Veronese embedding. Note
that VA is not defined for certain values of z, e.g., z = 0. Those values comprise
the exceptional set which is a subset of the coordinate hyper-planes.

There is then a natural symplectic structure on the closure of the image of
VA, given by the restriction of the Fubini-Study 2-form τ : We will see below
(Lemma 1) that by our assumption on the convex hull of the rows of A, we have
that DVA is of rank n for z ∈ (C∗)n. Thus, we can pull-back this structure to
(C∗)n by ΩA = V ∗

Aτ . Also, we can pull back the complex structure of P
m−1, so

that ΩA becomes a strictly positive (1, 1)-form. Therefore, the matrix A defines
a Kähler manifold ((C∗)n,ΩA, J). ⋄

The reason we introduced C in the definition of V̂A is as follows: if f denotes
also the row-vector of the scaled coefficients of f , then f(z) =

∑

a fa(Ca)
1/2za =

fV̂A(z) (the sum being over the row vectors of A). This way, the 2-norm of the
row vector f is also the norm of the polynomial f in (FA, ‖ · ‖C−1). A random
normal polynomial with variance matrix C corresponds to a random normal
row vector f with unit variance.

Example 4 (Toric Manifolds in Logarithmic Coordinates) For any ma-
trix A as in the previous example, we can pull-back the Kähler structure of
((C∗)n,ΩA, J) to obtain another Kähler manifold (T n, ωA, J). (Actually, it is
the same object in logarithmic coordinates, minus points at “infinity”.) An
equivalent definition is to pull back the Kähler structure of the Veronese vari-

ety by v̂A
def
= V̂A ◦ exp. ⋄

Remark 2 The Fubini-Study metric on C
m was constructed by applying the

operator −1
2
dJ∗d to a certain convex function (in our case, 1

2
log ‖Z‖2). This

is a general standard way to construct Kähler structures. In (Gro90), it is
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explained how to associate a (non-unique) convex function to any convex body,
thus producing an associated Kähler metric. ⋄

For the record, we state explicit formulæ for several of the invariants associated
to the Kähler manifold (T n, ωA, J). First of all, the function gA = g ◦ v̂A is
precisely:

Formula 2.1.1: The canonical Integral gA (or Kähler potential) of the
convex set associated to A

gA(p) :=
1

2
log

(

(exp(A · p))T C (exp(A · p))
)

The terminology integral is borrowed from mechanics, and it refers to the
invariance of gA under a [0, 2π)n-action. Also, the gradient of gA is called the
momentum map. Recall that the Veronese embedding takes values in pro-
jective space. We will use the following notation: vA(p) = v̂A(p)/‖v̂A(p)‖. This
is independent of the representative of equivalence class vA(p). Now, let vA(p)2

mean coordinate-wise squaring and vA(p)2T be the transpose of vA(p)2. The
gradient of gA is then:

Formula 2.1.2: The Momentum Map associated to A

∇gA = vA(p)2TA

Formula 2.1.3: Second derivative of gA

D2gA = 2DvA(p)TDvA(p)

We also have the following formulae:

Formula 2.1.4: The symplectic 2-form associated to A:

(ωA)(p,q) =
1

2

∑

ij

(D2gA)ijdpi ∧ dqj

10



Formula 2.1.5: Hermitian structure of T n associated to A:

(〈u,w〉A)(p,q) = uH(
1

2
D2gA)pw

In general, the function vA goes from T n into projective space. Therefore, its
derivative is a mapping

(DvA)(p,q) : T(p,q)T n → TvA(p+q
√
−1)P

m−1 ≃ v̂A(p+ q
√
−1)⊥ ⊂ C

m .

For convenience, we will write this derivative as a mapping into C
m, with

range v̂A(p+ q
√
−1)⊥. Let Pv be the projection operator

Pv = I − 1

‖v‖2
vvH .

We then have the following formula.

Formula 2.1.6: Derivative of vA

(DvA)(p,q) = Pv̂A(p+q
√
−1)Diag

(

v̂A(p+ q
√
−1)

‖v̂A(p+ q
√
−1‖

)

A

Lemma 1 Let A be a matrix with non-negative integer entries, such that
Conv(A) has dimension n. Then (DvA)p (resp. (DvA)p+iq) is injective, for
all p ∈ R

n (resp. for all p+ iq ∈ C
n).

Proof: We prove only the real case (the complex case is analogous). The
conclusion of this Lemma can fail only if there are p ∈ R

n and u 6= 0 with
(DvA)pu = 0. This means that

PvA(p)diag(vA)pAu = 0 .

This can only happen if diag(vA)pAu is in the space spanned by (vA)p, or,
equivalently, Au is in the space spanned by (1, 1, · · · , 1)T . This means that
all the rows a of A satisfy au = λ for some λ. Interpreting a row of A as a
vertex of Conv(A), this means that Conv(A) is contained in the affine plane
{a : au = λ} �

An immediate consequence of Formula 2.1.6 is:

11



Lemma 2 Let f ∈ FA and (p, q) ∈ T n be such that f · v̂A(p + q
√
−1) = 0.

Then,

f · (DvA)(p,q) =
1

‖v̂A(p, q)‖f · (Dv̂A)(p,q).

In other words, when (f ◦exp)(p+q
√
−1) vanishes, DvA and Dv̂A are the same

up to scaling. Noting that the Hermitian metric can be written (〈u,w〉A)(p,q) =
uhDvA(p, q)HDvA(p, q)w, we also obtain the following formula.

Formula 2.1.7: Volume element of (T n, ωA, J)

dT n
A = det

(
1

2
D2gA(p)

)

dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ · · · ∧ dqn

2.2 Toric Actions and the Momentum Map

The momentum map, also called moment map, was introduced in its
modern formulation by Smale (Sma70) and Souriau (Sou70). The reader may
consult one of the many textbooks in the subject (such as Abraham and
Marsden (AM78) or McDuff and Salamon (MS98)) for a general exposition
(See also the discussion at the end of (MR02)).

In this section we instead follow the point of view of Gromov (Gro90). The
main results in this section are the two propositions below.

Proposition 1 The momentum map ∇gA maps T n onto the interior of Conv(A).
When ∇gA is restricted to the real n-plane [q = 0] ⊂ T n, this mapping is a
bijection.

This would appear to be a particular case of the Atiyah-Guillemin-Sternberg
theorem (Ati82; GS82). However, technical difficulties prevent us from directly
applying this result here. 6

Proposition 2 The momentum map ∇gA is a volume-preserving map from
the manifold (T n, ωA, J) into Conv(A), up to a constant, in the following
sense: if U is a measurable region of Conv(A), then

Vol
(

(∇gA)−1(U)
)

= (2π)n Vol(U) .

6 The Atiyah-Guillemin-Sternberg Theorem applies to compact symplectic mani-
folds and the implied compactification of T n may have singularities.
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Proof of Proposition 2: Consider the mapping

M : T n → Conv(A) × T
n

(p, q) 7→ (∇gA(p), q)
.

Since we assume dim Conv(A) = n, we can apply Proposition 1 and conclude
that M is a diffeomorphism.

The pull-back of the canonical symplectic structure in R
2n by M is precisely

ωA, because of Formulæ 2.1.3 and 2.1.4. Diffeomorphisms with that property
are called symplectomorphisms. Since the volume form of a symplectic
manifold depends only of the canonical 2-form, symplectomorphisms preserve
volume. So we are done. �

Before proving Proposition 1, we will need the following result about convexity
which has been attributed to Legendre. (See also (Gro90, Convexity Theorem
1.2) and a generalization in (Avr76, Th. 5.1).)

Legendre’s Theorem If f is convex and of class C2 on R
n, then the closure

of the image {∇fr : r ∈ R
n} in R

n is convex.

By replacing f by gA, we conclude that the image of the momentum map ∇gA

is convex.

Proof of Proposition 1: The momentum map ∇gA maps T n onto the inte-
rior of Conv(A). Indeed, let a = Aα be a row of A, associated to a vertex of
Conv(A). Then there is a direction v ∈ R

n such that

a · v = max
x∈Conv(A)

x · v

for some unique a.

We claim that a ∈ ∇gA(Rn). Indeed, let x(t) = vA(tv), t a real parameter. If
b is another row of A,

ea·tv = eta·v ≫ etb·v = eb·tv

as t→ ∞. We can then write v̂A(tv)2T as:

v̂A(tv)2T =










...

eta·v

...










T

CDiag










...

eta·v

...










.
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Since C is positive definite, Cαα > 0 and

lim
t→∞

vA(tv)2T = lim
t→∞

v̂A(tv)2T

‖v̂A(tv)‖2
= eT

a

Cαα

Cαα

= eT
a ,

where ea is the unit vector in R
m corresponding to the row a. It follows that

limt→∞∇gA(tv) = a

When we set q = 0, we have detD2gA 6= 0 on R
n, so we have a local diffeo-

morphism at each point p ∈ R
n. Assume that (∇gA)p = (∇gA)p′ for p 6= p′.

Then, let γ(t) = (1 − t)p+ tp′. The function t 7→ (∇gA)γ(t)γ
′(t) has the same

value at 0 and at 1, hence by Rolle’s Theorem its derivative must vanish at
some t∗ ∈ (0, 1).

In that case,
(D2gA)γ(t∗)(γ

′(t∗), γ′(t∗)) = 0

and since γ′(t∗) = p′ − p 6= 0, detD2gA must vanish in some p ∈ R
n. This

contradicts Lemma 1. �

2.3 The Condition Matrix

Recall that the evaluation map, evA, is defined as follows:

evA : F × T n → C
n

((f 1, . . . , fn), p+ iq) 7→ (f 1(exp(p+ iq)), . . . , fn(exp(p+ iq))).

Following (BCSS98), we look at the linearization of the implicit function p+
q
√
−1 = G(f) for the equation evA(f, p+ q

√
−1) = 0.

Definition 6 The condition matrix of ev at (f, p+ q
√
−1) is

DG = DT n(ev)−1DF(ev) ,

where F = FA1 × · · · × FAn
.

Above, DT n(ev) is a linear operator from an n-dimensional complex space into
C

n, while DF(ev) goes from an (m1 + · · · + mn)-dimensional complex space
into C

n.

Lemma 3 If p+ iq∈ T n and f(exp(p+ iq)) = O then

det
(

DGDGH
)−1

dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn = (−1)n(n−1)/2
n∧

i=1

√
−1f i · (DvAi

)(p,q)dp ∧ f̄ i · (DvAi
)(p,−q)dq.

Note that although f i · (DvAi
)(p,q)dp is a complex-valued form, each wedge

f i · (DvAi
)(p,q)dp ∧ f̄ i · (DvAi

)(p,−q)dq is a real-valued 2-form.

14



Proof of Lemma 3: We compute:

DF(ev)|(p,q) =










∑m1
α=1 v̂

α
A1

(p+ q
√
−1)df 1

α

...
∑mn

α=1 v̂
α
An

(p+ q
√
−1)dfn

α










,

and hence

DF(ev)DF(ev)H = diag ‖v̂Ai
‖2.

Also,

DT n(ev) =










f 1 ·Dv̂A1

...

fn ·Dv̂An

.










Therefore,

det
(

DG(p,q)DG
H
(p,q)

)−1
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










f 1 · 1
‖v̂A1

‖Dv̂A1

...

fn · 1
‖v̂An‖Dv̂An










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

.

We can now use Lemma 2 to conclude the following:

Formula 2.3.1: Determinant of the Condition Matrix

det
(

DG(p,q)DG
H
(p,q)

)−1
=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










f 1 ·DvA1

...

fn ·DvAn










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

2

We can now write the same formula as a determinant of a block matrix:
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det
(

DG(p,q)DG
H
(p,q)

)−1
= det




















f 1 ·DvA1

...

fn ·DvAn

f̄ 1 ·Dv̄A1

...

f̄n ·Dv̄An




















and replace the determinant by a wedge. The factor (−1)n(n−1)/2 comes from
replacing dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ · · · ∧ dqn by dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn. �

We are now ready to prove our main theorems.

3 The Proofs of Theorems 1–6

We first prove that Theorem 1 follows from Theorem 4. Then we will prove
our remaining main theorems in the following order: 2, 4, 5, 3, 6.

3.1 The Proof of Theorem 1

The first assertion, modulo an exponential change of coordinates and using
the multi-projective metric dP(·, ·), follows immediately from Theorem 4.

As for the rest of Theorem 1, Theorem 5 implies that our probability in ques-

tion is bounded above by

∫

U

∧
ωAi∫

U

∧
ω

ALin
i

νLin(n,
√
κUε). In particular, Theorem 2

(and the fact that mixed volume reduces to ordinary volume for unmixed n-
tuples) immediately implies that this bound reduces to Vol(A)νLin(n, ε). So,
by another application of Theorem 4, it suffices to prove the inequality

Prob[dP(f,Σ(p,q))<ε]≤n3(n+ 1)Vol(A)(n2 + n)(n2 + n− 1)ε4,

for the linear case.

To prove the latter inequality, recall that by the definition of the multi-
projective distance dP(·, ·), we have the following equality:

dP(f,Σ(p,q))
2 = min

g∈Σ(p,q)

λ∈(C∗)n

n∑

i=1

‖f i − λig
i‖2

‖f i‖2
.
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So let g be so that the above minimum is attained. Without loss of generality,
we may scale the gi so that λ1 = · · · = λn = 1. In that case,

dP(f,Σ(p,q))
2 =

n∑

i=1

‖f i − gi‖2

‖f i‖2
≥
∑n

i=1 ‖f i − gi‖2

∑n
j=1 ‖f j‖2

.

We are then in the setting of (BCSS98, pp. 248–250) where we identify our
linear f with a normally distributed (n+1)×n complex matrix. By (BCSS98,
Rem. 2, Pg. 250), the right-hand side in the above inequality is then precisely
the Frobenius distance 7 dF (f,Σ(p,q)). So it follows that

Prob
[

dP(f,Σ(p,q)) < ε
]

≤ Prob [dF(f,Σx) < ε]

and the last probability is bounded above by n3(n+1) Γ(n2+n)
Γ(n2+n−2)

ε4 via (BCSS98,

Thm. 6, Pg. 254), where Γ denotes Euler’s well-known generalization of the
factorial function. So Theorem 1 follows. �

3.2 The Proof of Theorem 2

Using (BCSS98, Theorem 5, Pg. 243) (or Proposition 5, Pg. 31 below), we
deduce that the average number of complex roots is:

Avg =
∫

(p,q)∈U

∫

f∈F(p,q)

(
∏ e−‖f i‖2/2

(2π)mi

)

det
(

DG(p,q)DG
H
(p,q)

)−1
.

By Lemma 3, we can replace the inner integral by a 2n-form valued integral:

Avg = (−1)n(n−1)/2
∫

(p,q)∈U

∫

f∈F(p,q)

∧

i

e−‖f i‖2/2

(2π)mi
f i · (DvAi

)(p,q)dp∧

∧ f̄ i · (DvAi
)(p,−q)dq .

Since the image of DvAi
is precisely FAi,(p,q) ⊂ FAi

, one can add n extra vari-
ables corresponding to the directions vAi

(p+q
√
−1) without changing the inte-

gral: we write FAi
= FAi,(p,q)×CvAi

(p+q
√
−1). Since

(

f i + tvAi
(p+ q

√
−1)

)

DvAi

7 Recall that the Frobenius distance dF (A, B) between any two M × N matrices

A :=[aij ] and B :=[bij ] is just
√∑

ij(aij − bij)2. It then makes sense to speak of the

Frobenius distance of a matrix to any compact subset of matrix space.
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is equal to f iDvAi
, the average number of roots is indeed:

Avg = (−1)n(n−1)/2
∫

(p,q)∈U

∫

f∈F

∧

i

e−‖f i‖2/2

(2π)mi+1
f i · (DvAi

)(p,q)dp∧

∧ f̄ i · (DvAi
)(p,−q)dq .

In the integral above, all the terms that are multiple of f i
αf̄

i
β for some α 6= β

will cancel out. Therefore,

Avg = (−1)n(n−1)/2
∫

(p,q)∈U

∫

f∈F

∧

i

e−‖f i‖2/2

(2π)mi+1

∑

α

|f i
α|2(DvAi

)α
(p,q)dp∧

∧ (DvAi
)α
(p,−q)dq .

Now, we apply the integral formula:

∫

x∈Cm
|x1|2

e−‖x‖2/2

(2π)m
=
∫

x1∈C

|x1|2
e−|x1|2/2

2π
= 2

to obtain:

Avg =
(−1)n(n−1)/2

πn

∫

(p,q)∈U

∧∑

α

(DvAi
)α
(p,q)dp ∧ (DvAi

)α
(p,−q)dq .

According to formulæ 2.1.3 and 2.1.4, the integrand is just 2−n ∧ωAi
, and thus

Avg =
(−1)n(n−1)/2

πn

∫

U

∧

i

ωAi
=
n!

πn

∫

U
dT n

�

3.3 The Proof of Theorem 4

Let (p, q) ∈ T n and let f ∈ F(p,q). Without loss of generality, we can assume
that f is scaled so that for all i, ‖f i‖ = 1.

Let δf ∈ F(p,q) be such that f + δf is singular at (p, q), and assume that
∑ ‖δf i‖2 is minimal. Then, due to the scaling we choose,

dP(f,Σ(p,q)) =

√
∑

‖δf i‖2 .

18



Since f + δf is singular, there is a vector u 6= 0 such that










(f 1 + δf1) · (Dv̂A1)(p,q)

...

(fn + δfn) · (Dv̂An
)(p,q)










u = 0

and hence 








(f 1 + δf 1) · (DvA1)(p,q)

...

(fn + δfn) · (DvAn
)(p,q)










u = 0 .

This means that 





f 1 ·DvA1u = −δf 1 ·DvA1u
...

fn ·DvAn
u = −δfn ·DvAn

u

.

Let D(f) denote the matrix

D(f)
def
=










f 1 · (DvA1)(p,q)

...

fn · (DvAn
)(p,q)










.

Given v = D(f) u, we obtain:







v1 = −δf 1 ·DvA1D(f)−1v
...

vn = −δfn ·DvAn
D(f)−1v

(3.3.1)

We can then scale u and v, such that ‖v‖ = 1.

Claim 1 Under the assumptions above, δf i is colinear to (DvAi
D(f)−1v)

H
.

Proof: Assume that δf i = g+h, with g colinear and h orthogonal to (DvAi
D(f)−1v)

H
.

As the image ofDvAi
is orthogonal to vAi

, g is orthogonal to vH
Ai

, so ev(gi, (p, q)) =
0 and hence ev(hi, (p, q)) = 0. We can therefore replace δf i by g without com-
promising equality (3.3.1). Since ‖δf‖ was minimal, this implies h = 0. �
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We obtain now an explicit expression for δf i in terms of v:

δf i = −vi
(DvAi

D(f)−1v)
H

‖DvAi
D(f)−1v‖2

.

Therefore,

‖δf i‖ =
|vi|

‖DvAi
D(f)−1v‖ =

|vi|
‖ (D(f)−1v) ‖Ai

.

So we have proved the following result:

Lemma 4 Fix v so that ‖v‖ = 1 and let δf ∈ F(p,q) be such that equation
(3.3.1) holds and ‖δf‖ is minimal. Then,

‖δf i‖ =
|vi|

‖D(f)−1v‖Ai

.

Lemma 4 provides an immediate lower bound for ‖δf‖ =
√
∑ ‖δf i‖2: Since

‖δf i‖ ≥ |vi|
maxj ‖D(f)−1v‖Aj

,

we can use ‖v‖ = 1 to deduce that

√
∑

i

‖δf i‖2 ≥ 1

maxj ‖D(f)−1v‖Aj

≥ 1

maxj ‖D(f)−1‖Aj

.

Also, for any v with ‖v‖ = 1, we can choose δf minimal so that equation (3.3.1)
applies. Using Lemma 4, we obtain:

‖δf i‖ ≤ |vi|
minj ‖D(f)−1v‖Aj

.

Hence √
∑

i

‖δf i‖2 ≤ 1

minj ‖D(f)−1v‖Aj

.

Since this is true for any v, and ‖δf‖ is minimal for all v, we have

√
∑

i

‖δf i‖2 ≤ 1

max‖v‖=1 minj ‖D(f)−1‖Aj

and this proves Theorem 4.
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3.4 The Idea Behind the Proof of Theorem 5

The proof of Theorem 5 is long. We first sketch the idea of the proof. Recall
that F(p,q) is the set of all f ∈ F such that ev(f ; p + q

√
−1) = 0, and that

Σ(p,q) is the restriction of the discriminant to the fiber F(p,q):

Σ(p,q)
def
= {f ∈ F(p,q) : D(f)(p,q) does not have full rank} .

The space F is endowed with a Gaussian probability measure, with volume
element

e−‖f‖2/2

(2π)
∑

mi
dF ,

where dF is the usual volume form in F = (FA1 , 〈·, ·〉A1
)× · · · × (FAn

, 〈·, ·〉An
)

and ‖f‖2 =
∑ ‖f i‖2

Ai
. For U a set in T n, we defined earlier (in the statement

of Theorem 5) the quantity:

νA(U, ε)
def
= Prob[µ(f, U) > ε−1] = Prob[∃(p, q) ∈ U : dP(f,Σ(p,q)) < ε] .

The näıve idea for bounding νA(U, ε) is as follows: Let V (ε)
def
= {(f, (p, q)) ∈

F × U : ev(f ; (p, q)) = 0 and dP(f,Σ(p,q)) < ε}. We also define π : V (ε) →
F as the canonical projection mapping F × U to F , and set #V (ε)(f)

def
=

#{(p, q) ∈ U : (f, (p, q)) ∈ V (ε)}. Then,

νA(U, ε) =
∫

f∈F
χπ(V (ε))(f)

e−‖f‖2/2

(2π)
∑

mi
dF

≤
∫

f∈F
#V (ε)

e−‖f‖2/2

(2π)
∑

mi
dF

with equality in the linear case and when ǫ >
√
n.

Now we apply the coarea formula (BCSS98, Theorem 5, Pg. 243) to obtain:

νA(U, ε) ≤
∫

(p,q)∈U⊂T n

∫

f∈F(p,q)

dP(f,Σ(p,q))<ε

1

NJ(f ; (p, q))

e−‖f‖2/2

(2π)
∑

mi
dF dVT n ,

where dVT n stands for Lebesgue measure in T n. Again, in the linear case, we
have equality.
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We already know from Lemma 3 that

1/NJ(f ; (p, q)) =
n∧

i=1

f i · (DvAi
)(p,q)dp ∧ f̄ i · (Dv̄Ai

)(p,q)dq .

We should focus now on the inner integral. In each coordinate space FAi
, we

can introduce a new orthonormal system of coordinates (depending on (p, q))
by decomposing:

f i = f i
I + f i

II + f i
III ,

where f i
I is the component colinear to vH

Ai
, f i

II is the projection of f i to
(range DvAi

)H , and f i
III is orthogonal to f i

I and f i
II.

Of course, f i ∈ (FAi
)(p,q) if and only if f i

I = 0.

Also,

n∧

i=1

f i · (DvAi
)(p,q)dp ∧ f̄ i · (Dv̄Ai

)(p,q)dq =

=
n∧

i=1

f i
II · (DvAi

)(p,q)dp ∧ f̄ i
II · (Dv̄Ai

)(p,q)dq .

It is an elementary fact that

dP(f
i
II + f i

III,Σ(p,q)) ≤ dP(f
i
II,Σ(p,q)) .

It follows that for f ∈ F(p,q):

dP(f,Σ(p,q)) ≤ dP(fII,Σ(p,q)) ,

with equality in the linear case. Hence, we obtain:

νA(U, ε) ≤
∫

(p,q)∈U⊂T n

∫

f∈F(p,q)

dP(fII,Σ(p,q))<ε

(
n∧

i=1

f i
II · (DvAi

)(p,q)dp ∧ f̄ i
II · (Dv̄Ai

)(p,q)dq

)

·

· e
−‖f i

II+f i
III‖2/2

(2π)
∑

mi
dF dVT n ,

with equality in the linear case. We can integrate the
∑

(mi −n− 1) variables
fIII to obtain:
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Proposition 3

νA(U, ε) ≤
∫

(p,q)∈U⊂T n

∫

fII∈Cn2

dP(fII,Σ(p,q))<ε

(
n∧

i=1

f i
II · (DvAi

)(p,q)dp ∧ f̄ i
II · (Dv̄Ai

)(p,q)dq

)

·

· e−‖f i
II‖2/2

(2π)n(n+1)
dVT n .

with equality in the linear case. �

3.5 The Proof of Theorem 5

The domain of integration in Proposition 3 makes integration extremely diffi-
cult. In order to estimate the inner integral, we will need to perform a change
of coordinates.

Unfortunately, the Gaussian in Proposition 3 makes that change of coordinates
extremely hard, and we will have to restate Proposition 3 in terms of integrals
over a product of projective spaces.

The domain of integration will be P
n−1 × · · · × P

n−1. Translating an inte-
gral in terms of Gaussians to an integral in terms of projective spaces is not
immediate, and we will use the following elementary fact about Gaussians:

Lemma 5 Let ϕ : C
n → R be C

∗-invariant (in the sense of the usual scaling
action). Then we can also interpret ϕ as a function from P

n−1 into R, and:

1

Vol(Pn−1)

∫

[x]∈Pn−1
ϕ(x)d[x] =

∫

x∈Cn
ϕ(x)

e−‖x‖2/2

(2π)n
dx ,

where, respectively, the natural volume forms on P
n−1 and C

n are understood
for each integral.

Now the integrand in Proposition 3 is not C
∗-invariant. This is why we will

need the following formula:

Lemma 6 Under the hypotheses of Lemma 5,

1

Vol(Pn−1)

∫

[x]∈Pn−1
ϕ(x)d[x] =

1

2n

∫

x∈Cn
‖x‖2ϕ(x)

e−‖x‖2/2

(2π)n
dx .

where, respectively, the natural volume forms on P
n−1 and C

n are understood
for each integral.

Proof:
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∫

x∈Cn
‖x‖2ϕ(x)

e−‖x‖2/2

(2π)n
dx=

∫

Θ∈S2n−1

∫ ∞

r=0
|r|2n+1ϕ(Θ)

e−|r|2/2

(2π)n
drdΘ

=
∫

Θ∈S2n−1

(

−
[

|r|2n e
−|r|2/2

(2π)n

]∞

0

+2n
∫ ∞

r=0
|r|2n−1 e

−|r|2/2

(2π)n
dr

)

ϕ(Θ)dΘ

= 2n
∫

x∈Cn
ϕ(x)

e−‖x‖2/2

(2π)n
dx

�

We can now introduce the notation:

WEDGEA(fII)
def
=

n∧

i=1

1

‖f i
II‖2

f i
II · (DvAi

)(p,q)dp ∧ f̄ i
II · (Dv̄Ai

)(p,q)dq .

This function is invariant under the (C∗)n-action λ⋆fII : fII 7→ (λ1f
1
II , · · · , λnf

n
II ).

We adopt the following conventions: FII ⊂ F is the space spanned by coordi-
nates fII and P(FII) is its quotient by (C∗)n.

We apply n times Lemma 6 and obtain:

Proposition 4 Let VOL
def
= Vol(Pn−1)n. Then,

νA(U, ε) ≤ (2n)n

VOL

∫

(p,q)∈U⊂T n

∫

fII∈P(FII)
dP(fII,Σ(p,q))<ε

WEDGEA(fII) dP(FII) dVT n

with equality when ǫ >
√
n. In the linear case,

νLin(U, ε) =
(2n)n

VOL

∫

(p,q)∈U⊂T n

∫

gII∈P(FLin
II )

dP(gII,Σ
Lin
(p,q)

)<ε

WEDGELin(gII) d(PFLin
II )dVT n �

Now we introduce the following change of coordinates. Let L ∈ GL(n) be such
that the minimum in Definition 4, Pg. 6 is attained:

ϕ : P
n−1 × · · · × P

n−1 → P
n−1 × · · · × P

n−1

fII 7→ gII

def
= ϕ(fII) , such

that gi
II = f i

II ·DvAi
L .

Without loss of generality, we scale L such that detL = 1. The following
property follows from the definition of WEDGE:
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WEDGEA(fII) = WEDGELin(gII)
n∏

i=1

‖gi
II‖2

‖f i
II‖2

(3.5.1)

Assume now that dP(fII,Σ(p,q)) < ε. Then there is δf ∈ FII, such that f + δf ∈
ΣLin

(p,q) and ‖δf‖ ≤ ε (assuming the scaling ‖f i
II‖ = 1 for all i).

Setting gII = ϕ(fII) and δg = ϕ(δg), we obtain that g + δg ∈ ΣLin
(p,q).

dP(g,Σ
Lin
(p,q)) ≤

√
√
√
√

n∑

i=1

‖δgi‖2

‖gi
II‖2

At each value of i,
‖δgi‖
‖gi

II‖
≤ ‖δf i‖

‖f i
II‖
κ(Df i

II
ϕi)

where κ denotes Wilkinson’s condition number of the linear operator Df i
II
ϕi.

This is precisely κ(DvAi
L). Thus,

dP(g,Σ
Lin
(p,q)) ≤ εmax

i
κ(DvAi

L) = ε
√
κU

Thus, an ε-neighborhood of ΣA
(p,q) is mapped into a

√
κUε neighborhood of

ΣLin
(p,q).

We use this property and equation (3.5.1) to bound:

νA(U, ε) ≤ (2n)n

VOL

∫

(p,q)∈U⊂T n

∫

gII∈Pn−1×···×Pn−1

dP(gII,Σ
Lin
(p,q)

)<
√

κUε

WEDGELin(gII)·

·
n∏

i=1

‖gi
II‖2

‖f i
II‖2

|JgII
ϕ−1|2 d(Pn−1 × · · · × P

n−1) dVT n (3.5.2)

where JgII
ϕ−1 is the Jacobian of ϕ−1 at gII.

Remark 3 Considering each DvAi
as a map from C

n into C
n, the Jacobian

is:

JgII
ϕ−1 =

n∏

i=1

‖ϕ−1(gII)
i‖n

‖gi
II‖n

(

detDvH
Ai
DvAi

)−1/2
.

We will not use this value in the sequel. ⋄

In order to simplify the expressions for the bound on νA(U, ε), it is convenient
to introduce the following notation:
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dP
def
=

(2n)n

VOL
WEDGELin(gII)

d(Pn−1 × · · · × P
n−1)

n! (ωLin)
∧

n

H
def
=

n∏

i=1

‖gi
II‖2

‖f i
II‖2

|Jgϕ
−1|2

χδ
def
= χ{g | dP(g,ΣLin

(p,q)
)<δ}

Now equation (3.5.2) becomes:

νA(U, ε) ≤ n!
∫

(p,q)∈U⊂T n
(ωLin)

∧
n
∫

gII∈Pn−1×···×Pn−1
dP H(gII) χ√

κUε(gII)

(3.5.3)

Lemma 7 Let (p, q) be fixed. Then P
n−1 × · · · × P

n−1 together with density
function dP , is a probability space.

Proof: The expected number of roots in U for a linear system is

n!
∫

(p,q)∈U
ω
∧

n

Lin

∫

gII∈Pn−1×···×Pn−1
dP

and is also equal to n!
∫

U ω
∧

n

Lin . This holds for all U , hence the volume forms
are the same and ∫

gII∈Pn−1×···×Pn−1
dP = 1. �

This allows us to interpret the inner integral of equation (3.5.3) as the expected
value of a product. This is less than the product of the expected values, and:

νA(U, ε) ≤ n!
∫

(p,q)∈U⊂T n
(ωLin)

∧
n
(∫

gII∈Pn−1×···×Pn−1
dP H(gII)

)

·

·
(∫

gII∈Pn−1×···×Pn−1
dP χ√

κUε(gII)
)

Because generic (square) systems of linear equations have exactly one root,
we can also consider U as a probability space, with probability measure

1
VolLin(U)

n!ω
∧

n

Lin . Therefore, we can bound:

νA(U, ε) ≤ 1

VolLin(U)

(
∫

(p,q)∈U
n!(ωLin)

∧
n
∫

gII∈Pn−1×···×Pn−1
dP H(gII)

)

·

·
(
∫

(p,q)∈U
n!(ωLin)

∧
n
∫

gII∈Pn−1×···×Pn−1
dP χ√

κUε(gII)

)
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The first parenthetical expression is VolA(U), the volume of U with respect
to the toric volume form associated to A = (A1, · · · , An). The second paren-
thetical expression is νLin(

√
κUε, U). This concludes the proof of Theorem 5.

�

3.6 The Proof of Theorem 3

As in the complex case (Theorem 2), the expected number of roots can be
computed by applying the coarea formula:

AV G =
∫

p∈U

∫

f∈FR
p

n∏

i=1

e−‖f i‖2/2

√
2π

mi
det(DG DGH)−1/2 .

Now there are three big differences. The set U is in R
n instead of T n, the space

FR

p contains only real polynomials (and therefore has half the dimension), and
we are integrating the square root of 1/ det(DG DGH).

Since we do not know in general how to integrate such a square root, we
bound the inner integral as follows. We consider the real Hilbert space of
functions integrable in FR

p endowed with Gaussian probability measure. The
inner product in this space is:

〈ϕ, ψ〉 def
=
∫

FR
p

ϕ(f)ψ(f)
n∏

i=1

e−‖f i‖2/2

√
2π

mi−1dV ,

where dV is Lebesgue volume. If 1 denotes the constant function equal to 1,
we interpret

AV G =
∫

p∈U
(2π)−n/2

〈

det(DG DGH)−1/2,1
〉

.

Hence Cauchy-Schwartz inequality implies:

AV G ≤
∫

p∈U
(2π)−n/2‖ det(DG DGH)−1/2‖‖1‖ .

By construction, ‖1‖ = 1, and we are left with:

AV G ≤
∫

p∈U
(2π)−n/2

√
√
√
√

∫

FR
p

n∏

i=1

e−‖f i‖2/2

√
2π

mi−1 det(DG DGH)−1 .
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As in the complex case, we add extra n variables:

AV G ≤ (2π)−n/2
∫

p∈U

√
√
√
√

∫

FR

n∏

i=1

e−‖f i‖2/2

√
2π

mi
det(DG DGH)−1 ,

and we interpret det(DG DGH)−1 in terms of a wedge. Since

∫

x∈Rm
|x1|2

e−‖x‖2/2

√
2π

m =
∫

y∈R

y2 e
−y2/2

√
2π

=
∫

y∈R

e−y2/2

√
2π

= 1 ,

we obtain:

AV G ≤ (2π)−n/2
∫

p∈U

√
n!dT n = (2π)−n/2

∫

p∈U

√
n!dT n .

Now we would like to use Cauchy-Schwartz again. This time, the inner product
is defined as:

〈ϕ, ψ〉 def
=
∫

p∈U
ϕ(p)ψ(p)dV .

Hence,
AV G ≤ (2π)−n/2〈n!dT n,1〉 ≤ (2π)−n/2‖n!dT n‖‖1‖ .

This time, ‖1‖2 = λ(U), so we bound:

AV G≤ (2π)−n/2
√

λ(U)

√
∫

U
n!dT n

≤ (4π2)−n/2
√

λ(U)

√∫

(p,q)∈T n,p∈U
n!dT n�

3.7 The Proof of Theorem 6

Let ε > 0. As in the mixed case, we define:

νR(U, ε)
def
= Probf∈F

[

µ(f ;U) > ε−1
]

= Probf∈F [∃p ∈ U : ev(f ; p) = 0 and dP(f,Σp) < ε]

where now U ∈ R
n.

Let V (ε)
def
= {(f, p) ∈ FR × U : ev(f ; p) = 0 and dP(f,Σp) < ε}. We also

define π : V (ε) → P(F) to be the canonical projection mapping FR ×U to FR

and set #V (ε)(f)
def
= #{p ∈ U : (f, p) ∈ V (ε)}. Then,
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νR(U, ε) =
∫

f∈FR

e−
∑

i
‖f i‖2/2

√
2π
∑

mi
χπ(V (ε))(f) dFR

≤
∫

f∈FR

e−
∑

i
‖f i‖2/2

√
2π
∑

mi
#V (ε)dFR

≤
∫

p∈U⊂Rn

∫

f∈FR
p

dP(f,Σp)<ε

e−
∑

i
‖f i‖2/2

√
2π
∑

mi

1

NJ(f ; p)
dFR

p dVT n

As before, we change coordinates in each fiber of FR

A by

f = fI + fII + fIII

with f i
I colinear to vT

A, (f i
II)

T in the range of DvA, and f i
III orthogonal to f i

I and
f i

II. This coordinate system is dependent on p+ q
√
−1.

In the new coordinate system, formula 2.3.1 splits as follows:

det
(

DG(p)DG
H
(p)

)−1/2
dVT n =

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










(f 1
II )1 . . . (f 1

II )n

...
...

(fn
II )1 . . . (fn

II )n










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










(DvA
II)1

1 . . . (DvA
II)1

n

...
...

(DvA
II)n

1 . . . (DvA
II)n

n










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dV

=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










(f 1
II )1 . . . (f 1

II )n

...
...

(fn
II )1 . . . (fn

II )n










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

√

detDvH
ADvA

The integral E(U) of
√

detDvADvH
A is the expected number of real roots on

U , therefore

νR(U, ε) ≤ E(U)
∫

fII+fIII∈FR
p

dP(fII+fIII,Σp)<ε

e−
∑

i
‖f i

II+f i
III‖2/2

√
2π
∑

mi
·

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










(f 1
II )1 . . . (f 1

II )n

...
...

(fn
II )1 . . . (fn

II )n










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dFR

p .
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In the new system of coordinates, Σp is defined by the equation:

det










(f 1
II )1 . . . (f 1

II )n

...
...

(fn
II )1 . . . (fn

II )n










= 0 .

Since ‖fII + fIII‖ ≥ ‖fII‖,

dP(fII + fIII,Σp) < ε =⇒ dP(fII,Σp) < ε .

This implies:

νR(U, ε) ≤ E(U)
∫

fII+fIII∈F R
p

dP(fII,[det=0])<ε

e−
∑

i
‖f i

II+f i
III‖2/2

√
2π
∑

mi
·

·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

det










(f 1
II )1 . . . (f 1

II )n

...
...

(fn
II )1 . . . (fn

II )n










∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

dFR

p .

We can integrate the (
∑
mi − n− 1) variables fIII to obtain:

νR(U, ε) = E(U)
∫

fII∈Rn2

dP(fII,[det=0])<ε

e−
∑

i
‖f i

II‖2/2

√
2π

n2 |det fII|2 dRn2

.

This is E(U) times the probability ν(n, ε) for the linear case. �
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Appendix: The Coarea Formula

Here we give a short proof of the coarea formula, in a version suitable to the
setting of this paper. This means we take all manifolds and functions smooth
and avoid measure theory as much as possible.

Proposition 5

(1) Let X be a smooth Riemann manifold, of dimension m and volume form
|dX|

(2) Let Y be a smooth Riemann manifold, of dimension n and volume form
|dY |.

(3) Let U be an open set of X, and F : U → Y be a smooth map, such that
DFx is surjective for all x in U .

(4) Let ϕ : X → R
+ be a smooth function with compact support contained in

U .

Then for almost all z ∈ F (U), Vz
def
= F−1(z) is a smooth Riemann manifold,

and
∫

X
ϕ(x)NJ(F ;x)|dX| =

∫

z∈Y

∫

x∈Vz

ϕ(x)|dVz||dY |

where |dVz| is the volume element of Vz and NJ(F, x) =
√

detDFH
x DFx is

the product of the singular values of DFx.

By the implicit function theorem, whenever Vz is non-empty, it is a smooth
(m − n)-dimensional Riemann submanifold of X. By the same reason, V :=
{(z, x) : x ∈ Vz} is also a smooth manifold.
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Let η be the following m-form restricted to V :

η = dY ∧ dVz .

This is not the volume form of V . The proof of Proposition 5 is divided into
two steps:

Lemma 8 ∫

V
ϕ(x)|η| =

∫

X
ϕ(x)NJ(F ;x)|dX|.

Lemma 9 ∫

V
ϕ(x)|η| =

∫

z∈Y

∫

x∈Vz

ϕ(x)|dVz||dY | .

Proof of Lemma 8: We parametrize:

ψ : X → V

x 7→ (F (x), x)
.

Then,
∫

V
ϕ(x)|η| =

∫

X
(ϕ ◦ ψ)(x)|ψ∗η| .

We can choose an orthonormal basis u1, · · · , um of TxX such that un+1, · · · , um ∈
kerDFx. Then,

Dψ(ui) =







(DFxui, ui) i = 1, · · · , n
(0, ui) i = n+ 1, · · · ,m

.

Thus,

|ψ∗η(u1, · · · , um)|= |η(Dψu1, · · · , Dψum)|
= |dY (DFxu1, · · · , DFxun)| |dVz(un+1, · · · , um)|
= | detDFx|ker DF⊥

x
|

=NJ(F, x)

and hence ∫

V
ϕ(x)|η| =

∫

X
ϕ(x)NJ(F ;x)|dX| �

Proof of Lemma 9: We will prove this Lemma locally, and this implies the
full Lemma through a standard argument (partitions of unity in a compact
neighborhood of the support of ϕ).
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Let x0, z0 be fixed. A small enough neighborhood of (x0, z0) ⊂ Vz0 admits a
fibration over Vz0 by planes orthogonal to kerDFx0 .

We parametrize:

θ : Y × Vz0 → V

(z, x) 7→ (z, ρ(x, z))
,

where ρ(x, z) is the solution of F (ρ) = z in the fiber passing through (z0, x).
Remark that θ∗dY = dY , and θ∗dVz = ρ∗DVz. Therefore,

θ∗(dY ∧ dVz) = dY ∧ (ρ∗dVz) .

Also, if one fixes z, then ρ is a parametrization Vz0 → Vz. We have:

∫

V
ϕ(x)|η|=

∫

Y ×Vz0

ϕ(ρ(x, z))|θ∗η|

=
∫

z∈Y

(
∫

x∈Vz0

ϕ(ρ(x, z)|ρ∗dVz|
)

|dY |

=
∫

z∈Y

(∫

x∈Vz

ϕ(x)|dVz|
)

|dY |�

The proposition below is essentially Theorem 3, Pg. 240 of (BCSS98). How-
ever, we do not require our manifolds to be compact. We assume all maps and
manifolds are smooth, so that we can apply proposition 5.

Proposition 6

(1) Let X be a smooth m-dimensional manifold with volume element |dX|.
(2) Let Y be a smooth n-dimensional manifold with volume element |dY |.
(3) Let V be a smooth m-dimensional submanifold of X × Y , and let π1 :

V → X and π2 : V → Y be the canonical projections from X × Y to its
factors.

(4) Let Σ′ be the set of critical points of π1, we assume that Σ′ has measure
zero and that Σ′ is a manifold.

(5) We assume that π2 is regular (all points in π2(V ) are regular values).

(6) For any open set U ⊂ V , for any x ∈ X, we write: #U(x)
def
= #{π−1

1 (x)∩
U}. We assume that

∫

x∈X #V (x)|dX| is finite.

Then, for any open set U ⊂ V ,

∫

x∈π1(U)
#U(x)|dX| =

∫

z∈Y

∫

x∈Vz

(x,z)∈U

1
√

detDGxDGH
x

|dVz||dY |
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where G is the implicit function for (x̂, G(x̂)) ∈ V in a neighborhood of (x, z) ∈
V \ Σ′. �

Proof: Every (x, z) ∈ U \ Σ′ admits an open neighborhood such that π1

restricted to that neighborhood is a diffeomorphism. This defines an open
covering of U \ Σ′. Since U \ Σ′ is locally compact, we can take a countable
sub-covering and define a partition of unity (ϕλ)λ∈Λ subordinated to that sub-
covering.

Also, if we fix a value of z, then (ϕλ)λ∈Λ becomes a partition of unity for
π1(π

−1
1 (Vz) ∩ U). Therefore,

∫

x∈π1(U)
#U(x)|dX|=

∑

λ∈Λ

∫

x,z∈Suppϕλ

ϕλ(x, z)|dX|

=
∑

λ∈Λ

∫

z∈Y

∫

x,z∈Suppϕλ

ϕλ(x, z)

NJ(G, x)
|dX|

=
∫

z∈Y

∑

λ∈Λ

∫

x,z∈Suppϕλ

ϕλ(x, z)

NJ(G, x)
|dX|

=
∫

z∈Y

∫

x∈Vz

1

NJ(G, x)
|dX|

where the second equality uses Proposition 5 with ϕ = ϕλ/NJ . Since NJ =
√

detDGxDGH
x , we are done. �
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