Topological Quantum Computation

January 2016

Texas A\&M Research Team

Daniel Creamer, Paul Gustafson, Andrew Kimball and Qing Zhang: PHD students
+2 Undergraduates: Humberto Munoz-Bauza and Chanwoo Kim

Topological Quantum Computation

What is a Quantum Computer?

From [Freedman-Kitaev-Larsen-Wang '03]:
Definition
Quantum Computation is any computational model based upon the theoretical ability to manufacture, manipulate and measure quantum states.

Prototypical Quantum Computation Scheme

Fix a (classical) function $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}^{n}$.

1. Goal: compute $f(N)$.
2. Encode classical information N as a quantum state $|N\rangle$.
3. Process state: $|N\rangle \rightarrow \sum_{j} a_{j}|j\rangle$ depending on f.
4. Measure state: get $|j\rangle$ with probability $\left|a_{j}\right|^{2}$, hopefully $\left|a_{f(N)}\right|^{2} \gg 0$.

A Universal Quantum Circuit Model

$$
\text { Let } V=\mathbb{C}^{2} \text {. }
$$

Example

- state space (n-qubit): $V^{\otimes n}$
- quantum gate set: $U_{1}:=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$,

$$
U_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\pi i / 4}
\end{array}\right), U_{3}:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

- quantum circuits: $\prod_{j} I_{V}^{\otimes a_{j}} \otimes U_{i j} \otimes I_{V}^{\otimes b_{j}} \in U\left(V^{\otimes n}\right)$, $1 \leq i_{j} \leq 3$.

Theorem
Universal: n-qubit quantum circuits dense in $S U\left(V^{\otimes n}\right)$.

Remarks on QCM

Remarks

- Typical physical realization: composite of n identical d-level systems. E.g. $d=2$: spin- $\frac{1}{2}$ arrays.
- The setting of most quantum algorithms: e.g. Shor's integer factorization algorithm
- Main nemesis: decoherence-errors due to interaction with surrounding material. Requires expensive error-correction...

Question

How to overcome decoherence? One answer: TOPOLOGY.

The Braid Group

A key role is played by the braid group \mathcal{B}_{n} generated by σ_{i} :

Definition (Artin)
\mathcal{B}_{n} is generated by $\sigma_{i}, i=1, \ldots, n-1$ satisfying:
(R1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(R2) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>1$

Anyons

For Point-like particles:

- In \mathbb{R}^{3} : bosons or fermions: $\psi\left(z_{1}, z_{2}\right)= \pm \psi\left(z_{2}, z_{1}\right)$
- Particle exchange \rightsquigarrow reps. of symmetric group S_{n}
- In \mathbb{R}^{2} : anyons: $\psi\left(z_{1}, z_{2}\right)=e^{i \theta} \psi\left(z_{2}, z_{1}\right)$
- Particle exchange \rightsquigarrow reps. of braid group \mathcal{B}_{n}
- Why? $\pi_{1}\left(\mathbb{R}^{3} \backslash\left\{z_{i}\right\}\right)=1$ but $\pi_{1}\left(\mathbb{R}^{2} \backslash\left\{z_{i}\right\}\right)=F_{n}$ Free group.

$$
C_{1} \not \approx C_{2} \approx C_{3}
$$

Topological Phases of Matter/Anyons

Fractional Quantum Hall Liquid

Topological Quantum Computation (TQC) is a computational model built upon systems of topological phases.

Topological Model

Physics
measure (fusion)
braid anyons
create anyons

Mathematical Problems

1. Model for anyonic systems/topological phases
2. Classify (models of) topological phases
3. Interpret information-theoretic questions
4. 3-dimensional generalizations?

Modeling Anyons on Surfaces

Topology of marked surfaces+quantum mechanics"Marks" (boundary components) are labelled by anyons, of which there are finitely many (distinguishable, indecomposable).

Principle

Superposition: a state is a vector in a Hilbert space $|\psi\rangle \in \mathcal{H}$.
Interpretation

Principle

The composite state space of two physically separate systems A and B is the tensor product $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ of their state spaces.

Interpretation

Principle

Locality: the global state is determined from local information (on disks, plus boundary conditions).

Interpretation
The Hilbert space of a marked surface M is a direct sum over all boundary labelings of a surface M_{g} obtained by cutting M along a circle.

$$
\mathcal{H}=
$$

$\bigoplus_{x} \mathcal{H}_{x}$
(x^{*} is anti-particle to x)

Definition (Nayak, et al '08)
a system is in a topological phase if its low-energy effective field theory is a topological quantum field theory (TQFT).
A 3D TQFT assigns to any surface (+boundary data ℓ) a Hilbert space:

$$
(M, \ell) \rightarrow \mathcal{H}(M, \ell)
$$

Each boundary circle \bigcirc is labelled by $i \in \mathcal{L}$ a finite set of "colors". $0 \in \mathcal{L}$ is neutral. Orientation-reversing map: $x \rightarrow x^{*}$.

Basic pieces

Any surface can be built from the following basic pieces:

- disk: $\mathcal{H}(\bigcirc ; i)= \begin{cases}\mathbb{C} & i=0 \\ 0 & \text { else }\end{cases}$
- annulus: $\mathcal{H}(\bigcirc ; a, b)= \begin{cases}\mathbb{C} & a=b^{*} \\ 0 & \text { else }\end{cases}$
- pants:

Two more axioms

Axiom (Disjoint Union)

```
H}[(\mp@subsup{M}{1}{},\mp@subsup{\ell}{1}{})\amalg(\mp@subsup{M}{2}{},\mp@subsup{\ell}{2}{})]=\mathcal{H}(\mp@subsup{M}{1}{},\mp@subsup{\ell}{1}{})\otimes\mathcal{H}(\mp@subsup{M}{2}{},\mp@subsup{\ell}{2}{}
```

Axiom (Gluing)
If M is obtained from gluing two boundary circles of M_{g} together then

$$
\mathcal{H}(M, \ell)=\bigoplus_{x \in \mathcal{L}} \mathcal{H}\left(M_{g}, \ell, x, x^{*}\right)
$$

(M, ℓ)
$\left(M_{g}, \ell, x, x^{*}\right)$

Algebraic Part=Modular Category

Morally, $(2+1)$ TQFTs=Modular Categories:
Definition
A modular category \mathcal{C} (over \mathbb{C}) is
monoidal: $(\otimes, \mathbf{1})$,
semisimple: $X \cong \bigoplus_{i} m_{i} X_{i}$,
linear: $\operatorname{Hom}(X, Y) \in V_{c_{\mathbb{C}}}$,
rigid: $X^{*} \otimes X \mapsto \mathbf{1} \mapsto X \otimes X^{*}$, finite rank: $\operatorname{Irr}(\mathcal{C})=\left\{\mathbf{1}=X_{0}, \ldots, X_{r-1}\right\}$,
spherical: $u_{X} \theta_{X}: X \cong X^{* *}, \operatorname{dim}(X) \in \mathbb{R}$, braided: $c_{X, Y}: X \otimes Y \cong Y \otimes X$,
modular: $\operatorname{Det}\left(\operatorname{Tr}_{\mathcal{C}}\left(c_{X_{i}, X_{j}^{*}} c_{X_{j}^{*}, X_{i}}\right)\right)=\operatorname{Det}\left(S_{i j}\right) \neq 0$.

Key Data

- fusion rules: $X_{i} \otimes X_{j} \cong \bigoplus_{k} N_{i j}^{k} X_{k}$
- fusion ring representation: $X_{i} \rightarrow N_{i}$ where $\left(N_{i}\right)_{k, j}=N_{i, j}^{k}$
- (modular) S-matrix: $S_{i j}:=\operatorname{Tr}_{\mathcal{C}}\left(c_{X_{i}, X_{j}^{*}} c_{X_{j}^{*}, X_{i}}\right)$
- (Dehn twist) T-matrix: $T_{i j}=\delta_{i j} \theta_{i}$
- (quantum)Dimensions: $\operatorname{dim}\left(X_{i}\right):=S_{i 0}$ if unitary, $\operatorname{dim}\left(X_{i}\right)=\max \operatorname{Spec}\left(N_{i}\right)$.

$(2+1)$ TQFT Anyon Model vs Modular Category

Each axiom has a corresponding physical interpretation:

TQFT/anyonic system	Category \mathcal{C}
anyon types $x \in \mathcal{L}$	simple X
vacuum $0 \in \mathcal{L}$	$\mathbf{1}$
x^{*} antiparticle	dual X^{*}
$\mathcal{H}(P ; x, y, z)$ state space	Hom $(X \otimes Y, Z)$
particle exchange	braiding $c_{X, X}$
anyon types observable	$\operatorname{det}(S) \neq 0$
topological spin/Dehn twist	θ_{X}

Example: Fibonacci Theory

- $\mathcal{L}=\{0,1\}$
- pants: $\mathcal{H}(P ; a, b, c)= \begin{cases}\mathbb{C} & a=b=c \\ \mathbb{C} & a+b+c \in 2 \mathbb{Z} \\ 0 & \text { else }\end{cases}$
- Define: $V_{k}^{i}:=\mathcal{H}\left(D^{2} \backslash\left\{z_{i}\right\}_{i=1}^{k} ; i, 1, \cdots, 1\right)$
- $\operatorname{dim} V_{n}^{i}= \begin{cases}\operatorname{Fib}(n-2) & i=0 \\ \operatorname{Fib}(n-1) & i=1\end{cases}$

Classification

Question (Physics)

How many models exist for a given fixed number of distinguishable indecomposable anyon types?

Theorem (Bruillard,Ng, R, Wang JAMS '15)
There are finitely many modular categories of any given rank r.
Proof.
Recall Richard Ng's colloquium at USC on March 12, 2014.
$2 \leq$ rank ≤ 5 fusion rules (Hong,Ng,Bruillard,Wang,Stong,R.):

$\|\mathcal{L}\|$	\mathcal{C}
2	$\operatorname{PSU}(2)_{3}, S U(2)_{1}$
3	$\mathbb{Z}_{3}, \operatorname{PSU}(2)_{7}, S U(2)_{2}$
4	products, $\mathbb{Z}_{4}, \operatorname{PSU}(2)_{9}$
5	$\mathbb{Z}_{5}, \operatorname{PSU}(2)_{11}, S U(3)_{4} / \mathbb{Z}_{3}, S U(2)_{4}$

Braid group representations

\mathcal{B}_{n} acts on state spaces:

- Fix anyons x, y
- Braid group acts linearly:

$$
\mathcal{B}_{n} \curvearrowright \mathcal{H}\left(D^{2} \backslash\left\{z_{i}\right\} ; x, \cdots, x, y\right)=\operatorname{Hom}\left(X^{\otimes n}, Y\right)
$$

Universal Anyons

Question (Quantum Information)

When does an anyon x provide universal computation models?
Basically: when is $\mathcal{B}_{n} \curvearrowright \operatorname{Hom}\left(X^{\otimes n}, Y\right)$ dense?

Example

Fibonacci $\operatorname{dim}(X)=\frac{1+\sqrt{5}}{2}$ is
universal: braid group \mathcal{B}_{n} image is dense in $S U\left(F_{n}\right) \times S U\left(F_{n-1}\right)$

Example
Ising $\operatorname{dim}(X)=\sqrt{2}$ is not universal: braid group \mathcal{B}_{n} image is a finite group.

Characterization of Universal anyons

Conjecture ($\mathrm{R}^{\prime} 07$, property \mathbf{F})
Anyon x is universal if, and only if, $\operatorname{dim}(X)^{2} \notin \mathbb{Z}$.
Theorem
The property \mathbf{F} conjecture is:

- (R , Wenzl '14) true for quantum groups
- (Etingof,R,Witherspoon '08) true for group-theoretical categories.

What do TQCs naturally compute?

Answer
(Approximations to) Link invariants!
Associated to $x \in \mathcal{L}$ is a link invariant $\operatorname{Inv}_{L}(x)$ approximated by the corresponding Topological Model efficiently.

$$
\operatorname{Prob}(\odot) \sim x^{t}\left|\operatorname{lnv}_{l}(\odot)\right|
$$

Complexity of Jones Polynomial Evaluations

$V_{L}(q)$ Jones polynomial at $q=e^{2 \pi i / \ell}$
Theorem (Vertigan,Freedman-Larsen-Wang)

- (Classical) exact computation of $V_{L}(q)$ at $q=e^{2 \pi i / \ell}$ is: $\left\{\begin{array}{lc}F P & \ell=3,4,6 \\ F P^{\sharp P}-\text { complete } & \text { else }\end{array}\right.$
- (Quantum) approximation of $\left|V_{L}(q)\right|$ at $q=e^{2 \pi i / \ell}$ is $B Q P$.

3-dimensional materials

- Point-like particles in \mathbb{R}^{3}
- Point-like particles in \mathbb{R}^{3}
loop-like particles?

Two operations:
 Loop interchange s_{i} : $\bigcirc \leftrightarrow \bigcirc$ and Leapfrogging (read upwards):

$$
\sigma_{i}:
$$

The Loop Braid Group $\mathcal{L B}_{n}$ is generated by
$s_{1}, \ldots, s_{n-1}, \sigma_{1}, \ldots, \sigma_{n-1}$ satisfying:
Braid relations:
(R1) $\sigma_{i} \sigma_{i+1} \sigma_{i}=\sigma_{i+1} \sigma_{i} \sigma_{i+1}$
(R2) $\sigma_{i} \sigma_{j}=\sigma_{j} \sigma_{i}$ if $|i-j|>1$
Symmetric Group relations:
(S1) $s_{i} s_{i+1} s_{i}=s_{i+1} s_{i} s_{i+1}$
(S2) $s_{i} s_{j}=s_{j} s_{i}$ if $|i-j|>1$
(S3) $s_{i}^{2}=1$
Mixed relations:
(M1) $\sigma_{i} \sigma_{i+1} s_{i}=s_{i+1} \sigma_{i} \sigma_{i+1}$
(M2) $s_{i} s_{i+1} \sigma_{i}=\sigma_{i+1} s_{i} s_{i+1}$
(M3) $\sigma_{i} s_{j}=s_{j} \sigma_{i}$ if $|i-j|>1$

Question

Mathematical models? Do these exist in nature? $(3+1)$ TQFTs...

References

- Chang,R.,Plavnik,Sun,Bruillard,Hong: 1508.00005 (J. Math. Phys.)
- Kadar,Martin,R.,Wang: 1411.3768 (Glasgow J. Math.)
- Bruillard,Ng,R.,Wang: 1310.7050 (J. Amer. Math. Soc.)
- Naidu,R.: 0903.4157 (J. Alg. Rep. Theory)
- Z. Wang "Topological Quantum Computation" Amer. Math. Soc. 2008.

Thank you!

