Topological Quantum Computation

Texas A&M Research Team

Daniel Creamer, Paul Gustafson, Andrew Kimball and Qing Zhang: PHD students +2 Undergraduates: Humberto Munoz-Bauza and Chanwoo Kim

Topological Quantum Computation

From [Freedman-Kitaev-Larsen-Wang '03]:

Definition Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate and measure quantum states.

Fix a (classical) function $f : \mathbb{Z}_2^n \to \mathbb{Z}_2^n$.

- 1. Goal: compute f(N).
- 2. Encode classical information N as a quantum state $|N\rangle$.
- 3. Process state: $|N\rangle \rightarrow \sum_{j} a_{j}|j\rangle$ depending on f.
- 4. Measure state: get $|j\rangle$ with probability $|a_j|^2$, hopefully $|a_{f(N)}|^2 \gg 0$.

A Universal Quantum Circuit Model

Let $V = \mathbb{C}^2$.

Example

• state space (*n*-qubit): $V^{\otimes n}$

• quantum gate set:
$$U_1 := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
,
 $U_2 = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/4} \end{pmatrix}$, $U_3 := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$
• quantum circuits: $\prod_j I_V^{\otimes a_j} \otimes U_{i_j} \otimes I_V^{\otimes b_j} \in U(V^{\otimes n})$,

 $1 \leq i_j \leq 3.$

Theorem

Universal: n-qubit quantum circuits dense in $SU(V^{\otimes n})$.

Remarks

- ► Typical physical realization: composite of *n* identical d-level systems. E.g. *d* = 2: spin-¹/₂ arrays.
- The setting of most quantum algorithms: e.g. Shor's integer factorization algorithm
- Main nemesis: decoherence–errors due to interaction with surrounding material. Requires expensive error-correction...

Question

How to overcome decoherence? One answer: **TOPOLOGY**.

A key role is played by the braid group \mathcal{B}_n generated by σ_i :

Definition (Artin)

 \mathcal{B}_n is generated by σ_i , i = 1, ..., n-1 satisfying: (R1) $\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$ (R2) $\sigma_i \sigma_j = \sigma_j \sigma_i$ if |i - j| > 1

Anyons

For Point-like particles:

- ▶ In \mathbb{R}^3 : bosons or fermions: $\psi(z_1, z_2) = \pm \psi(z_2, z_1)$
- Particle exchange \rightsquigarrow reps. of symmetric group S_n
- In \mathbb{R}^2 : anyons: $\psi(z_1, z_2) = e^{i\theta}\psi(z_2, z_1)$
- Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_n
- Why? $\pi_1(\mathbb{R}^3 \setminus \{z_i\}) = 1$ but $\pi_1(\mathbb{R}^2 \setminus \{z_i\}) = F_n$ Free group.

 $C_1 \not\approx C_2 \approx C_3$

Topological Phases of Matter/Anyons

Fractional Quantum Hall Liquid

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases.

- 1. Model for anyonic systems/topological phases
- 2. Classify (models of) topological phases
- 3. Interpret information-theoretic questions
- 4. 3-dimensional generalizations?

Modeling Anyons on Surfaces

Topology of marked surfaces+quantum mechanics "Marks" (boundary components) are labelled by anyons, of which there are finitely many (distinguishable, indecomposable).

Principle

Superposition: a state is a vector in a Hilbert space $|\psi\rangle \in \mathcal{H}$.

Interpretation

Principle

The **composite state space** of two physically separate systems A and B is the **tensor product** $\mathcal{H}_A \otimes \mathcal{H}_B$ of their state spaces.

Interpretation

Principle

0

Locality: the global state is determined from local information (on disks, plus boundary conditions).

Interpretation

The Hilbert space of a marked surface M is a direct sum over all boundary labelings of a surface M_g obtained by cutting M along a circle.

°_

РО

$$\mathcal{H} =$$

$$\bigoplus_{x} \mathcal{H}_{x} \\ (x^* \text{ is anti-particle to } x)$$

Definition (Nayak, et al '08)

a system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).

A 3D **TQFT** assigns to any surface (+boundary data ℓ) a Hilbert space:

$$(M,\ell) \to \mathcal{H}(M,\ell).$$

Each boundary circle \bigcirc is labelled by $i \in \mathcal{L}$ a finite set of "colors". $0 \in \mathcal{L}$ is neutral. Orientation-reversing map: $x \to x^*$.

Basic pieces

Any surface can be built from the following basic pieces:

• disk:
$$\mathcal{H}(\bigcirc; i) = \begin{cases} \mathbb{C} & i = 0\\ 0 & else \end{cases}$$

• annulus: $\mathcal{H}(\bigcirc; a, b) = \begin{cases} \mathbb{C} & a = b^*\\ 0 & else \end{cases}$

pants:

P :=

Axiom (Disjoint Union)

$$\mathcal{H}[(M_1,\ell_1) \coprod (M_2,\ell_2)] = \mathcal{H}(M_1,\ell_1) \otimes \mathcal{H}(M_2,\ell_2)$$

Axiom (Gluing)

If ${\cal M}$ is obtained from gluing two boundary circles of ${\cal M}_g$ together then

$$\mathcal{H}(M,\ell) = \bigoplus_{x \in \mathcal{L}} \mathcal{H}(M_g,\ell,x,x^*)$$

 (M_g, ℓ, x, x^*)

```
Morally, (2+1)TQFTs=Modular Categories:
Definition
A modular category \mathcal{C} (over \mathbb{C}) is
monoidal: (\otimes, \mathbf{1}),
   semisimple: X \cong \bigoplus_i m_i X_i,
      linear: Hom(X, Y) \in Vec_{\mathbb{C}},
          rigid: X^* \otimes X \mapsto \mathbf{1} \mapsto X \otimes X^*.
             finite rank: Irr(C) = \{1 = X_0, \dots, X_{r-1}\},\
          spherical: u_X \theta_X : X \cong X^{**}, dim(X) \in \mathbb{R},
       braided: c_{X,Y}: X \otimes Y \cong Y \otimes X,
modular: Det(Tr_{\mathcal{C}}(c_{X_i,X_i^*}c_{X_i^*,X_i})) = Det(S_{ij}) \neq 0.
```

- fusion rules: $X_i \otimes X_j \cong \bigoplus_k N_{ij}^k X_k$
- ▶ fusion ring representation: $X_i \rightarrow N_i$ where $(N_i)_{k,j} = N_{i,j}^k$
- (modular) S-matrix: $S_{ij} := \operatorname{Tr}_{\mathcal{C}}(c_{X_i,X_j^*}c_{X_j^*,X_i})$
- (Dehn twist) *T*-matrix: $T_{ij} = \delta_{ij}\theta_i$
- ▶ (quantum)Dimensions: dim(X_i) := S_{i0} if unitary, dim(X_i) = max Spec(N_i).

(2+1)TQFT Anyon Model vs Modular Category

Each axiom has a corresponding physical interpretation:

TQFT/anyonic system	Category \mathcal{C}
anyon types $x \in \mathcal{L}$	simple X
vacuum 0 $\in \mathcal{L}$	1
x^* antiparticle	dual X^*
$\mathcal{H}(P; x, y, z)$ state space	$\operatorname{Hom}(X\otimes Y,Z)$
particle exchange	braiding $c_{X,X}$
anyon types observable	$det(S) \neq 0$
topological spin/Dehn twist	θ_X

Example: Fibonacci Theory

$$\mathcal{L} = \{0, 1\}$$

$$\mathbf{P}; \mathbf{a}, \mathbf{b}, \mathbf{c}) = \begin{cases} \mathbb{C} & \mathbf{a} = \mathbf{b} = \mathbf{c} \\ \mathbb{C} & \mathbf{a} + \mathbf{b} + \mathbf{c} \in 2\mathbb{Z} \\ \mathbf{0} & \textit{else} \end{cases}$$

$$\mathbf{Define:} \quad V_k^i := \mathcal{H}(D^2 \setminus \{z_i\}_{i=1}^k; i, 1, \cdots, 1)$$

$$\mathbf{Mim} \quad V_n^i = \begin{cases} Fib(n-2) & i = 0 \\ Fib(n-1) & i = 1 \end{cases}$$

Question (Physics)

How many models exist for a given fixed number of distinguishable indecomposable anyon types?

Theorem (Bruillard, Ng, R, Wang JAMS '15)

There are finitely many modular categories of any given rank r.

Proof.

Recall Richard Ng's colloquium at USC on March 12, 2014.

 $2 \leq rank \leq 5$ fusion rules (Hong,Ng,Bruillard,Wang,Stong,R.):

$ \mathcal{L} $	C
2	$PSU(2)_3, SU(2)_1$
3	$\mathbb{Z}_3, PSU(2)_7, SU(2)_2$
4	products, \mathbb{Z}_4 , $PSU(2)_9$
5	$\mathbb{Z}_5, PSU(2)_{11}, SU(3)_4/\mathbb{Z}_3, SU(2)_4$

Braid group representations

 \mathcal{B}_n acts on state spaces:

- ► Fix anyons *x*, *y*
- Braid group acts linearly:

$$\mathcal{B}_n \curvearrowright \mathcal{H}(D^2 \setminus \{z_i\}; x, \cdots, x, y) = \operatorname{Hom}(X^{\otimes n}, Y)$$

Question (Quantum Information)

When does an anyon x provide universal computation models? Basically: when is $\mathcal{B}_n \curvearrowright \operatorname{Hom}(X^{\otimes n}, Y)$ dense?

Example

Fibonacci dim $(X) = \frac{1+\sqrt{5}}{2}$ is universal: braid group \mathcal{B}_n image is dense in $SU(F_n) \times SU(F_{n-1})$

Example

lsing dim $(X) = \sqrt{2}$ is not universal: braid group \mathcal{B}_n image is a finite group.

Conjecture (R '07, property **F**)

Anyon x is universal if, and only if, $\dim(X)^2 \notin \mathbb{Z}$.

Theorem

The property F conjecture is:

- (R, Wenzl '14) true for quantum groups
- (Etingof, R, Witherspoon '08) true for group-theoretical categories.

What do TQCs naturally compute?

Answer

(Approximations to) Link invariants!

Associated to $x \in \mathcal{L}$ is a link invariant $Inv_L(x)$ approximated by the corresponding Topological Model efficiently.

 $V_L(q)$ Jones polynomial at $q=e^{2\pi i/\ell}$

Theorem (Vertigan, Freedman-Larsen-Wang)

• (Quantum) approximation of $|V_L(q)|$ at $q = e^{2\pi i/\ell}$ is BQP.

3-dimensional materials

- Point-like particles in \mathbb{R}^3
- Point-like particles in \mathbb{R}^3

loop-like particles?

Two operations:

 σ_i :

Loop interchange s_i : \bigcirc \leftrightarrow \bigcirc and Leapfrogging (read upwards):

The Loop Braid Group \mathcal{LB}_n is generated by $s_1, \ldots, s_{n-1}, \sigma_1, \ldots, \sigma_{n-1}$ satisfying: Braid relations:

(R1)
$$\sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

(R2) $\sigma_i \sigma_j = \sigma_j \sigma_i$ if $|i - j| > 1$

Symmetric Group relations:

(S1)
$$s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1}$$

(S2) $s_i s_j = s_j s_i$ if $|i - j| > 1$
(S3) $s_i^2 = 1$

Mixed relations:

 $\begin{array}{ll} (\mathsf{M1}) & \sigma_i \sigma_{i+1} s_i = s_{i+1} \sigma_i \sigma_{i+1} \\ (\mathsf{M2}) & s_i s_{i+1} \sigma_i = \sigma_{i+1} s_i s_{i+1} \\ (\mathsf{M3}) & \sigma_i s_j = s_j \sigma_i \text{ if } |i-j| > 1 \end{array}$

Question

Mathematical models? Do these exist in nature? (3+1)TQFTs...

References

- Chang,R.,Plavnik,Sun,Bruillard,Hong: 1508.00005 (J. Math. Phys.)
- Kadar, Martin, R., Wang: 1411.3768 (Glasgow J. Math.)
- Bruillard,Ng,R.,Wang: 1310.7050 (J. Amer. Math. Soc.)
- Naidu,R.: 0903.4157 (J. Alg. Rep. Theory)
- Z. Wang "Topological Quantum Computation" Amer. Math. Soc. 2008.

Thank you!