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ABSTRACT. Suppose thatf is a real univariate polynomial of degreeD with exactly 4
monomial terms. We present a deterministic algorithm of complexity polynomial in logD
that, for most inputs, counts the number of real roots off . The best previous algorithms
have complexity super-linear inD. We also discuss connections to sums of squares andA-
discriminants, including explicit obstructions to expressing positive definite sparse poly-
nomials as sums of squares of few sparse polynomials. Our key theoretical tool is the
introduction of efficiently computablechamber cones, which bound regions in coefficient
space where the number of real roots off can be computed easily. Much of our theory
extends ton-variate(n+3)-nomials.

1. Introduction

Counting the number of real solutions of polynomial equations in one variable is a fun-
damental ingredient behind many deeper tasks involving thetopology of real algebraic sets.
However, the intrinsic complexity of this basic enumerative problem becomes a mystery as
soon as one considers the input representation in a refined way. Such complexity questions
become important in many applications such as geometric modeling or the discretization
of partial differential equations in physics because one often encounters polynomials that
have sparse expansions relative to some basis; i.e., the underlying linear combination has
few terms relative to its degree. Our goal here is to provide novel exponential speed-ups
for counting the real roots of certain sparse univariate polynomials of high degree.

Sturm sequences [Stu35], and their later refinements [Hab48, BPR06], have long
been a central technique for counting real roots of univariate polynomials. In combina-
tion with more advanced algebraic tools such as a Gröbner bases or resultants [GKZ94,
BPR06], Sturm sequences can even be used to algorithmically studythe topology of
real algebraic sets in arbitrary dimension (e.g., see [BPR06, Chapters 2, 5, 11, and 16]).
Unfortunately, Sturm sequences quickly become inefficientfor sparse polynomials of large
degree (see Examples 1.1 and 1.2 below), and we must therefore seek alternative tools.
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More recently, the connection between positive polynomials and sums of squares has
been exploited to significantly speed up the optimization ofcertain real polynomials over
semi-algebraic domains [Par03, Las09]. However, there are also obstructions to using
these techniques to speed up computations with sparse polynomials of large degree (see
Theorem 1.6 below).

Discriminants have a history nearly as long as that of Sturm sequences and sums of
squares, but their algorithmic power has yet to be fully exploited. Our main result is thatA-
discriminants[GKZ94] yield a real root counting algorithm with complexity polynomial
in the logarithmof the degree, for almost all inputs (see Theorem 1.4 below).The use of
randomization is potentially inevitable since even detecting real roots becomesNP-hard
already for moderately sparse multivariate polynomials [BRS09, PRT09, PRT11].

1.1. From Large Sturm Sequences to Fast Probabilistic Counting. The classical
technique of Sturm Sequences [Stu35, BPR06] reduces counting the roots of a polynomial
f in a half-open interval[a,b) to a gcd-like computation, followed by sign evaluations
for a sequence of polynomials. A key problem in these methods, however, is their appar-
ent super-linear dependence on the degree of the underlyingpolynomial. The following
examples illustrate some of the technical issues we face (see also [RY05, Example 1]).

EXAMPLE 1.1. Setting f(x1)= x317811
1 − 2x196418

1 + 1, the realroot command in
Maple 14 (which is an implementation of Sturm Sequences) results in an out-of-memory
error after 31 seconds.1 The polynomials in the underlying computation, while quite
sparse, have coefficients with hundreds of thousands of digits, thus causing this failure.
On the other hand, via more recent work[BRS09], one can show that when c> 0 and
g(x1)= x317811

1 − cx196418
1 + 1, the polynomial g has exactly0, 1, or 2 positive roots ac-

cording as c is less than, equal to, or greater than 317811
(121393121393196418196418)1/317811≈ 1.94.

In particular, our f has exactly2 positive roots. (We discuss how to efficiently compare
monomials in rational numbers with rational exponents in Algorithm 2.18 of Section 2.3.)
⋄

EXAMPLE 1.2. Moving to tetranomials, consider f(x1)=ax100008
1 −x50005

1 +bx50004
1 −1

with a,b>0. The polynomial f has exactly1or 3positive roots (via the classical Descartes’
Rule of Signs[RS02, Cor. 10.1.10, pg. 319]), but the inequalities characterizing which
(a,b) yield either possibility are much more unwieldy than in our last example. Indeed,
there are at least2 such inequalities, involving polynomials in a and b with tens of
thousands of terms. In particular, for(a,b)=

(

2, 1
2

)

, Sturm sequences inMaple 14 result
in an out-of-memory error after 122 seconds.⋄

We have discovered thatA-discriminants, reviewed in Section 2, resolve these
problems and allow us to construct algorithms with complexity that is polynomial in the
logarithm of the degree. We make some definitions before stating our result precisely.

DEFINITION 1.3. For any subset S⊆ Cd, let

Log|S| := {(log|x1|, . . . , log|xd|) | (x1, . . . ,xd)∈ S},

where the log base is e≈2.718281828and we use the convention thatlog(0)=−∞. The
stable log-uniform contentonRd is defined to be (when the limit below exists)

ν(S) := lim
M→∞

µ(Log|S|∩ [−M,M]d)

(2M)d ,

1Running on a 16GB RAM Dell PowerEdge SC1435 departmental server with 2 dual-core Opteron 2212HE
2Ghz processors and OpenSUSE 10.3.
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whereµ denotes Lebesgue measure onRd. ⋄

The stable log-uniform content satisfies all the axioms of a measure (for the algebra of sets
where the limit exists) except for countable additivity, although it is finitely additive. What
will be important for us here is that anySwith log|S| a polyhedron always has well-defined
ν(S), ν is invariant under reflection across coordinate hyperplanes, and thatν(Rd)=1.

THEOREM 1.4. Let0<a2<a3<a4=D be positive integers and set

f (x1)=c1+c2xa2
1 +c3xa3

1 +c4xa4
1 .

There is a set S⊆ R4 of coefficients with stable log-uniform content1, and a deterministic
algorithm with arithmetic complexity polynomial inlogD that computes the exact number
of real roots of f given(c1,c2,c3,c4)∈S. Furthermore, if we restrict to S∩Z4 and set
σ := log(2+maxi |ci |), then this algorithm can be modified to instead require a number
of bit operations polynomial inσ + logD. The underlying computational models for these
two complexity bounds are respectively the BSS model overR and the Turing model.

Although the regions in coefficient space determining polynomials with a constant num-
ber of real roots become more complicated as the number of monomial terms increases,
nevertheless one can efficiently characterize large subregions —chamber cones— where
the number of real roots is very easy to compute (see Section 3). This motivates the in-
troduction of probability and average-case complexity, and theA-discriminant allows one
to make this approach completely precise and algorithmic. In fact, our framework enables
us to transparently extend Theorem 1.4 ton-variate(n+3)-nomials (see Theorem 3.19 of
Section 3.3).

REMARK 1.5. The algorithmic underpinning of Theorem 1.4 consists of Algorithms
3.9 and 3.20, respectively of Sections 3.2 and 3.4. As clarified there, and in Section 3.3,
one can also sometimes detect when f lies outside S, in which case a different method to
count real roots can be used.⋄

Our focus on the stable log-uniform content simplifies the development of our
approach and is motivated by the construction of floating-point numbers as expressions
of the forma×10b wherea∈ [1,10)∩Q andb∈Z. Also, the stable log-uniform content,
abstracted to more general complete fields, has already beenused in work of Avendaño
and Ibrahim to study the expected number of roots of sparse polynomial systems over a
broad family of fields includingQp, R((t)), andC((t)) [AI11].

It is natural to ask how the success probability in Theorem 1.4 behaves under other
well-known measures such as uniform or Gaussian. Unfortunately, the underlying calcu-
lations become much more complicated. We hope to address more classical measures in
future work. On a deeper level, it is far from clear what a truly “natural” probability mea-
sure on the space of tetranomials is. For instance, for non-sparse polynomials, it is popular
to use specially weighted independent Gaussian coefficients since the resulting measure be-
comes invariant under a natural orthogonal group action (e.g., see [Kos88, SS96, BSZ00]).
However, we are unaware of any study on the types of distributions occurring for the coef-
ficients of polynomials arising in applications.

The speed-ups we achieve here actually hold in far greater generality: see [BRS09,
PRT09, PRT11] for the case ofn-variate(n+k)-nomials withk≤2, Section 3 for connec-
tions ton-variate(n+3)-nomials, the forthcoming paper [AAR11] for the general univari-
ate case, and the forthcoming paper [PRRT11] for chamber cone theory ofn×n sparse
polynomial systems. A main goal of this paper is to illustrate and clarify the underlying
theory in a non-trivial special case.
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As for other approaches to this problem, we remark that most well-known algorithms
for real root counting lack speed-ups for sparse polynomials. For example, in the notation
of Theorem 1.4, [LM01 ] gives an arithmetic complexity bound ofO(D log5D) which,
via the techniques of [BPR06], produces a bit complexity bound super-linear inσ +D.
No algorithm with complexity polynomial in logD (deterministic, randomized, or high
probability) appears to have been known before for tetranomials. (See [HTZEKM09 ] for
recent speed benchmarks of univariate real solvers.)

Also, note that while we focus on speed-ups which replace thepolynomial degreeD
by logD in this paper, other practical speed-ups that combine semidefinite programming
and sparsity are certainly possible (e.g., see [Las06, KM09]).

1.2. Sparsity and Univariate Sums of Squares.Recent advances in semidefinite
programming (SDP) have produced algorithms for finding sum of squares representations
of certain nonnegative polynomials [Par03], thus enabling efficient polynomial optimiza-
tion under certain conditions. When the input is a sparse polynomial, it is natural to ask for
sum of squares representations that also respect sparseness. Motivation comes from under-
standing the efficiency of SDP: should such representationsexist in general, one could use
SDP to speed up real root counting in the spirit of Theorem 1.4.

It is well-known that a nonnegative univariate polynomial can be written as a sum
of two squares, although without any guarantee as to the sparsity of the polynomials
being squared (see, e.g., [Pou71] for refinements). The following result demonstrates that
expressing a sparse positive polynomial as a sparse sum of squares of sparse polynomials
is likely not possible in general.

THEOREM 1.6. There donot exist absolute constantsℓ and m with the following
property: Any trinomial f∈R[x1] that is positive onR can be written as f=g2

1+ · · ·+g2
ℓ ,

for some g1, . . . ,gℓ∈R[x1] with gi having at most m terms for all i.

Our second main theorem thus reveals an obstruction to usingsums of squares techniques
for fast real root counting of sparse polynomials. Softening our concept of sparse sum
of squares representation, however, may still enable speed-ups similar to Theorem 1.4
via SDP. For instance, one could ask if a positive trinomial of degreeD always admits
a representation as a sum of logO(1)D squares of polynomials with logO(1)D terms. This
question appears to be completely open.

EXAMPLE 1.7. Elementary calculus shows that

f (x1)=x2k

1 −2kx1+2k−1

attains a unique minimum value of0 at x= 1 and thus is nonnegative. It is also easily

shown by induction that f(x1) = 2k−1
k−1
∑

i=0

1
2i

(

x2i

1 −1
)2

, which gives an expression for f

as a sum of O(logD) binomials with D=2k. Note that from this representation one sees
immediately that the only real root of f is x1=1. ⋄

The outline of this paper is as follows: The necessary background on amoebae and
A-Discriminants is discussed in Section 2, including computational results on linear forms
of logarithms. Next, Section 3 explains the algorithm evincing Theorem 1.4, proves its
correctness, and calculates its overall time complexity. Finally, in Section 4, we give the
proof of Theorem 1.6.
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2. Background

2.1. Amoebae and EfficientA-Discriminant Parametrization. We begin by briefly
reviewing two important constructions by Gelfand, Kapranov, and Zelevinsky [GKZ94].
Recall that a(convex) conein Rm is any subset closed under nonnegative linear
combinations.

DEFINITION 2.1. Given a set of m integer vectorsA={a1, . . . ,am}⊂Zn, define the
following family of (Laurent) polynomials:

FA :={c1xa1 + · · ·+cmxam | c∈Cm},

where the notation xai :=x
a1,i
1 · · ·x

an,i
n is understood. When ci 6=0 for all i ∈{1, . . . ,m}, we

call A thesupportof f(x)=∑m
i=1cixai and we writeSupp( f ) =A. ⋄

DEFINITION 2.2. For a field K, set K∗ :=K \ {0}. Given any
Laurent polynomial g∈C

[

x±1
1 , . . . ,x±1

n

]

, its amoebais

Amoeba(g) := {Log|c| | c∈(C∗)n and g(c)=0}.

Recall that theconvex hullof a set S⊆Rn, denotedConvS, is
the smallest (with respect to containment) convex set containing
S. We then define the(standard) Newton polytopeof g to be
Newt(g) :=Conv(Supp(g)). ⋄

ARCHIMEDEAN AMOEBA THEOREM. (see [GKZ94, Cor. 1.6,
pg. 195 & Cor. 1.8, pg. 196])Given any g∈C

[

x±1
1 , . . . ,x±1

n

]

,
the complement ofAmoeba(g) in Rn is a finite disjoint union
of open convex sets. Also, the vertices ofNewt(g) are in
bijective correspondence with those connected componentsof
Rn \Amoeba(g) containing a translate of a convex cone with
non-empty interior.�

An example of an amoeba appears above (see also Example 2.7 below). While the comple-
ment of the amoeba (in white) appears to have 3 convex connected components, there are
in fact 4: the fourth component is a thin sliver emerging further below from the downward
pointing tentacle.

DEFINITION 2.3. [GKZ94, Chs. 1 & 9–11]Letting A= {a1, . . . ,am} ⊂ Zn have
cardinality m and f(x) = c1xa1 + · · · + cmxam, the A-discriminant variety∇A is the
closure of the set of all points[c1 : · · · : cm]∈Pm−1

C such that

f =
∂ f
∂x1

= · · ·=
∂ f
∂xn

= 0

has a solution in(C∗)n. We also let∇A(R) denote the real part of∇A. Finally, when∇A

is a hypersurface, theA-discriminant∆A ∈Z[c1, . . . ,cm] is defined to be, up to sign, the
irreducible defining polynomial of∇A. ⋄

DEFINITION 2.4. WhenA⊂Rn contains a point a such that1+dimConv(A\{a})=
dimConvA, we say thatConvA is apyramid. Also, we say thatA is anear-circuitwhenA
has cardinality n+3, dimConvA=n, andA is not a pyramid.⋄

REMARK 2.5. Our illustrations were drawn viaMatlab . The key program,
nearckthkplot.m , was written by Rojas and is downloadable from

www.math.tamu.edu/˜rojas/nearcircuits.html
The programnearckthkplot.m is an implementation of the near-circuit case of the
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Horn-Kapranov Uniformization (quoted below). Note also that our mention of circuits in
this paper alludes to matroid theory, not electrical networks.⋄

EXAMPLE 2.6. If A={0,1,2}, thenFA consists of univariate polynomials of degree
≤2 and∆A is the well-known quadratic discriminant c2

2−4c1c3. More generally, ifA⊂
Zn has cardinality n+ 2, dimConvA= n, and ConvA is not a pyramid, then∆A is a
binomial (see[GKZ94, pp. 217–218 & Prop. 1.8, pg. 274]or [BRS09, Lemma 2.12]).
This setting, also known as thecircuit case, is studied from an algorithmic point of view in
[BRS09, PRT09, PRT11]. ⋄

EXAMPLE 2.7. WhenA={0,404,405,808}, the set
FA consists of polynomials of the form
f (x1)=c1+c2x404

1 +c3x405
1 +c4x808

1 . The under-
lying A-discriminant is a polynomial in the ci

having 609 monomial terms and degree1604. Even
though∆A is unwieldy, we can still easily sketchLog| · |
of a slice of the real part of its zero set∇A(R) via the
Horn-Kapranov Uniformization(see its statement below,
and the illustration to the right).⋄

The curve plotted above is the image of the real roots of∆A(c2,c4) := ∆A(1,c2,1,c4)
under the Log| · | map; i.e., part of the amoeba of∆A. Note in particular that the boundary
of Amoeba(∆A) is contained in the curve above. The connection to amoebae naturally
introduces methods from polyhedral and tropical geometry into our setting.

Part of what we accomplish in our paper is to set the stage for fast algorithms that
compute the topology of real zero sets of polynomials supported on near-circuits. A key
step is understanding the real discriminant complementPm−1

R \∇A(R).

EXAMPLE 2.8. Elaborating a folkloric example (see, e.g.,[DR06, Ex. 1.2]), consider
the subset

A=











0
0
0



 ,





1
0
0



 ,





0
1
0



 ,





1
1
0



 ,





0
0
1









1
0
1











.

One can check that, in addition to satisfying our definition here,∇A coincides with the set
of all points[a0 : a1 : b0 : b1 : c0 : c1]∈P5

C such that the homogeneous3×2 linear system

a0x0+a1x1=b0x0+b1x1=c0x0+c1x1=0

has a root[x0 : x1]∈P1
C. In particular,

∇A=

{

[a0 : a1 : b0 : b1 : c0 : c1]

∣

∣

∣

∣

[

a0 a1

b0 b1

]

=

[

b0 b1

c0 c1

]

= 0

}

and has codimension2. Most importantly, the real zero set of any polynomial
f ∈ FA ∩R[x1,x2,x3] is always a connected, doubly ruled quadric surface (possibly a
plane) when f6∈∇A, and thus the topology of the real zero set of f is constant away from
∇A. ⋄

When∇A is a hypersurface, the topology of the real zero set of anf ∈FA∩R[x1, . . . ,xn]
need not be constant away from the discriminant variety (seeSection 2.2). Characterizing
when∇A has codimension≥ 2 (for generalA) is a subtle problem addressed in [DS02,
DR06, CC07]. A necessary and sufficient condition for codim∇A=1 whenA⊂Zn has
cardinality n+ 3 appears in Corollary 3.7 of Section 3. In particular,∇A is always a
hypersurface whenA⊂Z has cardinality 4.



RANDOMIZATION AND NEAR-CIRCUITS 7

In all but a few restricted settingsA-discriminant polynomials are large. For instance,
the polynomial∆{0,404,405,808} after Example 2.7 has the following coefficient forc808

2 c4:

9039470865767009094484. . . [2142 digits omitted]. . .08170311749217550336.

Fortunately, the following theorem describes an efficient parametrization of∇A.

THE HORN-KAPRANOV UNIFORMIZATION . (See [Kap91], [PT05], and
[DFS07, Prop. 4.1].) Given A = {a1, . . . ,am} ⊂ Zn with ∇A a hypersurface, the
discriminant locus∇A is the closure of

{

[u1λ a1 : · · · : umλ am]

∣

∣

∣

∣

∣

u∈Cm, Au=O,
m

∑
i=1

ui =0, λ ∈(C∗)n

}

. �

Thus, the null-space of a particular(n+1)×mmatrix provides a parametrization of∇A.
Recall that for any two subsetsU,V ⊆RN, their Minkowski sum U+V is the set

{u+v | u∈U, v∈V}. Also, for any matrixM, we letM⊤ denote its transpose.

COROLLARY 2.9. With the notation above, let̂A denote the(n+1)×m matrix whose
ith column has coordinates corresponding to1×ai , and let B∈Rm×p be any real matrix
whose columns are a basis for the right null-space ofÂ. Also, defineϕ : Cp −→ Rm via
ϕ(t) := log

∣

∣tB⊤
∣

∣. ThenAmoeba(∆A) is the Minkowski sum of the row space ofÂ and
ϕ(Cp). �

For those familiar with elimination theory, it is evident from the Horn-Kapranov Uni-
formization that discriminant amoebae are subspace bundles over a lower-dimensional
amoeba. This is a geometric reformulation of the homogeneities satisfied by the poly-
nomial∆A.

EXAMPLE 2.10. Continuing Example 2.7, the matrix̂A=

[

1 1 1 1
0 404 405 808

]

has

right null-space generated by(1,−405,404,0)⊤ and(1,−2,0,1)⊤. Thus, from the Horn-
Kapranov Uniformization, the set∇A is the closure of the rational surface

{[

t1+ t2 : (−405t1−2t2)λ 404 : 404t1λ 405 : t2λ 808
] ∣

∣

∣
t1, t2∈C, λ ∈C∗

}

⊂ P3
C.

Note that f and1
c1

f have the same roots and that u7→ u1/405 is a well-defined bijection

on R that preserves sign. Note also that the roots of f andf̄ (y) := 1
c1

f
(

(

c1
c3

)1/405
y
)

differ only by a real scaling when f has real coefficients, andthat f̄ can be written
1+c′2y404+y405+c′4y808. It follows that the study of∇A(R) reduces to a lower-dimensional
slice; the intersection of∇A with the plane defined by c1=c3=1 is the parametrized curve
in C2:

∇A=

{(

−405t1−2t2
t1+ t2

(

404t1
t1+ t2

)−404/405

,
t2

t1+ t2

(

404t1
t1+ t2

)−808/405
) ∣

∣

∣

∣

∣

t1, t2∈C

}

.

In other words, ∇A is the closure of the set of all(c′2,c
′
4) ∈ (C∗)2 such that

1+c′2x404+x405+c′4x808 has a degenerate root inC∗.
Our preceding illustration of the image of∇A(R) within Amoeba(∆A) (after taking

log absolute values of coordinates) thus has the explicit parametrization with[t1 : t2] ∈
P1
R \{[1 : 0], [0 : 1], [−2 : 405], [1 :−1]}:
(

log|405t1+2t2|−
1

405
log|t1+ t2|−

404
405

log|404t1|, log|t2|+
403
405

log|t1+ t2|−
808
405

log|404t1|

)

.
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In particular, the image ofP1
R under this parametrization is the curve from Example 2.7,

and it contains all non-isolated points of the boundary ofAmoeba(∆A). See[DRRS07,
Lemma 3.3]and the illustration before that paper’s appendix for an example where∇A(R)
contains isolated points (lying in the interior ofAmoeba(∆A)). ⋄

A geometric fact about amoebae that will prove useful is the following elegant
quantitative result of Passare and Rullgård.

PASSARE-RULLGÅRD THEOREM. [PR04, Cor. 1] Suppose g∈C
[

x±1
1 ,x±1

2

]

has
Newton polygon P. ThenArea(Amoeba(g))≤π2Area(P). �

2.2. Discriminant Chambers and Cones.A-discriminants are central in real root
counting because the real part of∇A determines where in coefficient space the real zero
set of a polynomial changes topology. Recall that aflat in Rn is a translated subspace and
that the dimension of a coneC is the dimension of the smallest flat containingC.

DEFINITION 2.11. SupposeA= {a1, . . . ,am}⊂Zn and ∇A is a hypersurface. Any
connected componentC of the complement of∇A in Pm−1

R \ {c1 · · ·cm= 0} is called a
(real) discriminant chamber. Let Â denote the(n+ 1)×m matrix whose ith column has

coordinates1×ai , and let B=[bi, j ]∈Rm×p be any real matrix with

[

Â

B⊤

]

invertible. If

log|C|B contains an m-dimensional cone, we callC an outerchamber (of∇A). All other
chambers of∇A are calledinnerchambers (of∇A). Finally, the formal expression

(c1, . . . ,cm)
B :=

(

c
b1,1
1 · · ·c

bm,1
m , . . . ,c

b1,p
1 · · ·c

bm,p
m

)

is called amonomial change of variables, and we say that images of the formCB (with C

an inner or outer chamber) arereducedchambers.⋄

It is easily verified that log|CB|= log|C|B, where the second expression simply means the
image of log|C| under right multiplication by the matrixB.

EXAMPLE 2.12. The illustration from Example 2.7 showsR2 partitioned into what
appear to be3 convex and unbounded regions, and1 non-convex unbounded region. There
are in fact4 convex and unbounded regions with the fourth visible only ifthe downward
pointing spike were allowed to extend much farther down (seeExample 3.2). Thus,A=
{0,404,405,808} results in exactly4 reduced outer chambers.⋄

Note that exponentiation by a matrixB gives a well-defined multiplicative homomor-
phism from(R∗)m to (R∗)p whenB has rational entries with all denominators odd. In
particular, thanks to the Archimedean Amoeba Theorem, the definition of outer chamber
is independent ofB since (for theB above) Log

∣

∣CB
∣

∣ is unbounded and convex iff Log
∣

∣CB∗ ∣
∣

is unbounded and convex, whereB∗ is any matrix whose columns are a basis for the or-
thogonal complement of the row space ofÂ.

One can reduce the study of the topology of the real zero set ofa sparse polynomial to
that of a representative in a reduced discriminant chamber.A special case of this reduction
is contained in the following result.

LEMMA 2.13. [DRRS07, Prop. 2.17]. Suppose thatA⊂Zn is a near circuit,A∩Q
has cardinality n for all facets Q ofConvA, all the entries of B∈Q(n+3)×2 have odd

denominator, and

[

Â

B⊤

]

is invertible. Also let f,g∈FA \∇A have respective real coef-

ficient vectors c and c′ with cB and c′B lying in the same reduced discriminant chamber.
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Then all the complex roots of f and g are non-singular, and therespective zero sets of f
and g in(R∗)n are diffeotopic. In particular, when n=1, f and g have the same number of
positive roots.�

2.3. Integer Linear Algebra and Linear Forms in Logarithms. We now review the
quantitative results on integer matrix factorizations andlinear forms in logarithms which
are crucial for proving our main algorithmic results. Recall that anyn×m matrix [ui, j ]
with ui, j =0 for all i> j is calledupper triangular.

DEFINITION 2.14. LetGLn(Z) denote the set of all matrices inZn×n with determinant
±1 (the set ofunimodularmatrices). Given any M∈Zn×m, an identity of the form UM=H,
with H=[hi, j ]∈Zn×m upper triangular and U∈GLn(Z) is called aHermite factorization
of M. In addition, if the following conditions are met:

(1) the left-most nonzero entry in each row of H is positive,
(2) if hi, j is the left-most nonzero entry of row i, then0≤hi′, j <hi, j for all i ′< i,

then we call H theHermite normal formof M. ⋄

PROPOSITION2.15. Let K be any field. We have xAB=(xA)B for any A,B∈Zn×n and
x∈ (K∗)n. Moreover, when U∈Zn×n is unimodular, the map defined by m(x) :=xU is an
automorphism of(K∗)n. �

THEOREM 2.16. [Sto00, Ch. 6, Table 6.2, pg. 94]. Given any A=[ai, j ]∈Zn×m with
m≥n, a Hermite factorization of A can be computed within

O

(

nm2.376log2(mmax
i, j

|ai, j |)

)

bit operations. Furthermore, the entries of all matrices involved in the Hermite factoriza-
tion have bit-size O(mlog(mmaxi, j |ai, j |)). �

The following result is a very special case of work of Nesterenko that dramatically
refines Baker’s famous theorem on linear forms in logarithms[Bak77].

THEOREM 2.17. [Nes03, Thm. 2.1, Pg. 55]. Given integersγ1, . . . ,γN andα1, . . . ,αN

with αi ≥2 for all i, define

Λ(γ ,α) :=γ1 logα1+ · · ·+ γN logαN.

If Λ(γ ,α) 6=0, then the following bound holds:

log

∣

∣

∣

∣

1
Λ(γ ,α)

∣

∣

∣

∣

≤ 2.9(N+2)9/2(2e)2N+6(2+ logmax
j

|γ j |)
N

∏
j=1

logα j . �

An obvious consequence of lower bounds for linear forms in logarithms is an efficient
method to determine the signs of monomials in integers.

ALGORITHM 2.18.
Input: Positive integersα1,u1, . . . ,αM,uM andβ1,v1, . . . ,βN,vN with αi ,βi ≥2 for all i.
Output: The sign ofαu1

1 · · ·αuM
M −β v1

1 · · ·β vN
N .

Description:
(0) Check via gcd-free bases (see, e.g.,[BS96, Sec. 8.4]) whether

αu1
1 · · ·αuM

M =β v1
1 · · ·β vN

N . If so, output “They are equal. ” and STOP.
(1) Let γ =max{u1, . . . ,uM,v1, . . . ,vN} and set

δ =
2.9

log2
(2e)2M+2N+6(1+ logγ)×

(

M

∏
i=1

logαi

)(

N

∏
i=1

logβi

)

.
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(2) For all i ∈ [M] (resp. i∈ [N]), let Ai (resp. Bi) be a rational number agreeing with
logαi (resp.logβi) in its first2+δ + log2M (resp.2+δ + log2N) leading bits.2

(3) Output the sign of
M
∑

i=1
uiAi −

N
∑

i=1
viBi andSTOP.

LEMMA 2.19. Algorithm 2.18 is correct and terminates within a number of bit oper-
ations asymptotically linear in

(M+N)(30)M+NL(logγ)

(

M

∏
i=1

L(logαi)

)(

N

∏
i=1

L(logβi)

)

,

where L(x) :=x(logx)2 log logx. �

Lemma 2.19 follows directly from Theorem 2.17, the well-known fast iterations for ap-
proximating log (see [Bre76, Sal76, Ber03]), and the known refined bit complexity esti-
mates for fast multiplication (see, e.g., [BS96, Table 3.1, pg. 43]).

3. Chamber Cones and Polyhedral Models

3.1. Defining and Describing Chamber Cones.

DEFINITION 3.1. Suppose that X⊂Rm is convex and Q⊇X is the polyhedral cone
consisting of all c∈Rm with c+X⊆X. We call Q therecession conefor X and, if p∈Rm

satisfies (1) p+Q⊇X and (2) p+ c+Q 6⊇X for any c∈Q\ {O}, then we call p+Q the
placedrecession cone. In particular, the placed recession cone for Log|C| with C an outer
chamber (resp. reduced outer chamber) is called achamber cone(resp.reduced chamber
cone) of ∇A. We call the facets of the (reduced) chamber cones of∇A (reduced) walls of
∇A. We also refer to walls of dimension1 asrays. ⋄

EXAMPLE 3.2. Returning to
Example 2.7, we draw the rays
that are the boundaries of the4
reduced chamber cones. The fourth
(slender) reduced chamber cone
is now visually exposed. (The
magnified illustration to the right
actually shows two close and nearly
parallel rays going downward.)
Note also that reduced chamber
cones need not share vertices.⋄

Chamber cones are well-defined since chambers arelog-convex, being the domains of
convergence of a particular class of hypergeometric series(see, e.g., [GKZ94, Ch. 6]). A
useful corollary of the Horn-Kapranov Uniformization is a surprisingly simple and explicit
description of chamber cones.

DEFINITION 3.3. SupposeA⊂Zn is a near-circuit. Also let B be any real(n+3)×2
matrix whose columns are a basis for the right null space ofÂ, and letβ1, . . . ,βn+3 be the
rows of B. Any set of indicesI⊂{1, . . . ,n+3} satisfying the two conditions:

(a) [βi ]i∈I is a maximal rank1 submatrix of B,

2For definiteness, we use Arithmetic-Geometric Mean Iterationas in [Ber03] to find these approximations.
(See also [Bre76, Sal76].) In speaking of leading bits, we assume our rational numbersare written in base 2; e.g.,
1011.11010011.
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(b) ∑i∈I βi is not the zero vector,
is called aradiant subset corresponding toA. ⋄

THEOREM3.4. Suppose thatA⊂Zn is a near-circuit and∇A is a hypersurface. Also
let B be any real(n+3)×2 matrix whose columns are a basis for the right null space of

Â, and letβ1, . . . ,βn+3 be the rows of B. Finally, let S=[si, j ]=B

[

0 −1
1 0

]

B⊤, and let si

denote the row vector whose jth coordinate is0 or log|si, j | according as si, j is 0 or not.
Then each wall of∇A is the Minkowski sum of the row-space ofÂ and a ray of the form
si −R+ ∑ j∈Iej for some unique radiant subsetI of A and any i∈ I. In particular, the
number of walls of∇A, the number of chamber cones of∇A, and the number of radiant
subsets corresponding toA are all identical, and lies in{3, . . . ,n+3}.

Note that the definition of a radiant subset corresponding toA is independent of the chosen
basisB, since the definition is invariant under column operations on B.

REMARK 3.5. Theorem 3.4 refines an earlier result of Dickenstein, Feichtner, and
Sturmfels[DFS07, Thm. 1.2]whereunshifted variants of chamber cones (all going through
the origin) were computed for non-pyramidalA⊂Zn with arbitrary cardinality and∇A a
hypersurface. A version of Theorem 3.4 for generalA will appear in[PRRT11]. ⋄

EXAMPLE 3.6. It is easy to show that a genericA satisfying the hypotheses of Theo-
rem 3.4 will have exactly n+3 chamber cones, as in Example 2.7. It is also almost as easy
to construct examples having fewer chamber cones. For instance, taking

A=

{[

0
0

]

,

[

1
0

]

,

[

2
0

]

,

[

0
1

]

,

[

2
1

]}

and B=

[

−1 2 −2 0 1
0 1 −2 1 0

]⊤

,

we see that the hypotheses of Theorem 3.4 are satisfied and that {1,5} is a non-radiant
subset. Thus, the underlying discriminant variety∇A has only3 chamber cones.⋄

Proof of Theorem 3.4: First note that by Corollary 2.9, the set Amoeba(∆A) is the
Minkowski sum ofϕ

(

C2
)

and the row space of̂A, whereϕ(t)=Log
∣

∣tB⊤
∣

∣. Determin-
ing the walls therefore reduces to determining the directions orthogonal to the row space
of Â in which ϕ(t) becomes unbounded.

Since1 :=(1, . . . ,1) is in the row space of̂A, we have1B=O and thusϕ(t)=ϕ(t/M)
for all M>0. Thus, we can restrict to the compact subset{(t1, t2) | |t1|2+ |t2|2=1}, and
we observe thatϕ(t) becomes unbounded ifftβ⊤

i goes to zero for somei. In particular,
there are no more thann+3 reduced walls. Note also thattβ⊤

i → 0 iff t tends to a suitable

(nonzero) multiple ofβi

[

0 −1
1 0

]

, in which case those coordinates ofϕ(t) which become

unbounded are precisely those with indexj ∈ I, in which I is the unique radiant subset
corresponding to those rows ofB that are nonzero multiples ofβi . (The assumption that
A not be a pyramid implies thatB can have no zero rows.) Furthermore, the coordinates
of ϕ(t) that become unbounded each tend to−∞. Note that radiance condition (b) comes
into play since we are looking for directionsorthogonal to the row-space of̂A for which
ϕ(t) becomes unbounded.

It follows that each wall is of the asserted form. However, westill need to account for
the coordinates ofϕ(t) that remain bounded. Ift tends to a suitable (nonzero) multiple of

βi

[

0 −1
1 0

]

, then it is clear that any coordinate ofϕ(t) with index j 6∈I tends tosi, j (modulo
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a multiple of1 added toϕ(t)). Thus, we have provided a bijection between radiant subsets
corresponding toA and the walls of∇A.

To conclude, note that the row space ofÂ has dimensionn+1 by construction, so the
walls are all actually (parallel)n-plane bundles over rays. By the Archimedean Amoeba
Theorem, each outer chamber of∇A must be bounded by 2 walls, and the walls have a
natural cyclic ordering. It follows that the number of chamber cones is the same as the
number of rays. The upper bound ofn+3 on the number of rays is thus clear. To see the
lower bound of 3, first note that having one or two radiant subsets is impossible: this is
because1B=O. Since∇A is a hypersurface, the Horn-Kapranov Uniformization implies
that there must be at least one radiant subset, there must therefore be at least 3, so we are
done.�

A simple consequence of our proof, combined with an earlier observation of Dick-
enstein and Sturmfels [DS02, Cor. 4.5], is the following characterization of near-circuits
yieldingA-discriminants that are hypersurfaces.

COROLLARY 3.7. SupposeA is a near-circuit. Then∇A is a hypersurface iffA has a
radiant subset. In particular, ifA has a radiant subset then it has at least3 radiant subsets.
�

Note in particular that whenA⊂Z has cardinality 4,∇A is always a hypersurface: it is easy
to show that the right null-space of such anA always has at least 2 linearly independent
rows, thus implying at least 2 (and thus at least 3) radiant subsets.

3.2. Which Chamber Cone Contains Your Problem?An important consequence
of Theorem 3.4 is that while the underlyingA-discriminant polynomial∆A may have huge
coefficients, therays of a linear projection of Amoeba(∆A) admit a concise description
involving few bits, save for the transcendental coordinates coming from the “shifts”si .
Applying our quantitative estimates from Section 2.3, we can then quickly find which
chamber cone contains a givenn-variate(n+3)-nomial.

THEOREM3.8. With the notation of Theorem 3.4, suppose that f∈FA∩R[x1, . . . ,xn],
and letτ denote the maximum bit-size of any coordinate ofA. Then we can determine the
unique chamber cone containing f — or correctly decide if f iscontained in2 or more
chamber cones — within a number of arithmetic operations that is polynomial in n+ τ.
Furthermore, if f∈ FA ∩Z[x1, . . . ,xn], σ is the maximum bit-size of any coefficient of f ,
and n is fixed, we can also obtain abit complexity bound polynomial inτ +σ . �

Theorem 3.8 is the central tool behind our complexity results and follows from the
correctness of (and giving suitable complexity bounds for)the following algorithm:

ALGORITHM 3.9.
Input: A near-circuit A ⊂ Zn of cardinality n+ 3 and the coefficient vector c of a

polynomial f∈FA∩R[x1, . . . ,xn].
Output: Radiant subsetsI and I′ (corresponding toA) generating the walls of the

unique chamber cone containing f , or a true declaration thatf is
contained in at least2 chamber cones, or a true declaration that∇A is not
a hypersurface.

Description:
(-5) (Preprocessing) Compute the Hermite Factorization H⊤ = U⊤Â and let B

be the submatrix defined by the rightmost2 columns of U.
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(-4) (Preprocessing) Letβ1, . . . ,βn+3 be the rows of B, set S=[si, j ]=B

[

0 −1
1 0

]

B⊤,

and let si denote the row vector whose jth coordinate is 0 or log|si, j |
according as si, j is 0 or not.

(-3) (Preprocessing) Find all radiant subsetsI⊂{1, . . . ,n+3} corresponding toA.
If there are none, then output“ ∇A has codimension ≥2!” andSTOP.

(-2) (Preprocessing) For any radiant subsetI setβ ′
I
=−∑ j∈I β j and let sI denote the

row vector siB for any fixed i∈I.
(-1) (Preprocessing) Sort theβ ′

I
in order of increasing counter-clockwise angle with

the x-coordinate ray and let R denote the resulting ordered collection ofβ ′
I
.

(0) (Preprocessing) For each radiant subsetI, compute vI∈Q2, the intersection of
the lines sI+Rβ ′

I
and sI′ +Rβ ′

I′
, whereβ ′

I′
is the counter-clockwise neighbor

of β ′
I
.

(1) Set ConeCount=0.
(2) Via binary search, attempt to find a pair of adjacent rays of the form

(vI+R+β ′
I
,vI+R+β ′

I′
) containingLog|c|B.

(a) If (ConeCount=0 and there is no such pair of rays)
or
(ConeCount=1 and there is such a pair of rays)
then output“Your f lies in at least 2 distinct chamber
cones.” andSTOP.

(b) If ConeCount=0 and there is such a pair of rays, deleteβ ′
I

andβ ′
I′

from R,
set ConeCount=ConeCount+1, andGOTO STEP(2).

(3) Output“Your f lies in the unique chamber cone determined
by I and I′.” andSTOP.

REMARK 3.10. An important detail for large scale computation is that the preprocess-
ing steps (-5)–(0) need only be doneonceper supportA. This can significantly increase
efficiency in applications where one has just one (or a few)A and one needs to answer
chamber cone membership queries for numerous f with the samesupport.⋄

Proof of Correctness of Algorithm 3.9:First note that the computed matrixBhas columns
that form a basis for the right null-space ofA. This follows since our assumptions onA
ensure that the rank of̂A is n+1; thus, the last 2 rows ofH⊤ consist solely of zeroes.

By construction, Theorem 3.4 then implies that theβ ′
I

are exactly the reduced rays for
∇A, modulo an invertible linear map. (The invertible map arises because right-multiplication
by B induces an injective projection of the right null-space ofÂ ontoR2.)

It is then clear that the preprocessing steps do nothing morethan provide us aBsuitable
for Theorem 3.4 and a sorted set of reduced rays ready for chamber cone membership
queries via binary search, should∇A be a hypersurface. (Corollary 3.7 implies that we
correctly detect when∇A is not a hypersurface.) In particular, since the reduced chamber
cones coverR2, the correctness of Steps (1)–(3) is clear and we are done.�

In what follows, we will use the “soft-Oh” notationO∗(h) to abbreviate bounds of the form

O
(

h(logh)O(1)
)

.

Complexity Analysis of Algorithm 3.9: We begin our analysis from the more involved
point of view of bit complexity. Our arithmetic complexity bound will then follow quickly
from this study.
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By Theorem 2.16, Step (-5) takesO
(

n3.376τ2
)

bit operations. Also, the resulting bit-
size for the entries ofB is O(nτ).

The complexity of Step (-4) is negligible, save for the approximation of certain log-
arithms. The latter won’t come into play until we start deciding on which side of a ray a
point lies, so let us analyze the remaining preprocessing steps.

Step (-3) can be accomplished easily by a greedy approach: one iterates through the
rowsβ2, . . . ,βn+3 to find which ones are multiples ofβ1. Once this is finished, one checks
whether the resulting set of indices is radiant or not, and then one repeats this process with
the remaining rows ofB. In summary, we needO(n2) arithmetic operations on numbers of
bit-sizeO(nτ), giving a total ofO∗(n3τ) for the number of bit operations.

Step (-2) has negligible complexity.
The comparisons in Step (-1) can be accomplished by computing the cosine and sine of

the necessary angles using dot products and cross products.Via the well-known asymptoti-
cally optimal sorting algorithms, it is then clear that Step(-1) requiresO(nlogn) arithmetic
operations on integers of bit-sizeO(nτ), contributing a total ofO∗(n2τ logn) bit operations.

Step (0) has negligible complexity.
Thus, the complexity of the Preprocessing Steps (-5)–(0) isO(n3.376τ2) bit operations.
Continuing on to Steps (1)–(3), we now see that we are faced with O(logn) sidedness

comparisons between a point and an oriented line. More precisely, we need to evaluate

O(logn) signs of determinants of matrices of the form

[

Log|c|B−sI
β ′
I

]

. Each such sign

evaluation, thanks to Algorithm 2.18 and Lemma 2.19, takes

O
(

n302n+5L(σ +nτ)L(σ)n+3L(nτ)n+2
)

bit operations.
We have thus proved our desired bit complexity bound which, while polynomial in

τ+σ for fixedn, is visibly exponential inn. Note, however, that the exponential bottleneck
occurs only in the sidedness comparisons of Step (2).

To obtain an improved arithmetic complexity bound, observethat the sidedness com-
parisons can be replaced by computations of signs of differences of monomials, simply
by exponentiating the resulting linear forms in logarithms. Via recursive squaring [BS96,
Thm. 5.4.1, pg. 103], it is then clear that each such comparison requires onlyO(n2τ) arith-
metic operations. Thus, the overall number of arithmetic operations drops to polynomial
in n+ τ and we are done.�

Let us now state some final combinatorial constructions before fully describing how
chamber cones apply to real root counting.

3.3. Canonical Viro Diagrams and the Probability of Lying in Outer Chambers.
Our use of outer chambers and chamber cones enables us to augment an earlier construction
of Viro. Let us first recall that atriangulationof a point setA is a simplicial complexΣ
whose vertices lie inA.

DEFINITION 3.11. We say that a triangulation ofA is coherentiff its maximal sim-
plices are exactly the domains of linearity for some function ℓ that is convex, continuous,
and piecewise linear on the convex hull ofA. In particular, we will sometimes define
such anℓ by fixing the valuesℓ(a) for just those a∈A and then employing the faces of
Conv({(a, ℓ(a)) | a∈A}) having inner normal with positive last coordinate. The resulting
graph is known as thelower hullof thelifted point set{(a, ℓ(a)) | a∈A}. ⋄
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DEFINITION 3.12. (See Proposition 5.2 and Theorem 5.6 of[GKZ94, Ch. 5, pp. 378–
393].) Suppose thatA⊂Zn is finite and that the convex hull ofA has positive volume
and boundary∂A. Suppose also thatA is equipped with a coherent triangulationΣ and
a function s: A → {±} which we will call adistribution of signs forA. Any edge with
vertices of opposite sign is called analternating edge, and we define a piece-wise linear
manifold — theViro diagramVA(Σ,s) — in the following local manner: For any n-cell
C∈Σ, let LC be the convex hull of the set of all midpoints of alternating edges of C, and set

VA(Σ,s) :=
⋃

C an n-cell

LC \∂A.

WhenA=Supp( f ) and s is the corresponding sequence of coefficient signs, then we also
call VΣ( f ) :=VA(Σ,s) theViro diagram of f corresponding toΣ. ⋄

EXAMPLE 3.13. Consider f(x) = 1− x1 − x2 + 3x4
1x2 + 3x1x4

2. Then Supp( f ) =
{(0,0),(1,0),(0,1),(1,4),(4,1)} and its convex hull is a pentagon. There are exactly5
coherent triangulations, giving5 possible Viro diagrams for f (drawn in thicker green
lines):

+

−

− +

+

−+

+

+−

+

+

+−

−

+

+

+

−

−

−

−+

+

+

Note that all these diagrams have exactly2 connected components, with each component
isotopic to an open interval. Note also that f is a2-variate(2+3)-nomial.⋄

DEFINITION 3.14. Suppose thatA⊂Zn is a near-circuit and∇A is a hypersurface.
Also let B be any real(n+3)×2 matrix whose columns are a basis for the right null space
of Â. For any f∈FA, define

v( f )= (v1( f ), . . . ,vn+3( f )) := ∑
i∈I

ei + ∑
j∈J

ej ,

whereI andJ are the unique radiant subsets corresponding to the unique chamber cone
containingLog|c|. (We set v( f ) :=O should there not be a unique such chamber cone.)

Let ˜ArchNewt( f ) be the convex hull of{(ai ,vi) | i∈{1, . . . ,n+3}}, and letΣ f denote the

triangulation ofA induced by the lower hull of ˜ArchNewt( f ). We call ˜ArchNewt( f ) the
renormalized Archimedean Newton polygon off . Also, call any polynomial of the form
∑

ai∈Q
cixai — with Q a cell ofΣ f — acanonical lower polynomialfor f . Finally, we write

V( f ) :=VΣ( f ) for thecanonical Viro diagramof f . ⋄

Note that for an f ∈ C
[

x±1
1 , . . . ,x±1

n

]

its standard Newton polytope lies inRn, while
˜ArchNewt( f ) lies inRn+1.
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EXAMPLE 3.15. Let f(x1)= 1− 1
2x404+ x405− 2x808, c=

(

1,−1
2,1,−2

)

, andA=
{0,404,405,808}. A routine calculation reveals that{{2},{3}} is the pair of radiant sub-
sets corresponding to the unique chamber cone containingLog|c|. Thus, v( f )=(0,1,1,0)

and ˜ArchNewt( f ) is (modulo some artistic stretching). In particu-
lar, Σ f has the single cell[0,808], which is an alternating cell, and soV( f ) consists of a
single point. More than coincidentally, f has exactly1 positive root.⋄

EXAMPLE 3.16. Returning to Example 3.13, let c=(1,−1,−1,3,3). A routine cal-
culation reveals that the unique chamber cone containingLog|c| is defined by the pair
of radiant subsets{{2},{3}}. Thus, v( f ) = (0,1,1,0,0) and Σ f is the upper middle
triangulation from the illustration of Example 3.13.V( f ) then consists of2 disjoint open
intervals and, more than coincidentally, the positive zeroset of f has exactly2 connected
components, each homeomorphic to an open interval.⋄

THEOREM3.17. Following the notation above, setf̂t(x)=∑n+3
i=1 citvi( f )xai and assume

in addition thatA∩Q has cardinality n for all facets Q ofConvA. Then c=(c1, . . . ,cn+3)
lies in an outer chamber=⇒ the positive zero sets of̂ft , as t ranges over(0,1], are each
diffeotopic to the positive zero set off̂1. In particular, f̂1= f and thus, when c lies in an
outer chamber, the positive zero set of f is isotopic toV( f ).

REMARK 3.18. For n=1 we obtain that the number of positive roots of the tetranomial
f is exactly the cardinality of its canonical Viro diagram.⋄

Proof: By construction, the image of Log
∣

∣

∣

(

c1tv1( f ), . . . ,cn+3tvn+3( f )
)∣

∣

∣
as t ranges over

(0,1] is a ray entirely contained in a unique chamber cone. Moreover, by assumption (and
since outer chambers are log convex), the ray is also contained entirely in Log| · | of an
outer chamber. The first part of our theorem now follows from Lemma 2.13.

The final part of our theorem is then just a reformulation of Viro’s Theorem on the
isotopy type of toric deformations of real algebraic sets (see, e.g., [GKZ94, Thm. 5.6]).�

The main contribution of our paper is thus an efficient methodto associate acanonical
Viro diagram to the positive zero set of a givenf , so that bothC1 manifolds have the
same topology. Such a method appears to be new, although the necessary ingredients
have existed in the literature since at least the 1990s. In particular, to the best of our
knowledge, all earlier applications of Viro’s method designed cleverf having the same
topology as some specially tailored Viro diagram, thus going in the opposite direction of
our construction.

We state up front that our method for finding isotopy type doesnot work for all f .
However, our development yields a sufficient condition — outer chamber membership —
that holds with high probability under the stable log-uniform content.

THEOREM 3.19. Suppose thatA⊂Zn is a near-circuit and∇A is a hypersurface.
Suppose also that the coefficients of f∈FA∩R[x1, . . . ,xn] are independently chosen via the
stable log-uniform content overR. Then with probability1, f lies in some outer chamber.
In particular, if we assume in addition thatA∩Q has cardinality n for all facets Q of
ConvA, the positive zero set of f is isotopic toV( f ) with probability1.

Proof: By Theorem 3.4, Amoeba(∆A) is ann-plane bundle over Amoeba
(

∆A

)

, where
∆A ∈Z[a,b] and∆A(c1, . . . ,cn+3)= γ(c)∆A(α(c),β (c)) for suitable monomialsα, β , γ
in the variablesci . Furthermore, thanks to Corollary 8 of [PST05], Amoeba(∆A) is solid;
that is, the complement of Amoeba(∆A) has no bounded convex connected components.
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Let c denote the coefficient vector off . It follows that f lies in an outer chamber if and
only if Log|c| 6∈Amoeba(∆A). In particular, by the Passare-Rullgård Theorem the volume
of Amoeba(∆A)∩C in any large centered cubeC occupies a vanishingly small fraction of
C. This proves the first assertion. The final assertion is an immediate consequence of the
first and Theorem 3.17.�

Theorem 1.4 follows easily from Theorems 3.17 and 3.19. The applications of Theo-
rems 3.17 and 3.19 to computational real topology will be pursued in another paper.

3.4. Proving Theorem 1.4.Consider the following algorithm for counting the posi-
tive roots of “most” real univariate tetranomials.

ALGORITHM 3.20.
Input: A tetranomial f∈R[x1] with supportA.
Output: A number in{0,1,2,3} that is exactly the number of positive roots of f whenever
f is in an outer chamber of∇A.
Description:

(1) Via Algorithm 3.9, and any sub-quadratic planar convex hullalgorithm (see, e.g.,
[OSvK00]), compute the canonical Viro diagramV( f ).

(2) If f did not lie in a unique chamber cone then output“Your f does
not lie in an outer chamber, please use an alternative
method.” andSTOP.

(3) Output the cardinality ofV( f ) andSTOP.

Assuming Algorithm 3.20 is correct, we can count the real roots of f by applying Al-
gorithm 3.20 tof (x1) and f (−x1). (Whether f vanishes at 0 can trivially be checked in
constant time.) Theorem 1.4 thus follows upon proving the correctness of our last algo-
rithm and providing a suitable complexity bound.

Proof of Correctness of Algorithm 3.20:By Theorem 3.17, the number of positive roots
of f is exactly the cardinality ofV( f ) wheneverf is in an outer chamber.�

Complexity Analysis of Algorithm 3.20: First observe that Algorithm 3.20 gives a correct
answer with probability 1 (relative to the stable log-uniform content) by Theorem 3.19. We
finish by proving the complexity bound in the statement of thetheorem.

Consider first the more refined setting of bit complexity. From our complexity analysis
of Algorithm 3.9, it is clear that Step (1) requires at most

O
(

log2D
)

+O
(

L(σ + logD)L(σ)4L(logD)3)

bit operations, modulo the computation ofV( f ). The complexity of computingV( f )
is essentially dominated by that of computing the convex hull of 4 points with coordi-
nates of bit-sizeO(logD), which is clearly negligible in comparison. The complexity
of Steps (2) and (3) is also negligible. Thus, we obtain a finalbit complexity bound of
O∗
(

(σ + logD)σ4 log3D
)

.
As for arithmetic complexity, our earlier analysis of Algorithm 3.9 specializes easily

to give an upper bound ofO(log2D). (The speed-up arises from the ease of checking
inequalities involving integral powers of real numbers in the BSS model overR.) �

REMARK 3.21. It is important to note that when f lies in a chamber cone butnot in
any outer chamber, Algorithm 3.20 can give a wrong answer. However, thanks to Theorem
3.19, such an occurence has probability0 under the stable log-uniform content.⋄
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4. Proving Theorem 1.6

Here, we prove the negative result of our paper: sparse positive univariate polynomials
cannot always be expressed as sparse sums of sparse squares.This result is an obstruction
to using sum of squares techniques for fast root counting. Toprepare for the proof, we
first set up some notation. LetN0 denote the set of nonnegative integers, and fix positive
integersℓ andm. Let P= [pi, j ] ∈ Nℓ×m

0 be a matrix of nonnegative integers, ordered as

p1,1 ≥ p2,1 ≥ ·· · ≥ pℓ,1 and pi, j > pi,( j+1),

for all i∈{1, . . . , ℓ} and j∈{1, . . . ,m}. Also, letai, j be indeterminates over the same index
set. Consider now the following polynomial:

SP(x1) :=
ℓ

∑
i=1

(

m

∑
j=1

ai, jx
pi, j
1

)2

∈ N0[x1][ai, j | 1≤ i≤ℓ , 1≤ j≤m]

= g2p1,1(P)x
2p1,1
1 + · · ·+g1(P)x1+g0(P),

(4.1)

in which each nonzerogi(P) is a homogeneous (quadratic) polynomial in
N0[ai, j | 1≤ i≤ℓ , 1≤ j≤m]. Note that there are at mostℓm2 distinct powers ofx1 occuring
in the monomial term expansion ofSP(x1) and thus at mostℓm2 of thegi are nonzero. We
will refer to the integerpi, j as theexponentcorresponding to thecoefficient ai, j .

LEMMA 4.1. For any fixedℓ,m≥1, the following set of polynomials is finite:

Gm,ℓ :={gi(P) | P∈Nℓ×m
0 and i∈{1, . . . ,2p1,1}}.

Proof: Note that the coefficient of anygi is clearly a nonnegative integer bounded above
by 2mℓ (independent ofP). Note also that eachgi involves at mostℓmvariablesai, j . Since
eachgi is quadratic, it has no more thanℓm(ℓm−1)/2 monomial terms. So there are at
most(2mℓ)ℓm(ℓm−1)/2 distinct polynomials inGm,ℓ. �

Suppose now thatf = ∑d
i=0 fixi

1 is a sum ofℓ squares, each involving at mostm terms.
Then, there is a set of exponentsP and an assignment ¯ai, j ∈R for the coefficientsai, j such
that f =SP identically. Conversely, fixing a set of exponentsP, any real point in the variety
determined by the equationsgi = fi gives a representation off as a sum ofℓ squares, each
involving at mostm terms.

We will prove Theorem 1.6 using contradiction by showing that a certain infinite fam-
ily of trinomials cannot all have sparse representations ofthe form (4.1). For this approach
to work, however, we will need to find a single “universal” setof coefficients ¯ai, j that
represents an infinite number of sums of squares.

LEMMA 4.2. Let F ⊂ R[x1] be an infinite collection of polynomials which are sums
of ℓ squares, each involving at most m terms. Moreover, suppose that the nonzero coef-
ficients of polynomials f∈ F come from a finite set C. Then, there is an infinite subset
{ f1, f2, . . .}⊆F, with corresponding exponent matrices P1,P2, . . . ∈ Nℓ×m

0 , and a single set
of real coefficients{āi, j}, such that for all k, the polynomial fk is obtained from SPk(x1) by
specializing ai, j = āi, j for all i , j.

Proof: Given f ∈F , letPf be an exponent matrix corresponding to the hypothesized sumof
squares representation forf . Also, letT be the set of all possible coefficient polynomials
gi occurring in the expansion ofSPf as a polynomial inx1 for some f ∈F . The setT is
finite, thanks to Lemma 4.1. By assumption, a putative sum of squares expression for an
f ∈F gives rise to a set of equations of the formgi(Pf )=ci, f , where thegi are inT and
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the ci, f are inC. The set of all such equations is thus finite, and has a non-empty real
zero set since everyf has a representation as a sum ofℓ squares of univariatem-nomials.
Therefore, by the infinite pigeon-hole principle, there is asubset{ fk}k∈N which has the
same set of equations governing the coefficientsai, j for all k. Picking any real solution to
such a set of equations finishes the proof.�

To complete the preparation for our proof of Theorem 1.6, letus also recall “little-oh”
notation: given any functionh : N→ R, we say thath(n)=o(n) if

lim
n→∞

h(n)
n

= 0.

It is easy to see that the sum of any finite number of such functions is alsoo(n). Moreover,

if lim n→∞
p(n)

n = p for some constantp, thenp(n) = np+o(n).

Proof of Theorem 1.6: Suppose, to derive a contradiction, that every positive definite
trinomial can be written as a sum ofℓ squares, each involving at mostm terms. Consider
the following infinite sequence of positive definite trinomials:

(4.2) fk = x2k
1 +x2k−1

1 +1, k= 1,2, . . . .

Using Lemma 4.2, we can find a subsequencefks with corresponding exponent matrices
Pk1,Pk2, . . . ∈Nℓ×m

0 and a single set of real numbers ¯a= (āi, j) such thatfks(x1)=SPks
(x1, ā)

as polynomials inx1, for all positive integerss. Let us also pick ¯a so that the number of
nonzero coordinates is maximal among all such vectors of coefficients. For clarity of ex-
position, we will not keep updating the subscripting of indices when taking subsequences.

Given an exponent matrixPks∈Nℓ×m
0 , define a new matrix

P̃ks =
1
ks

Pks.

This corresponds naturally to the transformationx1 7→ x1/ks
1 applied to both sides of the

equation fks(x1) =SPks
(x1, ā). Since deg( fks) = 2ks, each matrixP̃ks has entries in the

interval [0,1]. By compactness, we may choose a subsequencePks such thatP̃ks converges
in the (entry-wise) Euclidean norm to a matrixP̃=[p̃i, j ]∈ [0,1]ℓ×m. Henceforth, we restrict
to this subsequence. Clearly, we have ˜p11 = 1, and also that some entry ofP̃ is 0. It turns
out that 0 and 1 are the only possible values for entries ofP̃ which need play a role in (4.1).

CLAIM . We can choose the subsequence{ fks}s so that if0< p̃i, j<1, the corresponding
coefficientāi, j is 0.

To prove the claim, let us suppose temporarily thatP̃ containsr≥3 entries, ˜p1, . . . , p̃r ,
with 1= p̃1> · · · > p̃r =0. (Otherwise, the claim is vacuously true.) Each power ofx1

occurring after expanding the squared summands inSPks
(x1) is of the form

(4.3) ksp̃u+ksp̃v+o(ks).

Thus, for all sufficiently larges, the powers ofx1 occurring in expression (4.1) can be
partitioned into classes determined by the distinct valuesof

p̃u+ p̃v, u,v∈{1, . . . , r}.

Note that the numbers (4.3) all become strictly smaller (resp. larger) than 2ks−1 (resp.
0) ass→ ∞ unlessu=v=1 (resp.u=v= r). (This is because ˜p2<1 and p̃r−1>0.) In
particular, for

(4.4) w∈ {2ks+o(ks),0+o(ks)}
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ands large, the polynomialsgw(Pks) ∈ N0[ai, j ] do not involve the indeterminatesai, j com-
ing from exponents of the formksp̃u+o(ks) with u 6∈{1, r}. Moreover, each monomial in
gw(Pks) with w not in one of the classes from (4.4) is divisible by at least one ai, j coming
from an exponent of the formksp̃u + o(ks) with u 6∈ {1, r} since exponents infks cannot
have orderks(p̃1+ p̃r)=ks+o(ks).

Since the only nonzero coefficients of the sequence (4.2) come from the classes of
(4.4), it follows that we may replace with 0 all coefficients ¯ai, j corresponding to exponents
kspu+o(ks) with u 6∈{1, r} and still have the equality of polynomials

fks(x1) = SPks
(x1, ā).

The claim therefore follows from the maximality property ofthe chosen set of coefficients
āi, j .

To conclude, we now examine the limiting behavior of the expressions from Equal-
ity (4.1). From the claim, it follows that whens is large, we need only consider those
exponents from the matricesPks that are on the order

ks+o(ks) and 0+o(ks).

So fix s large enough so that all exponents ofPks that occur with a nonzero coefficient in
(4.1) after substituting(āi, j) for (ai, j) are either strictly greater than23ks or strictly less than
1
3ks. Let p be the smallest such exponent greater than2

3ks. When the sum from (4.1) is ex-

panded, the term x2p
1 will then appear with positive coefficient; i.e.,

g2p(Pks)(ā)> 0. (This is becausep> 2
3ks and thus, by construction, 2p can not be the

sum of two exponents other thanp and p.) Since the only term offks of positive even
degree isx2ks

1 , we must then have thatp = ks. In particular, it is not possible to obtain a
nonzero coefficient forx2ks−1

1 in fks. This contradiction completes the proof.�
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