Modeling and Classification of Topological Phases of Matter

Zhenghan Wang
 Microsoft Station Q \& UC Santa Barbara Texas, March 24, 2015

Microsoft Station Q

Search for non-abelian anyons in topological phases of matter, and build a topological quantum computer
Theory: Station Q,...
Experiment: Delft, Copenhagen,...
Computer Science: QuArc

Mike Freedman (director, math-Fields medalist), Chetan Nayak (physics),
Kevin Walker (math), Matt Hastings (physics), Parsa Bonderson (physics),
Roman Lutchyn (physics), Bela Bauer (physics)

+ collaborators
+ postdocs
+graduate students
+visitors

As a mathematician working also in physics...

COMMUNICATIONS ON PURE AND APPIIRD MATHFMATICS, VOI. XIII, 001-14 (1960)

The Unreasonable Effecliveness of Mathematics
 in the Natural Sciences

Kichard Courant Lecrure in Mataematica! Sciences telivered at New Yoris C'niversity, May 11, 1939

EUGENE P. WIGNER
Princeton Liniversity

For his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles

Convergence of Physics and Mathematics

Physics

Mathematics
Newtonian Mechanics
General Relativity and Gauge theory Quantum Mechanics Linear Algebra and Functional Analysis

Many-body Entanglement Physics ???
(second revolution in quantum mechanics?)
Universal Properties of 2D Topological Phases
Topological Quantum Field Theory (TQFT) and Modular Tensor Category (MTC)

2D Topological Phases in Nature

- Quantum Hall States

1980 Integral Quantum Hall Effect --von Klitzing (1985 Nobel)

1982 Fractional QHE---Stormer, Tsui, Gossard at $v=\frac{1}{3}$
(1998 Nobel for Stormer, Tsui, and Laughlin)
1987 Non-abelian FQHE???---R. Willett et al at $v=\frac{5}{2}$

- Topological superconductors
- Topological insulators

$$
R_{H}=v^{-1} \frac{h}{e^{2}}
$$

~100 Fractional Quantum Hall States

$v=\frac{N_{e}}{N_{\phi}} \quad \begin{aligned} & \text { filling factor or fraction } \\ & N_{e}=\# \text { of electrons } \\ & N_{\phi}=\# \text { of flux quanta }\end{aligned}$
Topological phases at a filling fraction are modeled by TQFTs/UMTCs/CFTs/... (or pattern of zeros)
1/3
1/3
2/3 2/5 2/7 2/9 3/11 3/13 4/15 3/17 4/19 10/21
2/3 2/5 2/7 2/9 3/11 3/13 4/15 3/17 4/19 10/21
4/3 3/5 3/7 4/9 4/11 4/13 7/15 4/17 5/19
4/3 3/5 3/7 4/9 4/11 4/13 7/15 4/17 5/19
5/3 4/5 4/7 5/9 5/11 5/13 8/15 5/17 9/19
5/3 4/5 4/7 5/9 5/11 5/13 8/15 5/17 9/19
7/3 6/5 5/7 7/9 6/11 6/13 11/15 6/17 10/19
7/3 6/5 5/7 7/9 6/11 6/13 11/15 6/17 10/19
8/3 7/5 9/7 11/9 7/11 7/13 22/15 8/17
8/3 7/5 9/7 11/9 7/11 7/13 22/15 8/17
8/5 10/7 13/9 8/11 10/13 23/15 9/17 5/2
8/5 10/7 13/9 8/11 10/13 23/15 9/17 5/2
11/5 12/7 25/9 16/11 20/13 7/2
11/5 12/7 25/9 16/11 20/13 7/2
12/5 16/7 17/11
12/5 16/7 17/11
19/7
19/7
m/5,m=14,16, 19
m/5,m=14,16, 19

Topological Phases of Quantum Matter

Local Hilbert Space

$$
L=\bigotimes_{i} L_{i}
$$

Local, Gapped Hamiltonian $\quad H: L \rightarrow L$

Two gapped Hamiltonians H_{1}, H_{2} realize the same phase of matter if there exists a continuous path connecting them without closing the gap/a phase transition.

A topological phase, to first approximation, is a class of gapped Hamiltonians that realize the same phase. Topological order in a 2D topological phase is encoded by a TQFT or anyon model=unitary modular tensor category (MTC) or CFT.

Atiyah-Segal Type (2+1)-TQFT: Codim=1

A symmetric monoidal "functor" (V, Z) :
category of 2-3-mfds \rightarrow Vec
2-mfd $Y \rightarrow$ vector space $V(Y)$ 3-bord X from Y_{1} to $Y_{2} \rightarrow \mathrm{Z}(\mathrm{X}): V\left(Y_{1}\right) \rightarrow V\left(Y_{2}\right)$

- $V(\emptyset)=\mathbb{C}$
- $V\left(Y_{1} \sqcup Y_{2}\right) \cong V\left(Y_{1}\right) \otimes V\left(Y_{2}\right)$
- $V(-Y) \cong V^{*}(Y)$
- $Z(Y \times I)=\operatorname{Id}_{V(Y)}$

- $Z\left(X_{1} \cup X_{2}\right)=\kappa^{m} \cdot Z\left(X_{1}\right) \cdot Z\left(X_{2}\right)$ (anomaly)

TQFTs and Higher Category Theories

Basic Principle:
Physics is local, so realistic TQFTs are determined by local data.
$(\mathrm{n}+1)$-Topological Quantum Field Theories $\leftarrow-\boldsymbol{-}(\mathrm{n}+1)$-Categories

$$
(2+1)-\mathrm{TQFTs} \longleftrightarrow \begin{aligned}
& \text { Modular Tensor Categories } \\
& \text { Quantum Finite Group Algebras }
\end{aligned}
$$

1. Not fully extended. Not covered by Lurie's cobordism hypothesis.
2. Frontiers are in (3+1)D both mathematically and physically:
(2+1)-TQFTs are unemployed---no major topological problems to solve, (3+1)-TQFTs that can detect smooth structures are highly desired.

Generalization of Two Theorems

- Landau's Theorem:

Given r, there are only finitely many groups with exactly r irreducible representations.

- Cauchy Theorem:

Given a finite group G, the prime factors of the order of G and the exponent of G are the same set.

A modular (tensor) category is a spherical fusion category with a non-degenerate braiding

> A fusion category is a categorification of a based ring $\mathbb{Z}\left[x_{0}, \ldots, x_{r-1}\right]$
finite rigid \mathbb{C}-linear semisimple monoidal category with simple unit

```
monoidal: ( }\otimes,\mathbf{1})
    semisimple: }X\cong\mp@subsup{\oplus}{i}{}\mp@subsup{m}{i}{}\mp@subsup{X}{i}{}
    linear: }\operatorname{Hom}(X,Y)\in\mp@subsup{\operatorname{Vec}}{\mathbb{C}}{}\mathrm{ ,
        rigid: }\mp@subsup{X}{}{*}\otimesX\mapsto\mathbf{1}\mapstoX\otimes\mp@subsup{X}{}{*
```


finite rank: $\operatorname{Irr}(\mathcal{C})=\left\{\mathbf{1}=X_{0}, \ldots, X_{r-1}\right\}$
X simple if $\operatorname{Hom}(X, X)=\mathbb{C}$ Rank of $\mathcal{C}: \mathrm{r}(\mathcal{C})=r=\operatorname{dim} V\left(T^{2}\right)$

- Rigidity defines a functor ${ }^{* *}: \mathcal{C} \rightarrow \mathcal{C}$. A pivotal structure is a natural isomorphism between the identity functor Id_{C} and ${ }^{* *}$.

Define a left trace and a right trace for any morphism $f: x \rightarrow x$:

$$
\begin{aligned}
& \operatorname{Tr}^{\mathbf{r}}(f)=d_{x^{*}} \circ\left(\phi_{x} \otimes \mathrm{id}_{\mathbf{z}_{2}}\right) \circ\left(f @ \mathrm{id}_{x^{*}}\right) \circ \mathrm{d}_{x}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Tr}^{l}(f)=d_{x} \circ\left(d_{x} * \otimes f\right) \circ\left(\mathrm{dd} \otimes \phi_{x}{ }^{1}\right) \circ b_{x^{*}}
\end{aligned}
$$

- A pivotal structure is spherical if the two traces are equal.
- A fundamental open question: Is every fusion category pivotal/spherical?

Modular Category

A fusion category is braided if there exist braidings
$c_{a, b}: a \otimes b \rightarrow b \otimes a$
satisfy hexagons.
A simple object a is
transparent if for any simple b,
$c_{b, a} \cdot c_{a, b}=\mathrm{id}_{\mathrm{a} \otimes b}$.
A braiding is non-degenerate if the only transparent simple is the tensor unit.

Examples

- Pointed: $\mathcal{C}(A, q), A$ finite abelian group, q non-degenerate quadratic form on A.
- $\operatorname{Rep}\left(D^{\omega} G\right), \omega$ a 3-cocycle on G a finite group.
- Quantum groups/Kac-Moody algebras: subquotients of $\operatorname{Rep}\left(U_{q} \mathfrak{g}\right)$ at $q=e^{\pi i / l}$ or level k integrable $\hat{\mathfrak{g}}$-modules, e.g.
$-\operatorname{SU}(N)_{k}=\mathcal{C}\left(\mathfrak{s l}_{N}, N+k\right)$,
$-\mathrm{SO}(N)_{k}$,
$-\operatorname{Sp}(N)_{k}$,
- for $\operatorname{gcd}(N, k)=1, \operatorname{PSU}(N)_{k} \subset \operatorname{SU}(N)_{k}$ "even half"
- Drinfeld center: $\mathcal{Z}(\mathcal{D})$ for spherical fusion category \mathcal{D}.

Invariants of Modular Tensor Category

$$
\text { MTC } \mathcal{C} \underset{\leftarrow-}{\rightarrow}(2+1)-\mathrm{TQFT}(V, Z)
$$

- Pairing $\left\langle Y^{2}, \mathcal{C}\right\rangle=V\left(Y^{2} ; \mathcal{C}\right) \in \operatorname{Rep}\left(\mathcal{M}\left(Y^{2}\right)\right)$ for a surface $Y^{2}, \mathcal{M}\left(Y^{2}\right)=$ mapping class group
- Pairing $Z_{X, L, \mathcal{C}}=\left\langle\left(X^{3}, L_{C}\right), \mathcal{C}\right\rangle \in \mathbb{C}$ for colored framed oriented links L_{c} in 3-mfd X^{3}
fix $\mathcal{C}, Z_{X, L, \mathcal{C}}$ invariant of $\left(X^{3}, L_{c}\right)$
fix $\left(X^{3}, L_{C}\right), Z_{X, L, C}$ invariant of \mathcal{C}
fix $Y^{2}, V\left(Y^{2} ; \mathcal{C}\right)$ invariant of \mathcal{C}

Quantum Dimensions and Twists: Unknot

- Label set $L=$ isomorphism classes of simple objects
- Quantum dimension of a simple/label $a \in L$:

$$
d_{a}=d_{\bar{a}}=a
$$

- Topological twist/spin of a : finite order by Vafa's thm

$$
\theta_{a}=\theta_{\bar{a}}=\frac{1}{d_{a}}
$$

- Dimension D^{2} of a modular category:

$$
\operatorname{dim}(\mathcal{C})=D^{2}=\sum_{a \in L} d_{a}^{2}
$$

Modular S-Matrix: Hopf Link

- Modular S-matrix:

- Modular T-matrix: $T_{a b}=\delta_{a b} \theta_{a}$-diagonal
- (S, T)-form a projective rep. of $S L(2, \mathbb{Z})$:

$$
\begin{aligned}
& s=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \rightarrow \mathrm{S} \\
& t=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \rightarrow \mathrm{T}
\end{aligned}
$$

Modular Data

1. $\quad S=S^{t}, S \bar{S}^{t}=D^{2}$ Id, modular T diagonal, $\operatorname{ord}(T)=N<\infty$
2. $(S T)^{3}=p_{+} S^{2}, p_{+} p_{-}=D^{2},\left(\frac{p_{+}}{p_{-}}\right)^{N}=1$
3. $N_{i j}^{k}=\sum_{a} \frac{s_{i a} s_{j a} \overline{s_{k a}}}{D^{2} d_{a}} \in \mathbb{N}$, Verlinde formulas for fusion rules
4. $\quad \theta_{i} \theta_{j} S_{i j}=\sum_{k} N_{i^{*} j}^{k} d_{k} \theta_{k}$, where $N_{i i^{*}}^{0}$ uniquely defines i^{*}.
5. $\quad v_{n}(k):=\frac{1}{D^{2}} \sum_{i, j} N_{i j}^{k} d_{i} d_{j}\left(\frac{\theta_{i}}{\theta_{j}}\right)^{n} \in \mathbb{Z}\left[e^{\frac{2 \pi i}{N}}\right]$ satisfies:

$$
v_{2}(k) \in\{0, \pm 1\}
$$

6. $\mathbb{Q}(S) \subset \mathbb{Q}(T), \operatorname{Aut}_{\mathbb{Q}} \mathbb{Q}(S) \subset \mathfrak{S}_{r}, \operatorname{Aut}_{\mathbb{Q}(S)} \mathbb{Q}(T) \cong\left(\mathbb{Z}_{2}\right)^{k}$

$$
p_{ \pm}:=\sum_{j} d_{j}^{2} \theta_{j}^{ \pm 1} \quad N_{i j}^{k}=\operatorname{dim} \operatorname{Hom}\left(X_{i} \otimes X_{j}, X_{k}\right)
$$

Rank-Finiteness

Theorem (Bruillard-Ng-Rowell-W., 2013):

For a fixed rank, there are only finitely many equivalence classes of modular categories.

Remarks

1. Refinement of Ocneanu rigidity: fix the fusion rule, finite.
2. Rank-finiteness for fusion/spherical fusion categories open.
3. An explicit bound and effective algorithm.

Finite Group Analogue

Theorem (E. Landau 1903)

For any $r \in \mathbb{N}$, there are finitely many groups G with $|\operatorname{Irr}(G)|=r$.

Proof.

Use class equation:

$$
|G|=\sum_{i=1}^{r}\left|\bar{g}_{i}\right|,
$$

\bar{g}_{i} distinct conjugacy classes. Set $x_{i}=\left[G: C\left(g_{i}\right)\right]$ (index of centralizers) to get

$$
1=\sum_{i=1}^{r} \frac{1}{x_{i}}
$$

$x_{i} \leq a(r)$ where $a(1)=2, a(2)=3, a(n)=a(n-1) a(n-2)+1$ is Sylvester's sequence. Therefore $|G|=\max _{i} x_{i}$ is bounded.

Dimension Equation

Fix rank $r, \operatorname{dim}(\mathcal{C})=D^{2}=d_{0}^{2}+d_{1}^{2}+\cdots+d_{r-1}^{2}, d_{0}=1$
Rewrite: $1-\boldsymbol{D}^{2}+\boldsymbol{d}_{1}^{2}+\cdots+\boldsymbol{d}_{r-1}^{2}=0$
Quantum dimensions \boldsymbol{d}_{a}^{2} and \boldsymbol{D}^{2} are special algebraic integers:

\mathcal{S}-units

Let \mathbb{K} be a number field and $\mathcal{S} \in \operatorname{Spec} \mathcal{O}_{\mathbb{K}}$ be finite. The \mathcal{S}-units:

$$
\mathcal{O}_{\mathbb{K}, \mathcal{S}}^{\times}=\left\{x \in \mathbb{K} \mid\langle x\rangle=\prod_{\mathfrak{p} \in \mathcal{S}} \mathfrak{p}^{\alpha_{\mathfrak{p}}}\right\}
$$

where $\alpha_{\mathfrak{p}} \in \mathbb{Z}$.

$$
\left(\mathcal{O}_{\mathbb{K}, \delta}^{\times}=\left\{x \in \mathbb{K}^{\times} \mid\|x\|_{v}=1 \text { for all } v \notin \mathcal{S}\right\}\right)
$$

Reduction to Evertse's Theorem

Theorem (Evertse 1984)

There are finitely many solutions to $0=1+x_{0}+\cdots+x_{r-1}$ with $x_{i} \in$ $\mathcal{O}_{\mathbb{K}, \mathcal{S}}^{\times}$such that no sub-sum of $1+x_{0}+\cdots+x_{r-1}$ vanishes.

$$
\begin{gathered}
\text { Set } m=\operatorname{lcm}(\operatorname{ord}(T)) \text { for all rank }=r \text { modular } T, \mathbb{K}=\mathbb{Q}\left(e^{\frac{2 \pi i}{m}}\right) . \\
\mathcal{S}=\left\{s_{i} \in \operatorname{Spec}\left(\mathcal{O}_{\mathbb{K}}\right)\left|s_{i}\right| \mathcal{X} \in \mathcal{M}_{r} ? ? ?\right\}
\end{gathered}
$$

Evertse's Theorem implies:

$$
\left|\left\{\left(-\operatorname{dim}(\mathcal{C}),\left(d_{1}\right)^{2}, \ldots,\left(d_{r-1}\right)^{2}\right)\right\}\right|<\infty
$$

Hence $\operatorname{dim}(\mathcal{C})$ is bounded. By Verlinde formulas, only finitely many fusion rules. Rank-finiteness follows from Ocneanu rigidity.

Need to show: \mathcal{M}_{r} is finite, and $\boldsymbol{d}_{\boldsymbol{a}}^{\mathbf{2}}$ and $\boldsymbol{\operatorname { d i m }}(\boldsymbol{\mathcal { C }})$ are $\boldsymbol{\mathcal { S }}$-units

Prime Factorization

- For a rank $=r$ modular category $\mathcal{C}, \mathrm{N}=\operatorname{ord}(\mathrm{T})$, modular T :

$$
\begin{aligned}
& \mathcal{S}_{\mathcal{C}}=\left\{\mathcal{P} \in \operatorname{Spec}\left(\mathbb{Z}\left(\zeta_{N}\right)\right)|\mathfrak{p}|\langle\operatorname{dim}(\mathcal{C})\rangle\right\}, \text { and } \\
& \mathcal{M}_{\mathcal{C}}=\left\{\mathfrak{P} \in \operatorname{Spec}\left(\mathbb{Z}\left(\zeta_{N}\right)\right)|\mathfrak{p}|\langle\operatorname{ord}(T)\rangle\right\}
\end{aligned}
$$

- For a fixed rank r,

$$
\mathcal{S}_{r}:=\bigcup_{\operatorname{rank}(\mathcal{C})=r} \mathcal{S}_{\mathcal{C}}
$$

and

$$
\mathcal{M}_{r}:=\bigcup_{\operatorname{rank}(\mathcal{C})=r} \mathcal{M}_{\mathcal{C}}
$$

Cauchy Theorem for Modular Categories

Theorem (Bruillard-Ng-Rowell-W.)
$\mathcal{M}_{\mathcal{C}}=\mathcal{S}_{\mathcal{C}}$, i.e. prime divisors of $\operatorname{dim}(\mathcal{C})$ and $\mathrm{N}=$ $\operatorname{ord}(T)$ in $\mathbb{Z}\left(\zeta_{N}\right)$ form the same set.

- $\mathcal{M}_{r}=\mathcal{S}_{r}$ for any rank r, d_{a}^{2} and $\operatorname{dim}(\mathcal{C})$ are \mathcal{S}-units.
- Finiteness of \mathcal{M}_{r} follows from Ng-Schauenburg congruence subgroup theorem for modular rep. of SL(2, $\mathbb{Z})$.

Classification of Unitary Modular Categories

rank $=2,3$, 4 with Rowell and Stong, rank $=5$ with Bruillard, Ng, Rowell

The i th-row lists all rank $=i$ unitary modular tensor categories.
Middle symbol: the fusion rule.
Upper left corner: A = abelian theory, NA = non-abelian.
Upper right corner number $=$ the number of distinct theories.
Lower left corner $\mathrm{BU}=$ there is a universal braiding anyon.

Realization as Topological Phase

Kitaev's Toric Code: $\mathbf{H}=-\sum_{\mathrm{v}} \mathbf{A}_{\mathrm{v}}-\Sigma_{\mathrm{p}} \mathbf{B}_{\mathrm{p}}$

$$
=T^{2}
$$

$$
\begin{aligned}
& \mathrm{L}=\otimes_{\text {edges }} \mathbb{C}^{2} \\
& \mathrm{~A}_{\mathrm{v}}=\otimes_{\text {e } \varepsilon v} \quad \sigma^{2} \otimes_{\text {others }} I d_{\mathrm{e}}
\end{aligned}
$$

$$
\sigma^{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

$$
\sigma^{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Toric Code Exactly Solvable

- $\mathrm{A}_{\mathrm{v}}, \mathrm{B}_{\mathrm{p}}$ all commute with each other
- Ground states are $\cong \mathbb{C}^{4}$, i.e. 4-fold degenerate
- Gapped in the thermodynamic limit: $\lambda_{1}-\lambda_{0}>c>0$
- Excitations are mutual anyons

Unitary Modular Category Realized by Toric Code

- 4 types of simple objects=anyons $\{1, e, m, \psi\}$:
$1=$ ground state or vaccum, $e, m=$ bosons, $\psi=$ fermion, $e \otimes e=1, m \otimes m=1, e \otimes m=\psi$
The fusion rule same as $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
- The anyons form a Drinfeld center $D\left(Z_{2}\right)$:

Herbertsmithite

Physical Theorem (Jiang-W.-Balents):
The spin $=\frac{1}{2}$ Heisenberg anti-ferromagnetic Kagome model

$\mathrm{H}=J_{1} \sum_{<i j>}\left(\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}+\sigma_{i}^{z} \sigma_{j}^{z}\right)+J_{2} \sum_{\ll i j \gg}\left(\sigma_{i}^{x} \sigma_{j}^{x}+\sigma_{i}^{y} \sigma_{j}^{y}+\sigma_{i}^{z} \sigma_{j}^{z}\right)$
represents a topological phase of matter which is in the same universality class of the toric code when $0<{ }^{J_{2}} / J_{1}<0.15$, where $<\mathrm{ij}>$ means summation over the nearest neighborhood and <<ij>> the next nearest neighborhood.

How to identify the MTC/TQFT?
Entanglement and classification of MTCs.

Entanglement

- Relative to locality:

Hilbert space of states $L=\bigotimes_{i \in s} L_{i}$ decomposed into parts L_{i} with $\operatorname{dim} L_{i}>1$, a state ψ is a product if $\psi=\psi_{\alpha} \otimes \psi_{\beta}$ for some states $\psi_{\alpha}, \psi_{\beta}, \alpha \cup \beta=s$. Otherwise, a state is entangled.
In quantum computation, $L_{i}=\mathbb{C}^{2}$-called a qubit. Spin-singlet $\psi=(|01>-| 10>) / \sqrt{ } 2$ entangled.

- Whole is more definite than parts:

Spin-singlet ψ pure, but each qubit in a mixed state.

- Spooky action at a distance:

Measuring one results a definite state of the other.

von Neumann Entropy

von Neumann
$S_{v N}(A)=-\operatorname{Tr}\left[\rho_{A} \ln \rho_{A}\right]$

Topological Entanglement Entropy (TEE)

Preskill-Kitaev, Levin-Wen 2006

$$
S_{v N}=\alpha L-\gamma+\mathcal{O}\left(\frac{1}{L}\right)
$$

$L=$ length of the smooth boundary.
TEE γ quantifies long-range entanglement.

Identify MTC/TQFT

Compute topological entanglement entropy:

$\gamma=0$, trivial.
$\gamma \neq 0$, some non-trivial MTC, $\gamma=\ln \boldsymbol{D}$.
But which one?

Use mathematical classification to identify:
Fix γ, only finitely many MTCs.
For simple cases, completely classified. In some cases, there are extra information to identify the MTC/TQFT,
e.g. spin $=\frac{1}{2}$ Heisenberg anti-ferromagnetic Kagome model

Topological Quantum Computation

Topological quantum computation depends on

- the existence of non-Abelian topological phase
- the ability to manipulate quasiparticle excitations (anyons) in these phases

Candidate systems:

Fractional QH states

Topological nanowires

spin systems

