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Randomization, Sums of Squares, Near-Circuits,
and Faster Real Root Counting

Osbert Bastani, Christopher J. Hillar, Dimitar Popov, andidurice Rojas

ABSTRACT. Suppose thaf is a real univariate polynomial of degr&with exactly 4
monomial terms. We present a deterministic algorithm of compylgalynomial in logD
that, for most inputs, counts the number of real root$ .ofrhe best previous algorithms
have complexity super-linear b. We also discuss connections to sums of squaresland
discriminants, including explicit obstructions to expiiegspositive definite sparse poly-
nomials as sums of squares of few sparse polynomials. Our keyetiel tool is the
introduction of efficiently computablehamber coneswvhich bound regions in coefficient
space where the number of real rootsfofan be computed easily. Much of our theory
extends tar-variate(n+ 3)-nomials.

1. Introduction

Counting the number of real solutions of polynomial equagim one variable is a fun-
damental ingredient behind many deeper tasks involvintpih@ogy of real algebraic sets.
However, the intrinsic complexity of this basic enumerativoblem becomes a mystery as
soon as one considers the input representation in a refinedSuah complexity questions
become important in many applications such as geometricetimgdor the discretization
of partial differential equations in physics because oteroéncounters polynomials that
have sparse expansions relative to some basis; i.e., treglyimg linear combination has
few terms relative to its degree. Our goal here is to provioehexponential speed-ups
for counting the real roots of certain sparse univariatgpamials of high degree.

Sturm sequencesSfu3g, and their later refinementsdpb48, BPR0OG, have long
been a central technigue for counting real roots of unit@nelynomials. In combina-
tion with more advanced algebraic tools such as a GrobneshasresultantsGKz94,
BPRO€, Sturm sequences can even be used to algorithmically stuelytopology of
real algebraic sets in arbitrary dimension (e.g., &@HO06 Chapters 2, 5, 11, and 16]).
Unfortunately, Sturm sequences quickly become ineffidi@ngéparse polynomials of large
degree (see Examples 1.1 and 1.2 below), and we must theefek alternative tools.
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More recently, the connection between positive polynosgald sums of squares has
been exploited to significantly speed up the optimizationestain real polynomials over
semi-algebraic domaing$?pr03, Las09. However, there are also obstructions to using
these techniques to speed up computations with sparsequoigis of large degree (see
Theorem 1.6 below).

Discriminants have a history nearly as long as that of Sturqusnces and sums of
squares, but their algorithmic power has yet to be fully eitptl. Our main result is that-
discriminants{GKZ94] yield a real root counting algorithm with complexity polymial
in the logarithm of the degree, for almost all inputs (see Theorem 1.4 bel@wg use of
randomization is potentially inevitable since even detecteal roots becomedP-hard
already for moderately sparse multivariate polynomiBR$09, PRT09, PRT11

1.1. From Large Sturm Sequences to Fast Probabilistic Couirig. The classical
technique of Sturm Sequencé&t|i35, BPR0O§ reduces counting the roots of a polynomial
f in a half-open intervala,b) to a gcd-like computation, followed by sign evaluations
for a sequence of polynomials. A key problem in these methioolsever, is their appar-
ent super-linear dependence on the degree of the undepygiygomial. The following
examples illustrate some of the technical issues we faeealse RY05, Example 1]).

EXAMPLE 1.1. Setting fx;) =x317811 21964181 1 therealroot  command in
Maple 14 (which is an implementation of Sturm Sequences) results ou&of-memory
error after 31 seconds. The polynomials in the underlying computation, while quite
sparse, have coefficients with hundreds of thousands akditius causing this failure.
On the other hand, via more recent wdiBRS09, one can show that when>0 and
g(xq) =x317811_ cxd94184 1. the polynomial g has exactly; 1, or 2 positive roots ac-

cording as c is less than, equal to, or greater t .ag13932139313;67§1131%418)1/317811z 1.94.

In particular, our f has exactly? positive roots. (We discuss how to efficiently compare
monomials in rational numbers with rational exponents ig@lthm 2.18 of Section 2.3.)
<&

EXAMPLE 1.2. Moving to tetranomials, consider(;) = ax;20008— x0005.1 1520004 1
with a, b>0. The polynomial f has exactlyor 3 positive roots (via the classical Descartes’
Rule of SigngRS02 Cor. 10.1.10, pg. 319] but the inequalities characterizing which
(a,b) yield either possibility are much more unwieldy than in castlexample. Indeed,
there are at leas such inequalities, involving polynomials in a and b with sewf
thousands of terms. In particular, f¢a, b) = (2, %) Sturm sequences Maple 14 result
in an out-of-memory error after 122 secones.

We have discovered thafi-discriminants, reviewed in Section 2, resolve these
problems and allow us to construct algorithms with comjethiat is polynomial in the
logarithm of the degree. We make some definitions beforagtatr result precisely.

DEFINITION 1.3. For any subset & C9, let

Log|S:= {(log|x1],-..,log|Xq|) | (X1,...,X4) € S},

where the log base is/2.718281828&nd we use the convention tHag(0) = —c. The
stable log-uniform contergnRY is defined to be (when the limit below exists)

_ d
V()= h;ig\m““og'S('Z:A[)dM’M] 5

1Running on a16GB RAM Dell PowerEdge SC1435 departmentaéserith 2 dual-core Opteron 2212HE
2Ghz processors and OpenSUSE 10.3.
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whereu denotes Lebesgue measureRsh o

The stable log-uniform content satisfies all the axioms otasure (for the algebra of sets
where the limit exists) except for countable additivitghalugh it is finitely additive. What
will be important for us here is that ai8with log|S a polyhedron always has well-defined
v(S), v is invariant under reflection across coordinate hyperplaaed thav (RY) =1.

THEOREM1.4. LetO< ap <ag<as=D be positive integers and set
f(X1) =C1 + X524+ cax3® + cax?.

There is a set & R* of coefficients with stable log-uniform contdptand a deterministic
algorithm with arithmetic complexity polynomial iogD that computes the exact number
of real roots of f givency,cy,C3,¢4) €S. Furthermore, if we restrict to (S$Z* and set

o :=log(2+ max |ci|), then this algorithm can be modified to instead require a nemb
of bit operations polynomial iw +logD. The underlying computational models for these
two complexity bounds are respectively the BSS model®agd the Turing model.

Although the regions in coefficient space determining poigrals with a constant num-
ber of real roots become more complicated as the number obmiah terms increases,
nevertheless one can efficiently characterize large sidimeg—chamber cones— where
the number of real roots is very easy to compute (see Sec}iomt8s motivates the in-
troduction of probability and average-case complexity teA-discriminant allows one
to make this approach completely precise and algorithmi¢adt, our framework enables
us to transparently extend Theorem 1.Ateariate(n+ 3)-nomials (see Theorem 3.19 of
Section 3.3).

REMARK 1.5. The algorithmic underpinning of Theorem 1.4 consists obAlgms
3.9 and 3.20, respectively of Sections 3.2 and 3.4. As ddrtfiere, and in Section 3.3,
one can also sometimes detect when f lies outside S, in wasehacdifferent method to
count real roots can be used.

Our focus on the stable log-uniform content simplifies theettgoment of our
approach and is motivated by the construction of floatingHpoumbers as expressions
of the forma x 1P whereac [1,10) NQ andb< Z. Also, the stable log-uniform content,
abstracted to more general complete fields, has alreadyusszhin work of Avendafio
and Ibrahim to study the expected number of roots of sparsa@mial systems over a
broad family of fields including)p, R((t)), andC((t)) [Al11].

It is natural to ask how the success probability in Theorednbkhaves under other
well-known measures such as uniform or Gaussian. Unforlypahe underlying calcu-
lations become much more complicated. We hope to address cragsical measures in
future work. On a deeper level, it is far from clear what aytrudatural” probability mea-
sure on the space of tetranomials is. For instance, for parss polynomials, it is popular
to use specially weighted independent Gaussian coefficgmte the resulting measure be-
comes invariant under a natural orthogonal group actian,(&ee Kos88, SS96, BSZp.
However, we are unaware of any study on the types of distabsitoccurring for the coef-
ficients of polynomials arising in applications.

The speed-ups we achieve here actually hold in far greatesrghty: see BRS09,
PRT09, PRT11] for the case ofh-variate(n-+ k)-nomials withk <2, Section 3 for connec-
tions ton-variate(n+ 3)-nomials, the forthcoming papeAPAR11] for the general univari-
ate case, and the forthcoming papBRRT11] for chamber cone theory af x n sparse
polynomial systems. A main goal of this paper is to illustrand clarify the underlying
theory in a non-trivial special case.
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As for other approaches to this problem, we remark that me#itkmown algorithms
for real root counting lack speed-ups for sparse polyn@niabr example, in the notation
of Theorem 1.4, [M01] gives an arithmetic complexity bound & (Dlog®D) which,
via the techniques ofPRO0€], produces a bit complexity bound super-linearant D.
No algorithm with complexity polynomial in loD (deterministic, randomized, or high
probability) appears to have been known before for tetraalem(See [HTZEKMO09 ] for
recent speed benchmarks of univariate real solvers.)

Also, note that while we focus on speed-ups which replacetignomial degre®
by logD in this paper, other practical speed-ups that combine simite programming
and sparsity are certainly possible (e.g., 4esp06, KM09)).

1.2. Sparsity and Univariate Sums of SquaresRecent advances in semidefinite
programming (SDP) have produced algorithms for finding sfisgaares representations
of certain nonnegative polynomialRdr03], thus enabling efficient polynomial optimiza-
tion under certain conditions. When the input is a sparsenootyal, it is natural to ask for
sum of squares representations that also respect spasbtaivation comes from under-
standing the efficiency of SDP: should such representaériss in general, one could use
SDP to speed up real root counting in the spirit of Theorem 1.4

It is well-known that a nonnegative univariate polynomiahde written as a sum
of two squares, although without any guarantee as to thesigpaf the polynomials
being squared (see, e.gPdu7] for refinements). The following result demonstrates that
expressing a sparse positive polynomial as a sparse sunuarfesgof sparse polynomials
is likely not possible in general.

THEOREM 1.6. There donot exist absolute constantsand m with the following
property: Any trinomial fe R[x] that is positive orR can be written as g2 +--- + g%,
for some g, ...,0, €R[x1] with g having at most m terms for all i.

Our second main theorem thus reveals an obstruction to ssimg of squares techniques
for fast real root counting of sparse polynomials. Softgnimir concept of sparse sum
of squares representation, however, may still enable sppgdimilar to Theorem 1.4
via SDP. For instance, one could ask if a positive trinomfatlegreeD always admits
a representation as a sum of YD squares of polynomials with IG§'D terms. This
guestion appears to be completely open.

ExamPLE 1.7. Elementary calculus shows that
f(xy) =X — g + 2K~ 1

attains a unique minimum value 6fat x=1 and thus is nonnegative. It is also easily
k-1 . 2

shown by induction that (k) = 2k_1_2051| (xf - 1) , which gives an expression for f
1=

as a sum of QogD) binomials with D=2%. Note that from this representation one sees
immediately that the only real root of f igx1. ¢

The outline of this paper is as follows: The necessary baxkyt on amoebae and
A-Discriminants is discussed in Section 2, including corafiahal results on linear forms
of logarithms. Next, Section 3 explains the algorithm eirigcTheorem 1.4, proves its
correctness, and calculates its overall time complexityally, in Section 4, we give the
proof of Theorem 1.6.
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2. Background

2.1. Amoebae and EfficientA-Discriminant Parametrization. We begin by briefly
reviewing two important constructions by Gelfand, Kaprgrand Zelevinsky GKZ94].
Recall that a(convex) conein R™ is any subset closed under nonnegative linear
combinations.

DEFINITION 2.1. Given a set of m integer vectars={ay,...,an} C Z", define the
following family of (Laurent) polynomials:

Fu={c® + -+ | ceC™M},

where the notation"k::x"i‘l‘i ---X™ is understood. When 0 for all i € {1,...,m}, we
call A thesupportof f(x)=3", cix® and we writeSupf f) = A. ¢

DEFINITION 2.2. For a field K, set K:=K\ {0}. Given any
Laurent polynomial g C [x;*,...,x1], its amoebds

Amoebdg) := {Log|c| | ce(C*)" and gc)=0}.

Recall that theconvex hullof a set S R", denotedCons, is
the smallest (with respect to containment) convex set aanta
S. We then define tHstandard) Newton polytopef g to be

Newt(g) :=Conv(Supgg)). ¢

ARCHIMEDEAN AMOEBA THEOREM. (see [5KZ94, Cor. 1.6,

pg. 195 & Cor. 1.8, pg. 196]Biven any ¢ C [xit,... x¢1],

the complement chAmoebdg) in R" is a finite disjoint union

of open convex sets. Also, the verticesNgfwt(g) are in

bijective correspondence with those connected compoién

R"\ Amoebdg) containing a translate of a convex cone wi

non-empty interiorl

An example of an amoeba appears above (see also Exampld@yj.B&/hile the comple-
ment of the amoeba (in white) appears to have 3 convex cagtheomponents, there are
in fact 4: the fourth component is a thin sliver emergingtiaertbelow from the downward
pointing tentacle.

DEFINITION 2.3. [GKZ94, Chs. 1 & 9-11]Letting A ={ay,...,am} C Z" have
cardinality m and fx) =c;x® + --- 4+ cpx®n, the A-discriminant variety(, is the

closure of the set of all points; : -+ : ¢y ePg‘l such that
of of
f = e = e = = 0
0X1 0%n

has a solution ifC*)". We also let] 4 (R) denote the real part dfl 4. Finally, whend 4
is a hypersurface, thel-discriminantA 4 € Z[c,...,Cm] is defined to be, up to sign, the
irreducible defining polynomial dfl 4. ¢

DEFINITION 2.4. WhenA CR" contains a point a such that+dimConv A \ {a})=
dimConvA, we say thaConvA is apyramid Also, we say tha#l is anear-circuitwhenA
has cardinality i+ 3, dimConvA=n, andA is not a pyramido

REMARK 2.5. Our illustrations were drawn viaMatlab . The key program,
nearckthkplot.m , was written by Rojas and is downloadable from
www.math.tamu.edu/"rojas/nearcircuits.html
The programnearckthkplot.m is an implementation of the near-circuit case of the
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Horn-Kapranov Uniformization (quoted below). Note alsattbur mention of circuits in
this paper alludes to matroid theory, not electrical netkmr

ExamPLE 2.6. If A={0,1,2}, thenF 4 consists of univariate polynomials of degree
<2andAj, is the well-known quadratic discriminan§ € 4cic3. More generally, ifA C
Z" has cardinality n+ 2, dimConvA =n, and ConvA is not a pyramid, the\ is a
binomial (segGKZ94, pp. 217-218 & Prop. 1.8, pg. 274 [BRS09 Lemma 2.12).
This setting, also known as tlécuit case, is studied from an algorithmic point of view in
[BRS09, PRT09, PRT11 ©

ExAMPLE 2.7. WhenA ={0,404,405 808}, the set
F,4 consists of polynomials of the form

f(x1)=c1+ X%+ cex}®+c8%  The  under-
lying A-discriminant is a polynomial in the jc
having 609 monomial terms and degre#604 Even
thoughA 4 is unwieldy, we can still easily skettlog| - |

of a slice of the real part of its zero sét4(R) via the
Horn-Kapranov Uniformizatiorisee its statement below,
and the illustration to the right)e

The curve plotted above is the image of the real root&gfcy,cs) :=2A,(1,Cp,1,C4)
under the Log: | map; i.e., part of the amoeba &f;. Note in particular that the boundary
of AmoebdA ) is contained in the curve above. The connection to amoebaeatis
introduces methods from polyhedral and tropical geomeitiy our setting.

Part of what we accomplish in our paper is to set the stageafrdlgorithms that
compute the topology of real zero sets of polynomials supploon near-circuits. A key
step is understanding the real discriminant compleriﬁ’%ﬁt1 \ Og (R).

ExXAMPLE 2.8. Elaborating a folkloric example (see, e.fbR06, Ex. 1.2), consider

o] [1] [o] [a2] [o] [1

A=< (0]|,|0|,|1f,|1],|O]| O

0| (o] |of (0] (1] |1
One can check that, in addition to satisfying our definiti@neh] 4 coincides with the set
of all points[ag:ay :bp:by:co:c] e]P’?C such that the homogeneo8x 2 linear system

apXo + a1 X1 = boXo + b1xg =CoXg + C1x1 =0

has a root[Xg : xq] EIP’(lC. In particular,
a a bo by
Ogq= tag:bp:bricp:ic = =0
A {[ao 1:bo:b1ico:c [bo bJ {Co CJ }
and has codimensior2. Most importantly, the real zero set of any polynomial
f € F 4 NR[x1,X, X3] is always a connected, doubly ruled quadric surface (pdgsb

plane) when # [ 4, and thus the topology of the real zero set of f is constantysiveen
DA. <&

WhenO, is a hypersurface, the topology of the real zero set of ai¥ 4 "R[xq,...,Xn]
need not be constant away from the discriminant variety §sstion 2.2). Characterizing
when (1, has codimensior 2 (for generalA) is a subtle problem addressed D02,
DR06, CC07. A necessary and sufficient condition for codirp =1 whenA C Z" has
cardinality n+ 3 appears in Corollary 3.7 of Section 3. In particular, is always a
hypersurface wher C Z has cardinality 4.
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In all but a few restricted settingé-discriminant polynomials are large. For instance,
the polynomiali(o 404405508, after Example 2.7 has the following coefficient f§f%;:

9039470865767009094484[2142 digits omitted]..08170311749217550336
Fortunately, the following theorem describes an efficieargmetrization ofl .

THE HORN-KAPRANOV UNIFORMIZATION. (See [Kap9l], [PTO05, and
[DFS07, Prop. 4.1) Given A ={ay,...,am} C Z" with 04 a hypersurface, the
discriminant locugl4 is the closure of

m
{[ul)\al Dot UmAT] | ueC™, Au=0, zlui =0, A¢(C)" } u
i=

Thus, the null-space of a particular+ 1) x mmatrix provides a parametrization Qfy .
Recall that for any two subset$,V C RN, their Minkowski sum U+ V is the set
{u+v|ueU, veV}. Also, for any matrixvl, we letM " denote its transpose.

COROLLARY 2.9. With the notation above, let denote thén-+ 1) x m matrix whose
it column has coordinates correspondinglte: &, and let Be R™P be any real matrix
whose columns are a basis for the right nuII—spaceflofAIso, defingp : CP — RM via
¢(t):=log[tB"|. ThenAmoebdA,) is the Minkowski sum of the row space.fand
$(CP). m
For those familiar with elimination theory, it is evidenbim the Horn-Kapranov Uni-
formization that discriminant amoebae are subspace bsirmier a lower-dimensional

amoeba. This is a geometric reformulation of the homogirsedatisfied by the poly-
nomialA 4.

o ~ 11 1 1 1
ExAMPLE 2.10. Continuing Example 2.7, the matrik= [0 404 405 80% has

right null-space generated bil, —405404,0) " and(1,-2,0,1)". Thus, from the Horn-
Kapranov Uniformization, the sét, is the closure of the rational surface

{ {tl—i—tz : (—408; — 2t2))\4042 4041)\405 (oA 808} ’ t1,toeC, A E(C*} C [P’%.

Note that f and: f have the same roots and that-s u/4%% is a well-defined bijection

on R that preserves sign. Note also that the roots of f difyl) := c—lif ((%)1/4°5y)

differ only by a real scaling when f has real coefficients, ahdt f can be written
14 Ly 044 yA051 ¢y8%8. [t follows that the study dfi 4 (R) reduces to a lower-dimensional
slice; the intersection dfl 4 with the plane defined by e-c3=1is the parametrized curve

in C%

_ _ _ —404/405 —808/405

O, = 4051 — 2t < 404, ) ’ to ( 404, > t1eC b

t1 41t t1+1t 1+t \t1+1t
In other words, 04 is the closure of the set of al(c,,c;) € (C*)2 such that
1+ cpx4044 x405 1 ¢} x8%8 has a degenerate root iG*.
Our preceding illustration of the image @f 4 (R) within AmoebdA 4 ) (after taking

log absolute values of coordinates) thus has the expliciapetrization with[t; : to] €
IP]I]:?\{[]- : O]a [0 : 1]7 [72 : 4053 [1 : 71]}:

1
405

404
405

808

loglt; +to| —
oglts +1| 405

403
(Iog|4031+2tg| - log|404|,log |tz + ﬁloghﬁ—tz\ - Iog|4041|>.



8 O. BASTANI, C. HILLAR, D. POPQV, AND J. M. ROJAS

In particular, the image oiP’HlQ under this parametrization is the curve from Example 2.7,
and it contains all non-isolated points of the boundaryAofioebdA ). See[DRRS07,
Lemma 3.3jand the illustration before that paper’s appendix for an e wheré] 4 (R)
contains isolated points (lying in the interior &imoebdA 4)). ©

A geometric fact about amoebae that will prove useful is tbkoding elegant
guantitative result of Passare and Rullgard.

PASSARE-RULLGARD THEOREM. [PRO4, Cor. 1] Suppose gC [x;',x3'] has
Newton polygon P. Thefirea Amoebdg)) < ?Area(P). B

2.2. Discriminant Chambers and Cones.A-discriminants are central in real root
counting because the real part0f; determines where in coefficient space the real zero
set of a polynomial changes topology. Recall thilagin R" is a translated subspace and
that the dimension of a cortis the dimension of the smallest flat containibg

DEFINITION 2.11. SupposeAd ={ay,...,an} CZ" and 04 is a hypersurface. Any
connected componef of the complement dfl 4 in PR\ {¢;---cn=0} is called a
(real) discriminant chamber_et A denote thgn+ 1) x m matrix who§eii column has

coordinatesl x a;, and let B= [b; j] € R™P be any real matrix with{;} invertible. If

log|C|B contains an m-dimensional cone, we d&kn outerchamber (ofd 4). All other
chambers ofl 4 are calledinnerchambers (ofl ). Finally, the formal expression
b b b b
(C1,...,cm)Bi= (cll‘l Y N --cm’“"’)
is called amonomial change of variableand we say that images of the fo@R (with €
an inner or outer chamber) aneducedchamberso

It is easily verified that logeB| =log|C|B, where the second expression simply means the
image of log€| under right multiplication by the matri.

EXAMPLE 2.12. The illustration from Example 2.7 sho& partitioned into what
appear to be8 convex and unbounded regions, dhdon-convex unbounded region. There
are in fact4 convex and unbounded regions with the fourth visible ontlggfdownward
pointing spike were allowed to extend much farther down EBaemple 3.2). Thusd =
{0,404,405 808} results in exactlyt reduced outer chambers.

Note that exponentiation by a matiigives a well-defined multiplicative homomor-
phism from (R*)™ to (R*)P whenB has rational entries with all denominators odd. In
particular, thanks to the Archimedean Amoeba Theorem, #fi@ition of outer chamber
is independent 0B since (for theB above) LogCB| is unbounded and convex iff Lo@®'|
is unbounded and convex, whelBe is any matrix whose columns are a basis for the or-
thogonal complement of the row space/of

One can reduce the study of the topology of the real zero sespérse polynomial to
that of a representative in a reduced discriminant chambspecial case of this reduction
is contained in the following result.

LEmmA 2.13. DRRSO07, Prop. 2.17] Suppose thatl C Z" is a near circuit,ANQ
has cardinality n for all facets Q o€onvA, all the entries of B Q("3%2 have odd

denominator, an{éﬂ is invertible. Also let fge ¥4 \ 04 have respective real coef-

ficient vectors ¢ and’avith ¢ and ¢8 lying in the same reduced discriminant chamber.
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Then all the complex roots of f and g are non-singular, andréspective zero sets of f
and g in(R*)" are diffeotopic. In particular, whens1, f and g have the same number of
positive roots &l

2.3. Integer Linear Algebra and Linear Forms in Logarithms. We now review the
guantitative results on integer matrix factorizations &ndar forms in logarithms which
are crucial for proving our main algorithmic results. Rédlaat anyn x m matrix [u; j]
with u; j =0 for alli > j is calledupper triangular

DEFINITION 2.14. LetGL 1(Z) denote the set of all matrices #"" with determinant
+1 (the set otinimodulamatrices). Given any MZ™™M, an identity of the form UM=H,
with H=[h; ;] € Z™™ upper triangular and U= GL(Z) is called aHermite factorization
of M. In addition, if the following conditions are met:

(1) the left-most nonzero entry in each row of H is positive,
(2) if h; j is the left-most nonzero entry of row i, ther hy ; <hy j for all i’ <i,
then we call H theHermite normal fornof M. ¢
PROPOSITION2.15. Let K be any field. We havé%= (x*)B for any AB< Z™" and

x € (K*)". Moreover, when & Z™" is unimodular, the map defined by(xy:=x" is an
automorphism ofK*)". ®

THEOREM2.16. [Sto0Q Ch. 6, Table 6.2, pg. 94]Given any A=[a; j| € Z™™ with
m>n, a Hermite factorization of A can be computed within

O(nrr?'mlogz(mmaxaa, j I))

i
bit operations. Furthermore, the entries of all matricegdtved in the Hermite factoriza-
tion have bit-size Qnlog(mmax j |& j|)). B

The following result is a very special case of work of Nestécethat dramatically
refines Baker’s famous theorem on linear forms in logarithBek77].

THEOREM2.17. Nes03 Thm. 2.1, Pg. 55]Given integerss,...,w andasy,...,ay
with a; > 2 for all i, define

Ay,a):=yilogai+---+ wlogan.
If A(y, a)#0, then the following bound holds:

1 N
log|————| < 2.9(N +2)%2(2e)2N+6(2 + logmax|y; loga. [ ]
0|y ay| < 29N +2)72(2952 +logmay ) [ oo

An obvious consequence of lower bounds for linear formsgatdahms is an efficient
method to determine the signs of monomials in integers.

ALGORITHM 2.18.
Input: Positive integersiy, Uy, ..., 0m,Um andBl,vl, ., Bn, VN With aj, B > 2 for all i.

Output: The sign oo™ -+ agM — By -+ By,
Description:
(0) Check via gcd-free bases (see, e.g[BS96 Sec. 8.4] whether
oyt =Bt BNV If so, output ‘They are equal. ”and STOPR
(1) Lety=max{us,...,Um,V1,...,Vn} and set

29

N
o= IO(‘:]Z(Ze)Z""JFZ'\'Jr6 1+logy) x (rlloga.> (iﬂlogﬁi>.
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(2) Forallie[M] (resp. i€ [N]), let A (resp. B) be a rational number agreeing with
loga; (resp.logB) in its first2+ & +log, M (resp.2+ 6 + log, N) leading bits?

M N
(3) Output the sign ofy uA — 5 viB; andSTOR
i=1 i=1

LEMMA 2.19. Algorithm 2.18 is correct and terminates within a number ibDiper-
ations asymptotically linear in

(M+N)(30"*NL(logy) (]ﬁmogm)) (_ﬁmogm) 7

where L(x) :=x(logx)?loglogx. B

Lemma 2.19 follows directly from Theorem 2.17, the well-wmofast iterations for ap-
proximating log (seeBre76, Sal76, Ber0P, and the known refined bit complexity esti-
mates for fast multiplication (see, e.d3396 Table 3.1, pg. 43]).

3. Chamber Cones and Polyhedral Models
3.1. Defining and Describing Chamber Cones.

DEFINITION 3.1. Suppose that X R™ is convex and Q@ X is the polyhedral cone
consisting of all & R™ with c+ X CX. We call Q theecession confor X and, if pc R™
satisfies (1) p-rQ2> X and (2) p+c+ Q2 X for any c= Q\ {O}, then we call p+ Q the
placedrecession cone. In particular, the placed recession conédg|C| with C an outer
chamber (resp. reduced outer chamber) is callethamber conéresp.reduced chamber
cong of 4. We call the facets of the (reduced) chamber cones ofreduced) walls of
4. We also refer to walls of dimensidrasrays ¢

ExAMPLE 3.2. Returning to
Example 2.7, we draw the rays /
that are the boundaries of thd

reduced chamber cones. The fourth
(slender) reduced chamber cone
is now visually exposed. (The
magnified illustration to the right
actually shows two close and nearly
parallel rays going downward.)
Note also that reduced chamber
cones need not share vertices.

Chamber cones are well-defined since chamberbgreonvexbeing the domains of
convergence of a particular class of hypergeometric sésees e.g.,GKZ94, Ch. 6]). A
useful corollary of the Horn-Kapranov Uniformization iswgrisingly simple and explicit
description of chamber cones.

DEFINITION 3.3. Supposed C Z" is a near-circuit. Also let B be any re@h+ 3) x 2
matrix whose columns are a basis for the right null spacé,oe[md letB,..., By be the
rows of B. Any set of indicels_ {1,...,n+ 3} satisfying the two conditions:

(@) [Bilieg is @ maximal ranklL submatrix of B,

%For definiteness, we use Arithmetic-Geometric Mean Itera®im Ber03] to find these approximations.
(See alsoBre76, Sal7§.) In speaking of leading bits, we assume our rational numéersvritten in base 2; e.g.,
1011.11010011.
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(b) Sicy Bi is notthe zero vector,
is called aradiant subset correspondingAo ¢

THEOREM3.4. Suppose thafl C Z" is a near-circuit and] 4 is a hypersurface. Also
let B be any realn+ 3) x 2 matrix whose columns are a basis for the right null space of
A, and letBs, ..., Bnys be the rows of B. Finally, letSs j]=B {(1) 01} BT, and let $
denote the row vector whos# poordinate isO or log|s j| according as ; is 0 or not.
Then each wall ofl, is the Minkowski sum of the row-space/fand a ray of the form
S — Ry Yjcs€ for some unique radiant subsgtof A and any icJ. In particular, the
number of walls ofl 4, the number of chamber coneslof;, and the number of radiant
subsets corresponding b are all identical, and lies i3,...,n+3}.

Note that the definition of a radiant subset corresponding imindependent of the chosen
basisB, since the definition is invariant under column operatiom80

REMARK 3.5. Theorem 3.4 refines an earlier result of Dickenstein, Feiehtand
Sturmfel§DFS07, Thm. 1.2]Jwhereunshifted variants of chamber cones (all going through
the origin) were computed for non-pyramidélc Z" with arbitrary cardinality and] 4 a
hypersurface. A version of Theorem 3.4 for genetatill appear in[PRRT11]. ¢

EXAMPLE 3.6. Itis easy to show that a generit satisfying the hypotheses of Theo-
rem 3.4 will have exactly #+ 3 chamber cones, as in Example 2.7. It is also almost as easy
to construct examples having fewer chamber cones. Fornastaaking

a={[a o B [ ee-[o 1205

we see that the hypotheses of Theorem 3.4 are satisfied andlt% is a nonradiant
subset. Thus, the underlying discriminant variety has only3 chamber cones:

Proof of Theorem 3.4: First note that by Corollary 2.9, the set Amoéhg) is the
Minkowski sum of¢ (C?) and the row space ofl, where¢(t) =Log|tB"|. Determin-
ing the walls therefore reduces to determining the direstiorthogonal to the row space
of A in which ¢ (t) becomes unbounded.

Sincel:=(1,...,1) isin the row space ofl, we havel B=0 and thusp (t)=¢ (t/M)
for all M > 0. Thus, we can restrict to the compact subget to) | [t1|? + [t2|>=1}, and
we observe thap(t) becomes unbounded if3;" goes to zero for somie In particular,
there are no more thant- 3 reduced walls. Note also thg" — 0 iff t tends to a suitable

0
unbounded are precisely those with index J, in which J is the unique radiant subset
corresponding to those rows Bfthat are nonzero multiples ¢. (The assumption that
A not be a pyramid implies th& can have no zero rows.) Furthermore, the coordinates
of ¢(t) that become unbounded each tend-to. Note that radiance condition (b) comes
into play since we are looking for directiomsthogonal to the row-space ot for which
¢ (t) becomes unbounded.

It follows that each wall is of the asserted form. However,stit need to account for
the coordinates of (t) that remain bounded. tftends to a suitable (nonzero) multiple of

(nonzero) multiple of3; g , iIn which case those coordinatesdoft) which become

Bi [(1) _01] , then itis clear that any coordinateft) with index j ¢J tends tas j (modulo
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a multiple ofl added top (t)). Thus, we have provided a bijection between radiant sabset
corresponding tal and the walls of1 4.

To conclude, note that the row space/bhas dimensiom+ 1 by construction, so the
walls are all actually (parallei)-plane bundles over rays. By the Archimedean Amoeba
Theorem, each outer chamber[@f; must be bounded by 2 walls, and the walls have a
natural cyclic ordering. It follows that the number of chanloones is the same as the
number of rays. The upper boundmof- 3 on the number of rays is thus clear. To see the
lower bound of 3, first note that having one or two radiant st impossible: this is
becausd B=0. Sincell, is a hypersurface, the Horn-Kapranov Uniformization iregli
that there must be at least one radiant subset, there musfdrebe at least 3, so we are
done.®

A simple consequence of our proof, combined with an earlpseovation of Dick-
enstein and Sturmfel©S02 Cor. 4.5], is the following characterization of near-cits
yielding A-discriminants that are hypersurfaces.

COROLLARY 3.7. Supposéi is a near-circuit. Therl 4 is a hypersurface iffl has a
radiant subset. In particular, il has a radiant subset then it has at led@stadiant subsets.
|

Note in particular that wheA C Z has cardinality 411 4 is always a hypersurface: itis easy
to show that the right null-space of such .dralways has at least 2 linearly independent
rows, thus implying at least 2 (and thus at least 3) radianssts.

3.2. Which Chamber Cone Contains Your Problem?An important consequence
of Theorem 3.4 is that while the underlyingdiscriminant polynomiad 4 may have huge
coefficients, theays of a linear projection of AmoelfA 4 ) admit a concise description
involving few bits, save for the transcendental coordisateming from the “shifts’s.
Applying our quantitative estimates from Section 2.3, wa taen quickly find which
chamber cone contains a givetvariate(n+ 3)-nomial.

THEOREM3.8. With the notation of Theorem 3.4, suppose that¥f, NR[x, ..., %],
and lett denote the maximum bit-size of any coordinatélofThen we can determine the
unique chamber cone containing f — or correctly decide if €aatained in2 or more
chamber cones — within a number of arithmetic operations ihaolynomial in n+ 1.
Furthermore, if fe ¥4 NZ[x1,...,%], 0 is the maximum bit-size of any coefficient of f,
and n is fixed, we can also obtairb# complexity bound polynomial in+oc. B

Theorem 3.8 is the central tool behind our complexity resatd follows from the
correctness of (and giving suitable complexity bounds tiog)following algorithm:

ALGORITHM 3.9.

Input: A near-circuit A C Z" of cardinality n+ 3 and the coefficient vector c of a

polynomial fe F 4 NR[X1, ..., Xn].

Output: Radiant subset§ and 7’ (corresponding taA) generating the walls of the
unique chamber cone containing f, or a true declaration thiatis
contained in at leasR chamber cones, or a true declaration that, is not
a hypersurface.

Description:

(-5) (Preprocessing) Compute the Hermite Factorization HUTA and let B
be the submatrix defined by the rightmastolumns of U.
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(-4) (Preprocessing) LeBy, ..., Bn3 be the rows of B, setS|s j|=B [2 _01] BT,

and let $ denote the row vector whosé® jcoordinate is0O or log|s,j|
according as §;j is 0 or not.

(-3) (Preprocessing) Find all radiant subsets” {1,...,n-+ 3} corresponding toA.
If there are none, then outplitl, has codimension >2!” andSTOR

(-2) (Preprocessing) For any radiant subskset3; =— 3 ;5 Bj and let g denote the
row vector §B for any fixed &J.

(-1) (Preprocessing) Sort th@) in order of increasing counter-clockwise angle with
the x-coordinate ray and let R denote the resulting ordewtéction of /.

(0) (Preprocessing) For each radiant subsecompute y < Q?, the intersection of
the lines s + RB; and s +Rp/,, wherep), is the counter-clockwise neighbor
of B;.

(1) SetConeCount0.

(2) Via binary search, attempt to find a pair of adjacent rays &f fitrm
(vg +R By, v5 +R, B),) containinglLog|c|B.
(a) If (ConeCount=0 and there is no such pair of rays)

or
(ConeCount1 and there is such a pair of rays)
thenoutputYour f lies in at least 2 distinct chamber

cones.” andSTOR
(b) If ConeCount=0 and there is such a pair of rays, delgd¢ and 3/, from R,
set ConeCountConeCount- 1, andGOTO STER2).
(3) Output“Your f lies in the unique chamber cone determined
by J and J.” andSTOPR

REMARK 3.10. An important detail for large scale computation is that thegrocess-
ing steps (-5)—(0) need only be dooeceper supportA. This can significantly increase
efficiency in applications where one has just one (or a f@wgnd one needs to answer
chamber cone membership queries for numerous f with the sappert.c

Proof of Correctness of Algorithm 3.9: First note that the computed matBxas columns
that form a basis for the right null-space 4f This follows since our assumptions @h
ensure that the rank of is n+ 1; thus, the last 2 rows ¢ T consist solely of zeroes.

By construction, Theorem 3.4 then implies that fjeare exactly the reduced rays for
0.4, modulo an invertible linear map. (The invertible map agisecause right-multiplication
by B induces an injective projection of the right null-spacedofntoR?.)

Itis then clear that the preprocessing steps do nothing thareprovide us 8 suitable
for Theorem 3.4 and a sorted set of reduced rays ready for lmftaoone membership
gueries via binary search, shoult; be a hypersurface. (Corollary 3.7 implies that we
correctly detect whefl 4 is not a hypersurface.) In particular, since the reducedblea
cones coveR?, the correctness of Steps (1)—(3) is clear and we are dine.

In what follows, we will use the “soft-Oh” notatiod* (h) to abbreviate bounds of the form
o(h(log h)0<1>) .

Complexity Analysis of Algorithm 3.9: We begin our analysis from the more involved
point of view of bit complexity. Our arithmetic complexityhnd will then follow quickly
from this study.
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By Theorem 2.16, Step (-5) tak&{n®>3°r2) hit operations. Also, the resulting bit-
size for the entries dB is O(nT).

The complexity of Step (-4) is negligible, save for the apjraation of certain log-
arithms. The latter won’t come into play until we start déegdon which side of a ray a
point lies, so let us analyze the remaining preprocessafsst

Step (-3) can be accomplished easily by a greedy approahitenates through the
rows 3z, ..., Bnt-3 to find which ones are multiples @ . Once this is finished, one checks
whether the resulting set of indices is radiant or not, aed time repeats this process with
the remaining rows oB. In summary, we nee®(n?) arithmetic operations on numbers of
bit-sizeO(n1), giving a total of0*(n®1) for the number of bit operations.

Step (-2) has negligible complexity.

The comparisons in Step (-1) can be accomplished by congptltincosine and sine of
the necessary angles using dot products and cross protfiectee well-known asymptoti-
cally optimal sorting algorithms, it is then clear that S¢elp require<O(nlogn) arithmetic
operations on integers of bit-sig¥nt), contributing a total 0©*(n’t logn) bit operations.

Step (0) has negligible complexity.

Thus, the complexity of the Preprocessing Steps (-5)—(O)i8-376r2) bit operations.

Continuing on to Steps (1)—(3), we now see that we are fac#t@®logn) sidedness
comparisons between a point and an oriented line. More gghtiwe need to evaluate
O(logn) signs of determinants of matrices of the fo r!r‘1og|CB|l,3_SJ

7

evaluation, thanks to Algorithm 2.18 and Lemma 2.19, takes

} Each such sign

o(n302”+5L(a+ nr)L(o)”+3L(nr)"+2)

bit operations.

We have thus proved our desired bit complexity bound whidhilerpolynomial in
T+ o for fixedn, is visibly exponential im. Note, however, that the exponential bottleneck
occurs only in the sidedness comparisons of Step (2).

To obtain an improved arithmetic complexity bound, obsehat the sidedness com-
parisons can be replaced by computations of signs of difte® of monomials, simply
by exponentiating the resulting linear forms in logarithrig& recursive squaringgS96
Thm. 5.4.1, pg. 103], it is then clear that each such comparisquires onlyD(n?t) arith-
metic operations. Thus, the overall number of arithmetierapjons drops to polynomial
in n+ 7 and we are dondll

Let us now state some final combinatorial constructionsreefialy describing how
chamber cones apply to real root counting.

3.3. Canonical Viro Diagrams and the Probability of Lying in Outer Chambers.
Our use of outer chambers and chamber cones enables us terstagnearlier construction
of Viro. Let us first recall that @riangulation of a point setA is a simplicial complex
whose vertices lie itl.

DEFINITION 3.11. We say that a triangulation ofl is cohereniff its maximal sim-
plices are exactly the domains of linearity for some functighat is convex, continuous,
and piecewise linear on the convex hull&f In particular, we will sometimes define
such an/ by fixing the valueg(a) for just those a& A and then employing the faces of
Conv({(a,¢(a)) | ac.A}) having inner normal with positive last coordinate. The l&ag
graph is known as thiwer hull of thelifted point set{(a,¢(a)) |acA}. ¢
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DEFINITION 3.12. (See Proposition 5.2 and Theorem 5.6@KZ94, Ch. 5, pp. 378—
393]) Suppose that C Z" is finite and that the convex hull of has positive volume
and boundaryyA. Suppose also that is equipped with a coherent triangulatidghand
a function s A — {£} which we will call adistribution of signs forA. Any edge with
vertices of opposite sign is called alternating edgeand we define a piece-wise linear
manifold — theViro diagramV 4 (Z,s) — in the following local manner: For any n-cell
CeZz, let Lc be the convex hull of the set of all midpoints of alternatidges of C, and set

Vaz,s)= |J Lc\oA
C an n-cell
WhenA =Supg f) and s is the corresponding sequence of coefficient signs wkealso
call Vs(f):=V 4(Z,s) theViro diagram off corresponding t&. ¢

EXAMPLE 3.13. Consider fx) =1 —x; — X2 + 3x{x2 + 3x:x3. ThenSupg(f) =
{(0,0),(1,0),(0,1),(1,4),(4,1)} and its convex hull is a pentagon. There are exabtly
coherent triangulations, giving possible Viro diagrams for f (drawn in thicker green
lines):

+

N
IN S

Note that all these diagrams have exa@lgonnected components, with each component
isotopic to an open interval. Note also that f i®aariate (24 3)-nomial. ¢

DEFINITION 3.14. Suppose thadl C Z" is a near-circuit and] 4 is a hypersurface.
AI59 let B be any realn+ 3) x 2 matrix whose columns are a basis for the right null space
of A. For any fe 4, define

V()= (va(f),...,vny3(f)) = Zei + Z g,
ied jed
whereJ and J are the unique radiant subsets corresponding to the uniduaenber cone
containingLog|c|. (We set ¢f):=0O should there not be a unique such chamber cone.)
Let ArchNewt f) be the convex hull of(a;,vi) |i€{1,...,n+3}}, and letZ¢ denote the
triangulation of A induced by the lower hull oArchNewt f). We callArchNewt( f) the

renormalized Archimedean Newton polygon fof Also, call any polynomial of the form
Yy cix& — with Q a cell ofzy — acanonical lower polynomidior f. Finally, we write

aeQ

V(f):=Vs(f) for thecanonical Viro diagranof f. ¢

Note that for anf € C [xi*,...,x}] its standard Newton polytope lies R", while

ArchNewt f) lies in R,
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EXAMPLE 3.15. Let f(x;) =1— $x#044 x405— 28% c=(1,-1,1,-2), and A =
{0,404,405808}. A routine calculation reveals thdf{2},{3}} is the pair of radiant sub-
sets corresponding to the unique chamber cone containaggc|. Thus, ¥f)=(0,1,1,0)

and Armwt(f) e ——— (modulo some artistic stretching). In particu-
lar, Z; has the single cell0,808, which is an alternating cell, and s9( f) consists of a
single point. More than coincidentally, f has exactlpositive root.c

ExAamPLE 3.16. Returning to Example 3.13, lete(1,—1,—-1,3,3). A routine cal-
culation reveals that the unique chamber cone contaiing|c| is defined by the pair
of radiant subsetf{2},{3}}. Thus, ¢f)=(0,1,1,0,0) and X; is the upper middle
triangulation from the illustration of Example 3.13(f) then consists a2 disjoint open
intervals and, more than coincidentally, the positive zexbof f has exactlg connected
components, each homeomorphic to an open interval.

THEOREM3.17. Following the notation above, sét(x) =3 ™3 c;t%(")x3 and assume
in addition thatA N Q has cardinality n for all facets Q d€onvA. Then c=(cy,...,Cn+3)
lies in an outer chamber=>- the positive zero sets df, as t ranges ovef0,1], are each
diffeotopic to the positive zero set ff In particular, f; = f and thus, when c lies in an
outer chamber, the positive zero set of f is isotopi¥(é).

REMARK 3.18. For n=1we obtain that the number of positive roots of the tetranbmia
f is exactly the cardinality of its canonical Viro diagrars.

Proof: By construction, the image of L#ﬁclt"l(”,...,cn+3t"n+3<f))’ ast ranges over

(0,1] is a ray entirely contained in a uniqgue chamber cone. Morebyeassumption (and
since outer chambers are log convex), the ray is also cauantirely in Log- | of an
outer chamber. The first part of our theorem now follows froemima 2.13.

The final part of our theorem is then just a reformulation afo'd Theorem on the
isotopy type of toric deformations of real algebraic se¢e(®.9., K294, Thm. 5.6]).1

The main contribution of our paper is thus an efficient metiocassociate eanonical
Viro diagram to the positive zero set of a givén so that bothC! manifolds have the
same topology. Such a method appears to be new, althoughetiessary ingredients
have existed in the literature since at least the 1990s. tticpkr, to the best of our
knowledge, all earlier applications of Viro's method demd cleverf having the same
topology as some specially tailored Viro diagram, thus gomthe opposite direction of
our construction.

We state up front that our method for finding isotopy type deetswork for all f.
However, our development yields a sufficient condition —eowhamber membership —
that holds with high probability under the stable log-unificcontent.

THEOREM 3.19. Suppose tha#l ¢ Z" is a near-circuit andd 4 is a hypersurface.
Suppose also that the coefficients &fFf 4 NR[x1,...,Xn] are independently chosen via the
stable log-uniform content ové&. Then with probabilityl, f lies in some outer chamber.
In particular, if we assume in addition that N Q has cardinality n for all facets Q of
ConvA, the positive zero set of f is isotopic¥g f) with probability 1.

Proof: By Theorem 3.4, AmoelfA 4) is ann-plane bundle over Amoelfa4 ), where
Ay €Z]ab) andAy(cy,. .., cni3) = Y(c)A 4 (a(c),B(c)) for suitable monomialsr, B, y
in the variables;. Furthermore, thanks to Corollary 8 d*$T05, AmoebdA ) is solid;
that is, the complement of Amoefdg, ) has no bounded convex connected components.
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Letc denote the coefficient vector éf It follows thatf lies in an outer chamber if and
only if Log|c| Z AmoebdA 4). In particular, by the Passare-Rullgard Theorem the volume
of AmoebdA 4) NC in any large centered cul@@occupies a vanishingly small fraction of
C. This proves the first assertion. The final assertion is anddiate consequence of the
first and Theorem 3.1

Theorem 1.4 follows easily from Theorems 3.17 and 3.19. Tipi@ations of Theo-
rems 3.17 and 3.19 to computational real topology will bespad in another paper.

3.4. Proving Theorem 1.4.Consider the following algorithm for counting the posi-
tive roots of “most” real univariate tetranomials.

ALGORITHM 3.20.
Input: A tetranomial fe R[x;] with supportA.
Output: A numberin{0,1,2,3} that is exactly the number of positive roots of f whenever
f is in an outer chamber dfl 4.
Description:
(1) Via Algorithm 3.9, and any sub-quadratic planar convex haidorithm (see, e.g.,
[OSvKO0Q]), compute the canonical Viro diagratf( f).
(2) If f did not lie in a unique chamber cone then outgiour f does
not lie in an outer chamber, please use an alternative
method.” andSTOR
(3) Output the cardinality oV’(f) andSTOR

Assuming Algorithm 3.20 is correct, we can count the reatsad f by applying Al-
gorithm 3.20 tof (x1) and f (—xq). (Whetherf vanishes at 0 can trivially be checked in
constant time.) Theorem 1.4 thus follows upon proving theemtness of our last algo-
rithm and providing a suitable complexity bound.

Proof of Correctness of Algorithm 3.20: By Theorem 3.17, the number of positive roots
of f is exactly the cardinality o9 (f) wheneverf is in an outer chambell

Complexity Analysis of Algorithm 3.20: First observe that Algorithm 3.20 gives a correct
answer with probability 1 (relative to the stable log-unifocontent) by Theorem 3.19. We
finish by proving the complexity bound in the statement ofttreorem.

Consider first the more refined setting of bit complexity.rRr@ur complexity analysis
of Algorithm 3.9, it is clear that Step (1) requires at most

O(log?D) + O(L(0 +logD)L(0)*L(logD)3)

bit operations, modulo the computation 8{f). The complexity of computing’(f)
is essentially dominated by that of computing the convex bu#h points with coordi-
nates of bit-sizeD(logD), which is clearly negligible in comparison. The complexity
of Steps (2) and (3) is also negligible. Thus, we obtain a fisiatomplexity bound of
O*((0 +logD)a*logD).

As for arithmetic complexity, our earlier analysis of Algfbm 3.9 specializes easily
to give an upper bound (:(T)(Iog2 D). (The speed-up arises from the ease of checking
inequalities involving integral powers of real numbershe BSS model oveR.) B

REMARK 3.21. It is important to note that when f lies in a chamber cone rtttin
any outer chamber, Algorithm 3.20 can give a wrong answeweler, thanks to Theorem
3.19, such an occurence has probabiltynder the stable log-uniform content.
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4. Proving Theorem 1.6

Here, we prove the negative result of our paper: sparseymasitivariate polynomials
cannot always be expressed as sparse sums of sparse st essult is an obstruction
to using sum of squares techniques for fast root countingprépare for the proof, we
first set up some notation. L& denote the set of nonnegative integers, and fix positive
integers’ andm. LetP= [p; j] € N§*™ be a matrix of nonnegative integers, ordered as

PL1>P21>- =Py and pij > P,

forallie{l,...,/} andje{1,...,m}. Also, leta ; be indeterminates over the same index
set. Consider now the following polynomial:
4 m . 2
S(x1) = Zi (Z a,-_,jxi’"‘> € No[xqJ[aj [ 1<i<l, 1<j<m]

(4.2) i=1 \j=1

- 2p11

- gZPl.l(P)Xl +o +g1(P)x1+go(P),
in which each nonzerogj(P) is a homogeneous (quadratic) polynomial in
Nola,j | 1<i<¢, 1<j<m]. Note that there are at maBt? distinct powers ok, occuring
in the monomial term expansion 86(x;) and thus at mogtn? of theg; are nonzero. We
will refer to the integerp; j as theexponentorresponding to theoefficient a;.

LEMMA 4.1. For any fixed/, m>1, the following set of polynomials is finite:
Gme:={Gi(P) |PeNy*™and ic {1,...,2p11}}.

Proof: Note that the coefficient of any, is clearly a nonnegative integer bounded above
by 2m¢ (independent oP). Note also that eaat) involves at mostmvariabless; j. Since
eachg; is quadratic, it has no more thadm(¢/m—1)/2 monomial terms. So there are at
most(2m¢)‘MM-1)/2 distinct polynomials irGy, . B

Suppose now that = ij:o fixi1 is a sum off squares, each involving at masterms.
Then, there is a set of expone®snd an assignmeaf ; € R for the coefficients; ; such
thatf = S identically. Conversely, fixing a set of exponeRtsany real point in the variety
determined by the equatiogs= f; gives a representation éfas a sum of squares, each
involving at mostm terms.

We will prove Theorem 1.6 using contradiction by showing thaertain infinite fam-
ily of trinomials cannot all have sparse representatiorte®form (4.1). For this approach
to work, however, we will need to find a single “universal” sétcoefficientsa; j that
represents an infinite number of sums of squares.

LEMMA 4.2. Let F C R[x;] be an infinite collection of polynomials which are sums
of ¢ squares, each involving at most m terms. Moreover, suppagetie nonzero coef-
ficients of polynomials € F come from a finite set C. Then, there is an infinite subset
{f1, f2,...} CF, with corresponding exponent matrices®, ... € Néxm, and a single set
of real coefficientga ; }, such that for all k, the polynomial fs obtained from §(x1) by
specializing @;=a; j for all i, j.

Proof: Givenf eF, letP; be an exponent matrix corresponding to the hypothesizecb$um
squares representation for Also, letT be the set of all possible coefficient polynomials
gi occurring in the expansion @&, as a polynomial irx; for somef € F. The sefT is
finite, thanks to Lemma 4.1. By assumption, a putative sungoéges expression for an
f € F gives rise to a set of equations of the fogniPr) =c; ¢, where theg; are inT and



RANDOMIZATION AND NEAR-CIRCUITS 19

thec s+ are inC. The set of all such equations is thus finite, and has a noryerepl
zero set since every has a representation as a sunt gfjuares of univariater-nomials.
Therefore, by the infinite pigeon-hole principle, there isubset{ fx }kery Which has the
same set of equations governing the coefficienjsfor all k. Picking any real solution to
such a set of equations finishes the prdibf.

To complete the preparation for our proof of Theorem 1.6y¢edlso recall “little-oh”
notation: given any functioh: N — R, we say thah(n)=o(n) if
h(n)

lim —= =0.
n—oo N

Itis easy to see that the sum of any finite number of such fanstis alsa(n). Moreover,
if im n_ye @ = p for some constarp, thenp(n) = np+ o(n).

Proof of Theorem 1.6: Suppose, to derive a contradiction, that every positivendefi
trinomial can be written as a sum 6&quares, each involving at mastterms. Consider
the following infinite sequence of positive definite trinats

(4.2) fu=2x4x111 k=12,....

Using Lemma 4.2, we can find a subsequefigevith corresponding exponent matrices

Ay, - .- € Ny“™and a single set of real numbers- (& ;) such thatfy,(x,) =S (x1,a)

as polynomials inx, for all positive integers. Let us also picka so that the number of

nonzero coordinates is maximal among all such vectors dficieats. For clarity of ex-

position, we will not keep updating the subscripting of el when taking subsequences.
Given an exponent matrig, € Nf)xm, define a new matrix

~ 1

H(s = gH(s-

This corresponds naturally to the transformatign— xi/ks applied to both sides of the
equationfy(x1) = qus(xl,é). Since deg¢fy,) = 2ks, each matrixF~1<S has entries in the
interval[0,1]. By compactness, we may choose a subsequgseich tha151<S converges
in the (entry-wise) Euclidean norm to a matfx= [f3 ;] € [0, 1]*™. Henceforth, we restrict
to this subsequence. Clearly, we haye = 1, and also that some entry Bfis 0. It turns
out that 0 and 1 are the only possible values for entriéswhich need play a role in (4.1).

CLAIM . We can choose the subsequefifig}s so that if0< § j <1, the corresponding
coefficienty j is 0.

To prove the claim, let us suppose temporarily fhabntaing >3 entries pi, ..., fr,
with 1=p; > --- > i, =0. (Otherwise, the claim is vacuously true.) Each powex;of
occurring after expanding the squared summandjitx, ) is of the form

(4.3) KsPu + ksPy + 0o(Ks).

Thus, for all sufficiently larges, the powers ofk; occurring in expression (4.1) can be
partitioned into classes determined by the distinct vabies

Pu+ By, uve{l,....r}.

Note that the numbers (4.3) all become strictly smalleip(resger) than & — 1 (resp.
0) ass— o unlessu=v=1 (resp.u=v=r). (This is becaus@,<1 andp;_1>0.) In
particular, for

(4.4) w € {2ks+ 0(ks), 0+ o(ks) }
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andslarge, the polynomialgy(P) € No[a; j] do not involve the indeterminates; com-
ing from exponents of the forms Py + o(ks) with u¢ {1,r}. Moreover, each monomial in
ow(R) with w not in one of the classes from (4.4) is divisible by at leagt @i coming
from an exponent of the forrksfi, + o(ks) with u¢ {1,r} since exponents iffi, cannot
have ordeks(p1 + fr) =ks+ 0(ks).

Since the only nonzero coefficients of the sequence (4.2edoam the classes of
(4.4), it follows that we may replace with 0 all coefficielatg corresponding to exponents
kspu + 0o(ks) with u¢ {1,r} and still have the equality of polynomials

fis(X1) = Sp (X1, ).
The claim therefore follows from the maximality propertytbé chosen set of coefficients
ajj.
To conclude, we now examine the limiting behavior of the egpions from Equal-

ity (4.1). From the claim, it follows that whesis large, we need only consider those
exponents from the matric&, that are on the order

ks+0(ks) and O+ o(ks).

So fix s large enough so that all exponentsRyf that occur with a nonzero coefficient in
(4.1) after substitutinga; ;) for (& ;) are either strictly greater th%kS or strictly less than
%ks. Let p be the smallest such exponent greater t%bgn When the sum from (4.1) is ex-
panded, the term xip will then appear with positive coefficient; i.e.,
92p(R)(@) > 0. (This is because > %ks and thus, by construction,p2can not be the
sum of two exponents other thamand p.) Since the only term ofy of positive even
degree isﬁks, we must then have that= ks. In particular, it is not possible to obtain a
nonzero coefficient foxfks‘1 in fi,. This contradiction completes the pro@.
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