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As a mathematician working also in physics...

COMMUNICATIONS ON PURE AND' APPLIED MATHEMATICS, vou, xm, 001-14 (1960}

The Unreasonable Effecliveness of Mathematics
in the Nataral Secicnees
Richard Courant Lecture in Mataematical Sciemces celiversed at Mew York University,
May 11, 1938
EUGENE P. WIGNER

Princcton University

For his contributions to the theory of the atomic nucleus
and the elementary particles, particularly through the discovery
and application of fundamental symmetry principles




Convergence of Physics and Mathematics

Physics Mathematics
Newtonian Mechanics Calculus (arranged marriage)
General Relativity and Gauge theory Differential Geometry
Quantum Mechanics Linear Algebra and Functional Analysis
Many-body Entanglement Physics 777

(second revolution in quantum mechanics?)

Universal Properties of 2D Topological Phases
Topological Quantum Field Theory (TQFT)
and Modular Tensor Category (MTC)



* Topological superconductors 5
« Topological insulators T@,Tﬁ/;f’;[

2D Topological Phases in Nature

Quantum Hall States
1980 Integral Quantum Hall Effect ---
von Klitzing (1985 Nobel)

1982 Fractional QHE---Stormer, Tsul, Gossard at v = %
(1998 Nobel for Stormer, Tsui, and Laughlin)
1987 Non-abelian FQHE???---R. Willett etal atv =

2

Hall resistance Ry=V,/l
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Topological Phases of Quantum Matter

Local Hilbert Space L=Q;L; l [ [ 1

Local, Gapped Hamiltonian H:[, — L

E . Two gapped Hamiltonians Hy, H, realize the
_ same phase of matter if there exists a

£ continuous path connecting them without

| gap  closing the gap/a phase transition.

A topological phase, to first approximation, is a class of gapped
Hamiltonians that realize the same phase. Topological order in

a 2D topological phase is encoded by a TQFT or anyon
model=unitary modular tensor category (MTC) or CFT.




Atiyah-Segal Type (2+1)-TQFT: Codim=1

A symmetric monoidal “functor” (V, Z):
category of 2-3-mfds - Vec
2-mfd Y > vector space V (Y)
3-bord X fromY; to Y, 2> Z(X): V(Y;) » V(Y3)

X, X,
V(@) = C ~—
ViryuY,) =V(;) QV(Y,) O > )
V(=Y) = V()
Z(Y x 1) = ldyy) ook h

Z(X;UX,) =™ - Z(X,) - Z(X,) (anomaly)



TQFTs and Higher Category Theories

Basic Principle:
Physics is local, so realistic TQFTs are determined by local data.

(n+1)-Topological Quantum Field Theories <= = —» (n+1)-Categories

(2+1)-TQFTs <«— Modular Tensor Categories
Quantum Finite Group Algebras

1. Not fully extended. Not covered by Lurie’s cobordism hypothesis.

2. Frontiers are in (3+1)D both mathematically and physically:
(2+1)-TQFTs are unemployed---no major topological problems to solve,
(3+1)-TQFTs that can detect smooth structures are highly desired.



Generalization of Two Theorems

* Landau’s Theorem:
Given r, there are only finitely many groups
with exactly r irreducible representations.

« Cauchy Theorem:
Given a finite group G, the prime factors of
the order of G and the exponent of G are the
same set.



A modular (tensor) category is a spherical fusion
category with a non-degenerate braiding

A fusion category is a categorification of
a based ring Z[xy, ..., Xy—1]

finite rigid C-linear semisimple monoidal category with simple unit

monoidal: (&, 1),
semisimple: X = &; m;X;,
linear: Hom(X,Y) € Vecg,
NoId: X* @X»1-XQ X"

finite rank: Irr(C) = {1 = Xy, ..., X;_1}

X simple if Hom (X, X) = C
Rank of C: r(C) =r =dimV(T?)



Spherical Fusion Category

* Rigidity defines a functor **: ¢ — C. A pivotal structure is a natural
iIsomorphism between the identity functor Id: and **.

Define a left trace and a right trace for any morphism f: x — x:

T {f] = dye 0 (g @ idy=) o [ f @ idps ] o by
A Lo ¥ rﬁmr‘ L 'F"ﬂg':'_,r ..1H|l

= [ /:| ]l S rFEe —F—= 2 Bet — 20 @
IIF -

T ) = de o (s @ f) 0 (i 0 iy ') 0 b

e

E 4
Eli

T b il ! el g
_|::-_J7_| -1 :‘i.“__:-E;!__H- E;:':"J':_.I_r__t@:n "‘"Li-l'-tﬂ"i-l'- dl"]
— F

« A npivotal structure is spherical if the two traces are equal.
« A fundamental open question:
Is every fusion category pivotal/spherical?



Modular Category

A fusion category is braided if there exist braidings
Cap:a @b —"bQa

satisfy hexagons. % b
A simple objecta is \

transparent if for any simple b,

If the only transparent simple

Ch,a " Cab = ida®b- a b «a b
A braiding Is non-degenerate )
is the tensor unit. \



Examples

Pointed: C(4, q), A finite abelian group, g non-degenerate
quadratic form on A.

Rep(D®G), w a 3-cocycle on G a finite group.

Quantum groups/Kac-Moody algebras: subquotients of
Rep(Ugg) atq = e™ /1 or level k integrable §-modules, e.g.

— SU(N)y = C(sly, N + k),

— SO(N)y,

— Sp(N),

— for gcd(N, k) = 1, PSU(N), < SU(N);, “even half”
Drinfeld center: Z (D) for spherical fusion category D.



Invariants of Modular Tensor Category

MTC ¢ = (2+1)-TQFT (V, Z)
e Pairing (Y?,C) = V(Y?%;C) € Rep(M(Y?)) for a
surface Y4, M (Y?) = mapping class group
» Pairing Zy ; ¢ = ((X?, L), C) € C for colored framed
oriented links L. in 3-mfd X3
fix C, Zy ; ¢ invariant of (X7, L.)

L E LD ]

fix Y2, V(Y?4; @) invariant of C



Quantum Dimensions and Twists: Unknot

Label set L = isomorphism classes of simple objects
Quantum dimension of a simple/label a € L:

da.. — da — (LO

Topological twist/spin of a: finite order by Vafa’s thm

d,
(1

Dimension D? of a modular category:

dim(C) = D?* = Yyedg



Modular S-Matrix: Hopf Link

 Modular S-matrix: S, = &@

 Modular T-matrix: T,, = 6,430,-diagonal

» (§,T)-form a projective rep. of SL(2, Z):
s = ((1) _01)—> S

t=((1) 1)—» T



A

o B~ O

6.

Modular Data

S =St SSt = D?Id, modular T diagonal, ord(T) = N < oo

N
(STY® = pyS2 pyp- = D%, () =1

SiaS 'am
= La Dzjdak
0;0;S;; = Yk N; dkek where N ;+ uniquely defines i*

€ N, Verlinde formulas for fusion rules

27l

(k) = —ZU N"d d; ( _)n € Z[e N ] satisfies:
v, (k) € {0, £1) g
Q(S) € Q(T), AutgQ(S) c &, Autgs)Q(T) = (Zy)"

=Y,;d?6 N = dim Hom(X; ® X, X)



Rank-Finiteness
Theorem (Bruillard-Ng-Rowell-W., 2013):

For a fixed rank, there are only finitely many
equivalence classes of modular categories.

Remarks

1. Refinement of Ocneanu rigidity: fix the fusion rule, finite.

2. Rank-finiteness for fusion/spherical fusion categories open.
3. An explicit bound and effective algorithm.



Finite Group Analogue

Theorem (E. Landau 1903)
For any r € N, there are finitely many groups G with |Irr(G)| = r.

Proof.
Use class equation:

|G| = %':1 |g_l|’
g; distinct conjugacy classes. Set x; = [G: C(g;)] (index of
centralizers) to get

1
1_ 11

x; < a(r) where a(1) = 2, a(2) = 3, a(n) =a(n—1)a(n—-2) +1
IS Sylvester’s sequence. Therefore |G| = maxx; IS bounded. O



Dimension Equation

Fixrank 7, dim(C) = D? =d5 + df + -+ d?_{,dy =1
Rewrite: 1—D2+d2+ R
Quantum dimensions d% and D? are special algebraic integers:
S-units
Let K be a number field and § € Spec Ok be finite. The S-units:
0%s= ekl (= [p=

PES
where «a, € Z.
(011?’5 ={x e K*||x||, =1forall v ¢ 5})



Reduction to Evertse’s Theorem

Theorem (Evertse 1984)

There are finitely many solutionsto 0 = 1 4+ x5 + -+ + x,._; With x; €
Ok s such that no sub-sum of 1 + xy + --- + x,._; vanishes.

271

Set m = Iem(ord(T)) for all rank = r modular T, K = Q(e m).
S = {s; € Spec(Og) | s;j|p € M,777}

Evertse’s Theorem implies:

[{(—=dim(€), (d1)?, ..., (dr-1)*)}]| < o0.
Hence dim(C) is bounded. By Verllnde formulas, only finitely many
fusion rules. Rank-finiteness follows from Ocneanu rigidity.

Need to show: M is finite, and dZ and dim(C) are S-units



Prime Factorization

* For arank = r modular category ¢, N=ord(T), modular T:

Se = {p € Spec(Z({y)) | »|(dim(C))}, and
Me = {p € Spec(Z({n)) | pl{ord(T))}.

 Forafixed rank r,

51‘ = U 5@

rank(C)=r

M, = U Me

rank(C)=r

and



Cauchy Theorem for Modular Categories

Theorem (Bruillard-Ng-Rowell-W.)

Me = 8¢, 1.e. prime divisors of dim(€C) and N =
ord(T) in Z({y) form the same set.

« M, =S, foranyrank r, d2 and dim(C) are S-units.

 Finiteness of M. follows from Ng-Schauenburg

congruence subgroup theorem for modular rep. of
SL(2,7Z).



Classification of Unitary Modular Categories
rank = 2, 3,4 with Rowell and Stong, rank = 5 with Bruillard, Ng, Rowell

A 1
Trivial
A 2 NA 2
Semion Fib
BU
A 2 | NA 8 | NA 2
L3 Ising (50(3),5)
BU
A 51A 4 | NA 4 | NA 2 | NA 3
Toric Code Ly Fib x Semion (S0(3),7) DFib
BU BU BU

The ith-row lists all rank = i unitary modular tensor categories.

Middle symbol: the fusion rule.

Upper left corner: A = abelian theory, NA = non-abelian.
Upper right corner number = the number of distinct theories.
Lower left corner BU = there is a universal braiding anyon.



Realization as Topological Phase

Kitaev’s Toric Code: H=-2, A, -2, B,

=T2
P
L=®,gges C2 x_ (0 1
edges g _(1 O)
Av=®68v o’ ®0thers Ide; , (1 0
o= (0 —1)

Bp=®e8p 0* Qpthers 1de)



Toric Code Exactly Solvable

A, B, all commute with each other
Ground states are = C%, i.e. 4-fold degenerate
Gapped in the thermodynamic limit: 4, — 1, >c>0

Excitations are mutual anyons



Unitary Modular Category Realized by Toric Code

4 types of simple objects=anyons {1, e, m, Y }:

1=ground state or vaccum, e, m=bosons, y=fermion,

eRe=1mRIm=1L,eQ@Rm=1yY

The fusion rule same as Z, P Z,.

The anyons form a Drinfeld center D(Z,):

Sy

=<

= X




Herbertsmithite

Physical Theorem (Jiang-W.-Balents):
The spin=; Heisenberg anti-ferromagnetic Kagome model

_ y y y y
H=J1 Y<ijs (07 0j+0; 0;+0;0})+]; Y«ij»(07 0j+0; 0;+0] 0]

represents a topological phase of matter which is in the same universality class
of the toric code when 0</2/ 7,<0.15, where <ij> means summation over the
nearest neighborhood and <<ij>> the next nearest neighborhood.

How to identify the MTC/TQFT?
Entanglement and classification of MTCs.

N w » (4]
T

Entropy S(Ly)

GLy 8



Entanglement

« Relative to locality:

Hilbert space of states L =);c, L; decomposed into parts L; with dim L; > 1,
a state i Is a product if Y =y, & g for some states g, Pp,a U B =s.

OtherWise’ a State iS entangled' “Another way of expressing the peculiar situation is: the
In quantum computation, L; = C*-called a qubit. ~ impeiersiasvoese

parts ... | would not call that one but rather the

Spin_Singlet l/) - (l 01 > — | 10 >)/'\/2 entang Ied. characteristic trait of quantum mechanics, the one that

enforces its entire departure from classical lines of
thought...

By the interaction the two representatives [quantum
states] have become entangled.”

* Whole is more definite than parts:
Spin-singlet ¥ pure, but each qubit in a mixed state.

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

« Spooky action at a distance:
Measuring one results a definite state of the other.



von Neumann Entropy

A
pa = Trp ) (V]

von Neumann S,n(A) = —=Tr[paInpy]



Topological Entanglement Entropy (TEE)

Preskill-Kitaev, Levin-Wen
2006

1
S‘DN = alL — Y + O(Z),
L = length of the smooth boundary.

TEE y quantifies long-range entanglement.



Identify MTC/TQFT

Compute topological entanglement entropy

y = 0, trivial.
y # 0, some non-trivial MTC, y =InD. :
But which one?

Use mathematical classification to identify:
Fix y, only finitely many MTCs.
For simple cases, completely classified. In some cases,
there are extra information to identify the MTC/TQFT,
e.g. spin=2 Heisenberg anti-ferromagnetic Kagome model



Topological Quantum Computation

Topological quantum computation depends on

- the existence of non-Abelian topological phase

- the ability to manipulate quasiparticle
excitations (anyons) in these phases

Candidate systems:

Fractional QH states Topological nanowires

Differential conductance dl/dV (au.)




