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Chapter 1

Some Basic Background

In this chapter we want to recall some important basic results from Func-
tional Analysis most of which were already covered in the Real Analysis
course Math607/608 and can be found in the textbooks [Fol] and [Roy].

1.1 Normed Linear Spaces, Banach Spaces

All our vectors spaces will be vector spaces over the real field R or the
complex field C. In the case that the field is undetermined we denote it by
K.

Definition 1.1.1. [Normed linear spaces]
Let X be a vector space over K, with K = R or K = C. A semi norm on
X is a function ‖ · ‖ : X → [0,∞) satisfying the following properties for all
x, y∈X and λ∈K

1. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality) and

2. ‖λx‖ = |λ| · ‖x‖ (homogeneity),

and we call a semi norm ‖ · ‖ a norm if it also satisfies

3. ‖x‖ = 0 ⇐⇒ x = 0, for all x ∈ X.

In that case we call (X, ‖ · ‖), or simply X, a normed space. Sometimes we
might denote the norm on X by ‖ · ‖X to distinguish it from some other
norm ‖ · ‖Y defined on some other space Y .

For a normed space (X, ‖ · ‖) the sets

BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1}

are called the unit ball and the unit sphere of X, respectively.
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6 CHAPTER 1. SOME BASIC BACKGROUND

Note that a norm ‖ · ‖ on a vector space defines a metric d(·, ·) by

d(x, y) = ‖x− y‖, x, y ∈ X,

and this metric defines a topology on X, also called the strong topology.

Definition 1.1.2. [Banach Spaces]
A normed space which is complete, i.e., in which every Cauchy sequence
converges, is called a Banach space.

To verify that a certain norm defines a complete space it is enough, and
sometimes easier to verify that absolutely converging series are converging:

Proposition 1.1.3. Assume that X is a normed linear space so that for all
sequences (xn) ⊂ X for which

∑
‖x‖n <∞, the series

∑
xn converges (i.e.

limn→∞
∑n

j=1 xj exists in X).

Then X is complete.

Proposition 1.1.4. A subspace of a Banach space is a Banach space if and
only if it is closed.

Proposition 1.1.5. [Completion of normed spaces]
If X is a normed space, then there is a Banach space X̃ so that:

There is an isometric embedding I from X into X̃, meaning that I :
X → X̃ is linear and ‖I(x)‖ = ‖x‖, for x∈X, so that the image of X under
I is dense in X̃.

Moreover X̃ is unique up to isometries, meaning that whenever Y is
a Banach space for which there is an isometric embedding J : X → Y ,
with dense image, then there is an isometry J̃ : X̃ → Y (i.e. a linear
bijection between X̃ and Y for which ‖J̃(x̃)‖ = ‖x̃‖ for all x̃ ∈ X̃), so that
J̃ ◦ I(x) = J(x) for all x∈ X.

The space X̃ is called the completion of X.

Let us recall some examples of Banach spaces.

Examples 1.1.6. Let (Ω,Σ, µ) be a measure space, and let 1 ≤ p < ∞,
then put

Lp(µ) :=
{
f : Ω→ K measurable :

∫
Ω
|f |pdµ(x) <∞

}
.

For p =∞ we put

L∞(µ) :=
{
f : Ω→ K mble : ∃C µ({ω∈Ω : |f(ω)| > C}) = 0

}
.
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Then Lp(µ) is a vector space, and the map

‖ · ‖p : Lp(µ)→ R, f 7→
(∫

Ω
|f(ω)|pdµ(ω)

)1/p

,

if 1 ≤ p <∞, and

‖ · ‖∞ : L∞(µ)→ R, f 7→ sup{C ≥ 0 : µ({ω∈Ω : |f(ω)| ≥ C}) > 0},

if p =∞, is a seminorm on Lp(µ).
For f, g ∈ Lp(µ) define the equivalence relation by

f ∼ g :⇐⇒ f(ω) = g(ω) for µ-almost all ω ∈ Ω.

Define Lp(µ) to be the quotient space Lp(µ)/ ∼. Then ‖ · ‖p is well de-
fined and a norm on Lp(µ), and turns Lp(µ) into a Banach space. Although,
strictly speaking, elements of Lp(µ) are not functions but equivalence classes
of functions, we treat the elements of Lp(µ) as functions, by picking a rep-
resentative out of each equivalence class. Equality then means µ almost
everywhere equality.

If A ⊂ R, or A ⊂ Rd, d ∈ N, and µ is the Lebesgue measure on A we
write Lp(A) instead of Lp(µ). If Γ is a set and µ is the counting measure on
Γ we write `p(Γ) instead of Lp(µ). Thus

`p(Γ) =
{
x(·) : Γ→ K : ‖x‖p =

(∑
γ∈Γ

|xγ |p
)1/p

<∞
}
, if 1 ≤ p <∞,

and

`∞(Γ) =
{
x(·) : Γ→ K : ‖x‖∞ = sup

γ∈Γ
|xγ | <∞

}
.

If Γ = N we write `p instead of `p(N) and if Γ = {1, 2, . . . , n}, for some
n ∈ N we write `np instead of `p({1, 2, . . . , n}).

The set
c0 = {(xn : n∈N) ⊂ K : lim

n→∞
xn = 0}

is a linear closed subspace of `∞, and, thus, it is also a Banach space (with
‖ · ‖∞).

More generally, let S be a (topological) Hausdorff space, then

Cb(S) = {f : S → K continuous and bounded}



8 CHAPTER 1. SOME BASIC BACKGROUND

is a closed subspace of `∞(S), and, thus, Cb(S) is a Banach space. If K
is a compact space we will write C(K) instead of Cb(K) (since continuous
functions on compact spaces are automatically bounded). If S is locally
compact then

C0(S) =
{
f : S → K continuous and {|f | ≥ c} is compact for all c > 0

}
is a closed subspace of Cb(S), and, thus, it is a Banach space.

Let (Ω,Σ) be a measurable space and assume first that K = R. Recall
that a finite signed measure on (Ω,Σ) is a map µ : Σ→ R so that µ(∅) = 0,
and so that

µ(

∞⋃
n=1

En) =

∞∑
n=1

µ(En), whenever (En) ⊂ Σ is pairwise disjoint.

The Jordan Decomposition Theorem says that such a signed measure
can be uniquely written as the difference of two positive finite measure µ+

and µ− for which there is a partition (Ω+,Ω−) of Ω into two measurable
sets so that µ+(Ω−) = µ−(Ω+) = 0.

If we let

‖µ‖v = µ+(Ω) + µ−(Ω) = sup
A,B∈Σ,disjoint

µ(A)− µ(B),

then ‖ · ‖v is a norm, the variation norm, on

M(Σ) = MR(Σ) := {µ : Σ→ R : signed measure},

which turns M(Σ) into a real Banach space.
If K = C, we define

M(Σ) = MC(M) =
{
µ+ iν : µ, ν ∈MR(Σ)

}
,

and define for µ+ iν∈MC(Σ)

‖µ+ iν‖v =
√
‖µ‖2v + ‖ν‖2v.

Then MC(Σ) is a complex Banach space.
Assume S is a topological space and BS is the sigma-algebra of Borel sets,

i.e. the σ-algebra generated by the open subsets of S. We call a (positive)
measure on BS a Radon measure if

1) µ(A) = inf{µ(U) : U ⊂ S open and A ⊂ U} for all A ∈ BS , (outer
regularity)
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2) µ(U) = sup{µ(C) : C ⊂ S compact and C ⊂ U} for all U ⊂ S, (inner
regularity on open sets) and

3) it is finite on all compact subsets of S.

If K = R a signed Radon measure is the difference of two finite positive
Radon measure, and, as before, if K = C then µ + iν, where µ and ν are
two real valued Radon measures, is a signed Radon measure

We denote the set of all signed Radon measures by M(S). Then M(S)
is a closed linear subspace of M(BS).

It can be shown (cf. [Fol, Proposition 7.5]) that a σ-finite Radon measure
is inner regular on all Borel sets.

Proposition 1.1.7. [Fol, Theorem 7.8]

Let X be a locally compact space for which all open subsets are σ-compact
(i.e. a countable union of compact sets). Then every Borel measure which
is bounded on compact sets is a Radon Measure.

There are many ways to combine Banach spaces to new spaces.

Proposition 1.1.8. [Complemented sums of Banach spaces]

If Xi is a Banach space for all i∈ I, I some index set, and 1 ≤ p ≤ ∞,
we let(
⊕i∈I Xi

)
`p

:=
{

(xi)i∈I : xi ∈ Xi, for i∈I, and (‖xi‖ : i∈I) ∈ `p(I)
}
.

We put for x ∈
(
⊕i∈I Xi

)
`p

‖x‖p :=
∥∥(‖xi‖ : i ∈ I)

∥∥
p

=


(∑

i∈I ‖xi‖
p
Xi

)1/p
if 1 ≤ p <∞,

supi∈I ‖xi‖Xi if p =∞.

Then ‖ · ‖ is a norm on
(
⊕i∈I Xi

)
`p

and
(
⊕i∈I Xi

)
`p

is a Banach space.

We call
(
⊕i∈I Xi

)
`p

the `p sum of the Xi, i ∈ I.

Moreover,(
⊕i∈IXi

)
c0

:=
{

(xi)i∈I ∈
(
⊕i∈IXi

)
`∞

: ∀ c > 0 {i ∈ I : ‖xi‖ ≥ c} is finite
}

is a closed linear subspace of
(
⊕i∈I Xi

)
`∞

, and, thus also a Banach space.
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If all the spaces Xi are the same spaces in Proposition 1.1.8, say Xi=X,
for i∈I we write `p(I,X), and c0(I,X), instead of

(
⊕i∈IXi

)
`p

or
(
⊕i∈IXi

)
c0

,

respectively. We write `p(X), and c0(X) instead of `p(N, X) and c0(N, X),
respectively, and `np (X), instead of `p({1, 2, . . . , n}, X), for n∈N.

Note that if I is finite then for any norm ‖ · ‖ on RI , the norm topology
on (⊕Xi)‖·‖ does not depend on ‖ · ‖. By ⊕i∈IXi we mean therefore the
norm product space, which is, up to isomorphism unique, for example in
this case (⊕i∈IXi)`∞ ∼ (⊕Xi∈I)`1 .

If X and Y are Banach space we often denote the product space X × Y
also X ⊕ Y .
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1.2 Operators on Banach Spaces, Dual Spaces

If X and Y are two normed linear spaces, then for a linear map (we also say
linear operator) T : X → Y the following are equivalent:

a) T is continuous,

b) T is continuous at 0,

c) T is bounded, i.e. ‖T‖ = supx∈BX ‖T (x)‖ <∞.

In this case ‖ · ‖, as defined in (c), is a norm on

L(X,Y ) = {T : X → Y linear and bounded}

which turns L(X,Y ) into a Banach space if Y is a Banach space, and we
observe that

‖T (x)‖ ≤ ‖T‖ · ‖x‖ for all T ∈ L(X,Y ) and x ∈ X.

We call a bounded linear operator T : X → Y an isomorphic embedding if
there is a number c > 0, so that c‖x‖ ≤ ‖T (x)‖. This is equivalent to saying
that the image T (X) of T is a closed subspace of Y and T has an inverse
T−1 : T (X)→ Y which is also bounded.

An isomorphic embedding which is onto (we say also surjective) is called
an isomorphy between X and Y . If ‖T (x)‖ = ‖x‖ for all x ∈ X we call T
an isometric embedding, and call it an isometry between X and Y if T is
surjective.

If there is an isometry between two spaces X and Y we write X ' Y .
In that case X and Y can be identified for our purposes. If there is an
isomorphism T : X → Y with ‖T‖ · ‖T−1‖ ≤ c, for some number c ≥ 1 we
write X ∼c Y and we write X ∼ Y if there is a c ≥ 1 so that X ∼c Y .

If X and Y are two Banach spaces which are isomorphic (for example if
both spaces are finite dimensional and have the same dimension), we define

dBM (X,Y ) = inf{‖T‖ · ‖T−1‖ : T : X → Y, T isomorphism},

and call it the Banach Mazur distance between X and Y . Note that always
dBM (X,Y ) ≥ 1.

Remark. If (X, ‖ · ‖) is a finite dimensional Banach space over K, K = R
or K = C, and its dimension is n ∈ N we can, possibly after passing to an
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isometric image, assume that X = Kn. Indeed, let x1, x2, . . . xn be a basis
of X, and consider on Kn the norm given by:

‖(a1, a2, . . . , an)‖X =
∥∥∥ n∑
j=1

ajxj

∥∥∥, for (a1, a2, . . . an) ∈ Kn.

Then

I : Kn → X, (a1, a2, . . . , an) 7→
n∑
j=1

ajxj ,

is an isometry. Therefore we can always assume that X = (Kn, ‖ · ‖X). This
means BX is a closed and bounded subset of Kn, which by the Theorem
of Bolzano-Weierstraß, means that BX is compact. In Theorem 1.5.4 we
will deduce the converse and prove that a Banach space X, for which BX is
compact, must be finite dimensional.

Definition 1.2.1. [Dual space of X]
If Y = K and X is a normed linear space over K, then we call L(X,K) the
dual space of X and denote it by X∗.

If x∗ ∈ X∗ we often use 〈·, ·〉 to denote the action of x∗ on X, i.e. we
write 〈x∗, x〉 instead of x∗(x).

Theorem 1.2.2. [Representation of some Dual spaces]

1. Assume that 1 ≤ p < ∞ and 1 < q ≤ ∞ with 1
p + 1

q = 1, and assume
that (Ω,Σ, µ) is a measure space without atoms of infinite measure.
Then the following map is a well defined isometry between L∗p(µ) and
Lq(µ).

Ψ : Lq(µ)→ L∗p(µ), 〈Ψ(g), f〉 = Ψ(g)(f) :=

∫
Ω
f(ξ)g(ξ) dµ(ξ),

for g ∈ Lq(µ), and f ∈ Lp(µ).

2. Assume that S is a locally compact Hausdorff space, then the map

Ψ : M(S)→ C0(S), 〈Ψ(µ), f〉 = Ψ(µ)(f) :=

∫
S
f(ξ) dµ(ξ)

for µ ∈M(S) and f ∈ C0(S),

is an isometry between M(S) and C∗0 (S).

Remark. If p = ∞ and q = 1 then the map Ψ in Theorem 1.2.2 part
(1) is still an isometric embedding, but in general (i.e. if L∞(µ) is infinite
dimensional) not onto.
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Example 1.2.3. c∗0 ' `1 (by Theorem 1.2.2 part (2)) and `∗1 ' `∞ (by
Theorem 1.2.2 part (1)) .
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1.3 Baire Category Theorem and its Consequences

The following result is a fundamental Theorem in Topology and leads to
several useful properties of Banach spaces.

Theorem 1.3.1. (The Baire Category Theorem, c.f [Fol, Theorem 5.4])
Assume that (S, d) is a complete metric space. If (Un) is a sequence of open
and dense subsets of S then

⋂∞
n=1 Un is also dense in S.

Often we will use the Baire Category Theorem in the following equivalent
restatement.

Corollary 1.3.2. If (Cn) is a sequence of closed subsets of a complete metric
space (S, d) whose union is all of S, then there must be an n ∈ N, so that
C◦n, the open interior of Cn, is not empty, and thus there is an x ∈ Cn and
an ε > 0 so that B(x, ε) = {z ∈ S : d(z, x) < ε) ⊂ Cn.

Proof. Assume our conclusion were not true. Let Un = S \ Cn, for n ∈ N.
Then Un is open and dense in S. Thus

⋂
n∈N Un is also dense, in particular

not empty. But this is in contradiction to the assumption that
⋃
n∈NCn =

S.

The following results are important applications of the Baire Category
Theorem to Banach spaces.

Theorem 1.3.3. (The Open Mapping Theorem, cf [Fol, Theorem 5.10])
Let X and Y be Banach spaces and let T ∈ L(X,Y ) be surjective. Then T
is also open (the image of every open set in X under T is open in Y ).

Corollary 1.3.4. Let X and Y be Banach spaces and T ∈ L(X,Y ) be a
bijection. Then its inverse T−1 is also bounded, and thus T is an isomor-
phism.

Theorem 1.3.5. (Closed Graph Theorem, c.f. [Fol, Theorem 5.12])
Let X and Y be Banach spaces and T : X → Y be linear. If T has a closed
graph (i.e Γ(T ) = {(x, T (x)) : x ∈ X} is closed with respect to the product
topology in X × Y ), then T is bounded.

Often the Closed Graph Theorem is used in the following way:

Corollary 1.3.6. Assume that T : X → Y is a bounded, linear and bijective
operator between two Banach spaces X and Y . Then T is an isomorphism.
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Theorem 1.3.7. (Uniform Boundedness Principle, c.f. [Fol, Theorem 5.13])
Let X and Y be Banach spaces and let A ⊂ L(X,Y ). If for all x ∈ X
supT∈A ‖T (x)‖ <∞ then A is bounded in L(X,Y ), i.e.

sup
T∈A
‖T‖ = sup

x∈BX
sup
T∈A
‖T (x)‖ <∞.

An important consequence of the Uniform Boundedness Principle is the
following

Theorem 1.3.8. [Theorem of Banach-Steinhaus]

a) If A ⊂ X, and supx∈A |〈x∗, x〉| <∞, for all x∗ ∈ X∗, then A is (norm)
bounded.

b) If A ⊂ X∗, and supx∗∈A |〈x∗, x〉| <∞, for all x ∈ X, then A is (norm)
bounded.

In particular, weak compact subsets of X and weak∗ compact subsets of X∗

are norm bounded.

Proposition 1.3.9. (Quotient spaces)
Assume that X is a Banach space and that Y ⊂ X is a closed subspace.
Consider the quotient space

X/Y = {x+ Y : x ∈ X}

(with usual addition and multiplication by scalars). For x ∈ X put x =
x+ Y ∈ X/Y and define

‖x‖X/Y = inf
z∈x
‖z‖X = inf

y∈Y
‖x+ y‖X = dist(x, Y ).

Then ‖ · ‖X/Y is norm on X/Y which turns X/Y into a Banach space.

Proof. For x1, x2 in X and λ ∈ K we compute

‖x1 + x2‖X/Y = inf
y∈Y
‖x1 + x2 + y‖

= inf
y1,y2∈Y

‖x1 + y1 + x2 + y2‖

≤ inf
y1,y2∈Y

(
‖x1 + y1‖+ ‖x2 + y2‖

)
= ‖x1‖X/Y + ‖x2‖X/Y
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and

‖λx1‖X/Y
= inf

y∈Y
‖λx1 + y‖

= inf
y∈Y
‖λ(x1 + y)‖ = |λ| · inf

y∈Y
‖x1 + y‖ = |λ| · ‖x1‖X/Y .

Moreover, if ‖x‖X/Y = 0, it follows that there is a sequence (yn) in Y ,
for which limn→∞ ‖x − yn‖ = 0, which implies, since Y is closed that x =
limn→∞ yn ∈ Y and thus x = 0 (the zero element in X/Y ). This proves
that (X/Y, ‖ · ‖X/Y ) is a normed linear space. In order to show that X/Y
is complete let xn ∈ X with

∑
n∈N ‖xn‖X/Y < ∞. It follows that there are

yn ∈ Y , n ∈ N, so that

∞∑
n=1

‖xn + yn‖X <∞,

and thus, since X is a Banach space,

x =
∞∑
n=1

(xn + yn),

exists in X and we observe that∥∥∥x− n∑
j=1

xj

∥∥∥ ≤ ∥∥∥x− n∑
j=1

(xj + yj)
∥∥∥ ≤ ∞∑

j=n+1

‖xj + yj‖ →n→∞ 0,

which verifies that X/Y is complete.

From Corollary 1.3.4 we deduce

Corollary 1.3.10. If X and Y are two Banach spaces and T : X → Y is a
linear, bounded and surjective operator, it follows that X/N (T ) and Y are
isomorphic, where N (T ) is the null space of T .

Proof. Since T is continuous N (T ) is a closed subspace of X. We put

T : X/N (T )→ Y, x+N (T ) 7→ T (x).

Then T is well defined, linear, and bijective (linear Algebra), moreover, for
x ∈ X

‖T (x+N (T ))‖ = inf
z∈N (T )

‖T (x+ z)‖
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≤ ‖T‖ inf
z∈N (T )

‖x+ z‖ = ‖T‖ · ‖x+N (T )‖X/N (T ).

Thus, T is bounded and our claim follows from Corollary 1.3.4.

Proposition 1.3.11. For a bounded linear operator T : X → Y between
two Banach spaces X and Y the following statements are equivalent:

1. The range T (X) is closed.

2. The operator T : X/N (T ) → Y , x 7→ T (x) is an isomorphic embed-
ding,

3. There is a number C > 0, so that dist(x,N (T )) = infy∈N ‖x − y‖ ≤
C‖T (x)‖.
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1.4 The Hahn Banach Theorem

Definition 1.4.1. Suppose that V is a vector space over K. A real-valued
function p on V , satisfying

• p(0) = 0,

• p(x+ y) ≤ p(x) + p(y), and

• p(λx) = λp(x) for λ > 0,

is called a sublinear functional on V .
Note that 0 = p(0) ≤ p(x) + p(−x), and, thus, p(−x) ≥ −p(x).

Theorem 1.4.2. (The analytic Hahn-Banach Theorem, real version, c.f.
[Fol, Theorem 5.6])
Suppose that p is a sublinear functional on a real vector space V , that W
is a linear subspace of V and that f is a linear functional on W satisfying
f(y) ≤ p(y) for all y ∈ W . Then there exists a linear functional g on V
such that g(x) = f(x) for all x ∈W (g extends f) and such that g(y) ≤ p(y)
for all y ∈ V (control is maintained).

Theorem 1.4.3. (The analytic Hahn-Banach Theorem, complex version,
c.f. [Fol, Theorem 5.7])
Suppose that p is a seminorm on a complex vector space V , that W is a linear
subspace of V and that f is a linear functional on W satisfying |f(x)| ≤ p(x)
for all x ∈ W . Then there exists a linear functional g on V such that
g(x) = f(x) for all x ∈ W (g extends f) and such that |g(y)| ≤ p(y) for all
y ∈ V (control is maintained).

Corollary 1.4.4. Let X be a normed linear space Y a subspace and y∗ ∈ Y ∗.
Then there exists an extension x∗ of y∗ to an element in X∗ with ‖x∗‖ =
‖y∗‖.

Proof. Put p(x) = ‖y∗‖‖x‖.

Corollary 1.4.5. Let X be a normed linear space, Y a subspace of X,
and x ∈ X with h = dist(x, Y ) > 0. Then there exists an x∗ ∈ X∗, with
x∗|Y ≡ 0, ‖x∗‖ and x∗(x) = h.

Proof. Consider Z = {y + ax : y ∈ Y and a ∈K}. Note that every z ∈ Z
has a unique representation z = y + ax, with y ∈ Y and a ∈ K. Indeed, if
y1 + a1x = y2 + a2x, with y1, y2 ∈ Y and a1, a2 ∈ K, then we observe that
a1 = a2, because otherwise x = (y1 − y2)/(a1 − a2) ∈ Y . Thus also y1 = y2.
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We define f : Z → K, y + ax 7→ ah. The unique representation of each
z ∈ Z implies that f is linear, and it follows for a 6= 0 and y ∈ Y that

|f(y + ax)| = |a|δ ≤ |a|‖a−1y + x‖ = ‖y + ax‖.

Thus ‖f‖ ≤ 1 We can therefore apply the Hahn-Banach Theorem 1.4.2 to
the linear functional f on Z and the norm p(x) = ‖x‖. and extend it to an
x∗ ∈ X∗, with ‖x∗‖ = 1

Corollary 1.4.6. Let X be a normed linear space and x ∈ X. Then there
is an x∗ ∈ X∗, ‖x∗‖ = 1, so that 〈x∗, x〉 = ‖x‖.

Proof. Let p(x)=‖x‖ and f(αx)=α‖x‖, for αx∈span(x)={ax : a∈K}.

Definition 1.4.7. (The Canonical Embedding, Reflexive spaces)
For a Banach space we put X∗∗ = (X∗)∗ (the dual space of the dual space
of X).

Consider the map

χ : X → X∗∗, with χ(x) : X∗ → K, 〈χ(x), x∗〉 = 〈x∗, x〉, for x∈X.

The map χ is well defined (i.e. χ(x) ∈ X∗∗ for x ∈ X), and since for x ∈ X

‖χ(x)‖X∗∗ = sup
x∗∈BX∗

|〈x∗, x〉| ≤ ‖x‖,

it follows that ‖χ‖L(X,X∗∗) ≤ 1 . By Corollary 1.4.6 we can find for each
x ∈ X an element x∗ ∈ BX∗ with 〈x∗, x〉 = ‖x‖, and thus ‖χ(x)‖X∗∗ = ‖x‖X .

It follows therefore that χ is an isometric embedding of X into X∗∗. We
call χ the canonical embedding of X into X∗∗.

We say that X is reflexive if χ is onto.

Remark. There are Banach spaces X for which X and X∗∗ are isomet-
rically isomorphic, but not via the canonical embedding. An Example by
R. C. James will be covered in Chapter 3.

Definition 1.4.8. (The adjoint of an operator)

Assume that X and Y are Banach spaces and T : X → Y a linear and
bounded operator. Then adjoint of T is the operator

T ∗ : Y ∗ 7→ X∗, y∗ 7→ y∗ ◦ T,

(i.e. 〈T ∗(y∗), x〉 = 〈y∗ ◦ T, x〉 = 〈y∗, T (x)〉 for y∗ ∈ Y ∗ and x ∈ X).
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Proposition 1.4.9. Assume X and Y are Banach spaces and T : X → Y
a linear and bounded operator. Then T ∗ is a bounded linear operator from
Y ∗ to X∗, and ‖T ∗‖ = ‖T‖.

Moreover if T is surjective T ∗ is an isomorphic embedding, and if T is
an isomorphic embedding T ∗ is surjective.

Proof. Since for y∗ ∈ Y ∗, we have that T ∗(y∗) is the composition y∗ ◦ T it
follows that T ∗(y∗) ∈ X∗ and ‖T ∗(y∗)‖ ≤ ‖T ∗‖ · ‖y∗‖, and thus ‖T ∗‖ ≤
‖T‖. Conversely, for an arbitrary small ε > 0 we can find x ∈ BX , so
that ‖T (x)‖ ≥ ‖T‖ − ε. Then, by the Hahn Banach Theorem, we can
choose y∗ ∈ SY ∗ , so that |y∗(T (x))| ≥ ‖T (x)‖, and, thus ‖T ∗‖ ≥ ‖T (y∗)‖ ≥
|y∗(T (x))| ≥ ‖T‖ − ε, which implies that ‖T ∗‖ ≥ ‖T‖, since ε > 0 was
arbitrary.

If T : X → Y is surjective, we can, by the Open Mapping Theorem
(Corollary 1.3.3), find an ρ > 0 so that ρBY ⊂ T (BX), and thus it follows
for y∗ ∈ Y ∗, that

‖T ∗(y∗)‖ = sup
x∈BX

|y∗(T (x))| = sup
y∈T (BX)

|y∗(y)| ≥ sup
y∈ρBY

|y∗(y)| = ρ‖y∗‖,

which shows that T ∗ is an isomorphic embedding.
If T : X → Y is an isomorphic embedding, and x∗ ∈ X∗ we can define

z∗ : T (X)→ K by z∗(T (x)) := x∗(x) (i.e. z∗ = x∗ ◦ T−1). Then we use the
Hahn Banach Theorem to extend z∗ to an element y∗ ∈ Y ∗. For all x ∈ X
it follows that

〈T ∗(y∗), x〉 = 〈y∗, T (x)〉 = 〈z∗, T (x)〉 = x∗(x).

Since x∗ ∈ X∗ was arbitrary, this shows that T ∗ is surjective.
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1.5 Finite Dimensional Banach Spaces

Theorem 1.5.1. (Auerbach bases)
If X = (Kn, ‖ · ‖) is an n-dimensional Banach space, then X has a basis
x1, x2, . . . xn for which there are functionals x∗1, . . . x

∗
n ∈ X∗, so that

a) ‖xj‖ = ‖x∗j‖ = 1 for all j = 1, 2, . . . , n,

b) for all i, j = 1, 2, . . . , n

〈x∗i , xj〉 = δ(i,j) =

{
if i = j,

if i 6= j.
.

We call in this case (xj , x
∗
j ) an Auerbach basis of X.

Proof. We consider the function

Det :Xn = X ×X ×X︸ ︷︷ ︸
n times

→ K,

(u1, u2, . . . un) 7→ det(u1, u2, . . . un).

Thus, we consider ui ∈ Kn, to be column vectors and take for u1, u2, . . . un ∈
Kn the determinant of the matrix which is formed by vectors ui, for i =
1, 2, . . . n. Since (BX)n is a compact subset of Xn with respect to the prod-
uct topology, and since Det is a continuous function on Xn we can choose
x1, x2, . . . xn in BX so that∣∣Det(x1, x2, . . . xn)

∣∣ = max
u1,u2,...un∈BX

∣∣Det(u1, u2, . . . un)
∣∣.

By multiplying x1 by the appropriate number α ∈ K, with |α| = 1, we can
assume that

Det(x1, x2, . . . xn) ∈ R and Det(x1, x2, . . . xn) > 0.

Define for i = 1, . . . n

x∗i : X → K, x 7→ Det(x1, . . . xi−1, x, xi+1, . . . , xn)

Det(x1, x2, . . . xn)
,

It follows that x∗i is a linear functional on X (taking determinants is linear
in each column), and

〈x∗i , xi〉 = 1,
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‖x∗i ‖ = sup
x∈BX

|〈x∗i , x〉| = sup
x∈BX

∣∣∣Det(x1, . . . xi−1, x, xi+1, . . . , xn)

Det(x1, x2, . . . xn)

∣∣∣ = 1

(by the maximality of Det(x1, x2, . . . xn) on (BX)n),

〈x∗i , xj〉 =
Det(x1, . . . xi−1, xj , xi+1, . . . , xn)

Det(x1, x2, . . . xn)
= 0 if i 6= j, i, j∈{1, 2, . . . , n}

(by linear dependence of columns)

which finishes our proof.

Corollary 1.5.2. For any two n-dimensional Banach spaces X and Y it
follows that

dBM (X,Y ) ≤ n2.

Remark. Corollary 1.5.2 Is not the best result one can get. Indeed from
the following Theorem of John (1948) it is possible to deduce that for any
two n-dimensional Banach spaces X and Y it follows that

dBM (X,Y ) ≤ n.

Theorem 1.5.3. (John’s theorem)
Let X = (Kn, ‖ · ‖) be an n-dimensional Banach space. Then there is an
invertible matrix T so that

B`2 ⊂ T (BX) ⊂
√
nB`2 .

Theorem 1.5.4. For any Banach space X

X is finite dimensional ⇐⇒ BX is compact.

Proof. The implication “⇒” was already noted in the remark in Section 6.2
the implication “⇐” will follow from the following Proposition.

Proposition 1.5.5. The unit ball of every infinite dimensional Banach
space X contains a 1-separated infinite sequence.

Proof. By induction we choose for each n ∈ N an element xn ∈ Bx, so
that ‖xj − xn‖ ≥ 1, for j = 1, 2, . . . , n − 1. Choose an arbitrary x1 ∈ SX .
Assuming x1, x2, . . . , xn−1 have been chosen, let F = span(x1, . . . , xn−1),
(the linear space generated by xj , j = 1, 2, . . . , n − 1). X/F is infinite
dimensional, thus there is a z ∈ X so that

1 = ‖z‖X/F = inf
y∈F
‖z + y‖ = inf

y∈F,‖y‖≤1+‖z‖
‖z + y‖ = min

y∈F,‖y‖≤1+‖z‖
‖z + y‖,
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where the last equality follows from the assumed compactness of the unit
ball. We can therefore choose xn = z + y so that y ∈ F and

‖z + y‖ = min
ỹ∈F,‖ỹ‖≤1+‖z‖

‖z + ỹ‖ = 1,

it follows that

1 = ‖xn‖X/F ≤ ‖xn − xj‖ for all j = 1, 2, . . . , n− 1.

Remark. With little bit more work (see Exercise in Homeowrk) one can
find in the unit ball of each infinite dimensional Banach space X a sequence
(xn) with ‖xm − xn‖ > 1, for all m 6= n in N. This is a result of Kottman
[Kot].

A much deeper result by J. Elton and E. Odell (see [EO]) says that for
each infinite dimensional Banach space X there is a ε > 0 and a sequence
(xn) ⊂ BX with ‖xm − xn‖ ≥ 1 + ε, for all m 6= n in N.

Definition 1.5.6. An operator T : X → Y is called a finite rank operator
if T (X) is finite dimensional. In this case we call dim(T (X)) the rank of T
and denote it by rk(T ).

For y ∈ Y and x∗ ∈ X∗ we denote the operator

X → Y, x 7→ y〈x∗, x〉

by y ⊗ x∗. Clearly, y ⊗ x∗ is of rank one.

Proposition 1.5.7. Assume that X and Y are Banach spaces and that
T : X → Y is a linear bounded operator of finite rank n. Then there are
x∗1, x

∗
2, . . . , x

∗
n ∈ X and y1, y2, . . . , yn in Y so that

T =

n∑
j=1

yj ⊗ x∗j .
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Chapter 2

Weak Topologies and
Reflexivity

2.1 Topological Vector Spaces and Locally Convex
Spaces

Definition 2.1.1. [Topological Vector Spaces and Locally Convex Spaces]
Let E be a vector space over K, with K = R or K = C and let T be a

topology on E. We call (E, T ) (or simply E, if there cannot be a confusion),
a topological vector space, if the addition:

+ : E × E → E, (x, y) 7→ x+ y,

and the multiplication by scalars

· : K× E → E, (λ, x) 7→ λx,

are continuous functions. A topological vector space is called locally convex
if 0 (and thus any point x ∈ E) has a neighbourhood basis consisting of
convex sets.

Remark. Topological vector spaces are in general not metrizable. Thus,
continuity, closedeness, and compactness etc, cannot be described by se-
quences. We will need nets.

Assume that (I,≤) is a directed set . This means

• (reflexivity) i ≤ i, for all i ∈ I,

• (transitivity) if for i, j, k ∈ I we have i ≤ j and j ≤ k, then i ≤ k, and

27
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• (existence of upper bounds) for any i, j ∈ I there is a k ∈ I, so that
i ≤ k and j ≤ k.

A net is a family (xi : i∈I) indexed over a directed set (I,≤).
A subnet of a net (xi : i∈ I) is a net (yj : j ∈J), together with a map

j 7→ ij from J to I, so that xij = yj , for all j ∈ J , and for all i0 ∈ I there is
a j0 ∈ J , so that ij ≥ i0 for all j ≥ j0.

Definition 2.1.2. In a topological space (T, T ), we say that a net (xi : i ∈ I)
converges to x, if for all open sets U with x ∈ U there is an i0 ∈ I, so that
xi ∈ U for all i ≥ i0. If (T, T ) is Hausdorff x is unique and we denote it by
limi∈I xi.

Using nets we can describe continuity, closeness, and compactness in
arbitrary topological spaces:

a) A map between two topological spaces is continuous if and only if the
image of converging nets are converging.

b) A subset A of a topological space S is closed if and only if the limit
point of every converging net in A is in A.

c) A topological space S is compact if and only if every net has a con-
vergent subnet.

Note: A subnet of a sequence is not necessarily a subsequence.

Example 2.1.3. An important example of directed sets and nets indexed
by them, are neighborhood bases:

Let (T, T ) be a topological space, x ∈ T , and Ux a neighborhood basis of
x, i.e. Ux ⊂ P(T ), with

1. x ∈ U◦, for all U ∈ Ux,

2. For each open V ⊂ T , with x ∈ V , there is a U ∈ Ux, for which U ⊂ V ,

3. For any U1, U2 ∈ Ux, there is U ∈ Ux, with U ⊂ U1 ∩ U2.

Then Ux is a directed set, with respect to reverse inclusion.
Pick y(U) ∈ U , for each U ∈ Ux, then (y(U) : U ∈ Ux) is a net which

converges to x (exercise).
Assume that T is compact (in particular Hausdorff) and let (xn)n∈N ⊂ T

be a sequence in T , of pairwise distinct elements. Then (xn) may not have a
convergent subsequence. Nevertheless it has a convergent subnet, which can
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be defined as follows: Let x ∈ T be an accumulation point of (xn) (exercise:
there is an accumulation point) which means that {n ∈ N : xn ∈ U} is
infinite for each open U ⊂ T which contains x. Let Ux be a neighborhood
basis of x. Then put for each U ∈ Ux, xU = xmin{n∈N:xn∈U}.

It follows (exercise) that (xU ) is a subnet of (xn) which converges to x.

In order to define a topology on a vector space E which turns E into a
topological vector space we (only) need to define an appropriate neighbor-
hood basis of 0.

Proposition 2.1.4. Assume that (E, T ) is a topological vector space. And
let

U0 = {U ∈ T , 0 ∈ U}.

Then

a) For all x ∈ E, x+U0 = {x+U : U ∈ U0} is a neighborhood basis of x,

b) for all U ∈ U0 there is a V ∈ U0 so that V + V ⊂ U ,

c) for all U ∈ U0 and all R > 0 there is a V ∈ U0, so that

{λ ∈ K : |λ| < R} · V ⊂ U,

d) for all U ∈ U0 and x ∈ E there is an ε > 0, so that λx ∈ U , for all
λ ∈ K with |λ| < ε,

e) if (E, T ) is Hausdorff, then for every x ∈ E, x 6= 0, there is a U ∈ U0

with x 6∈ U ,

f) if E is locally convex, then for all U ∈ U0 there is a convex V ∈ T ,
with V ⊂ U .

Conversely, if E is a vector space over K, K = R or K = C, and

U0 ⊂ {U ∈ P(E) : 0 ∈ U}

is non empty and is downwards directed, i.e. if for any U, V ∈U0, there is
a W ∈U0, with W ⊂ U ∩ V and satisfies (b), (c) and (d), then

T = {V ⊂ E : ∀x∈V ∃U ∈U : x+ U ⊂ V },

defines a topological vector space for which U0 is a neighborhood basis of 0.
(E, T ) is Hausdorff if U also satisfies (e) and locally convex if it satisfies
(f).
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Proof. Assume (E, T ) is a topological vector space and U0 is defined as
above.

We observe that for all x ∈ E the linear operator Tx : E → E, z 7→ z+x
is continuous. Since also Tx ◦ T−x = T−x ◦ Tx = Id, it follows that Tx is an
homeomorphism, and thus maps open neighborhoods of 0 to open neighbor-
hoods of x, which implies (a). Property (b) follows from the continuity of
addition at 0. Indeed, we first observe that U0,0 = {V × V : V ∈ U0} is a
neighborhood basis of (0, 0) in E×E, and thus, if U ∈ U0, then there exists
a V ∈ U0 so that

V × V ⊂ (· + ·)−1(U) = {(x, y) ∈ E × E : x+ y ∈ U},

and this translates to V + V ⊂ U .
The claims (c) and (d) follow similarly from the continuity of scalar

multiplication at 0. If E is Hausdorff then U0 clearly satisfies (e) and it
clearly satisfies (f) if E is locally convex.

Now assume that U0 ⊂ {U ∈ P(E) : 0 ∈ U} is non empty and downwards
directed, that for any U, V ∈ U0, there is a W ∈ U0, with W ⊂ U ∩ V , and
that U0 satisfies (b), (c) and (d). Then

T = {V ⊂ E : ∀x∈V ∃U∈U0 : x+ U ⊂ V },

is finitely intersection stable and stable by taking (arbitrary) unions. Also
∅, E ∈ T . Thus T is a topology. Also note that for x ∈ E,

Ux = {x+ U : U ∈ U0}

is a neighborhood basis of x.
We need to show that addition and multiplication by scalars is continu-

ous. Assume (xi : i ∈ I) and (yi : i ∈ I) converge in E to x∈E and y∈E,
respectively, and let U ∈U0. By (b) there is a V ∈U0 with V + V ⊂ U . We
can therefore choose i0 so that xi ∈ x + V and yi ∈ x + V , for i ≥ i0, and,
thus, xi + yi ∈ x + y + V + V ⊂ x + y + U , for i ≥ i0. This proves the
continuity of the addition in E.

Assume (xi : i ∈ I) converges in E to x, (λi : i ∈ I) converges in K to
λ and let U ∈ U0. Then choose first (using property (b)) V ∈ U0 so that
V + V ⊂ U . Then, by property (c) choose W ∈ U0, so that for all ρ ∈ K,
|ρ| ≤ R := |λ| + 1 it follows that ρW ⊂ V and, using (d) choose ε ∈ (0, 1)
so that ρx ∈ W , for all ρ ∈ K, with |ρ| ≤ ε. Finally choose i0 ∈ I so that
xi ∈ x+W and |λ− λi| < ε (and thus |λi| < R for i ≥ i0), for all i ≥ i0 in
I (and thus also |λi| < R for i ≥ i0).

λixi = λi(xi − x) + (λi−λ)x+λx ∈ λx+ λiW + V ⊂ λx+ V + V ⊂ λx+U.
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If U0 satisfies (e) and if x 6= y are in E, then we can choose U ∈ U0

so that y − x 6∈ U and then, using the already proven fact that addition
and multiplication by scalars is continuous, there is V so that V − V ⊂ U .
It follows that x + V and y + V are disjoint. Indeed, if x + v1 = y + v2,
for some v1, v2 ∈ V it would follows that y − x = v2 − v1 ∈ U , which is a
contradiction.

If (f) is satisfied then E is locally convex since we observed before that
Ux = {x+ U : U ∈ U0} is a neighborhood basis of x, for each x ∈ E.

Let E be a vector space over K, K = R or K = C, and let F be a
subspace of

E# = {f : E → K linear}.
Assume that for each x ∈ E there is an x∗ ∈ F so that x∗(x) 6= 0, we say in
that case that F is separating the elements of E from 0. Consider

U0 =
{ n⋂
j=1

{x ∈ E : |x∗i (x)| < εi} : n ∈ N, x∗i ,∈F, and εi > 0, i = 1, . . . , n
}
.

U0 is finitely intersection stable and it is easily checked that U0 satisfies
that assumptions (b)-(f). It follows therefore that U0 is the neighborhood
basis of a topology which turns E into locally convex Hausdorff space.

Definition 2.1.5. If E is a topological vector space over K, we call

E∗ = {f : E → K : f linear and continuous}.

Definition 2.1.6. [The Topology σ(E,F )]
Let E be a vector space and let F be a separating subspace of E#.

Then we denote the locally convex Hausdorff topology generated by

U0 =
{ n⋂
j=1

{x∈E : |x∗i (x)|<εi} : n∈N, x∗i ∈F, and εi > 0 , i=1, . . . , n
}
,

by σ(E,F ).

If E is a locally convex space we call σ(E,E∗), as in the case of Banach
spaces, the Weak Topology on E and denote it also by w. If E, say E = F ∗,
for some locally convex space F , we call σ(F ∗, F ) the weak∗ topology and
denote it by w∗ (if no confusion can happen).

From the Hahn Banach Theorem for Banach spaces it follows that the
weak topology turns a Banach space X into a Hausdorff space, and we can
see

(
X,σ(X,X∗)

)
as a locally convex space. Similarly

(
X∗, σ(X∗, X)

)
is a

locally convex space which is Hausdorff.
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Proposition 2.1.7. Assume that X is a Banach space and that X∗ denotes
its dual with respect to the norm. Then(

X,σ(X,X∗)
)∗

= X∗ and
(
X∗, σ(X∗, X)

)∗
= X.

Proposition 2.1.7 follows from a more general principle.

Proposition 2.1.8. Let E be a locally convex space and E∗ its dual space.
Equip E∗ with the topology σ(E∗, E). Then

(
E∗, σ(E∗, E)

)
, and

(
E, σ(E,E∗)

)
are locally convex spaces whose duals are E and E∗, respectively (where we
identify e ∈ E in the canonical way with a map defined on E∗).

Remark. Proposition 2.1.8 means the following: Start with an arbitrary
locally convex space E, and let E∗ be its dual. Then for the topology
σ(E∗, E), i.e. the coarsest topology on E∗ for which all elements of E are
continuous, you have “reflexivity” in the sense that the dual of the locally
convex space (E∗, σ(E∗, E)) is E again.

Proof of Proposition 2.1.8. We will only show that
(
E∗, σ(E∗, E)

)∗
= E

and leave the second part as an exercise. It is clear that E belongs to(
E∗, σ(E∗, E)

)∗
in the following sense: If e ∈ E and if χ(e) is the function on

E∗ which assigns to f ∈ E∗ the scalar 〈f, e〉, then χ(e) is in
(
E∗, σ(E∗, E)

)∗
.

From now on we identify e with χ(e) and simply write e instead of χ(e).
Assume φ : E∗ → K is linear and σ(E∗, E)-continuous. We need to show

that φ = χ(e) = e for some e ∈ E.

U = {f ∈ E∗ : |〈φ, f〉| < 1} = φ−1(−1, 1)

is then an σ(E,E∗)-open neighborhood and thus there are e1, e2, . . . , en ∈ E
and ε > 0 so that

n⋂
j=1

{f ∈ E∗| |〈ej , f〉| < ε} ⊂ U.

It follows from this that

n⋂
j=1

ker(ej) ⊂ ker(φ).

Indeed,

n⋂
j=1

ker(ej) =
⋂
δ>0

n⋂
j=1

{f ∈ E∗| |〈ej , f〉| < δε}
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=
⋂
δ>0

δ ·
n⋂
j=1

{f ∈ E∗| |〈ej , f〉| < ε}

⊂
⋂
δ>0

δ · U

=
⋂
δ>0

δ · {f ∈ E∗ : |〈φ, f〉| < 1}

=
⋂
δ>0

{f ∈ E∗ : |〈φ, f〉| < δ} = ker(φ).

Now an easy linear algebra argument implies that φ is a linear combination
of e1, e2, . . . , en which yields that φ ∈ E.

Proposition 2.1.9. Let E be a vector space and let F be a separating sub-
space of E#.

For a net (xi)i∈I ⊂ E and x ∈ E

lim
i∈I

xi = x in σ(E,F ) ⇐⇒ ∀x∗∈F lim
i∈I
〈x∗, xi〉 = 〈x∗, x〉.
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2.2 Geometric Version of the Hahn-Banach The-
orem for locally convex spaces

We want to formulate a geometric version of the Hahn-Banach Theorem.

Definition 2.2.1. A subset A of a vector space V over K is called convex
if for all a, b ∈ A and all λ ∈ [0, 1] also λa+ (1− λ)b ∈ A.
If A ⊂ V we define the convex hull of A by

conv(A) =
⋂{

C : A ⊂ C ⊂ V,C convex
}

=
{ n∑
j=1

λjaj : n∈N, λj∈ [0, 1], ai∈A, for i=1, . . . , n, and
n∑
j=1

λj =1
}
.

A subset A ⊂ V is called absorbing if for all x ∈ V there is an 0 < r <∞ so
that x/r ∈ A. For an absorbing set A we define the Minkowski functional
by

µA : V → [0,∞), x 7→ inf{λ > 0 : x/λ ∈ A}.

A is called symmetric if for all λ ∈ K, |λ| = 1, and all x ∈ A, it follows that
λx ∈ A.

Lemma 2.2.2. Assume C is a convex and absorbing subset of a vector space
V . Then µC is a sublinear functional on V , and

(2.1) {v ∈ V : µC(v) < 1} ⊂ C ⊂ {v ∈ V : µC(v) ≤ 1}.

If V is a locally convex space space and if 0 is in the open kernel of C,
then µC is continuous at 0.

Proof. Since C is absorbing 0 ∈ C and µC(0) = 0. If u, v ∈ V and ε > 0
is arbitrary, we find 0 < λu < µC(u) + ε and 0 < λv < µC(v) + ε, so that
u/λu ∈ C and v/λv ∈ C and thus

u+ v

λu + λv
=

λu
λu + λv

u

λu
+

λv
λu + λv

v

λv
∈ C,

which implies that µC(u + v) ≤ λu + λv ≤ µC(u) + µC(v) + 2ε, and, since,
ε > 0 is arbitrary, µC(u+ v) ≤ µC(u) + µC(v).

Finally for λ > 0 and v ∈ V

µC(λv) = inf
{
r > 0 :

λv

r
∈ C

}
= λ inf

{ r
λ

:
λv

r
∈ C

}
= λµC(v).
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To show the first inclusion in (2.1) assume v ∈ V with µC(v) < 1, there
is a 0 < λ < 1 so that v/λ ∈ C, and, thus,

v = λ
v

λ
+ (1− λ)0 ∈ C.

The second inclusion is clear since for v ∈ C it follows that v = v
1 ∈ C.

If V is a locally convex space and 0 ∈ C0, then there is a an open convex
neighborhood U of 0, so that 0 ∈ U ⊂ C. Now let (xi) be a net which
converges in V to 0. Since with U also εU is a neighborhood of 0, for ε > 0,
we obtain for any ε > 0 an i0 ∈ I, so that for all i ≥ i0 in I it follows that
xi ∈ εU .

µC(xi) ≤ µU (xi) ≤ εµεU (xi) ≤ ε.

Theorem 2.2.3. (The Geometric Hahn-Banach Theorem for locally convex
spaces) Let C be a non empty, closed convex subset of a locally convex and
Hausdorff space E and let x0 ∈ E \ C.

Then there is an x∗ ∈ E∗ so that

sup
x∈C
<(〈x∗, x〉) < <(〈x∗, x0〉).

Proof. We first assume that K = R and we also assume w.l.o.g. that 0 ∈ C
(otherwise pass to C − x and x0 − x for some x ∈ C). Let U be convex
open neighborhood of 0 so that C ∩ (x0 + U) = ∅, then let V be an open
neighborhood of 0 so that V − V ⊂ U and let D = C + V . It follows
that also (x0 + V ) ∩ D = ∅. Therefore µD(z) ≥ 1, for all z ∈ x0 + V .
Since V is open there is a 0 < δ < 1 so that (1 − δ)x0 ∈ x0 + V and thus
µD(x0) = 1

1−δµD((1− δ)x0) > 1.
From Lemma 2.2.2 it follows that µD is a sublinear functional on E,

which is continuous at 0.
On the one dimensional space Y = span(x0) define

f : Y → R, αx0 7→ αµD(x0).

Then f(y) ≤ µD(y) for all y ∈ Y (if y = αx0, with α > 0 this follows from
the positive homogeneity of µD, and if α < 0 this is clear). By Theorem
1.4.2 we can extend f to a linear function F , defined on all of E, with
F (x) ≤ µD(x) for all x ∈ E. Since µD is continuous at 0 it follows F is
continuous at 0 and thus in E∗.

Moreover, if x ∈ C it follows that F (x0) > 1 ≥ supx∈C µD(x)) ≥ 1. If
K = C we first choose F , by considering E to be a real locally convex space,
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and then put f(x) = F (x) − iF (ix). It is then easily checked that F is a
complex linear bounded functional on E.

Corollary 2.2.4. Assume that A and B are two convex closed subsets of a
locally convex space E, with for which there is an open neighborhood U of 0
with (A+ U) ∩ (B + U) = ∅.

Then there is an x∗ ∈ E∗ and α ∈ R so that

<(〈x∗, x〉) ≤ α ≤ <(〈x∗, y〉), for all x ∈ A and y ∈ B.

Proof. Consider

C = A−B =
{
x− y : x ∈ A and y ∈ B

}
.

we note that 0 6∈ C is convex and that, applying Theorem 2.2.3, we obtain
an x∗ ∈ X∗ so that

sup
x∈C
<(〈x∗, x〉) < <(〈x∗, 0〉) = 0.

But this means that for all x ∈ A and all y ∈ B <(〈x∗, x− y〉) < 0 and thus

<(〈x∗, x〉) < <(〈x∗, y〉).

An easy consequence of the geometrical version of the Hahn-Banach
Theorem 2.2.3 is the following two observation.

Proposition 2.2.5. If A is a convex subset of a Banach space X then

A
w

= A
‖·‖
.

If a representation of the dual space of a Banach space X is not known,
it might be hard to verify weak convergence of a sequence directly. The
following Corollary of Proposition 2.2.5 states an equivalent criterium for a
sequence to be weakly null without using the dual space of X.

Corollary 2.2.6. For a bounded sequence (xn) in Banach space X it follows
that (xn) is weakly null if and only if for all subsequences (zn), all ε > 0
there is a convex combination z =

∑k
j=1 λjzj of (zj) (i.e. λi ≥ 0, for

i = 1, 2, . . . , k, and
∑l

j=1 λj = 1) so that ‖z‖ ≤ ε .
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2.3 Reflexivity and Weak Topology

Proposition 2.3.1. If X is a Banach space and Y is a closed subspace of
X, then σ(Y, Y ∗) = σ(X,X∗) ∩ Y , i.e. the weak topology on Y is the weak
topology on X restricted to Y .

Theorem 2.3.2. (Theorem of Alaoglu, c.f. [Fol, Theorem 5.18] )
BX∗ is w∗ compact for any Banach space X.

Sketch of a proof. Consider the map

Φ : B∗X →
∏
x∈X
{λ∈K : |λ| ≤ ‖x‖}, x∗ 7→ (x∗(x) : x∈X).

Then we check that Φ is continuous with respect to w∗ topology on BX∗

and the product topology on
∏
x∈X{λ ∈ K : |λ| ≤ ‖x‖}, has a closed image,

and is a homeorphism from B∗X onto its image.

Since by the Theorem of Tychanoff
∏
x∈X{λ ∈ K : |λ| ≤ ‖x‖} is compact,

Φ(BX∗) is a compact subset, which yields (via the homeomorphism Φ−1)
that BX∗ is compact in the w∗ topology.

Theorem 2.3.3. (Theorem of Goldstein)
BX is (via the canonical embedding) w∗ dense in BX∗∗.

Proof. We need to show that χ(BX)
σ(X∗∗,X∗)

= BX∗∗ .

Now χ(BX)
σ(X∗∗,X∗)

is closed in the locally convex space
(
X∗∗, σ(X∗∗, X∗)

)
whose dual is by Proposition 2.1.7 X∗. So assume that x∗∗0 ∈ BX∗∗ \
χ(BX)

σ(X∗∗,X∗)
. Then by the Geometrical Hahn Banach Theorem 2.2.3

we can find x∗ ∈ X∗ so that

sup

x∗∗∈χ(BX)
σ(X∗∗,X∗)

<(x∗∗(x∗)) < <(x∗∗0 (x∗))

But

sup

x∗∗∈χ(BX)
σ(X∗∗,X∗)

<(x∗∗(x∗)) ≥ sup
x∈BX

<(x∗(x)) = ‖x∗‖ and <(x∗(x)) ≤ ‖x∗‖

which is a contradiction.

Theorem 2.3.4. Let X be a Banach space. Then X is reflexive if and only
if BX is compact in the weak topology.
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Proof. Let χ : X ↪→ X∗∗ be the canonical embedding.

“⇒” If X is reflexive and thus χ is onto it follows that χ is an home-
omorphism between (BX , σ(X,X∗)) and (BX∗∗ , σ(X∗∗, X∗)). But by the
Theorem of Alaoglu 2.3.2 (BX∗∗ , σ(X∗∗, X∗)) is compact.

“⇐” Assume x∗∗ ∈ BX∗∗ . By Goldstein’s Theorem 2.3.3 there is a net
(xi)i∈I ⊂ BX , for which (χ(xi) : i ∈ I) converges in σ(X∗∗, X∗) to x∗∗.
Since BX is assumed to be σ(X,X∗) compact there is a subnet (xj : j ∈ J)
which converges in σ(X,X∗) to some x ∈ BX thus it follows for all x∗ ∈ X∗
that

x∗∗(x∗) = lim
i∈I

x∗(xi) = lim
j∈J

x∗(xj) = x∗(x) = χ(x)(x∗)

which implies that x∗∗ = χ(x).

Theorem 2.3.5. For a Banach space X the following are equivalent.

a) X is reflexive,

b) X∗ is reflexive,

c) every closed subspace of X is reflexive.

Proof. “(a)⇒(c)” Assume Y ⊂ X is a closed subspace. Proposition 2.2.5
yields that BY = BX ∩Y is a σ(X,X∗)-closed and, thus, σ(X,X∗)-compact
subset of BX . Since, by the Theorem of Hahn-Banach (Corollary 1.4.4),
every y∗ ∈ Y ∗ can be extended to an element in X∗, it follows that σ(Y, Y ∗)
is the restriction of σ(X,X∗) to the subspace Y . Thus, BY is σ(Y, Y ∗)-
compact, which implies, by Theorem 2.3.4 that Y is reflexive.

“(a)⇒(b)” If X is reflexive then σ(X∗, X∗∗) = σ(X∗, X). Since by the
Theorem of Alaoglu 2.3.2 BX∗ is σ(X∗, X)-compact the claim follows from
Theorem 2.3.4.

“(c)⇒(a)” clear.

“(b)⇒(a)” If X∗ is reflexive, then, by “(a)⇒(b)” , applied to X∗, X∗∗ is also
reflexive and thus, the implication “(a)⇒(c)” yields that X is reflexive.

Similar ideas as in the proof of Theorem 2.3.3 are used to show the
following result which characterizes when a Banach space X is a dual space
of another space.

Theorem 2.3.6. Assume that X is a Banach space and Z is a closed sub-
space of X∗, so that BX is compact in the topology σ(X,Z), and so that
‖x|| = supz∈BZ |z(x)|.
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Then Z∗ is isometrically isomorphic to X and the map

T : X → Z∗, x 7→ fx, with fx(z) = 〈z, x〉, for x ∈ X and z ∈ Z,

is an isometrical isomorphism onto Z∗.

Proof. We first note that T (BX) is σ(Z∗, Z) dense in BZ∗ . Indeed, if this
is not true we can apply the Geometric Hahn Banach Theorem for lo-
cally convex spaces (Theorem 2.2.3) applied to the locally convex space(
Z∗, σ(Z∗, Z)

)
whose dual is by Proposition 2.1.7

(
Z, σ(Z,Z∗)

)
, and obtain

elements z∗ ∈ SZ∗ and z ∈ SZ so that

1 = ‖z‖ = sup
x∈BX

〈x, z〉 < 〈z∗, z〉 = 1,

which is a contradiction.
Secondly, our assumption says that T (BX) is σ(Z∗, Z)-compact. To see

that note that if (xi)i∈I is a net in X and z∗ ∈ Z∗, then

(fxi)i∈I converges to z∗ with respect to σ(Z∗, Z)

⇐⇒ lim
i∈I
〈xi, z〉 = 〈z∗, z〉 for all z ∈ Z

⇐⇒ z∗ ∈ T (BX) and σ(X,Z∗)− lim
i∈I
〈xi, z〉 = z∗ (By assumption).
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2.4 Annihilators, Complemented Subspaces

Definition 2.4.1. (Annihilators, Pre-Annihilators)
Assume X is a Banach space. Let M ⊂ X and N ⊂ X∗. We call

M⊥ = {x∗ ∈ X∗ : ∀x∈M 〈x∗, x〉 = 0} ⊂ X∗,

the annihilator of M and

N⊥ = {x ∈ X : ∀x∗∈N 〈x∗, x〉 = 0} ⊂ X,

the pre-annihilator of N .

Proposition 2.4.2. Let X be a Banach space, and assume M ⊂ X and
N ⊂ X∗.

a) M⊥ is a closed subspace of X∗, M⊥ = (span(M))⊥, and (M⊥)⊥ =
span(M),

b) N⊥ is a closed subspace of X, N⊥ = (span(N))⊥, and span(N) ⊂
(N⊥)⊥.

c) span(M) = X ⇐⇒ M⊥ = {0}.

Proof. We only show (a), (b) can be shown similarly and (c) is clear, and
we only show the third claim of (a). If x ∈ span(M) and x∗ ∈ M⊥ then
x∗(x) = 0, and thus x ∈ (M⊥)⊥.

Assume x0 ∈ (M⊥)⊥ but x0 6∈ span(M), then by the Corollary 1.4.5
of Hahn Banach Theorem there is an x∗ ∈ X∗ for which x∗(x0) > 0 and
x∗|

span(M)
≡ 0, and thus x∗ ∈M⊥ which implies that x∗(x0) = 0 which is a

contradiction.

Proposition 2.4.3. If X is Banach space and Y ⊂ X is a closed subspace
then (X/Y )∗ is isometrically isomorphic to Y ⊥ via the operator

Φ : (X/Y )∗ → Y ⊥, with Φ(z∗)(x) = z∗(x).

(recall x := x+ Y ∈ X/Y for x ∈ X).

Proof. Let Q : X → X/Y be the quotient map.
For z∗ ∈ (X/Y )∗, Φ(z∗), as defined above, can be written as Φ(z∗) =

z∗ ◦ Q. Thus Φ(z∗) ∈ X∗. Since Q(Y ) = {0} it follows that Φ(z∗) ∈ Y ⊥.
For z∗ ∈ (X/Y )∗ we have

‖Φ(z∗)‖ = sup
x∈BX

〈z∗, Q(x)〉 = sup
x∈BX/Y

〈z∗, x〉 = ‖z∗‖(X/Y )∗ ,
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where the second equality follows on the one hand from the fact that ‖Q(x)‖ ≤
‖x‖, for x ∈ X, and on the other hand, from the fact that for any x = x+Y ∈
X/Y there is a sequence (yn) ⊂ Y so that lim supn→∞ ‖x+ yn‖ = ‖x‖.

Thus Φ is an isometric embedding. In order to show that Φ is onto let
x∗ ∈ Y ⊥ ⊂ X∗. We define

z∗ : X/Y → K, x+ Y 7→ 〈x∗, x〉.

First note that this map is well defined (since 〈x∗, x+ y1〉 = 〈x∗, x+ y2〉 for
y1, y2 ∈ Y ). Since x∗ is linear, z∗ is also linear, and |〈z∗, x〉| = |〈x∗, x〉|, for
all x ∈ X, and thus ‖z∗‖(X/Y )∗ = ‖x∗‖. Finally, since

〈Φ(z∗), x〉 = 〈z∗, Q(x)〉 = 〈x∗, x〉,

it follows that Φ(z∗) = x∗, and thus that Φ is surjective.

Proposition 2.4.4. Assume X and Y are Banach spaces and T ∈ L(X,Y ).
Then

T (X)⊥ = N (T ∗) and T ∗(Y ∗) ⊂ N (T )⊥(2.2)

T (X) = N (T ∗)⊥ and T ∗(Y ∗)⊥ = N (T ).(2.3)

Proof. We only prove (2.2). The verification of (2.3) is similar. For y∗ ∈ Y ∗

y∗∈T (X)⊥ ⇐⇒ ∀x∈X 〈y∗, T (x)〉 = 0

⇐⇒ ∀x∈X 〈T ∗(y∗), x〉 = 0

⇐⇒ T ∗(y∗) = 0 ⇐⇒ y∗ ∈ N (T ∗),

which proves the first part of (2.2), and for y∗ ∈ Y ∗ and all x ∈ N (T ),
it follows that 〈T ∗(y∗), x〉 = 〈y∗, T (x)〉 = 0, which implies that T ∗(Y ∗) ⊂
N (T )⊥, and, thus, T ∗(X∗) ⊂ N (T )⊥ since , N (T )⊥ is closed.

Definition 2.4.5. Let X be a Banach space and let U and V be two closed
subspaces of X. We say that X is the complemented sum of U and V and
we write X = U ⊕ V , if for every x ∈ X there are u ∈ U and v ∈ V , so that
x = u + v and so that this representation of x as sum of an element of U
and an element of V is unique.

We say that a closed subspace Y of X is complemented in X if there is
a closed subspace Z of X so that X = Y ⊕ Z.
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Remark. Assume that the Banach space X is the complemented sum of the
two closed subspaces U and V . We note that this implies that U ∩V = {0}.

We can define two maps

P : X → U and Q : X → V

where we define P (x) ∈ U and Q(x) ∈ V by the equation x = P (x) +Q(y),
with P (x) ∈ U and Q(x) ∈ V (which, by assumption, has a unique solution).
Note that P and Q are linear. Indeed, if P (x1) = u1, P (x2) = u2, Q(x1) =
v1, Q(x2) = v2, then for λ, µ∈K we have λx1 +µx2 = λu1 +µu2 +λv1 +µv2,
and thus, by uniqueness P (λx1 + µx2) = λu1 + µu2, and Q(λx1 + µx2) =
λv1 + µv2.

Secondly it follows that P ◦ P = P , and Q ◦ Q = Q. Indeed, for any
x ∈ X we we write P (x) = P (x) + 0 ∈ U + V , and since this representation
of P (x) is unique it follows that P (P (x)) = P (x). The argument for Q is
the same.

Finally it follows that, again using the uniqueness argument, that P is
the identity on U and Q is the identity on V .

We therefore proved that

a) P is linear,

b) the image of P is U

c) P is idempotent, i.e. P 2 = P

We say in that case that P is a linear projection onto U . Similarly Q is a
a linear projection onto V , and P and Q are complementary to each other,
meaning that P (X)∩Q(X) = {0} and P+Q = Id. A linear map P : X → X
with the properties (a) and (c) is called projection.

The next Proposition will show that P and Q as defined in above remark
are actually bounded.

Lemma 2.4.6. Assume that X is the complemented sum of two closed sub-
spaces U and V . Then the projections P and Q as defined in above remark
are bounded.

Proof. Consider the norm ||| · ||| on X defined by

|||x||| = ‖P (x)‖+ ‖Q(x)‖, for x ∈ X.



2.4. ANNIHILATORS, COMPLEMENTED SUBSPACES 43

We claim that (X, ||| · |||) is also a Banach space. Indeed if (xn) ⊂ X with

∞∑
n=1

|||xn||| =
∞∑
n=1

‖P (xn)‖+
∞∑
n=1

‖Q(xn)‖ <∞.

Then u =
∑∞

n=1 P (xn) ∈ U , v =
∑∞

n=1Q(xn) ∈ V (U and V are assumed
to be closed) converge in U and V with respect to ‖ · ‖, respectively. Since
‖ · ‖ ≤ ||| · ||| also x =

∑∞
n=1 xn converges with respect to ‖ · ‖ and

x =
∞∑
n=1

xn = lim
n→∞

n∑
j=1

(
P (xj)+Q(xj)

)
= lim

n→∞

n∑
j=1

P (xj)+ lim
n→∞

n∑
j=1

Q(xj) = u+v,

and ∣∣∣∣∣∣∣∣∣x− n∑
j=1

xn

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣u− n∑

j=1

P (xn) + v −
n∑
j=1

Q(xn)
∣∣∣∣∣∣∣∣∣

=
∥∥∥u− n∑

j=1

P (xn)
∥∥∥+

∥∥∥v − n∑
j=1

Q(xn)
∥∥∥→n→∞ 0,

(here all series are meant to converge with respect to ‖·‖) which proves that
(X, ||| · |||) is complete.

Since the identity is a bijective linear bounded operator from (X, ||| · |||) to
(X, ‖·‖) it has by Corollary 1.3.6 of the Closed Graph Theorem a continuous
inverse and is thus an isomorphy. Since ‖P (x)‖ ≤ |||x||| and ‖Q(x)‖ ≤ |||x|||
we deduce our claim.

Proposition 2.4.7. Assume that X is a Banach space and that P : X → X,
is a bounded projection onto a closed subspace of X.

Then X = P (X)⊕N (P ).

Theorem 2.4.8. There is no linear bounded operator T : `∞ → `∞ so that
the kernel of T equals to c0.

Corollary 2.4.9. c0 is not complemented in `∞.

Proof of Theorem 2.4.8. For n ∈ N we let e∗n be the n-th coordinate func-
tional on `∞, i.e.

e∗n : `∞ → K, x = (xj) 7→ xn.

Step 1. If T : `∞ → `∞ is bounded and linear, then

N (T ) =

∞⋂
n=1

N (e∗n ◦ T ).



44 CHAPTER 2. WEAK TOPOLOGIES AND REFLEXIVITY

Indeed, note that

x ∈ N (T ) ⇐⇒ ∀n∈N e∗n(T (x)) = 〈e∗n, T (x)〉 = 0.

In order to prove our claim we will show that c0 cannot be the intersection
of the kernel of countably many functionals in `∗∞.
Step 2. There is an uncountable family (Nα : α ∈ I) of infinite subsets of N
for which Nα ∩Nβ is finite whenever α 6= β are in I.

Write the rational numbers Q as a sequence (qj : j∈N), and choose for
each r ∈ R a sequence (nk(r) : k ∈N), so that (qnk(r) : k ∈N) converges to
r. Then, for r∈R let Nr = {nk(r) : k∈N}. The family (Nr : r ∈ R) then
satisfies the claim in Step 2.

For α∈I, put xα = 1Nα ∈`∞, i.e.

xα = (ξ
(α)
k : k∈N) with ξ

(α)
k =

{
1 if k ∈ Nα

0 if k 6∈ Nα.

Step 3. If f ∈ `∗∞ and c0 ⊂ N (f) then {α ∈ I : f(xα) 6= 0} is countable.
In order to verify Step 3 let An = {α : |f(xα)| ≥ 1/n}, for n ∈ N.

It is enough to show that for n ∈ N the set An is finite. To do so, let
α1, α2, . . . , αk be distinct elements of An and put x =

∑k
j=1 sign

(
f(xαj )

)
xαj

(for a ∈ C we put sign(a) = a/|a|) and deduce that f(x) ≥ k/n. Now
consider Mj = Nαj \

⋃
i 6=j Nαi . Then Nαj \Mj is infinite, and thus it follows

for

x̃ =

k∑
j=1

sign(f(xαj ))1Mj

that f(x) = f(x̃) (since x − x̃ ∈ c0). Since the Mj , j = 1, 2, . . . , k are
pairwise disjoint, it follows that ‖x̃‖∞ = 1, and thus

k

n
≤ f(x) = f(x̃) ≤ ‖f‖.

Which implies that An can have at most n‖f‖ elements.
Step 4. If c0 ⊂

⋂∞
n=1N (fn), for a sequence (fn) ⊂ `∗∞, then there is an α ∈ I

so that xα ∈
⋂∞
n=1N (fn). In particular this implies that c0 6=

⋂
n∈NN (fn).

Indeed, Step 3 yields that

C = {α ∈ I : fn(xα) 6= 0 for some n ∈ N} =
⋃
n∈N
{α ∈ I : fn(xα) 6= 0},

is countable, and thus I \ C is not empty.
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Remark. Assume that Z is any subspace of `∞ which is isomorphic to c0,
then Z is not complemented. The proof of that statement is a bit harder.

Theorem 2.4.10. [So] Assume Y is a subspace of a separable Banach space
X and T : Y → c0 is linear and bounded. Then T can be extended to a
linear and bounded operator T̃ : X → c0. Moreover, T̃ can be chosen so that
‖T̃‖ ≤ 2‖T‖.

Corollary 2.4.11. Assume that X is a separable Banach space which con-
tains a subspace Y which is isomorphic to c0. Then Y is complemented in
X.

Proof. Let T : Y → c0 be an isomorphism. Then extend T to T̃ : X → c0

and put P = T−1 ◦ T̃ .

Proof of Theorem 2.4.10. Note that an operator T : Y → c0 is defined by a
σ(Y ∗, Y ) null sequence (y∗n) ⊂ Y ∗, i.e.

T : Y → c0, y 7→
(
〈y∗n, y〉 : n ∈ N

)
.

We would like to use the Hahn Banach Theorem and extend each y∗n to an
element x∗n ∈ X∗n, with ‖y∗n‖ = ‖x∗n‖, and define

T̃ (x) := (〈x∗n, x〉 : n ∈ N), x∈X.

But the problem is that (x∗n) might not be σ(X∗, X) convergent to 0, and
thus we can only say that (〈x∗n, x〉 : n ∈ N) ∈ `∞, but not necessarily in c0.
Thus we will need to change the x∗n somehow so that they are still extensions
of the y∗n but also σ(X∗, X) null.

Let B = ‖T‖BX∗ . B is σ(X∗, X)-compact and metrizable (since X
is separable). Denote the metric which generates the σ(X∗, X)-topology by
d(·, ·). Put K = B∩Y ⊥. Since Y ⊥ ⊂ X∗ is σ(X∗, X)-closed, K is σ(X∗, X)-
compact . Also note that every σ(X∗, X)-accumulation point of (x∗n) lies in
K. Indeed, this follows from the fact that x∗n(y) = y∗n(y) →n→∞ 0, for all
y ∈ Y . This implies that limn→∞ d(x∗n,K) = 0, thus we can choose (z∗n) ⊂ K
so that limn→∞ d(x∗n, z

∗
n) = 0, and thus (x∗n − z∗n) is σ(X∗, X)-null and for

y ∈ Y it follows that 〈x∗n − z∗n, y〉 = 〈x∗n, y〉, n∈N. Choosing therefore

T̃ : X → c0, x 7→ (〈x∗n − z∗n, x〉 : n ∈ N),

yields our claim.

Remark. Zippin [Zi] proved the converse of Theorem: if Z is an infinite-
dimensional separable Banach space admitting a projection from any sepa-
rable Banach space X containing it, then Z is isomorphic to c0.
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2.5 The Theorem of Eberlein Smulian

For infinite dimensional Banach spaces the weak topology is not metrizable
(see Exercise in Homework). Nevertheless compactness in the weak topology
can be characterized by sequences.

Theorem 2.5.1. (The Theorem of Eberlein- Smulian)
Let X be a Banach space. For subset K the following are equivalent.

a) K is relatively σ(X,X∗) compact, i.e. K
σ(X,X∗)

is compact.

b) Every sequence in K contains a σ(X,X∗)-convergent subsequence.

c) Every sequence in K has a σ(X,X∗)-accumulation point.

We will need the following Lemma.

Lemma 2.5.2. Let X be a Banach space and assume that there is a count-
able set C = {x∗n : n ∈ N} ⊂ BX∗, so that C⊥ = {0}. In that case we say
that C is total for X.

Consider for x, y

d(x, y) =
∞∑
n=1

2−n|〈x∗n, x− y〉|.

Then d is a metric on X, and for any σ(X,X∗)-compact set K, σ(X,X∗)
coincides on K with the metric generated by d.

The proof of Lemma 2.5.2 goes along the lines of an Exercise in this
section.

Lemma 2.5.3. Assume that X is separable. Then there is a countable total
set C ⊂ X∗.

Proof. Let D ⊂ X be dense, and choose by the Corollary 1.4.6 of the The-
orem of Hahn Banach for each element x ∈ D, an element y∗x ∈ SX∗ so
that 〈y∗x, x〉 = ‖x‖. Put C = {y∗x : x ∈ D}. If x ∈ X, x 6= 0, is arbi-
trary then there is a sequence (xk) ⊂ D, so that limk→∞ xk = x, and thus
limk→∞〈y∗xk , x〉 = ‖x‖ > 0. Thus there is an x∗ ∈ C so that 〈x∗, x〉 6= 0,
which implies that C is total.



2.5. THE THEOREM OF EBERLEIN SMULIAN 47

Proof of Theorem 2.5.1. “(a)⇒(b)” Assume that K is σ(X,X∗)-compact
(if necessary, pass to the closure) and let (xn) ⊂ K be a sequence, and put
X0 = span(xn : n ∈ N). X0 is a separable Banach space. By Proposition
2.2.5 the topology σ(X0, X

∗
0 ) coincides with the restriction of σ(X,X∗) to

X0. Thus, K0 = K ∩ X0 is σ(X0, X
∗
0 )-compact. Since X0 is separable, by

Lemma 2.5.3 there exists a countable set C ⊂ BX∗0 , so that C⊥ = {0}.
It follows therefore from Lemma 2.5.2 that (K0, σ(X0, X

∗
0 ) ∩ K0) is

metrizable and thus (xn) has a convergent subsequence in K0. Again, using
the fact that on X0 the weak topology coincides with the weak topology on
X, we deduce our claim.
“(b)⇒(c)” clear.
“(c)⇒(a)” Assume K ⊂ X satisfies (c). We first observe that K is (norm)
bounded. Indeed, for x∗ ∈ X∗, the set Ax∗ = {〈x∗, x〉 : x ∈ K} ⊂ K is
the continuous image of A (under x∗) and thus has the property that every
sequence has an accumulation point in K. This implies that Ax∗ is bounded
in K for all x∗ ∈ X∗, but this implies by the Banach Steinhaus Theorem
1.3.8 that A ⊂ X must be bounded.

Let χ : X ↪→ X∗∗ be the canonical embedding. By the Theorem of

Alaoglu 2.3.2, it follows that χ(K)
σ(X∗∗,X∗)

is σ(X∗∗, X∗)-compact. There-

fore it will be enough to show that χ(K)
σ(X∗∗,X∗) ⊂ χ(X) (because this

would imply that every net (χ(xi) : i ∈ I) ⊂ χ(K) has a subnet which
σ(χ(X), X∗)) converges to some element χ(x) ∈ χ(X)).

So, fix x∗∗0 ∈ χ(K)
σ(X∗∗,X∗)

. Recursively we will choose for each k ∈ N,
xk ∈ K, and for each k∈N a finite set A∗k ⊂ SX∗ , so that∣∣〈x∗∗0 − χ(xk), x

∗〉
∣∣ < 1

k
for all x∗ ∈

⋃
0≤j<k

A∗j , if k ≥ 1,(2.4)

∀x∗∗∈span(x∗∗0 , χ(xj), 0≤j≤k) ‖x∗∗‖ ≥ max
x∗∈A∗k

|〈x∗∗, x∗〉| ≥ ‖x
∗∗‖
2

.(2.5)

For k = 0 choose A∗0 = {x∗}, x∗ ∈ SX
∗, with |x∗(x∗∗0 )| ≥ ‖x∗∗0 ‖/2, then

condition (2.5) is satisfied, while condition (2.4) is vacuous.
Assuming that x1, x2, . . . , xk−1 and A∗0, A

∗
1, . . . , A

∗
k−1 have been chosen

for some k > 1, we can first choose xk ∈ K so that (2.4) is satisfied (since
A∗j is finite for j = 1, 2, . . . , k − 1), and then, since span(x∗∗0 , χ(xj), j≤k) is
a finite dimensional space we can choose A∗k ⊂ SX∗ so that (2.5) holds.

By our assumption (c) the sequence (xk) has an σ(X,X∗)- accumulation
point x0. By Proposition 2.3.1 it follows that

x0 ∈ Y = span(xk : k∈N)
‖·‖

= span(xk : k∈N)
σ(X,X∗)

.
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We will show that x∗∗0 = χ(x0) (which will finish the proof ). First note
that for any x∗∈

⋃
j∈NA

∗
j∣∣〈x∗∗0 − χ(x0), x∗〉

∣∣ ≤ lim inf
k→∞

(∣∣〈x∗∗0 − χ(xk), x
∗〉
∣∣+
∣∣〈x∗, xk − x0〉

∣∣) = 0.

Secondly consider the space Z = span(x∗∗0 , χ(xk), k∈N)
‖·‖ ⊂ X∗∗ it follows

from (2.5) that the set of restrictions of elements of
⋃∞
k=1A

∗
k to Z is total

in Z and thus that

x∗∗0 − χ(x0) ∈ Z ∩
( ∞⋃
k=1

A∗k

)
⊥

= {0},

which implies our claim.
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2.6 Characterizations of Reflexivity by Pták

We present several characterization of the reflexivity of a Banach space,
due to Pták [Ptak]. We assume in this section that our Banach spaces are
defined over the real field R.

Theorem 2.6.1. The following conditions for a Banach space X are equiv-
alent

1. X is not reflexive.

2. For each θ ∈ (0, 1) there are sequences (xi)
∞
i=1 ⊂ BX and (x∗i )

∞
i=1 ⊂

BX∗, so that

(2.6) x∗j (xi) =

{
θ if j ≤ i, and

0 if j > i.

3. For some θ > 0 there are sequences (xi)
∞
i=1 ⊂ BX and (x∗i )

∞
i=1 ⊂ BX∗,

for which (2.6) holds.

4. For each θ ∈ (0, 1) there is a sequence (xi)
∞
i=1 ⊂ BX , so that

(2.7) dist
(
conv(x1, x2, . . . , xn), conv(xn+1, xn+2, . . .)

)
≥ θ.

5. For some θ > 0 there is a sequence (xi)
∞
i=1 ⊂ BX , so that (2.7) holds.

For the proof we will need Helly’s Lemma.

Lemma 2.6.2. Let Y be an infinite-dimensional normed linear space y∗1,
y∗2,. . . , y∗n ∈ Y ∗, M > 0 and let c1, c2, . . . , cn be scalars.

The following are equivalent

(M) The Moment Condition
For all ε > 0 there exists y ∈ Y with

‖y‖ = M + ε and y∗k(y) = ck for k = 1, 2, . . . , n.

(H) Helly’s Condition

∣∣∣ n∑
j=1

ajcj

∣∣∣ ≤M∥∥∥ n∑
j=1

ajy
∗
j

∥∥∥ for any sequence (aj)
n
j=1 of scalars.
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Proof. “(M) ⇒ (H)”. Let ε > 0 and assume y ∈ Y satisfies the condition
in (M). Then∣∣∣ n∑

j=1

ajcj

∣∣∣ =
∣∣∣ n∑
j=1

ajy
∗
j (y)

∣∣∣ ≤ ‖y‖ · ∥∥∥ n∑
j=1

ajy
∗
j

∥∥∥ = (M + ε)
∥∥∥ n∑
j=1

ajy
∗
j

∥∥∥,
which implies (H), since ε > 0 was arbitrary.

“(H)⇒ (M)” We will first need a Lemma

Lemma 2.6.3. Let X be a Banach space and assume that x∗1, x
∗2, . . . , x∗n

are linear independent in X∗. Then there exists x1, x2, . . . , xn ∈ X so that

x∗j (xi) = δi,j =

{
1 if i = j,

0 if i 6= j.

Proof. By the Theorem of Hahn Banach there are x∗∗1 , x
∗∗
2 , . . . , x

∗∗
n ∈ X∗∗

so that x∗∗j (x∗i ) = δi,j for 1 ≤ i, j ≤ n. Let ε > 0 (to be chosen later small
enough). By Goldstein’s Theorem 2.3.3 there are z1, z2, . . . zn in X, so that
|x∗j (zi)| < ε, if i 6= j and |x∗i (zi) − 1| < ε. Let A = (ai,j)

n
i,j=1 be the n by

matrix defined by ai,j = x∗j (xi). Assuming that ε has been chosen small
enough, we deduce that A is invertible and let B = (bi,j)

n
i,j=1 be its inverse

Defining now xi =
∑n

s=1 bi,szs, it follows that

x∗j (xi) =
n∑
s=1

bj,sx
∗
j (xs) =

n∑
s=1

bj,sas,i = δj,i.

Assume (H) and let ε > 0. We can assume that not all the y∗k are
vanishing (otherwise also all the ck have to be equal to 0, and any y ∈
{y∗1, y∗2, . . . y∗n}⊥ with ‖y‖ = M + ε will satisfy the conditions in (M)). We
can also, for the same reason assume that not all cj ’s vanish. Secondly,
we can assume, after reordering the y∗j , that for some k ∈ {1, 2, . . . , n} the

sequence (y∗j )
k
j=1 is linear independent and y∗k+1, y

∗
k+2, . . . , y

∗
n ∈ span(y∗j :

j = 1, 2, . . . , k). This implies that if we have a y ∈ Y , with ‖y‖ = M + ε
and y∗j (y) = cj , for j = 1, 2, . . . , k, then it also follows that y∗j (y) = cj , for

j = k+1, k+2, . . . , n. Indeed, for j = k+1, k+2, . . . , n, choose scalars (a
(j)
i :

i = 1, 2, . . . , k) so that y∗j =
∑k

i=1 a
(j)
i y∗i , for j = k+1, k+2, . . . , n. Now, the

inequality in (H) implies that cj =
∑k

i=1 a
(j)
i ci, for j = k + 1, k + 2, . . . , n.

Indeed, choose aj = −1, ai = 0, if i ∈ {k+1, k+2, . . . , n}\{j} and ai = a
(j)
i ,
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if i ∈ {1, 2, . . . , k}, which implies that the right hand of the equation in (M)
vanishes. This yields that y∗j (y) = cj , for j = k + 1, k + 2, . . . , n.

We can therefore restrict ourselves to satisfy the second condition in
(H) for all j = 1, 2, . . . , k. Define for j = 1, 2, . . . , k the affine subspace
Hj = {y ∈ Y : y∗j (y) = cj}. Then

G =

k⋂
j=1

Hj = {y ∈ Y : y∗j (y) = cj , for j = 1, 2 . . . n}

is not empty, by Lemma 2.6.3, and if we pick y ∈ G, then G = y+G0, where
G0 is the closed subspace

G0 =

k⋂
j=1

{y ∈ Y : y∗j (y) = 0}.

We need to show that

(2.8) N := inf
{
‖y‖ : y ∈ G

}
≤M.

Then our claim would follow, since the Intermediate Value implies that there
must be some y in G for which N < M + ε ≤ ‖y‖ < ∞. Without loss of
generality we can assume that N > 0. We define G̃ = span(G), and note
that if y ∈ G

(2.9) G̃ = span(y0, G0) = {ry : r ∈ K, y ∈ G} where y0 ∈ G.

We choose a functional g∗ in the dual of the span of G so that g∗(y) = N ,
for all y ∈ G This can be done by picking a fixed point y0 ∈ G, and choosing
by Hahn Banach g∗ ∈ G̃∗ , with g∗(y0) = N and which vanishes on the
linear closed subspace G0.

We note that ‖g∗‖ ≥ 1. Indeed, otherwise choose a sequence (yn) ⊂ G,
with limn→∞ ‖yn‖ = N , and note that

N = g∗(yn) ≤ ‖g∗‖ · ‖yn‖ →n→∞ ‖g∗‖N < N

which is a contradiction.
Secondly, we note that ‖g∗‖ ≤ 1, we use (2.9) and find r ∈ R and y ∈ G

so that g∗(ry) > ‖ry‖ ≥ |r|N , which is a contradiction since g∗(ry) = rN .
Thus ‖y∗‖ = 1.
We let y∗ be a Hahn Banach extension of g∗ to a functional defined on

all of Y .
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For all y ∈ Y , we have that if y∗j (y) = cj , for j = 1, 2, . . . , k (and thus
y ∈ G) it follows that y∗(y) = N . Thus, we have for all y ∈ Y if y∗j (y) = 0,
for j = 1, 2, . . . , k, then y∗(y) = 0, in other words, the intersection of the null
spaces of the y∗j , j = 1, 2, . . . , k, is a subset of the null space of y∗. This means

that y∗ is a linear combination of the y∗j , j = 1, 2, . . . , k, say y∗ =
∑k

j=1 ajy
∗
j .

This also implies that N = y∗(y) =
∑k

j=1 ajy
∗
j (y) =

∑k
j=1 ajcj , for y ∈ G.

Thus, by our assumption (H)

N =
N

‖y∗‖
=

∑k
j=1 ajcj∥∥∥∑k
j=1 ajy

∗
j

∥∥∥ ≤M,

which proves our claim (2.8) and finishes the proof of the Lemma.

Proof of Theorem 2.6.1. “(i)⇒(ii)”
Claim:Assume that X is not reflexive and that θ ∈ (0, 1). Thn there is a
functional x∗∗∗ ∈ X∗∗∗ that ‖x∗∗∗‖ = 1, x∗∗∗|X ≡ 0 and x∗∗∗(x∗∗) > θ for
some x∗∗ ∈ X∗∗, with ‖x∗∗‖ < 1

Indeed, by Proposition 2.4.3

(X∗∗/ξ(X))∗ = χ(X)⊥ = {x∗∗∗ : x∗∗∗|χ(X) ≡ 0}.

Since X is not reflexive, we pick z∗∗ ∈ X∗∗ so that

‖z∗∗ + χ(X)‖X∗∗/χ(X) = inf
y∗∗∈z∗∗+χ(X)

‖y∗ ∗ ‖X∗∗ = 1.

Using Hahn Banach, we find x∗∗∗ ∈ Sχ(X)⊥ with x∗∗∗(z∗∗) = 1. Choose ε > 0

so that 1
(1+ε)2

> θ, then choose y∗∗ ∈ z∗∗+χ(X) with ‖y∗∗‖ < 1+ε and finally

let x∗∗ = y∗∗/(1 + ε)2. It follows ‖x∗∗‖ < 1 and x∗∗∗(x∗∗) = (1 + ε)2 > θ.
Now we will choose inductively xn ∈ BX and x∗n ∈ BX∗ , n ∈ N, at each

step assuming that the condition (2.6) holds up to n, and additionally, that
x∗∗(x∗n) = θ.

For n = 1 we simply choose x∗1 ∈ SX∗ so that x∗∗(x∗1) = θ and then we
choose x1 ∈ BX so that x∗1(x1) = θ. Assuming we have chosen x1, x2, . . . , xn
and x∗1, x

∗
2, . . . , x

∗
n so that

(2.10) x∗j (xi) =

{
θ if j ≤ i ≤ n, and

0 if i < j ≤ n.

Since x∗∗∗(xj) = 0 for j = 1, 2, . . . , n and x∗∗∗(x∗∗) > θ, the elements
x1, x2, . . . , xn, x

∗∗, seen as functionals on X∗, together with the numbers
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0, 0, . . . , 0, θ and M = θ
x∗∗∗(x∗∗) < 1 satisfy Helly’s condition (H). Indeed, for

scalars a1, . . . , an+1 we have

|an+1|θ = M |an+1x
∗∗∗(x∗∗)|

= M
∣∣∣x∗∗∗( n∑

j=1

ajxj + an+1x
∗∗
)∣∣∣ ≤M∥∥∥ n∑

j=1

ajx
∗∗∗(xj) + an+1x

∗∗
∥∥∥.

We can therefore choose an x∗n+1∈X∗, ‖x∗n+1‖ ≤ 1 so that x∗n+1(xj) = 0 for
all j = 1, 2, . . . , n and x∗∗(x∗n+1) = θ.

Secondly, we note that the functionals x∗1, x
∗
2, . . . , x

∗
n+1, the numbers

θ, θ, . . . , θ, and the number M = ‖x∗∗‖ < 1 satisfy Helly’s condition. Indeed,
for scalars a1, . . . , an+1 we have

∣∣∣ n+1∑
j=1

ajθ
∣∣∣ =

∣∣∣ n+1∑
j=1

ajx
∗∗(x∗j )

∣∣∣ ≤M∥∥∥ n+1∑
j=1

ajx
∗
j

∥∥∥.
We can therefore find xn+1 ∈ BX , so that x∗j (xn+1) = θ, for all j =
1, 2, . . . , n.
“(ii)⇒(iv)” and “(iii)⇒(v)” Fix a θ ∈ (0, 1) for which there are sequences
(xj) ⊂ BX and (x∗j ) ⊂ BX∗ for which (2.6) holds. Let x =

∑n
j=1 ajxj ∈

conv(x1, x2, . . . , xn) and z =
∑∞

j=n+1 bjxj ∈ conv(xn+1, xn+2, . . .) then

‖z − x‖ ≥ x∗n+1(z − x) = x∗n+1(y) = θ,

which implies our claim.
“(iv)⇒(v)” obvious.
“(v)⇒(i)” Assume that for θ > 0 and the sequence (xj) ⊂ BX satisfies (2.7).
Now assume that our claim is false and X is reflexive.

Define Cn = conv(xj : j ≥ n+ 1), for n ∈ N, then the sets Cn, n ∈ N, are
weakly compact, C1 ⊃ C2 ⊃ . . .. Thus there is an element v ∈

⋂
n∈NCn. We

can approximate v by some u ∈ conv(xj : j ∈ N), with ‖u−v‖ < θ/2. There
is some n so that v ∈ conv(x1, . . . , xn). But now it follows, since u ∈ Cn+1,
that dist

(
conv(x1, . . . , xn), conv(xn+1, xn+2, . . .)

)
≤ ‖v − u‖ < θ/2, which is

a contradiction and finishes the proof.
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2.7 The Principle of Local Reflexivity

In this section we proof a result by J. Lindenstrauss and H. Rosenthal [LR]
which states that for a Banach space X the finite dimensional subspaces
of the bidual X∗∗ are in a certain sense have “similar” finite dimensional
subspaces of X.

Theorem 2.7.1. [LR] [The Principle of Local Reflexivity]
Let X be a Banach space and let F ⊂ X∗∗ and G ⊂ X∗ be finite dimensional
subspaces of X∗∗ and X∗ respectively.

Then, given ε > 0, there is a subspace E of X containing F ∩ X (we
identify X with its image under the canonical embedding) with dimE =
dimF and an isomorphism T : F → E with ‖T‖ · ‖T−1‖ ≤ 1 + ε such that

T (x) = x if x ∈ F ∩X and(2.11)

〈x∗, T (x∗∗)〉 = 〈x∗∗, x∗〉 if x∗ ∈ G, x∗∗ ∈ F .(2.12)

We need several Lemmas before we can prove Theorem 2.7.1. The first
one is a corollary of the Geometric Hahn-Banach Theorem

Proposition 2.7.2. (Variation of the Geometric Version of the Theorem of
Hahn Banach)
Assume that X is a Banach space and C ⊂ X is convex with C◦ 6= ∅ and
let x ∈ X \ C (so x could be in the boundary of C). Then there exists an
x∗ ∈ X∗ so that

<〈x∗, z〉 < 〈x∗, x〉 for all z ∈ C0,

and, if moreover C is absolutely convex (i.e. if ρx ∈ C for all x ∈ C and
ρ ∈ K, with |ρ| ≤ 1), then

|〈x∗, z〉| < 1 = 〈x∗, x〉 for all z∈C0.

Lemma 2.7.3. Assume T : X → Y is a bounded linear operator between
the Banach spaces X and Y and assume that T (X) is closed.

Suppose that for some y ∈ Y there is an x∗∗ ∈ X∗∗ with ‖x∗∗‖ < 1, so
that T ∗∗(x∗∗) = y. Then there is an x ∈ X, with ‖x‖ < 1 so that T (x) = y.

Proof. We first show that there is an x ∈ X so that T (x) = y. Assume this
where not true, then we could find by the Hahn-Banach Theorem (Corollary
1.4.5) an element y∗ ∈ Y ∗, so that y∗(z) = 0, for all z ∈ T (X) and 〈y∗, y〉 = 1
(T (X) is closed). But this yields 〈T ∗(y∗), x〉 = 〈y∗, T (x)〉 = 0, for all x ∈ X,
and, thus, T ∗(y∗) = 0. Thus

0 = 〈x∗∗, T ∗(y∗)〉 = 〈T ∗∗(x∗∗), y∗〉 = 〈y, y∗〉 = 1,
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which is a contradiction.
Secondly, assume that y ∈ T (X) \ T (B◦X). Since T is surjective onto

its (closed) image Z = T (X) it follows from the Open Mapping Theorem
that T (B◦X) is open in Z, and we can use variation of the geometric version
of the Hahn-Banach Theorem, Proposition (2.7.2), and chose z∗ ∈ Z∗, so
that 〈z∗, T (x)〉 < 1 = 〈z∗, y〉 for all x ∈ B◦X . Again by the Theorem of
Hahn-Banach (Corollary 1.4.4) we can extend z∗ to an element y∗ in Y ∗. It
follows that

‖T ∗(y∗)‖ = sup
x∈B◦X

〈T ∗(y∗), x〉 = sup
x∈B◦X

〈z∗, T (x)〉 ≤ 1,

and thus, since ‖x∗∗‖ < 1, it follows that

|〈y∗, y〉| = |〈y∗, T ∗∗(x∗∗)〉| = |〈x∗∗, T ∗(y∗)〉| < 1,

which is a contradiction.

Lemma 2.7.4. Let T : X → Y be a bounded linear operator between two
Banach spaces X and Y with closed range, and assume that F : X → Y has
finite rank.

Then T + F also has closed range.

Proof. Assume the claim is not true. Put S = T +K and consider the map

S : X/N (S)→ Y, x+N (S)→ S(x)

which is a well defined linear bounded Operator, and which by Proposition
1.3.11 cannot be an isomorphism onto its image.

Therefore we can choose sequence (zn) in X/N (S), with ‖zn‖ = 1 and
xn ∈ zn, with 1 ≤ ‖xn‖ ≤ 2, for n ∈ N, so that

lim
n→∞

S(zn) = lim
n→∞

S(xn) = 0 and dist(xn,N (S)) ≥ 1.

Since the sequence (F (xn) : n ∈ N) is a bounded sequence in a finite
dimensional space, we can, after passing to a subsequence, assume that
(F (xn) : n∈N) converges to some y ∈ Y and, hence,

lim
n→∞

T (xn) = −y.

Since T has closed range there is an x ∈ X, so that T (x) = −y. Using again
the equivalences in Proposition 1.3.11 and the fact that T (xn)→ −y = T (x),
if n↗∞, it follows for some constant C > 0 that

lim
n→∞

dist
(
x− xn,N (T )

)
≤ lim

n→∞
C
∥∥T (x− xn)

∥∥ = 0,
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and, thus,
y − F (x) = lim

n→∞
F (xn)− F (x) ∈ F (N (T )),

so we can write y − F (x) as

y − F (x) = F (u), where u ∈ N (T ).

Thus

lim
n→∞

dist(xn − x− u,N (T )) = 0 and lim
n→∞

‖F (xn)− F (x)− F (u)‖ = 0.

F |N (T ) has also closed range, Proposition 1.3.11 yields (C being some posi-
tive constant)

lim sup
n→∞

dist(xn−x−u,N (F )∩N (T )) ≤ lim sup
n→∞

C‖F (xn)−F (x)−F (u)‖ = 0.

Since T (x+u) = −y = −F (x+u) (by choice of u), and thus (T+F )(x+u) =
0 which means that x+ u ∈ N (T + F ). Therefore

lim sup
n→∞

dist(xn,N (T + F )) = lim sup
n→∞

dist(xn − x− u,N (T + F ))

≤ lim sup
n→∞

dist(xn − x− u,N (T ) ∩N (F )) = 0.

But this contradicts our assumption on the sequence (xn).

Lemma 2.7.5. Let X be a Banach space, A = (ai,j)i≤m,j≤n an m be n
matrix and B = (bi,j)i≤p,j≤n a p by n matrix, and assume that B has only
real entries (even if K = C).

Suppose that y1, . . . , ym ∈ X, y∗1, . . . , y
∗
p ∈ X∗, ξ1, . . . , ξp ∈ R, and

x∗∗1 , . . . , x
∗∗
n ∈ B◦X∗∗ satisfy the following equations:

n∑
j=1

ai,jx
∗∗
j = yi, for all i = 1, 2, . . . ,m, and(2.13)

〈
y∗i ,

n∑
j=1

bi,jx
∗∗
j

〉
= ξi, for all i = 1, 2, . . . , p.(2.14)

Then there are vectors x1, . . . , xn ∈ B◦X satisfying:

n∑
j=1

ai,jxj = yi, for all i = 1, 2, . . . ,m, and(2.15)

〈
y∗i ,

n∑
j=1

bi,jxj

〉
= ξi, for all i = 1, 2, . . . , p.(2.16)
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Proof. Recall from Linear Algebra that we can write the matrix A as a
product A = U ◦ P ◦ V , where U and V are invertible and P is of the form

P =

(
Ir 0
0 0

)
,

where r is the rank of A and Ir the identity on Kr.

For a general s by t matrix C = (ci,j)i≤s,j≤t consider the operator

TC : `t∞(X)→ `s∞(X), (x1, x2, . . . , xt) 7→
( t∑
j=1

ci,jxj : i = 1, 2, . . . ,m
)
.

If s = t and if C is invertible then TC is an isomorphism. Also if C(1) and
C(2) are two matrices so that the number of columns of C(1) is equal to the
number of rows of C(2) one easily computes that TC(1)◦C(2) = TC(1) ◦ TC(2) .
Secondly it is clear that TP is a closed operator (P defined as above), since
TP is simply the projection onto the first r coordinates in `n∞(X).

It follows therefore that TA = TU ◦ TP ◦ TV is an operator with closed
range. Secondly define the operator

SA : `n∞(X)→ `m∞(X)⊕ `p∞,

(x1, . . . xn) 7→

(
TA(x1, . . . xn),

(〈
y∗i ,

n∑
j=1

bi,jxj

〉)p
i=1

)
.

SA can be written as the sum of TA and a finite rank operator and has
therefore also closed range by Lemma 2.7.4.

Since the second adjoint of S∗∗A is the operator

S∗∗A : `n∞(X∗∗)→ `m∞(X∗∗)⊕ `p∞,

(x∗∗1 , . . . x
∗∗
n ) 7→

(
T ∗∗A (x∗∗1 , . . . x

∗∗
n ),

(〈
y∗i ,

n∑
j=1

bi,jx
∗∗
j

〉)p
i=1

)

with

T ∗∗A :`n∞(X∗∗)→`m∞(X∗∗), (x∗∗1 , x
∗∗
2 , . . . x

∗∗
n ) 7→

( t∑
j=1

ai,jx
∗∗
j : i=1, 2, . . . ,m

)
,

our claim follows from Lemma 2.7.3.
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Lemma 2.7.6. Let E be a finite dimensional space and (xi)
N
i=1 is an ε-net

of SE for some 0 < ε < 1/3. If T : E → E is a linear map so that

(1− ε) ≤ ‖T (xj)‖ ≤ (1 + ε), for all j = 1, 2, . . . N .

Then
1− 3ε

1− ε
‖x‖ ≤ ‖T (x)‖ ≤ 1 + ε

1− ε
‖x‖, for all x∈E,

and thus

‖T‖ · ‖T−1‖ ≤ (1 + ε)2

(1− ε)(1− 3ε)
.

We are now ready to proof Theorem 2.7.1.

Proof of Theorem 2.7.1. Let F ⊂ X∗∗ and G ⊂ X∗ be finite dimensional

subspaces, and let 0 < ε < 1. Choose δ > 0, so that (1+δ)2

(1−δ)(1−3δ) < ε, and a

δ-net (x∗∗j )Nj=1 of SF . It can be shown that (x∗∗j )Nj=1 span all of F , but we
can also simply assume without loss of generality, that it does, since we can
add a basis of F .

Let

S : RN → F, (ξ1, ξ2, . . . , ξN ) 7→
N∑
j=1

ξjx
∗∗
j ,

and note that S is surjective.
Put H = S−1(F ∩ X), and let (a(i) : i = 1, 2, . . . ,m) be a basis of H,

write a(i) as a(i) = (ai,1, ai,2, . . . ai,N ), and define A to be the m by N matrix
A = (ai,j)i≤m,j≤N . For i = 1, 2, . . . ,m put

yi = S(a(i)) =

N∑
j=1

ai,jx
∗∗
j ∈ F ∩X,

choose x∗1, x
∗
2, . . . , x

∗
N ∈ SX∗ so that 〈x∗∗j , x∗j 〉 > 1 − δ, and pick a basis

{g∗1, g∗2, . . . g∗` } of G.
Consider the following system of equations in N unknowns z∗∗1 , z∗∗2 ,

. . . , z∗∗N in X∗∗:

N∑
j=1

ai,jz
∗∗
j = yi for i = 1, 2, . . . ,m

〈z∗∗j , x∗j 〉 = 〈x∗∗j , x∗j 〉 for j = 1, 2, . . . , N and

〈z∗∗j , gk〉 = 〈x∗∗j , g∗k〉 for j = 1, 2, . . . , N and k = 1, 2, . . . , `.
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By construction z∗∗j = x∗∗j , j = 1, 2, . . . , N , is a solution to these equations.
Since ‖x∗∗j ‖ = 1 < 1 + δ, for j = 1, 2, . . . , N , we can use Lemma 2.7.5 and
find x1, x2, . . . xN ∈ X, with ‖xj‖ = 1 < 1 + δ, for j = 1, 2, . . . , N , which
solve above equations.

Define

S1 : RN → X, (ξ1, ξ2, . . . , ξN ) 7→
N∑
j=1

ξjxj .

We claim that the null space of S is contained in the null space of S1. Indeed
if we assumed that ξ ∈ KN , and

∑N
j=1 ξjxj = 0, but

∑N
j=1 x

∗∗
j 6= 0, then,

Lemma 2.7.6 (consider the operator F → RN , x∗∗ 7→ 〈x∗∗, x∗j 〉) there is an
i ∈ {1, 2, . . . N} so that 〈

x∗i ,
N∑
j=1

x∗∗j

〉
6= 0,

but since 〈x∗∗j , x∗i 〉 = 〈xj , x∗i 〉 this is a contradiction.
It follows therefore that we can find a linear map T : F → X so that

S1 = TS. Denoting the standard basis of RN by (ei)i≤N we deduce that
xi = S1(ei) = T ◦ S(ei) = T (x∗∗i ), and thus

1 + δ > ‖xi‖ = ‖T (x∗∗i )‖ ≥ |〈x∗i , xi〉| = 〈x∗∗i , x∗i 〉| > 1− δ.

By Lemma 2.7.6 and the choice of δ it follows therefore that ‖T‖ · ‖T−1‖ ≤
1 + ε.

Note that for ξ∈H = S−1(F ∩X), say ξ =
∑m

i=1 βia
(i), we compute

S1(ξ) =
m∑
i=1

βiS1(a(i)) =
m∑
i=1

βi

N∑
j=1

ai,jxj

=
m∑
i=1

βi

N∑
j=1

ai,jx
∗∗
j =

m∑
i=1

βiS(a(i)) = S(ξ).

We deduce therefore for x ∈ F ∩X, that T (x) = x.
Finally from the third part of the system of equations it follows, that

〈x∗, T (x∗∗j )〉 = 〈x∗, xj〉 = 〈x∗, xj〉, for all j = 1, 2, . . . , N and x∗∈G ,

and, thus (since the x∗∗j span all of F ), that

〈x∗, T (x∗∗)〉 = 〈x∗∗, x∗〉, for all x∗∗∈F and x∗∈G.
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Chapter 3

Bases in Banach Spaces

Like every vectorspace a Banach space X has an algebraic or Hamel basis,
i.e. a subset B ⊂ X, so that every x ∈ X is in a unique way the (finite) linear
combination of elements in B. This definition does not take into account
that we can take infinite sums in Banach spaces and that we might want
to represent elements x ∈ X as converging series (with possibly infinite non
zero elements). Hamel bases are also not very useful for Banach spaces,
since the coordinate functionals might not be continuous.

3.1 Schauder Bases

Definition 3.1.1. (Schauder bases of Banach Spaces)
Let X be an infinite dimensional Banach space. A sequence (en) ⊂ X is
called Schauder basis of X, or simply a basis of X, if for every x∈X, there
is a unique sequence of scalars (an) ⊂ K so that

x =

∞∑
n=1

anen.

Examples 3.1.2. For n ∈ N let

en = ( 0, . . . 0︸ ︷︷ ︸
n−1 times

, 1, 0, . . .) ∈ KN

Then (en) is a basis of `p, 1 ≤ p < ∞ and c0. We call (en) the unit vector
basis of `p and c0, respectively.

Remarks. Assume that X is a Banach space and (en) a basis of X.
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a) (en) is linear independent.

b) span(en : n∈N) is dense in X, in particular X is separable.

c) Every element x is uniquely determined by the sequence (an) so that
x =

∑∞
j=1 anen. So we can identify X with a space of sequences in

KN, for which
∑
anen converges in X.

Proposition 3.1.3. Let X be a normed linear space and assume that (en) ⊂
X has the property that each x ∈ X can be uniquely represented as a series

x =

∞∑
n=1

anen, with (an) ⊂ K

(we could call (en) Schauder basis of X but we want to reserve this term
only if X is a Banach space).

For n ∈ N and x ∈ X define e∗n(x) ∈ K to be the unique element in K,
so that

x =
∞∑
n=1

e∗n(x)en.

Then e∗n : X → K is linear.
For n ∈ N let

Pn : X → span(ej : j ≤ n), x 7→
n∑
j=1

e∗n(x)en.

Then Pn : X → X are linear projections onto span(ej : j ≤ n) and the
following properties hold:

a) dim(Pn(X)) = n,

b) Pn ◦ Pm = Pm ◦ Pn = Pmin(m,n), for m,n ∈ N,

c) limn→∞ Pn(x) = x, for every x ∈ X.

Conversely if (Pn : n ∈ N) is a sequence of linear projections satisfying
(a), (b), and (c), and moreover are bounded, and if e1 ∈ P1(X) \ {0} and
en ∈ Pn(X) ∩ N (Pn−1), with en 6= 0, if n > 1, then each x ∈ X can be
uniquely represented as a series

x =

∞∑
n=1

anen, with (an) ⊂ K,

so in particular (en) is a Schauder basis of X in the case that X is a Banach
space.
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Proof. The linearity of e∗n follows from the unique representation of every
x ∈ X as x =

∑∞
j=1 e

∗
n(x)en, which implies that for x and y in X and

α, β ∈ K,

αx+ βy = lim
n→∞

α
n∑
j=1

e∗j (x)ej + β
n∑
j=1

e∗j (y)ej

= lim
n→∞

n∑
j=1

(αe∗j (x) + βe∗j (y))ej =
∞∑
j=1

(αe∗j (x) + βe∗j (y))ej ,

and, on the other hand

αx+ βy =

∞∑
j=1

e∗j (αx+ βy)ej ,

thus, by uniqueness, e∗j (αx + βy) = αe∗j (x) + βe∗j (y), for all j ∈ N. The
conditions (a), (b) and (c) are clear.

Conversely, assume that (Pn) is a sequence of bounded and linear projec-
tions satisfying (a), (b), and (c). By (b) Pn−1(X) = Pn ◦Pn−1(X) ⊂ Pn(X),
for n ∈ N (put P0 = 0)and, thus, by (a), the codimension of Pn−1(X) inside
Pn(X) is 1. So if e1 ∈ P1(X) \ {0} and en ∈ Pn(X) ∩ N (Pn−1), if n > 1,
then for x ∈ X, by (b)

Pn−1(Pn(x)− Pn−1(x)) = Pn−1(x)− Pn−1(x) = 0,

and thus Pn(x)− Pn−1(x) ∈ N (Pn−1) and

Pn(x)− Pn−1(x) = Pn(Pn(x)− Pn−1(x)) ∈ Pn(X),

and therefore Pn(x) − Pn−1(x) ∈ Pn(X) ∩ N (Pn−1). Thus, we can write
Pn(x) − Pn−1(x) = anen, for n ∈ N, and it follows from (c) that (letting
P0 = 0)

x = lim
n→∞

Pn(x) = lim
n→∞

n∑
j=1

Pj(x)− Pj−1(x) = lim
n→∞

n∑
j=1

ajej =
∞∑
j=1

ajej .

In order to show uniqueness of this representation of x assume x =
∑∞

j=1 bjej .
From the continuity of Pm − Pm−1, for m ∈ N it follows that

amem = (Pm − Pm−1)(x) = lim
n→∞

(Pm − Pm−1)
( n∑
j=1

bjej

)
= bmem,

and thus am = bm.
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Definition 3.1.4. (Canonical Projections and Coordinate functionals)
Let X be a normed linear space and assume that (ei) satisfies the assump-
tions of Proposition 3.1.3. The linear functionals (e∗n) as defined in Proposi-
tion 3.1.3 are called the Coordinate Functionals for (en) and the projections
Pn, n ∈ N, are called the Canonical Projections for (en).

Proposition 3.1.5. Suppose X is a normed linear space and assume that
(en) ⊂ X has the property that each x ∈ X can be uniquely represented as a
series

x =
∞∑
n=1

anen, with (an) ⊂ K.

If the canonical projections are bounded, and, moreover, supn∈N ‖Pn‖ < ∞
(i.e. uniformly the Pn are bounded), then (ei) is a Schauder basis of its
completion X̃.

Proof. Let P̃n : X̃ → X̃, n ∈ N, be the unique extensions bounded of Pn.
Since Pn has finite dimensional range it follows that P̃n(X̃) = Pn(X) =
span(ej : j ≤ n) is finite dimensional and, thus, closed. (P̃n) satisfies there-
fore (a) of Proposition 3.1.3. Since the Pn are continuous, and satisfy the
equalities in (b) of Proposition 3.1.3 on a dense subset of X̃, (b) is satisfied
on all of X̃. Finally, (c) of Proposition 3.1.3 is satisfied on a dense subset of
X̃, and we deduce for x̃ ∈ X̃, x̃ = limk→∞ xk, with xk ∈ X, for k∈N, that

‖x̃− P̃n(x̃)‖ ≤ ‖x̃− xk‖+ sup
j∈N
‖Pj‖‖x̃− xk‖+ ‖xk − Pn(xk)‖

and, since (Pn) is uniformly bounded, we can find for given ε > 0, k large
enough so that the first two summands do not exceed ε, and then we choose
n ∈ N large enough so that the third summand is smaller than ε. It follows
therefore that also (c) is satisfied on all of X̃. Thus, our claim follows from
the second part of Proposition 3.1.3 applied to X̃.

Our goal is now to show the converse of Proposition 3.1.3, and prove
that if (en) is a Schauder basis, then the canonical projections are uniformly
bounded, and thus that the coordinate functionals are bounded.

Theorem 3.1.6. Let X be a Banach space with a basis (en) and let (e∗n) be
the corresponding coordinate functionals and (Pn) the canonical projections.
Then Pn is bounded for every n ∈ N and

b = sup
n∈N
||Pn‖L(X,X) <∞,
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and thus e∗n ∈ X∗ and

‖e∗n‖X∗ =
‖Pn − Pn−1‖
‖en‖

≤ 2b

‖en‖
.

We call b the basis constant of (ej). If b = 1 we say that (ei) is a monotone
basis.

Furthermore there is an equivalent renorming ||| · ||| of (X, ‖ · ‖) for which
(en) is a monotone basis for (X, ||| · |||).

Proof. For x ∈ X we define

|||x||| = sup
n∈N
‖Pn(x)‖,

since ‖x‖ = limn→∞ ‖Pn(x)‖, it follows that ‖x‖ ≤ |||x||| <∞ for x ∈ X.
It is clear that ||| · ||| is a norm on X. Note that for n ∈ N

|||Pn||| = sup
x∈X,|||x|||≤1

|||Pn(x)|||

= sup
x∈X,|||x|||≤1

sup
m∈N
‖Pm ◦ Pn(x)‖

= sup
x∈X,|||x|||≤1

sup
m∈N
‖Pmin(m,n)(x)‖ ≤ 1.

Thus the projections Pn are uniformly bounded on (X, ||| · |||). Let X̃
be the completion of X with respect to ||| · |||, P̃n, for n ∈ N, the (unique)
extension of Pn to an operator on X̃. We note that the P̃n also satisfy the
conditions (a), (b) and (c) of Proposition 3.1.3. Indeed (a) and (b) are purely
algebraic properties which are satisfied by the first part of Proposition 3.1.3.
Moreover for x ∈ X then

|||x− Pn(x)||| = sup
m∈N
‖Pm(x)− Pmin(m,n)(x)‖(3.1)

= sup
m≥n
‖Pm(x)− Pn(x)‖ → 0 if n→∞,

which verifies condition (c). Thus, it follows therefore from the second part
of Proposition 3.1.3, the above proven fact that |||Pn||| ≤ 1, for n ∈ N, and
Proposition 3.1.5, that (en) is a Schauder basis of the completion of (X, ||| · |||)
which we denote by (X̃, ||| · |||).

We will now show that actually X̃ = X, and thus that, (X, ||| · |||) is
already complete. Then it would follow from Corollary 1.3.6 of the Closed
Graph Theorem that ||| · ||| is an equivalent norm, and thus that

C = sup
n∈N

sup
x∈BX

‖Pn(x)‖ = sup
x∈BX

|||x||| <∞.
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So, let x̃ ∈ X̃ and write it (uniquely) as x̃ =
∑∞

j=1 ajej , where this
convergence happens in ||| · |||. Since ‖ · ‖ ≤ ||| · |||, and since X is complete the
series

∑∞
j=1 ajej also converges with respect to ‖ · ‖ in X to say x ∈ X.

Important Side Note: This means that the sequence of partial sums(∑n
j=1 ajej) converges in (X, ‖·‖) to x, which means that (an) is the unique

sequence in K, for which x =
∑∞

j=1 ajej . In particular this means that

Pn(x) =
n∑
j=1

ajej = P̃n(x̃), for all n ∈ N.

But now (3.1) yields that Pn(x) also converges in ||| · ||| to x.
This means (since (Pn(x) cannot converge to two different elements) that

x = x̃, which finishes our proof.

After reading the proof of Theorem 3.1.6 one might ask whether the last
part couldn’t be generalized and whether the following could be true: If ‖ ·‖
and |||·||| are two norms on the same linear space X, so that ‖·‖ ≤ |||·|||, and so
that (‖ · ‖, X) is complete, does it then follow that (X, ||| · |||) is also complete
(and thus ‖ · ‖ and ||| · ||| are equivalent norms). The answer is negative, as
the following example shows.

Example 3.1.7. LetX=`2 with its usual norm ‖·‖2 and let (bγ :γ∈Γ) ⊂ S`2
be a Hamel basis of Γ (Γ is necessarily uncountable). For x ∈ `2 define |||x|||,

|||x||| =
∑
γ∈Γ

|xγ |,

where x =
∑

γ∈Γ xγbγ is the unique representation of x as a finite linear
combination of elements of (bγ : γ∈Γ). Since ‖bγ‖2, for γ ∈ Γ, it follows for
x =

∑
γ∈Γ xγbγ ∈ `2 from the triangle inequality that

|||x||| =
∑
γ∈Γ

|xγ | =
∑
γ∈Γ

‖xγbγ‖2 ≥
∥∥∥∑
γ∈Γ

xγbγ

∥∥∥
2

= ‖x‖2.

Finally both norms ‖·‖ and ||| · |||, cannot be equivalent. Indeed, for arbitrary
ε > 0, there is an uncountable set Γ′ ⊂ Γ, so that ‖bγ − bγ′‖2 < ε, γ, γ′ ∈ Γ′,
(Γ is uncountable but S`2 is in the ‖ · ‖2-norm separable). For any two
different elements γ, γ′ ∈ Γ′ it follows that

‖bγ − bγ′‖ < ε < 2 = |||bγ − bγ′ |||.

Since ε > 0 was arbitrary this proves that ‖·‖ and ||| · ||| cannot be equivalent.
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Definition 3.1.8. (Basic Sequences)
Let X be a Banach space. A sequence (xn) ⊂ X \{0} is called basic sequence
if it is a basis for span(xn : n ∈ N).

If (ej) and (fj) are two basic sequences (in possibly two different Banach
spaces X and Y ). We say that (ej) and (fj) are isomorphically equivalent
if the map

T : span(ej : j ∈ N)→ span(fj : j ∈ N),
n∑
j=1

ajej 7→
n∑
j=1

ajfj ,

extends to an isomorphism between the Banach spaces between span(ej : j ∈ N)

and span(fj : j ∈ N).
Note that this is equivalent with saying that there are constants 0 < c ≤

C so that for any n ∈ N and any sequence of scalars (λj)
n
j=1 it follows that

c
∥∥∥ n∑
j=1

λjej

∥∥∥ ≤ ∥∥∥ n∑
j=1

λjfj

∥∥∥ ≤ C∥∥∥ n∑
j=1

λjej

∥∥∥.
Proposition 3.1.9. Let X be Banach space and (xn : n ∈ N) ⊂ X \ {0}.
The (xn) is a basic sequence if and only if there is a constant K ≥ 1, so that
for all m < n and all scalars (aj)

n
j=1 ⊂ K we have

(3.2)
∥∥∥ m∑
i=1

aixi

∥∥∥ ≤ K∥∥∥ n∑
i=1

aixi

∥∥∥.
In that case the basis constant is the smallest of all K ≥ 1 so that (3.2)
holds.

Proof. “⇒” Follows from Theorem 3.1.6, since K := supn∈N ‖Pn‖ <∞ and
Pm
(∑n

i=1 aixi
)

=
∑m

i=1 aixm, if m ≤ n and (ai)
n
i=1 ⊂ K.

“⇐” Assume that there is a constant K ≥ 1 so that for all m < n and all
scalars (aj)

n
j=1 ⊂ K we have

∥∥∥ m∑
i=1

aixi

∥∥∥ ≤ K∥∥∥ n∑
i=1

aixi

∥∥∥.
We first note that this implies that (xn) is linear independent. Indeed, if we
assume that

∑n
j=1 ajxj = 0, for some choice of n∈N and (aj)

n
j=1 ⊂ K, and

not all of the aj are vanishing, we first observe that at least two of a′js cannot
be equal to 0 (since xj 6= 0, for j∈N), thus if we let m := min{j : aj 6= 0},
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it follows that
∑m

j=1 ajxj 6= 0, but
∑n

j=1 ajxj = 0, which contradicts our
assumption.

It follows therefore that (xn) is a Hamel basis for (the vector space)
span(xj : j ∈ N), which implies that the projections Pn are well defined on
span(xj : j ∈ N), and satisfy (a), (b), and (c) of Proposition 3.1.3. Moreover,
it follows from our assumption that

‖Pm‖ = sup

{∥∥∥ m∑
j=1

ajxj

∥∥∥ : n ∈ N, (aj)nj=1 ⊂ K,
∥∥∥ n∑
j=1

ajxj

∥∥∥ ≤ 1

}
≤ K.

Thus, our claim follows from Proposition 3.1.5.
Also note that the proof of “⇒” implies that the smallest constant so

that 3.2 is at most as big as the basis constant, and the proof of “⇐” yielded
that it is at least as large as the basis constant.

Remark. It was for a long time an open problem whether or not every
separable Banach space admits a Schauder basis. 1973 this was solved by
Enflo [En] in the negative. He constructed the first separable Banach space
which does not admit a Schauder basis.

Every separable Hilbert space has a basis (for example an orthogonal
basis). Thus, every subspace of a Hilbert space has also a basis. It was
shown [Jo] that only Banach space which in some sense are “very close” to
a Hilbert space, have the property that each of their subspaces have bases.
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3.2 Bases of C[0, 1] and Lp[0, 1]

In the previous section we introduced the unit vector bases of `p and c0.
Less obvious is it to find bases of function spaces like C[0, 1] and Lp[0, 1].

3.2.1 The Schauder or Spline basis on C[01]

Let (tn) ⊂ [0, 1] be a dense sequence in [0, 1], and assume that t1 = 0, t2 = 1.
It follows that

mesh(t1, t2, . . . tn)→ 0, if n→∞, where(3.3)

mesh(t1, t2, . . . tn) = max
i=1,2,...n

{
|ti − tj | : tj is neighbor of ti

}
.

For f ∈ C[0, 1] we let P1(f) to be the constant function taking the value f(0),
and for n ≥ 2 we let Pn(f) be the piecewise linear function which interpolates
the f at the points t1, t2, . . . tn. More precisely, let 0 = s1 < s2 < . . . sn = 1
be the increasing reordering of {t1, t2, . . . tn}, then define Pn(f) by

Pn(f) : [0, 1]→ K, with

Pn(f)(s) =
sj − s

sj − sj−1
f(sj−1) +

s− sj−1

sj − sj−1
f(sj), for s ∈ [sj−1, sj ].

We note that Pn : C[0, 1]→ C[0, 1] is a linear projection and that ‖Pn‖ = 1,
and that (a), (b), (c) of Proposition 3.1.3 are satisfied. Indeed, the image
of Pn(C[0, 1]] is generated by the functions f1 ≡ 1, f2(s) = s, for s ∈ [0, 1],
and for n ≥ 2, fn(s) is the functions with the property f(tn) = 1, f(tj) = 0,
j ∈ {1, 2, . . .}\{tn}, and is linear between any tj and the next bigger ti. Thus
dim(Pn(C[0, 1])) = n. Property (b) is clear, and property (c) follows from
the fact that elements of C[0, 1] are uniformly continuous, and condition
(3.3).

Also note that for n > 1 it follows that fn ∈ Pn(C[0, 1])∩N (Pn−1) \ {0}
and thus it follows from Proposition 3.1.3 that (fn) is a monotone basis of
C[0, 1].

3.2.2 The Haar basis of Lp[0, 1]

Now we define a basis of Lp[0, 1], the Haar basis of Lp[0, 1]. Let

T = {(n, j) : n ∈ N0, j = 1, 2, . . . , 2n} ∪ {0}.

We partially order the elements of T as follows

(n1, j1) < (n2, j2) ⇐⇒ [(j2 − 1)2−n2 , j22−n2 ] ( [(j1 − 1)2−n1 , j12−n1 ]
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⇐⇒ (j1 − 1)2−n1 ≤ (j2 − 1)2−n2 < j22−n2 ≤ j12−n1 , and n1 < n2

whenever (n1, j1), (n2, j2) ∈ T

and

0 < (n, j), whenever (n, j) ∈ T \ {0}

Let 1 ≤ p <∞ be fixed. We define the Haar basis (ht)t∈T and the in Lp

normalized Haar basis (h
(p)
t )t∈T as follows.

h0 = h
(p)
0 ≡ 1 on [0, 1] and for n ∈ N0 and j = 1, 2, . . . , 2n we put

h(n,j) = 1[(j−1)2−n,(j− 1
2

)2−n) − 1[(j− 1
2

)2−n,j2−n)

)
.

and we let

∆(n,j) = supp(h(n,j)) =
[
(j − 1)2−n, j2−n

)
,

∆+
(n,j) =

[
(j − 1)2−n, (j − 1

2
)2−n

)
∆−(n,j) =

[
(j − 1

2
)2−n, j2−n

)
.

We let h
(∞)
(n,j) = h(n,j). And for 1 ≤ p <∞

h
(p)
(n,j) =

h(n,j)

‖h(n,j)‖p
= 2n/p

(
1[(j−1)2−n,(j− 1

2
)2−n − 1[(j− 1

2
)2−n),j2−n)

)
.

Note that ‖ht‖p = 1 for all t ∈ T and that supp(ht) ⊂ supp(hs) if and only
if s ≤ t.

Theorem 3.2.1. If one orders (h
(p)
t )t∈T linearly in any order compatible

with the order on T then (h
(p)
t ) is a monotone basis of Lp[0, 1] for all 1 ≤

p <∞.

Remark. a linear order compatible with the order on T is for example the
lexicographical order

h0, h(0,1), h(1,1), h(1,2), h(2,1), h(2,2), . . . .

Important observation: if (ht : t ∈ T ) is linearly ordered into h0, h1, . . .,
which is compatible with the partial order of T , then the following is true:
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If j, n are in N and j < n then hj is constant on the support of hn,
thus we obtain:

If n ∈ N an if

h =

n−1∑
j=1

ajhj ,

is any linear combination of the first n−1 elements, then h is constant
on the support of hn. Moreover, h can be written as a step function

h =

N∑
j=1

bj1[sj−1,sj),

with 0 = s0 < s1 < . . . sN , so that∫ sj

sj−1

hn(t)dt = 0.

As we will see later, if 1 < p < ∞, any linear ordering of (ht : t ∈ T ) is
a basis of Lp[0, 1], but not necessarily a monotone one.

Proof of Theorem 3.2.1. First note that the indicator functions on all dyadic
intervals are in span(ht : t∈T ). Indeed:

1[0,1/2) =
h0 + h(0,1)

2
,

1(1/2,1] =
h0 − h(0,1)

2
,

1[0,1/4) =
1[0,1/2) − h(1,1)

2
.

Since the indicator functions on all dyadic intervals are dense in Lp[0, 1]

it follows that span(ht : t∈T ) = Lp[0, 1].

Let (hn) be a linear ordering of (h
(p)
t )t∈T which is compatible with the

ordering of T .

Let n ∈ N and let (ai)
n
i=1 be a scalar sequence. We need to show that

∥∥∥ n−1∑
i=1

aihi

∥∥∥ ≤ ∥∥∥ n∑
i=1

aihi

∥∥∥.
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As noted above, on the set A = supp(hn) the function f =
∑n−1

i=1 aihi is
constant, say f(x) = a, for x ∈ A. Therefore we can write

1A(f + anhn) = 1A+(a+ an) + 1A−(a− an),

where A+ is the first half of the interval A and A− the second half. From
the convexity of [0,∞) 3 r 7→ rp, we deduce that

1

2

[
|a+ an|p + |a− an|p

]
≥ |a|p,

and thus∫
|f + anhn|pdx =

∫
Ac
|f |pdx+

∫
A
|a+ an|p1A+ + |a− an|p1A−dx

=

∫
Ac
|f |pdx+

1

2
m(A)

[
|a+ an|p + |a− an|p

]
≥
∫
Ac
|f |pdx+m(A)|a|p =

∫
|f |pdx

which implies our claim.

Proposition 3.2.2. Since for 1 ≤ p <∞, and 1 < q ≤ ∞, with 1
p + 1

q it is
easy to see that for s, t ∈ T

(3.4) 〈h(p)
s , h

(q)
t 〉 = δ(s, t),

we deduce that (h
(q)
t )t∈T are the coordinate functionals of (h

(p)
t )t∈T .



3.3. SHRINKING, AND BOUNDEDLY COMPLETE BASES 75

3.3 Shrinking, and boundedly complete bases

Proposition 3.3.1. Let (en) be a Schauder basis of a Banach space X, and
let (e∗n) be the coordinate functionals and (Pn) the canonical projections for
(en).

Then

a) P ∗n(x∗) =

n∑
j=1

〈x∗, ej〉e∗j =

n∑
j=1

〈χ(ej), x
∗〉e∗j , for n∈N and x∗∈X∗.

b) x∗ = σ(X∗, X)− lim
n→∞

P ∗n(x∗), for x∗∈X∗.

c) (e∗n) is a Schauder basis of span(e∗n : n∈N) whose coordinate function-
als are (en).

Proof. (a) For n∈N, x∗ ∈ X∗ and x =
∑∞

j=1〈e∗j , x〉ej∈X it follows that

〈P ∗n(x∗), x〉 = 〈x∗, Pn(x)〉 =
〈
x∗,

n∑
j=1

〈e∗j , x〉ej
〉

=
〈 n∑
j=1

〈x∗, ej〉e∗j , x
〉

and thus

P ∗n(x∗) =
n∑
j=1

〈x∗, ej〉e∗j .

(b) For x ∈ X and x∗ ∈ X∗

〈x∗, x〉 = lim
n→∞

〈x∗, Pnx〉 = lim
n→∞

〈P ∗n(x∗), x〉.

(c) It follows for m ≤ n and (ai)
n
i=1 ⊂ K, that∥∥∥ m∑

i=1

aie
∗
i

∥∥∥ = sup
x∈BX

∣∣∣ m∑
i=1

ai〈e∗i , x〉
∣∣∣

= sup
x∈BX

∣∣∣ n∑
i=1

ai〈e∗i , Pm(x)〉
∣∣∣

≤
∥∥∥ n∑
i=1

aie
∗
i

∥∥∥‖Pm‖ ≤ sup
j∈N
‖Pj‖ ·

∥∥∥ n∑
i=1

aie
∗
i

∥∥∥
It follows therefore from Proposition 3.1.9 that (e∗n) is a basic sequence, thus,
a basis of span(e∗n), Since 〈χ(ej), e

∗
i 〉 = 〈e∗i , ej〉 = δi,j , it follows that (χ(en))

are the coordinate functionals for (e∗n).
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Remark. If X is a space with basis (en) one can identify X with a vector
space of sequences x = (ξn) ⊂ K. If (e∗n) are coordinate functionals for (en)
we can also identify the subspace span(e∗n : n∈N) with a vector space of
sequences x∗ = (ηn) ⊂ K. The way such a sequence x∗ = (ηn) ∈ X∗ acts on
elements in X is via the infinite scalar product:

〈x∗, x〉 =
〈∑
n∈N

ηne
∗
n,
∑
n∈N

ξnen

〉
=
∑
n∈N

ηnξn.

We want to address two questions for a basis (en) of a Banach space X
and its coordinate functionals (e∗j ):

1. Under which conditions does it follow that X∗ = span(e∗n)?

2. Under which condition does it follow that the map J : X → span(e∗n)
∗
,

with

J(x)(z∗) = 〈z∗, x〉, for x∈X and z∗ ∈ span(e∗n),

an isomorphy or even an isometry?

We need first the following definition and some observations.

Definition 3.3.2. [Block Bases]
Assume (xn) is a basic sequence in Banach space X, a block basis of (xn) is
a sequence (zn) ⊂ X \ {0}, with

zn =

kn∑
j=kn−1+1

ajxj , for n ∈ N, where 0 = k0 < k1 < k2 < . . . and (aj) ⊂ K.

We call (zn) a convex block of (xn) if the aj are non negative and
∑kn

j=kn−1+1 aj =
1.

Proposition 3.3.3. The block basis (zn) of a basic sequence (xn) is also a
basic sequence, and the basis constant of (zn) is smaller or equal to the basis
constant of (xn).

Proof. Let K be the basis constant of (xn), let m ≤ n in N, and (bi)
n
i=1 ⊂ K.

Then

∥∥∥ m∑
i=1

bizi

∥∥∥ =
∥∥∥ m∑
i=1

ki∑
j=ki−1+1

biajxj

∥∥∥
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≤ K
∥∥∥ n∑
i=1

ki∑
j=ki−1+1

biajxj

∥∥∥ = K
∥∥∥ n∑
i=1

bizi

∥∥∥

Theorem 3.3.4. For a Banach space with a basis (en) and its coordinate
functionals (e∗n) the following are equivalent.

a) X∗ = span(e∗n : n ∈ N) (and, thus, by Proposition 3.3.1, (e∗n) is a basis
of X∗ whose canonical projections are P ∗n).

b) For every x∗ ∈ X∗,

lim
n→∞

‖x∗|span(ej :j>n)‖ = lim
n→∞

sup
x∈span(ej :j>n),‖x‖≤1

|〈x∗, x〉| = 0.

c) Every bounded block basis of (en) is weakly convergent to 0.

We call the basis (en) shrinking if these conditions hold .

Remark. Recall that by Corollary 2.2.6 the condition (c) is equivalent with

c’) Every bounded block basis of (en) has a further convex block which
converges to 0 in norm.

Proof of Theorem 3.3.4. “(a)⇒(b)” Let x∗ ∈ X∗ and, using (a), write it as
x∗ =

∑∞
j=1 aje

∗
j . Then

lim
n→∞

sup
x∈span(ej :j>n)‖x‖≤1

|〈x∗, x〉| = lim
n→∞

sup
x∈span(ej :j>n),‖x‖≤1

|〈x∗, (I − Pn)(x)〉|

= lim
n→∞

sup
x∈span(ej :j>n),‖x‖≤1

|〈(I − P ∗n)(x∗), x〉|

≤ lim
n→∞

‖(I − P ∗n)(x∗)‖ = 0.

“(b)⇒(c)” Let (zn) be a bounded block basis of (xn), say

zn =

kn∑
j=kn−1+1

ajxj , for n ∈ N, with 0 = k0 < k1 < k2 < . . . and (aj) ⊂ K.

and x∗ ∈ X∗. Then, letting C = supj∈N ‖zj‖,

|〈x∗, zn〉| ≤ sup
z∈span(ej :j≥kn−1),‖z‖≤C

|〈x∗, z〉| →n→∞ 0, by condition (b),
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thus, (zn) is weakly null.
“¬(a)⇒ ¬(c)” Assume there is an x∗ ∈ SX∗ , with x∗ 6∈ span(e∗j : j ∈ N). It
follows for some 0 < ε ≤ 1

(3.5) ε = lim sup
n→∞

‖x∗ − P ∗n(x∗)‖ > 0.

By induction we choose z1, z2, . . . in BX and 0 = k0 < k1 < . . ., so that zn =∑kn
j=kn−1+1 ajej , for some choice of (aj)

kn
j=kn−1+1 and |〈x∗, zn〉| ≥ ε/2(1+K),

where K = supj∈N ‖Pj‖. Indeed, let z1 ∈ BX ∩ span(ej), so that |〈x∗, z1〉| ≥
ε/2(1+K) and let k1 = min{k : z1 ∈ span(ej : j ≤ k). Assuming z1, z2, ...zn
and k1 < k2 < . . . kn has been chosen. Using (3.5) we can choose m > kn
so that ‖x∗ − P ∗m(x∗)‖ > ε/2 and then we let z̃n+1 ∈ BX ∩ span(ei : i ∈ N)
with

|〈x∗ − P ∗m(x∗), z̃n+1〉| = |〈x∗, z̃n+1 − Pm(z̃n+1)〉| > ε/2.

Finally choose

zn+1 =
z̃n+1 − Pm(z̃n+1)

1 +K
∈ BX

and
kn+1 = min

{
k : zn+1 ∈ span(ej : j ≤ k)

}
.

It follows that (zn) is a bounded block basis of (en) which is not weakly
null.

Examples 3.3.5. Note that the unit vector bases of `p, 1 < p < ∞, and
c0 are shrinking. But the unit vector basis of `1 is not shrinking (consider
(1, 1, 1, 1, 1, 1 . . .) ∈ `∗1 = `∞).

Proposition 3.3.6. Let (ej) be a shrinking basis for a Banach space X and
(e∗j ) its coordinate functionals. Put

Y =
{

(ai) ⊂ K : sup
n

∥∥∥ n∑
j=1

ajej

∥∥∥ <∞}.
Then Y with the norm

|||(ai)||| = sup
n∈N

∥∥∥ n∑
j=1

ajej

∥∥∥,
is a Banach space and

T : X∗∗ → Y, x∗∗ 7→ (〈x∗∗, e∗j 〉)j∈N,

is well defined and an isomorphism between X∗∗ and Y .
If (en) is monotone then T is an isometry.
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Remark. Note that if aj = 1, for j ∈ N, then in c0

sup
n∈N

∥∥∥ n∑
j=1

ajej

∥∥∥
c0

= 1,

but the series
∑

j∈N ajej does not converge in c0.

Considering X as a subspace of X∗∗ (via the canonical embedding) the
image of X under T is the space of sequences

Z :=
{

(ai) ∈ Y :
∞∑
j=1

ajej converges in X
}
.

Proof of Proposition 3.3.6. Let K denote the basis constant of (en), (e∗n) the
coordinate functionals, and (Pn) the canonical projections. It is straightfor-
ward to check that Y is a vector space and that ||| · ||| is a norm on Y .

For x∗ ∈ X∗ and x∗∗ ∈ X∗∗ we have by Proposition 3.3.1

P ∗n(x∗) =
n∑
j=1

〈x∗, ej〉e∗j and

〈P ∗∗n (x∗∗), x∗〉 =
〈
x∗∗,

n∑
j=1

〈x∗, ej〉e∗j
〉

=
n∑
j=1

〈x∗∗, e∗j 〉〈x∗, ej〉 =
〈
x∗,

n∑
j=1

〈x∗∗, e∗j 〉ej
〉
,

which implies that

(3.6) |||T (x∗∗)||| = sup
n∈N

∥∥∥ n∑
j=1

〈x∗∗, e∗j 〉ej
∥∥∥ = sup

n∈N
‖P ∗∗n (x∗∗)‖ ≤ K‖x∗∗‖.

Thus T is bounded and ‖T‖ ≤ K.

Assume that (an) ∈ Y . We want to find x∗∗ ∈ X∗∗, so that T (x∗∗) =
(an). Put

x∗∗n =

n∑
j=1

ajej , for n ∈ N.

(where we identify X with its canonical image in X∗∗ and, thus, ej with
χ(ej) ∈ X∗∗) Since

‖x∗∗n ‖X∗∗ =
∥∥∥ n∑
j=1

ajej

∥∥∥
X
≤ |||(ai)|||, for all n ∈ N,
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and since X∗ is separable (and thus (BX∗∗ , σ(X∗∗, X∗)) is metrizable) (x∗∗n
has a w∗-converging subsequence x∗∗nj to an element x∗∗ with

‖x∗∗‖ ≤ lim sup
n→∞

‖x∗∗n ‖ ≤ |||(aj)|||.

It follows for m ∈ N that

〈x∗∗, e∗m〉 = lim
j→∞
〈x∗∗nj , e

∗
m〉 = am,

and thus it follows that T (x∗∗) = (aj), and thus that T is surjective.
Finally, since (e∗n) is a basis for X∗ it follows for any x∗∗

|||T (x∗∗)||| = sup
n∈N

∥∥∥ n∑
j=1

〈x∗∗, e∗j 〉ej
∥∥∥

= sup
n∈N,x∗∈BX∗

∣∣∣ n∑
j=1

〈x∗∗, e∗j 〉〈x∗, ej〉
∣∣∣

= sup
x∗∈BX∗

sup
n∈N

〈
x∗∗, P ∗n(x∗)

〉
≥ ‖x∗∗‖ (since P ∗n(x∗)→ x∗ if n→∞),

which proves that T is an isomorphism, and, that |||T (x∗)||| ≥ ‖x∗∗‖, for
x∗∗∈X∗∗. Together with (3.6) that shows T is an isometry if K = 1.

Now we want to discuss the“dual problem”. Let (ej) be the basis
of a Banach space X and (e∗j )

∞
j=1 its coordinate functionals. Let Z =

span(e∗j : j ∈ N) ⊂ X∗. Consider the Operator:

S : X → Z∗, x 7→ χ(x)|Z ( i.e. T (x)(z) = z(x), for z ∈ Z.

Question: Under which conditions is S an onto isomorphism?
We first show that it is always an isomorphic embedding:

Lemma 3.3.7. Let X be a Banach space with a basis (en), with basis con-
stant K and let (e∗n) be its coordinate functionals. Let Z = span(e∗n : n∈N) ⊂
X∗ and define the operator

S : X → Z∗, x 7→ χ(x)|Z i.e. S(x)(z) = 〈z, x〉, for z∈Z and x∈X.

Then S is an isomorphic embedding of X into Z∗ and for all x ∈ X.

1

K
‖x‖ ≤ ‖S(x)‖ ≤ ‖x‖.

Moreover, the sequence (S(en)) ⊂ Z∗ are the coordinate functionals of (e∗n)
(which by Proposition 3.3.1 is a basis of Z).
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Proof. For x ∈ X note that

‖S(x)‖ = sup
z∈Z,‖z‖X∗≤1

|〈z, x〉| ≤ sup
x∗∈BX∗

|〈x∗, x〉| = ‖x‖,

By Corollary 1.4.6 of the Hahn Banach Theorem.
On the other hand, again by using that Corollary of the Hahn Banach

Theorem, we deduce that

‖x‖ = sup
w∗∈BX∗

|〈w∗, x〉|

= sup
w∗∈BX∗

lim
n→∞

|〈w∗, Pn(x)〉|

= sup
w∗∈BX∗

lim
n→∞

|〈P ∗n(w∗), x〉|

≤ sup
n∈N

sup
w∗∈BX∗

|〈P ∗n(w∗), x〉

≤ sup
n∈N

sup
z∈span(e∗j :j≤n),‖z‖≤K

|〈z, x〉 = K‖S(x)‖.

Theorem 3.3.8. Let X be a Banach space with a basis (en), and let (e∗n)
be its coordinate functionals. Let Z = span(e∗n : n∈N) ⊂ X∗. Then the
following are equivalent

a) X is isomorphic to Z∗, via the map S as defined in Lemma 3.3.7

b) (e∗n) is a shrinking basis of Z.

c) If (aj) ⊂ K, with the property that

sup
n∈N

∥∥ n∑
j=1

ajej

∥∥∥ <∞,
then

∑∞
j=1 ajej converges.

In that case we call (en) boundedly complete.

Proof. “(a)⇒(b)” Assuming condition (a) we will verify condition (b) of
Theorem 3.3.4 for Z and its basis (e∗n). So let z∗ ∈ Z∗. By (a) we can write
z∗ = S(x) for some x ∈X. Since x = limn→∞ Pn(x), where (Pn) are the
canonical projection for (en), we deduce that

sup
w∈span(e∗j :j>n),‖w‖≤1

〈z∗, w〉 = sup
w∈span(e∗j :j>n),‖w‖≤1

〈S(x), w〉



82 CHAPTER 3. BASES IN BANACH SPACES

= sup
w∈span(e∗j :j>n),‖w‖≤1

〈w, x〉

= sup
w∈span(e∗j :j>n),‖w‖≤1

〈w, (I − Pn)(x)〉

≤ ‖(I − Pn)(x)‖ →n→∞ 0.

It follows now from Theorem 3.3.4 that (e∗j ) is a shrinking basis of Z.
“(b)⇒(c)” Assume (b) and let (aj) ⊂ K so that

|||(aj)||| = sup
n∈N

∥∥∥ n∑
j=1

ajej

∥∥∥ = sup
n∈N

∥∥∥ n∑
j=1

ajχ(ej)
∥∥∥ <∞.

The sequence (x∗∗n ) ⊂ X∗∗, with x∗∗n =
∑n

j=1 ajχ(ej), is bounded in X∗∗

and must therefore have an σ(X∗∗, X∗)-converging subnet whose limit we
denote by x∗∗. It follows that aj = 〈x∗∗, e∗j 〉, for all j ∈ N.

Let z∗ be the restriction of x∗∗ to the space Z (which is a subspace of
X∗). Since by assumption (e∗j ) is a shrinking basis of Z and since by Lemma
3.3.7 (S(ej))j∈N are the coordinate functionals we can write z∗ in a unique
way as

z∗ =
∞∑
j=1

bjS(ej).

But this means that aj = 〈x∗∗, e∗j 〉 = 〈z∗, e∗j 〉 = bj , for all j ∈ N and
since S is an isomorphism between X and its image it follows that

∑∞
j=1 ajej

converges in norm in X.
“(c)⇒ (a)” By Lemma 3.3.7 it is left to show that the operator S is surjec-
tive. Thus, let z∗ ∈ Z∗. Since (e∗n) is a basis of Z and (S(en)) ⊂ Z∗ are
the coordinate functionals of (e∗n), it follows from Proposition 3.3.1 that z∗

is the w∗ limit of (z∗n) where

z∗n =

n∑
j=1

〈z∗, e∗j 〉S(ej).

Since w∗-converging sequences are bounded it follows that

sup
n∈N

∥∥∥ n∑
j=1

〈z∗, e∗j 〉S(ej)
∥∥∥ <∞

and, thus, by Lemma 3.3.7

sup
n∈N

∥∥∥ n∑
j=1

〈z∗, e∗j 〉ej
∥∥∥ <∞.



3.3. SHRINKING, AND BOUNDEDLY COMPLETE BASES 83

By our assumption (c) it follows therefore that x =
∑∞

j=1〈z∗, e∗j 〉ej converges
in X, and moreover

S(x) = lim
n→∞

n∑
j=1

〈z∗, e∗j 〉S(ej) = z∗,

which proves our claim.

Theorem 3.3.9. Let X be a Banach space with a basis (en). Then X is re-
flexive if and only if (ej) is shrinking and boundedly complete, or equivalently
if (ej) and (e∗j ) are shrinking.

Proof. Let (e∗n) be the coordinate functionals of (en) and (Pn) be the canon-
ical projections for (en).

“⇒” Assume that X is reflexive. By Proposition 3.3.1 it follows for every
x∗ ∈ X∗

x∗ = w∗ − lim
n→∞

P ∗n(x∗) = w − lim
n→∞

P ∗n(x∗),

which implies that x∗ ∈ span(e∗n : n ∈ N)
w

, and thus, by Proposition 2.2.5

x∗ ∈ span(e∗n : n ∈ N)
‖·‖

. It follows therefore that x∗ = span(e∗n : n ∈ N)
‖·‖

and thus that (ej) is shrinking (by Proposition 3.3.1).

Thus X∗ is a Banach space with a basis (e∗j ) which is also reflexive. We
can therefore apply to X∗ what we just proved for X and deduce that (e∗n)
is a shrinking basis for X∗. But, by Theorem 3.3.8 (in this case Z = X∗)
this means that (en) is boundedly complete.

“⇐” Assume that (en) is shrinking and boundedly complete, and let x∗∗ ∈
X∗∗. Then

x∗∗ = σ(X∗∗, X∗)− lim
n→∞

n∑
j=1

〈x∗∗, e∗j 〉χ(ej)[
By Proposition 3.3.1 and the fact that X∗ = span(e∗j : j ∈ N)

has (e∗j ) as a basis, since (ej) is shrinking

]

= ‖ · ‖ − lim
n→∞

n∑
j=1

〈x∗∗, e∗j 〉χ(ej) ∈ χ(X)

[
Since supn∈N ‖

∑n
j=1〈P ∗∗(x∗∗), e∗j 〉ej‖ <∞, and

since (ej) is boundedly complete

]
which proves our claim.
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The last Theorem in this section describes by how much one can perturb
a basis of a Banach space X and still have a basis of X.

Theorem 3.3.10. (The small Perturbation Lemma)

Let (xn) be a basic sequence in a Banach space X, and let (x∗n) be the

coordinate functionals (they are elements of span(xj : j∈N)
∗
) and assume

that (yn) is a sequence in X such that

(3.7) c =
∞∑
n=1

‖xn − yn‖ · ‖x∗n‖ < 1.

Then there exists an onto isomorphism S : X → X, with

(1− c)‖x‖ ≤ ‖S(x)‖ ≤ (1 + c)‖x‖

and s(xj) = yj, for all j ∈ N.
Moreover:

a) (yn) is also basic in X and isomorphically equivalent to (xn), more
precisely

(1− c)
∥∥∥ ∞∑
n=1

anxn

∥∥∥ ≤ ∥∥∥ ∞∑
n=1

anyn

∥∥∥ ≤ (1 + c)
∥∥∥ ∞∑
n=1

anxn

∥∥∥,
for all in X converging series x =

∑
n∈N anxn.

b) If span(xj : j∈N) is complemented in X, then so is span(yj : j∈N).

c) If (xn) is a Schauder basis of all of X, then (yn) is also a Schauder
basis of X and it follows for the coordinate functionals (y∗n) of (yn),
that y∗n ∈ span(x∗j : j∈N), for n∈N.

Proof. By Corollary 1.4.4 of the Hahn Banach Theorem we extend the func-
tionals x∗n to functionals x̃∗n∈X∗, with ‖x̃∗n‖ = ‖x∗n‖, for all n∈N.

Consider the operator:

T : X → X, x 7→
∞∑
n=1

〈x̃∗n, x〉(xn − yn).

Since
∑∞

n=1 ‖xn − yn‖ · ‖x∗n‖ < 1, T is well defined, linear and bounded and
‖T‖ ≤ c < 1. It follows S = Id − T is an isomorphism between X and it
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self. Indeed, for x ∈ X we have, ‖S(x)‖ ≥ ‖x‖− ‖T‖ · ‖x‖ ≥ (1− c)‖x‖ and
if y ∈ X, define x =

∑∞
n=0 T

n(y) (T 0 = Id) then

(Id− T )(x) =
∞∑
n=0

Tn(y)− T
( ∞∑
n=0

Tn(y)
)

=
∞∑
n=0

Tn(y)−
∞∑
n=1

Tn(y) = y.

Thus Id − T is surjective, and, it follows from Corollary 1.3.6 that Id − T
is an isomorphism between X and itself.

(a) We have (I − T )(xn) = yn, for n∈N, this means in particular that (yn)
is basic and (xn) and (yn) are isomorphically equivalent.

(b) Let P : X → span(xn : n∈N) be a bounded linear projection onto
span(xn : n∈N). Then it is easily checked that

Q : X → span(yn : n∈N), x 7→ (Id− T ) ◦ P ◦ (Id− T )−1(x),

is a linear projection onto span(yn : n∈N).

(c) If X = span(xn : n∈N), then, since I − T is an isomorphism, (yn) =
((I − T )(xn)) is also a Schauder basis of X.

Moreover define for k and i in N,

y∗(i,k) =

k∑
j=1

〈y∗i , xj〉x∗j =

k∑
j=1

〈χ(xj), y
∗
i 〉x∗j ∈ span(x∗j : j∈N).

It follows from Proposition 3.3.1, part (b), that w∗ − limk→∞ y
∗
(i,k) = y∗i ,

which implies that y∗i (x) =
∑∞

j=1〈y∗i , xj〉〈x∗j , x〉, for all x ∈ X, and thus for
k ≥ i

‖y∗i − y∗(i,k)‖ = sup
x∈BX

|〈y∗i − y∗(i,k), x〉|

= sup
x∈BX

∣∣∣ ∞∑
j=k+1

〈y∗i , xj〉〈x∗j , x〉
∣∣∣

= sup
x∈BX

∣∣∣ ∞∑
j=k+1

〈y∗i , xj − yj〉〈x∗j , x〉
∣∣∣

≤ ‖y∗i ‖
∞∑

j=k+1

‖xj − yj‖ · ‖x∗j‖ → 0, if k →∞.

so it follows that y∗i = ‖ · ‖− limk→∞ y
∗
(k,i) ∈ span(x∗j : j∈N) for every i∈N,

which finishes the proof of our claim (c).
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3.4 Unconditional Bases

As shown in the Homework there are basic sequences which are no longer
basic sequences if one reorders them (like the Haarbasis in L[0, 1] or the
summing basis in c0). Unconditional bases are defined to be bases which are
bases no matter how one reorders them.

We will first observe the following result on unconditionally converging
series

Theorem 3.4.1. For a sequence (xn) in Banach space X the following
statements are equivalent.

a) For any reordering (also called permutation) σ of N (i.e. σ : N → N
is bijective) the series

∑
n∈N xσ(n) converges.

b) For any ε > 0 there is an n ∈ N so that whenever M ⊂ N is finite with
min(M) > n, then

∥∥∑
n∈M xn‖ < ε.

c) For any subsequence (nj) the series
∑

j∈N xnj converges.

d) For sequence (εj) ⊂ {±1} the series
∑∞

j=1 εjxnj converges.

In the case that above conditions hold we say that the series
∑
xn converges

unconditionally.

Proof. “(a)⇒(b)” Assume that (b) is false. Then there is an ε > 0 and for
every n ∈ N there is a finite set M ⊂ N, n < minM , so that ‖

∑
j∈M xj‖ ≥ ε.

We can therefore, recursively choose finite subsets of N, M1, M2, M3 etc.
so that minMn+1 > maxMn and ‖

∑
j∈Mn

xj‖ ≥ ε, for n ∈ N. Now con-
sider a bijection σ : N→ N, which on each interval of the form [maxMn−1 +
1,maxMn] (withM0 = 0) is as follows: The interval [maxMn−1+1,maxMn−1+
#Mn] will be mapped to Mn, and [maxMn−1 + #Mn,maxMn] will be
mapped to [maxMn−1 + 1,maxMn] \Mn. It follows then for each n ∈ N
that ∥∥∥maxMn−1+#Mn∑

j=maxMn−1+1

xσ(j)

∥∥∥ =
∥∥∥ ∑
j∈Mn

xj

∥∥∥ ≥ ε,
and, thus, the series

∑
xσ(n) cannot be convergent, which is a contradiction.

“(b)⇒(c)” Let (nj) be a subsequence of N. For a given ε > 0, use condition
(b) and choose n ∈ N, so that ‖

∑
j∈M xj‖ < ε, whenever M ⊂ N is finite and

minM > n. This implies that for all i0 ≤ i < j, with i0 = min{s : ns > n},
it follows that ‖

∑j
s=i xns‖ < ε. Since ε > 0 was arbitrary this means that

the sequence (
∑j

s=1 xns)j∈N is Cauchy and thus convergent.
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“(c)⇒(d)” If (εn) is a sequence of ±1’s, let N+ = {n ∈ N : εn = 1} and
N− = {n ∈ N : εn = −1}. Since

n∑
j=1

εjxj =
∑

j∈N+,j≤n

xj −
∑

j∈N−,j≤n

xj , for n ∈ N,

and since
∑

j∈N+,j≤n xj and
∑

j∈N−,j≤n xj converge by (c), it follows that∑n
j=1 εjxj converges.

“(d)⇒ (b)” Assume that (b) is false. Then there is an ε > 0 and for every
n ∈ N there is a finite set M ⊂ N, n < minM , so that ‖

∑
j∈M xj‖ ≥ ε.

As above choose finite subsets of N, M1, M2, M3 etc. so that minMn+1 >
maxMn and ‖

∑
j∈Mn

xj‖ ≥ ε, for n ∈ N. Assign εn = 1 if n ∈
⋃
k∈NMk

and εn = −1, otherwise.
Note that the series

∑∞
n=1(1 + εn)xn cannot converge because

k∑
j=1

∑
i∈Mj

xi =
1

2

maxMk∑
n=1

(1 + εn)xn, for k∈N.

Thus at least one of the series
∑∞

n=1 xn and
∑∞

n=1 εnxn cannot converge.
“¬(b)⇒ ¬(a)” Assume that σ : N → N is a permutation for which

∑
xσ(j)

is not convergent. Then we can find an ε > 0 and 0 = k0 < k1 < k2 < . . . so
that ∥∥∥ kn∑

j=kn−1+1

xσ(j)

∥∥∥ ≥ ε.
Then choose M1 = {σ(1), . . . σ(k1)} and if M1 < M2 < . . .Mn have been
chosen with minMj+1 > maxMj and ‖

∑
i∈Mj

xi‖ ≥ ε, if i = 1, 2, . . . , n,

choose m ∈ N so that σ(j) > maxMn for all j > km (we are using the fact
that for any permutaion σ, limj→∞ σ(j) =∞) and let

Mn+1 = {σ(km + 1), σ(km + 2), . . . σ(km+1)},

then min(Mn+1) > maxMn and ‖
∑

i∈Mj
xi‖ ≥ ε. It follows that (b) is not

satisfied.

Proposition 3.4.2. In case that the series
∑
xn is unconditionally con-

verging, then
∑
xσ(j) =

∑
xj for every permutation σ : N→ N.

Definition 3.4.3. A basis (ej) for a Banach space X is called unconditional,
if for every x∈X the expansion x =

∑
〈e∗j , x〉ej converges unconditionally,

where (e∗j ) are coordinate functionals of (ej).
A sequence (xn) ⊂ X is called unconditional basic sequence if (xn) is an

unconditional basis of span(xj : j∈N).
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Proposition 3.4.4. For a sequence of non zero elements (xj) in a Banach
space X the following are equivalent.

a) (xj) is an unconditional basic sequence,

b) There is a constant C, so that for all n ∈ N, all A ⊂ {1, 2, . . . , n} and
all scalars (aj)

n
j=1 ⊂ K,

(3.8)
∥∥∥∑
j∈A

ajxj

∥∥∥ ≤ C∥∥∥ n∑
j=1

ajxj

∥∥∥.
c) There is a constant C ′, so that for all n ∈ N, all (εj)

n
j=1 ⊂ {±1} and

all scalars (aj)
n
j=1 ⊂ K,

(3.9)
∥∥∥ n∑
j=1

εjajxj

∥∥∥ ≤ C ′∥∥∥ n∑
j=1

ajxj

∥∥∥.
In that case we call the smallest constant C = Ks which satisfies (3.8) the
supression-unconditional constant of (xn) for all n, A ⊂ {1, 2, . . . , n} and all
scalars (aj)

n
j=1 ⊂ K and we call the smallest constant C ′ = Ku so that (3.9)

holds for all n, (εj)
n
j=1 ⊂ {±1} and all scalars (aj)

n
j=1 ⊂ K the unconditional

constant of (xn).
Moreover, it follows

(3.10) Ks ≤ Ku ≤ 2Ks.

Proof. “(a)⇒(b)” Assume that (b) does not hold. We can assume that (xn)
is a basic sequence with constant b. Then (Exercise) we choose recursively
k0 < k1 < k2, . . ., An ⊂ {kn−1 + 1, kn−1 + 1, . . . kn}, and scalars (aj)

kn
j=kn−1+1

so that ∥∥∥ ∑
j∈An

ajxj

∥∥∥ ≥ 1 and
∥∥∥ kn∑
j=kn−1+1

ajxj

∥∥∥ ≤ 1

n2
for all n∈N.

For any l < m, we can choose i ≤ j so that ki−1 < l ≤ ki and kj−1 < m ≤ kj ,
and thus∥∥∥ m∑

s=l

asxs

∥∥∥ ≤ ∥∥∥ ki∑
s=l

asxs

∥∥∥+

j−1∑
t=i+1

∥∥∥ kt∑
s=kt−1+1

asxs

∥∥∥+
∥∥∥ m∑
s=kj−1+1

asxs

∥∥∥
(where the second term is defined to be 0, if i ≥ j − 1)
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≤ 2b

(i− 1)2
+

j−1∑
t=i+1

1

t2
+

2b

(j − 1)2

It follows therefore that x =
∑∞

j=1 ajxj converges, but by Theorem 3.4.1 (b)
it is not unconditionally.

“(b) ⇐⇒ (c)” and (3.10) follows from the following estimates for n ∈ N,
(aj)

n
j=1 ⊂ K, A ⊂ {1, 2, . . . , n} and (εj)

n
j=1 ⊂ {±1}

∥∥∥ n∑
j=1

εjajxj

∥∥∥ ≤ ∥∥∥ n∑
j=1,εj=1

ajxj

∥∥∥+
∥∥∥ n∑
j=1,εj=−1

ajxj

∥∥∥ and

∥∥∥∑
j∈A

ajxj

∥∥∥ ≤ 1

2

∥∥∥∑
j∈A

ajxj +
∑

j∈{1,2,...}\A

ajxj

∥∥∥+
∥∥∥∑
j∈A

ajxj −
∑

j∈{1,2,...}\A

ajxj

∥∥∥
 .

“(b)⇒”(a) First, note that (b) implies by Proposition 3.1.9 that (xn) is a ba-
sic sequence. Now assume that for some x =

∑∞
j=1 ajxj ∈ span(xj : j ∈ N)

is converging but not unconditionally converging. It follows from the equiv-
alences in Theorem 3.4.1 that there is some ε > 0 and of N, M1, M2, M3

etc. so that minMn+1 > maxMn and ‖
∑

j∈Mn
ajxj‖ ≥ ε, for n ∈ N. On

the other hand it follows from the convergence of the series
∑∞

j=1 ajxj that

lim sup
n→∞

∥∥∥ max(Mn)∑
j=1+max(Mn−1)

ajxj

∥∥∥ = 0,

and thus

sup
n→∞

∥∥∥∑j∈Mn
ajxj

∥∥∥∥∥∥∑max(Mn)
j=1+max(Mn−1) ajxj

∥∥∥ =∞,

which is a contradiction to condition (b).

Proposition 3.4.5. Assume that X is a Banach space over the field C with
an unconditional basis (en), then it follows if

∑∞
j=1 αnen is convergent and

(βn) ⊂ {β ∈ C : |β| = 1} that
∑∞

j=1 βnαnen is also converging and∥∥∥∑
n∈N

βnαnen

∥∥∥ ≤ 2Ku

∥∥∥∑
n∈N

αnen

∥∥∥.
Proof. Exercise .



90 CHAPTER 3. BASES IN BANACH SPACES

Proposition 3.4.6. If X is a Banach space with an unconditional ba-
sis, then the coordinate functionals (e∗n) are also a unconditional basic se-
quence, with the same unconditional constant and the same suppression-
uncondtional constant.

Proof. Let Ku and Ks be the unconditional and suppression unconditional
constant of X.

Let x∗ =
∑

n∈N ηne
∗
n and (εn) ⊂ {±1} then∥∥∥∑

n∈N
εnηne

∗
n

∥∥∥
X∗

= sup
x=

∑∞
n=1 ξnen∈BX

〈∑
n∈N

εnηne
∗
n,
∞∑
n=1

ξnen

〉
= sup

x=
∑∞
n=1 ξnen∈BX

∑
n∈N

εnηnξn

= sup
x=

∑∞
n=1 ξnen∈BX

∥∥∥∑
n∈N

ηne
∗
n

∥∥∥ · ∥∥∥∑
n∈N

εnξnen

∥∥∥
≤ Ku

∥∥∥∑
n∈N

ηne
∗
n

∥∥∥.
Using the Hahn Banach Theorem we can similarly show that if K∗u is the
unconditional constant of (e∗n) then∥∥∥∑

n∈N
ξnεnen

∥∥∥
X
≤ K∗u ≤

∥∥∥∑
n∈N

ξnεn

∥∥∥
X

Thus Ku = K∗u. A similar argument works to show that Ks is equal to the
suppression unconditional constant of (e∗n).

The following Theorem about spaces with unconditional basic sequences
was shown By James [Ja]

Theorem 3.4.7. Let X be a Banach space with an unconditional basis (ej).
Then either X contains a copy of c0, or a copy of `1 or X is reflexive.

We will need first the following Lemma (Exercise)

Lemma 3.4.8. Let X be a Banach space with an unconditional basis (en)
and let Ku its constant of unconditionality. Then it follows for any con-
verging series

∑
n∈N anen and a bounded sequence of scalars (bn) ⊂ K, that∑

n∈N anbnen is also converging and∥∥∥∑
n∈N

anbnen

∥∥∥ ≤ K sup
n∈N
|bn|
∥∥∥ ∞∑
n=1

anen

∥∥∥,
where K = Ku, if K = R, and K = 2Ku, if K = C.
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Proof of Theorem 3.4.7. We will prove the following two statements for a
space X with unconditional basis (en).
Claim 1: If (en) is not boundedly complete then X contains a copy of c0.
Claim 2: If (en) is not shrinking then X contains a copy of `1.

Together with Theorem 3.3.9, this yields the statement of Theorem 3.4.7.
Let Ku be the constant of unconditionality of (en) and let K ′u = Ku, if

K = R, and K ′U = 2Ku, if K = C.
Proof of Claim 1: If (en) is not boundedly complete there is, by Theorem
3.3.8, a sequence of scalars (an) such that

sup
n∈N

∥∥∥ n∑
j=1

ajej

∥∥∥ = C1 <∞, but
∞∑
j=1

ajej does not converge.

This implies that there is an ε > 0 and sequences (mj) and (nj) with 1 ≤
m1 ≤ n1 < m2 ≤ n2 < . . . in N so that if we put yk =

∑nk
j=mk

ajej , for
k ∈ N, it follows that ‖yk‖ ≥ ε, and also

‖yk‖ ≤
∥∥∥ nk∑
j=1

ajej

∥∥∥+
∥∥∥mk−1∑

j=1

ajej

∥∥∥ ≤ 2C1.

For any k ∈ N and any sequence of scalars (λj)
k
j=1 it follows therefore from

Lemma 3.4.8, that

∥∥∥ k∑
j=1

λjyj

∥∥∥ ≤ 2Ku max
j≤k
|λj |
∥∥∥ k∑
j=1

yj

∥∥∥ ≤ 2KuKs sup
j≤k
|λj |
∥∥∥ nk∑
i=1

aiej

∥∥∥ ≤ 2KuKsC1 sup
j≤k
|λj |.

On the other hand for every j0 ≤ n that∥∥∥ n∑
j=1

λjyj

∥∥∥ ≥ 1

Ks
‖λj0yj0‖ ≥

ε

Ks
max
j≤n
|λj |.

Letting c = ε/Ku and C = 2KuKsC1, it follows therefore for any n ∈ N and
any sequence of scalars (λj)

n
j=1 that

c‖(λ)nj=1‖c0 ≤
∥∥∥ n∑
j=1

λjyj

∥∥∥ ≤ C‖(λ)nj=1‖c0 ,

which means that (yj) and the unit vector basis of c0 are isomorphically
equivalent.
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Proof of Claim 2. (en) is not shrinking then there is by Theorem 3.3.4 a
bounded block basis (yn) of (en) which is not weakly null. After passing to
a subsequence we can assume that there is a x∗ ∈ X∗, ‖x∗‖ = 1, so that

ε = inf
n∈N
|〈x∗, yn〉| > 0.

We also can assume that ‖yn‖ = 1, for n ∈ N (otherwise replace yn by
yn/‖yn‖ and change ε accordingly).

We claim that (yn) is isomorphically equivalent to the unit vector basis
of `1. Let n ∈ N and (aj)

n
j=1 ⊂ K. By the triangle inequality we have

∥∥∥ n∑
j=1

ajyj

∥∥∥ ≤ n∑
j=1

|aj |,

On the other hand we can choose for j = 1, 2, . . . , n εj = sign(aj〈x∗, yj〉) if

K = R and εj = aj〈x∗, yj〉/|aj〈x∗, yj〉|, if K = C (if aj = 0, simply let ε = 1)
and deduce from Lemma 3.4.8∥∥∥ n∑

j=1

ajyj

∥∥∥ ≥ 1

K ′u

∥∥∥ n∑
j=1

εjajyj

∥∥∥ ≥ ∣∣∣ n∑
j=1

εjaj〈x∗, yj〉
∣∣∣ ≥ ε n∑

j=1

|aj |,

which implies that (yn) is isomorphically equivalent to the unit vector basis
of `1.

Remark. It was for long time an open problem whether or not every infinite
dimensional Banach space contains an unconditional basis sequence. If this
were so, every infinite dimensional Banach space would contain a copy of c0

or a copy of `1, or has an infinite dimensional reflexive subspace space. In
[GM], Gowers and Maurey proved the existence of a Banach space which
does not contain any unconditional basic sequences. Later then Gowers [Go]
constructed a space which does not contain any copy of c0 or `1, and has no
infinite dimensional reflexive subspace.
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3.5 James’ Space

The following space J was constructed by R. C. James [Ja1]. It is a space
which is not reflexive and does not contain a subspace isomorphic to c0 or
`1. By Theorem 3.4.7 it does not have an unconditional basis. Moreover
we will prove that J∗∗/χ(J) is one dimensional and that J is isomorphically
isometric to J∗∗ (but of course not via the canonical mapping).

We will define the space J over the real numbers R.
For a sequence (ξn) ⊂ R we define the quadratic variation to be

‖(ξn)‖qv = sup
{( l∑

j=1

|ξnj − ξnj−1 |2
)1/2

: l ∈ N and 1 ≤ n0 < n1 < . . . nl

}
= sup

{
‖(ξnj − ξnj−1 : j = 1, 2, . . . l)‖`2 : l ∈ N and 1 ≤ n0 < n1 < . . . nl

}
and the cyclic quadratic variation norm to be

‖(ξn)‖cqv = sup
{ 1√

2

(
|ξn0−ξnl |

2+
l∑

j=1

|ξnj−ξnj−1 |2
)1/2

: l ∈ N and 1 ≤ n0 < n1 < . . . nl

}
.

Remark. Let (ξn) ⊂ R with ‖(ξn)‖qv and assume that n0 < n1 < n2 < . . .
are such that

(3.11) ‖(ξn)‖qv =
( l∑
j=1

|ξnj − ξnj−1 |2
)1/2

(for example if (ξn) has only finitely many non zero coefficients the supre-
mum is achieved). We note the following:

1. We can assume that n0 = 1 (otherwise we add it)

2. If nj−1 < n < nj then xj lies between xnj−1 and xnj , for 1 < j ≤ l
Other wise we could add n to the ni’s, and make the sum in (3.11)
larger

3. If xj−1 < xnj then xnj+1 ≤ xnj (zig-zag condition), for 1 < j < l.

4. xj is a local extreme point in the sequence (xnj−1, xnj , xnj+1), but this
does not mean that every local extreme point must be among the nj ’s.

Note that for a bounded sequences (ξn), (ηn) ⊂ R

‖(ξn + ηn)‖qv = sup
{
‖(ξni + ηni − ξni−1 − ηni−1)li=1‖2 : l ∈ N, n0 < n1 < . . . nl

}
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≤ sup
{
‖(ξni − ξni−1)li=1‖2 + ‖(ηni − ηni−1)li=1‖2 : l∈N, n0<. . . nl

}
≤ sup

{
‖(ξni − ξni−1)li=1‖2 : l ∈ N, n0 < n1 < . . . nl

}
+ sup

{
‖(ηni − ηni−1)li=1‖2 : l ∈ N, n0 < n1 < . . . nl

}
= ‖(ξn)‖qv + ‖(ηn)‖qv

and similarly

‖(ξn + ηn)‖cqv ≤ ‖(ξn)‖cqv + ‖(ηn)‖cqv.

and we note that

1√
2
‖(ξn)‖qv ≤ ‖(ξn)‖cqv ≤

√
2‖(ξn)‖qv.

Thus ‖ · ‖qv and ‖ · ‖cqv are two equivalent semi norms on the vector space

J̃ =
{

(ξn) ⊂ R : ‖(ξn)‖qv <∞
}

and since

‖(ξn)‖qv = 0 ⇐⇒ ‖(ξn)‖cqv = 0 ⇐⇒ (ξn) is constant

‖ · ‖qv and ‖ · ‖cqv are two equivalent norms on the vector space

J =
{

(ξn) ⊂ R : lim
n→∞

ξn = 0 and ‖(ξn)‖qv <∞
}
.

Proposition 3.5.1. The space J with the norms ‖·‖qv and ‖·‖cqv is complete
and, thus, a Banach space.

Proof. The proof is similar to the proof of showing that `p is complete. Let
(xk) be a sequence in J with

∑
k∈N ‖xk‖qv < ∞ and write xk = (ξ(k,j))j∈N,

for k∈N. Since for j, k∈N it follows that

|ξ(k,j)| = lim
n→∞

|ξ(k,j) − ξ(k,n)| ≤ ‖xk‖qv

it follows that
ξj =

∑
k∈N

ξ(k,j)

exists and for x = (ξj) it follows that x ∈ c0 (c0 is complete) and

‖x‖qv = sup
{( l∑

j=1

|ξnj − ξnj−1 |2
)1/2

: l ∈ N and 1 ≤ n0 < n1 < . . . nl

}
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≤ sup
{∑
k∈N

( l∑
j=1

|ξ(k,nj) − ξ(k,nj−1)|2
)1/2

: l∈N and 1≤n0<. . . nl

}
≤
∑
k∈N
‖xk‖qv <∞

and for m ∈ N∥∥∥x− m∑
k=1

xk

∥∥∥
qv

= sup
{( ∞∑

j=1

∣∣∣ ∞∑
k=m+1

ξ(k,nj) − ξ(k,nj−1)

∣∣∣2)1/2
: l∈N and 1≤n0 ≤ . . . nl

}

≤ sup
{ ∞∑
k=m+1

( l∑
j=1

|ξ(k,nj) − ξ(k,nj−1)|2
)1/2

: l∈N and 1≤n0≤ . . . nl
}

(By the triangle inequality in `2)

≤
∞∑

k=m+1

‖xk‖qv → 0 for m→∞.

Proposition 3.5.2. The unit vector basis (ei) is a monotone basis of J for
both norms, ‖ · ‖qv and ‖ · ‖cqv.

Proof. First we claim that span(ej : j∈N) = J . Indeed, if x = (ξn) ∈ J ,
and ε > 0 we choose l and 1 ≤ n0 < n1 < . . . nl in N so that

l∑
j=1

|ξnj − ξnj−1 |2 > ‖x‖2qv − ε.

But this implies that

‖x−
nl+1∑
j=1

ξjej‖ = ‖( 0, 0, . . . 0︸ ︷︷ ︸
(nl+1) times

, ξnl+2, ξnl+3, . . .)‖ < ε.

In order to show monotonicity, assume m < n are in N and (ai)
n
i=1 ⊂ R.

For i ∈ N let

ξi =

{
ai if i ≤ m
0 otherwise

and ηi =

{
ai if i ≤ n
0 otherwise.
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For x =
∑∞

i=1 ξiei and y =
∑∞

i=1 ηiei we need to show that ‖x‖qv ≤ ‖y‖qv
and ‖x‖cqv ≤ ‖y‖cqv. So choose l and n0 < n1 < . . . nl in N so that

‖x‖2qv =
l∑

j=1

|ξnj − ξnj−1 |2.

Then we can assume that nl > n (otherwise replace l by l + 1 and add
nl+1 = n+ 1) and we can assume that nl−1 ≤ m (otherwise we drop all the
nj ’s in (m,n] ), and thus

‖x‖2qv =
l∑

j=1

|ξnj − ξnj−1 |2 =

l∑
j=1

|ηnj − ηnj−1 |2 ≤ ‖y‖qv.

The argument for the cyclic variation norm is similar.

Our next goal is to show that (en) is a shrinking basis of J . We need
the following lemma

Lemma 3.5.3. For any normalized block basis (ui) of ei in J , and m ∈ N
and any scalars (ai)

m
i=1 it follows that

(3.12)
∥∥∥ m∑
i=1

aiui

∥∥∥ ≤ √5‖(ai)ni=1‖2.

Proof. Let (ηj) ⊂ R and k0 = 0 < k1 < k2 < . . . in N so that for i ∈ N

ui =

ki∑
j=ki−1+1

ηjej .

Let for i = 1, 2, 3 . . .m and j = ki−1 + 1, ki−1 + 2, . . . ki put ξj = ai · ηj , and

x =

n∑
i=1

aiui =

kn∑
j=1

ξjej .

For given l ∈ N and 1 ≤ n0 < n1 < . . . < nl we need to show that

(3.13)

l∑
j=1

|ξnj − ξnj−1 |2 ≤ 5

m∑
i=1

a2
i .

We put ξj = ηj = 0, whenever j > km.
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For i = 1, 2, . . . ,m define Ai = {1 ≤ j ≤ l : ki−1 < nj−1 < nj ≤ ki} and
Am = {1 ≤ j ≤ l : km−1 < nj}. It follows that∑

j∈Ai

|ξj − ξj−1|2 = a2
i

∑
j∈Ai

|ηj − ηj−1|2 ≤ a2
i ‖ui‖qv,

and thus ∑
j∈

⋃n
i=1 Ai

|ξj − ξj−1|2 ≤
n∑
i=1

a2
i .

Now let A =
⋃n
i=1Ai and B = {j ≤ l : j 6∈ A}. For each j ∈ B there must

exist l(j) and m(j) in {1, 2, . . . ,m− 1} so that

kl(j)−1 < nj−1 ≤ kl(j) ≤ km(j) < nj ≤ km(j)+1

and thus

|ξnj − ξnj−1 |2 = |am(j)+1ηnj − al(j)ηnj−1 |2

≤ 2a2
m(j)+1η

2
nj + 2a2

l(j)η
2
nj−1

≤ 2a2
m(j)+1 + 2a2

l(j)

(for the last inequality note that |ηi| ≤ 1 since ‖uj‖ = 1).
For j, j′ ∈ B it follows that l(j) 6= l(j′) and m(j) 6= m(j′), j 6= j′ and

thus

l∑
j=1

|ξnj − ξnj−1 |2 =
∑
j∈A
|ξnj − ξnj−1 |2 +

∑
j∈B
|ξnj − ξnj−1 |2

≤
n∑
i=1

a2
i + 2

∑
j∈B

a2
l(j) + 2

∑
j∈B

a2
m(j)+1 ≤ 5

n∑
i=1

a2
i ,

which finishes the proof of our claim.

Corollary 3.5.4. The unit vector basis (en) is shrinking in J .

Proof. Let (un) be any block basis of (en), which is w.l.o.g. normalized.
Then by Lemma 3.5.3

1

n

∥∥∥ n∑
j=1

uj

∥∥∥
qv
≤
√

5/
√
n→ 0if n→∞.

By Corollary 2.2.6 (un) is therefore weakly null. Since (un) was an arbitrary
block basis of (en) this yields by Theorem 3.3.8 that (en) is shrinking.
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Definition 3.5.5. (Skipped Block Bases)
Assume X is a Banach space with basis (en). A Skipped Block Basis of (en)
is a sequence (un) for which there are 0 = k0 < k1 < k2 < . . . in N, and
(aj) ⊂ K so that

un =

kn−1∑
j=kn−1+1

ajej , for n ∈ N.

(i.e. the kn’s are skipped).

Proposition 3.5.6. Every normalized skipped block sequence of the unit
vector basis in J is isomorphically equivalent to the unit vector basis in `2.
Moreover the constant of equivalence is

√
5.

Proof. Assume that

un =

kn−1∑
j=kn−1+1

ajej , for n ∈ N.

with 0 = k0 < k1 < k2 < . . . in N, and (aj) ⊂ K, and akn = 0, for n ∈ N.

For n ∈ N we can find ln and kn−1 = p
(n)
0 < p

(n)
1 < . . . pln = kn in N so that

‖un‖2qv =

ln∑
j=1

(
a
p
(n)
j

− a
p
(n)
j−1

)2
= 1.

Now let m ∈ N and (bi)
m
i=1 ⊂ R we can string the p

(n)
j ’s together and deduce:

∥∥∥ m∑
n=1

bnun

∥∥∥2

qv
≥

m∑
i=1

b2i

ln∑
j=1

(
a
p
(n)
j−1

− a
p
(n)
j−1

)2
=

m∑
i=1

b2i .

On the other hand it follows from Lemma 3.5.3 that∥∥∥ m∑
n=1

bnun

∥∥∥2

qv
≤ 5

m∑
i=1

b2i .

Corollary 3.5.7. J is hereditarily `2, meaning every infinite dimensional
subspace of J has a further subspace which is isomorphic to `2.
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Proof. Let Z be an infinite dimensional subspace of J . By induction we
choose for each n ∈ N, zn∈Z, un∈J and kn∈N, so that

‖zn‖qv = ‖un‖qv = 1 and ‖zn − un‖qv < 2−4−n,(3.14)

un ∈ span(ej : kn−1 < j < kn)(3.15)

Having accomplished that, (un) is a skipped block basis of (en) and by
Proposition 3.5.6 isomorphically equivalent to the unit vector basis of `2.
Letting (u∗n) be the coordinate functionals of (un) it follows that ‖u∗n‖ ≤

√
5,

for n ∈ N, and thus, by the third condition in (3.14),

∞∑
n=1

‖u∗n‖‖un − zn‖ ≤
√

52−4 < 1,

which implies by the Small Perturbation Lemma, Theorem 3.3.10, that (zn)
is also isomorphically equivalent to unti vector bais in `2.

We choose z1 ∈ SZ arbitrarily, and then let u1 ∈ span(ej : j ∈N), with
‖u1‖qv = 1 and ‖u1−z1‖qv < 2−4. Then let k1 ∈ N so that u1∈span(ej : j <
k1). If we assume that z1, z2, . . . , . . . zn, u1, u2, . . . , un, and k1 < k2 < . . . kn
have been chosen we choose zn+1 ∈ Z∩{e∗1, . . . e∗kn}⊥ (note that this space is

infinite dimensional and a subspace of span(ej : j > kn+1)) and then choose
un+1 ∈ span(ej : j > kn+1), ‖un+1‖qv = 1, with ‖un+1 − zn+1‖qv < 242−n−1

and let kn+1∈N so that un+1∈span(ej : j < kn+1).

Using the fact that (en) is a monotone and shrinking basis of J (see
Proposition 3.5.2 and Corollary 3.5.4) we can use Proposition 3.3.6 to rep-
resent the bidual J∗∗ of J . We will now use the cyclic variation norm.

(3.16) J∗∗ =
{

(ξn) ⊂ R : sup
n∈N

∥∥∥ n∑
j=1

ξiei

∥∥∥
cqv

<∞
}

and for x∗∗ = (ξn) ∈ J∗∗

‖x∗∗‖J∗∗ = sup
n∈N
‖(ξ1, ξ2, . . . , ξn, 0, 0, . . .)‖cqv(3.17)

= sup
l∈N,k0<k1<...kl

max

((ξk0 − ξkl)
2+

l∑
j=1

(ξkj−1
−ξkj )

2
)1/2

,

(
ξ2
k0 + ξ2

kl
+

l∑
j=1

(ξkj−1
− ξkj )

2
)1/2

 .
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The second equality in (3.17) can be seen as follows: Fix an n ∈ N and
consider

x(n) = (ξ1, ξ2, . . . , ξn, 0, 0, . . .), thus x(n) = (ξ
(n)
j ), with ξ

(n)
j =

{
ξj if j ≤ n
0 else

.

Now we let l and 1 ≤ k1 < k2 < . . . < kl in N be chosen so that

‖x(n)‖2cqv =
1

2

(
(ξ

(n)
k0
− ξ(n)

kl
)2 +

l∑
j=1

(ξ
(n)
kj
− ξ(n)

kj−1
)2
)
.

There are two cases: Either kl ≤ n. In this case ξ
(n)
kj

= ξkj , for all j ≤ l, and
thus

‖x(n)‖2cqv =
(

(ξk0 − ξkl)
2+

l∑
j=1

(ξkj−1
−ξkj )

2
)1/2

,

which leads to the first term in above “max”. Or kl > n. Then we can
assume without loss of generality that kl−1 ≤ n (otherwise we can drop

kl−1) and we note that ξ
(n)
kl

= 0, while ξ
(n)
kj

= ξkj for all j ≤ l − 1, and thus

‖x(n)‖2cqv =
1

2

(
ξ2
k0+

l∑
j=1

(ξkj−1
−ξkj )

2
)1/2

=
(
ξ2
k0+ ξ2

kl−1
+

l−1∑
j=1

(ξkj−1
−ξkj )

2
)1/2

,

which, after renaming l − 1 to be l, leads to the second term above “max”.

Remark. Note that there is a difference between

‖(ξ1, ξ2, . . .)‖cqv

and
sup
n∈N
‖(ξ1, ξ2, . . . , ξn, 0, 0, . . .)‖cqv

and there is only equality if limn→∞ ξn = 0.

It follows that for all x∗∗ = (ξn) ∈ J∗∗, that e∗∞(x) = limn→∞ ξn exists,
that (1, 1, 1, 1, . . .) ∈ J∗∗ \ J , and that

x∗∗ − e∗∞(x)(1, 1, 1, . . .) ∈ J.

Theorem 3.5.8. J is not reflexive, does not contain an isomorphic copy of
c0 or `1 and the codimension of J in J∗∗ is 1.
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Proof. We only need to observe that it follows from the above that

J∗∗ =
{

(ξj) ⊂ R : ‖(ξj)‖cqv <∞
}

=
{

(ξj) + ξ∞(1, 1, 1 . . .) : ‖(ξj)‖cqv <∞, lim
j→∞

ξj = 0 and ξ∞ ∈ R
}
,

where the second equality follows from the fact that if (ξn) has finite quadratic
variation then limj→∞ ξj exists.

It follows therefore from Theorem 3.4.7

Corollary 3.5.9. J does not have an unconditional basis.

Theorem 3.5.10. The operator

T : J∗∗ → J, x∗∗ = (ξj) 7→ (ηj) = (−e∗∞(x∗∗), ξ1−e∗∞(x∗∗), ξ2−e∗∞(x∗∗), . . .)

is an isometry between J∗∗ and J with respect to the cyclic quadratic varia-
tion.

Proof. Let x∗∗ = (ξj) ∈ J∗∗ and

z = (ηj) = (−e∗∞(x∗∗), ξ1 − e∗∞(x∗∗), ξ2 − e∗∞(x∗∗), . . . .

By (3.17)

√
2‖x∗∗‖

= sup
l∈N,k0<k1<...kl

max

((ξk0 − ξkl)
2 +

l∑
j=1

(ξkj − ξkj−1
)2
)1/2

,

(
ξ2
k0 + ξ2

kl
+

l∑
j=1

(ξkj − ξkj−1
)2
)1/2


= sup

l∈N,k0<k1<...kl
max

((ηk0+1 − ηkl+1)2 +
l∑

j=1

(ηkj+1 − ηkj−1+1)2
)1/2

,

(
(ηk0+1+e∗∞(x∗∗))2+(ηkl+1+e∗∞(x∗∗))2 +

l∑
j=1

(ηkj+1−ηkj−1+1)2
)1/2


= sup

l∈N,k0<k1<...kl
max

((ηk0+1 − ηkl+1)2 +
l∑

j=1

(ηkj+1 − ηkj−1+1)2
)1/2

,
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(
(ηk0+1− η1)2+(η1−ηkl+1)2 +

l∑
j=1

(ηkj+1−ηkj−1+1)2
)1/2


= max

(
sup

l∈N,1<k0<k1<...kl

((ηk0 − ηkl)
2 +

l∑
j=1

(ηkj − ηkj−1
)2
)1/2

,

sup
l∈N,1=k0<k1<...kl

(
(ηk0 − ηkl)

2 +
l∑

j=1

(ηkj − ηkj−1
)2
)1/2


(For the first part we rename kj + 1 to to be kj , for the second part, we
rename 1 to be k0, k0 + 1 to be k1,....., and kl + 1 to be kl+1, and then we
rename l + 1 to be l)

= sup
l∈N,k0<k1<...kl

((ηk0 − ηkl)
2 +

l∑
j=1

(ηkj − ηkj−1
)2
)1/2

,

=
√

2‖z‖cqv.

Since T is surjective this implies the claim.
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Chapter 4

Convexity and Smoothness

4.1 Strict Convexity, Smoothness, and Gateaux
Differentiablity

Definition 4.1.1. Let X be a Banach space with a norm denoted by ‖ · ‖.
A map

f : X \ {0} → X∗ \ {0}, f 7→ fx

is called a support mapping whenever:

a) f(λx) = λfx, for λ > 0 and

b) If x ∈ SX , then ‖fx‖ = 1 and fx(x) = 1 (and thus fx(x) = ‖x‖2 for
all x ∈ X).

Often we only define fx for x ∈ SX and then assume that fx = ‖x‖fx/‖x‖,
for all x ∈ X \ {0}.

For x ∈ X a support functional of x is an element x∗ ∈ X∗, with ‖x∗‖ =
‖x‖ and 〈x∗, x〉 = ‖x‖2. Thus a support map is a map f(·) : X → X∗, which
assigns to each x∈X a support functional of x.

We say that X is smooth at x0 ∈ SX if there exists a unique fx ∈ SX∗ ,
for which fx(x) = 1, and we say that X is smooth if it is smooth at each
point of SX .

The Banach space X is said to have Gateaux differentiable norm at x0 ∈
SX , if for all y ∈ SX

ρ(x0, y) = lim
h→0

‖x0 + hy‖ − ‖x0‖
h

exists, and we say that ‖ · ‖ is Gateaux differentiable if it is Gateaux differ-
entiable norm at each x0 ∈ SX .

105
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Example 4.1.2. For X = Lp[0, 1], 1 < p <∞ the function

f : Lp[0, 1]→ Lq[0, 1], fx(t) = sign(x(t))
∣∣∣ x(t)

‖x‖p

∣∣∣p/q‖x‖p = ‖x‖
1− p

q
p |x(t)|

p
q

is a (and the only) support function for Lp[0, 1].
In L1[0, 1], not every element has a unique support functional!

In order to establish a relation between Gateaux differentiability and
smoothness we observe the following equalities and inequalities for any x ∈
X, y ∈ SX , and h > 0:

fx(y)

‖x‖
=
fx(hy)

h‖x‖

=

=0︷ ︸︸ ︷
fx(x)− ‖x‖2 +fx(hy)

h‖x‖

=
fx(x+ hy)− ‖x‖2

h‖x‖

≤ |fx(x+ hy)| − ‖x‖2

h‖x‖

≤ ‖fx‖‖x+ hy‖ − ‖x‖2

h‖x‖

=
‖x+ hy‖ − ‖x‖

h

=
‖x+ hy‖2 − ‖x+ hy‖‖x‖

h‖x+ hy‖

≤
‖x+ hy‖2 − |fx+hy(x)|

h‖x+ hy‖

=
fx+hy(x+ hy)− |fx+hy(x)|

h‖x+ hy‖

=
hfx+hy(y) + fx+hy(x)− |fx+hy(x)|

h‖x+ hy‖

≤
hfx+hy(y)

h‖x+ hy‖
=
fx+hy(y)

‖x+ hy‖

and thus for any x ∈ X, y∈SX , and h > 0:

(4.1)
fx(y)

‖x‖
≤ |fx(x+ hy)| − ‖x‖

h‖x‖
≤ ‖x+ hy‖ − ‖x‖

h
≤
fx+hy(y)

‖x+ hy‖
.
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Theorem 4.1.3. Assume X is a Banach space and x0 ∈ SX .
The following statements are equivalent:

a) X is smooth at x0.

b) Every support mapping f : x 7→ fx is norm to w∗ continuous from SX
to SX∗ at the point x0.

c) There exists a support mapping f(·) : x 7→ fx which is norm to w∗

continuous from SX to SX∗ at the point x0.

d) The norm is Gateaux differentiable at x0.

In that case

fx0(y) = ρ(x0, y) = lim
h→0

‖x0 + hy‖ − ‖x0‖
h

for all y ∈ SX .

Proof. ¬(b) ⇒ ¬(a). Assume that (xi) ⊂ SX is a net, which converges
in norm to x0, but for which fxi does not converge in w∗ to fx0 , where
f(·) : X → X∗ is a support map. After passing to a subnet we can assume
by Alaoglu’s Theorem 2.3.2 that (fxi) converges in w∗ to some x∗ ∈ BX∗
(which is not fx0).

As

|x∗(x0)− 1|
= |x∗(x0)− fxi(xi)|
≤ |x∗(x0)− fxi(x0)|+ |fxi(x0 − xi)|
≤ |x∗(x0)− fxi(x0)|+ ‖x0 − xi‖ →i∈I 0,

it follows that x∗(x0) = 1, and since ‖x∗‖ ≤ 1 we must have ‖x∗‖ = 1. Since
x∗ 6= fx0 , X cannot be smooth at x0.
(b) ⇒ (c) is clear (since by The Theorem of Hahn Banach there is always
at least one support map).
(c) ⇒ (d) Follows from (4.1), and from applying (4.1) to −y instead of y
which gives

‖x0 − hy‖ − ‖x0‖
−h‖x0‖

= −‖x0 + h(−y)‖ − ‖x0‖
h‖x0‖

≤ −fx0(−y)

‖x0‖
= fx0(y)

and

‖x0 − hy‖ − ‖x0‖
−h‖x0‖

= −‖x0 + h(−y)‖ − ‖x0‖
h‖x0‖

≥ −
fx0+h(−y)(−y)

‖x0 + h(−y)‖
=

fx0+h(−y)(y)

‖x0 + h(−y)‖
.
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(d) ⇒ (a) Let f ∈ Sx∗ be such that f(x0) = ‖x0‖ = 1. Since (4.1) is true
for any support function it follows that

f(y) ≤ ‖x0 + hy‖ − ‖x0‖
h

, for all y∈SX and h > 0,

and

‖x0 − hy‖ − ‖x0‖
−h

= −‖x0 + (−y)‖ − ‖x0‖
h

≤ −f(−y) = f(y)

for all y ∈ SX and h > 0.

Thus, by assumption (d), ρ(x0, y) = f(y), which proves the uniqueness of
f ∈ SX∗ with f(x0) = 1.

Definition 4.1.4. A Banach space X with norm ‖·‖ is called strictly convex
whenever S(X) contains no non-trivial line segement, i.e. if for all x, y ∈ SX ,
x 6= y it follows that ‖x+ y‖ < 2.

Theorem 4.1.5. If X∗ is strictly convex then X is smooth, and if X∗ is
smooth the X is strictly convex.

Proof. If X is not smooth then there exists an x0 ∈ SX , and two functionals
x∗ 6= y∗ in SX∗ with x∗(x0) = y∗(x0) = 1 but this means that

‖x∗ + y∗‖ ≥ (x∗ + y∗)(x0) = 2,

which implies that X∗ is not strictly convex. If X is not strictly convex then
there exist x 6= y in SX so that ‖λx + (1 − λ)y‖ = 1, for all 0 ≤ λ ≤ 1. So
let x∗ ∈ SX∗ such that

x∗
(x+ y

2

)
= 1.

But this implies that

1 = x∗
(x+ y

2

)
=

1

2
x∗(x) +

1

2
x∗(y) ≤ 1

2
+

1

2
= 1,

which implies that x∗(x) = x∗(y) = 1, which by viewing x and y to be
elements in X∗∗, implies that X∗ is not smooth.
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4.2 Uniform Convexity and Uniform Smoothness

Definition 4.2.1. Let X be a Banach space with norm ‖ · ‖. We say that
the norm of X is Fréchet differentiable at x0 ∈ SX if

lim
h→0

‖x0 + hy‖ − ‖x0‖
h

exists uniformly in y ∈ SX .

We say that the norm of X is Fréchet differentiable if the norm of X is
Fréchet differentiable at each x0 ∈ SX .

Remark. By Theorem 4.1.3 it follows from the Frechét differentiability of
the norm at x0 that there a unique support functional fx0 ∈ S∗X and

lim
h→0

∣∣∣‖x0 + hy‖ − ‖x0‖
h

− fx0(y)
∣∣∣ = 0,

uniformly in y and thus that (put z = hy)

lim
z→0

‖x0 + z‖ − ‖x0‖ − fx0(z)

‖z‖
= 0.

In particular, if X has a Fréchet differentiable norm it follows from The-
orem 4.1.3 that there is a unique support map x→ fx.

Proposition 4.2.2. Let X be a Banach space with norm ‖ · ‖. Then the
norm is Fréchet differentiable if and only if the support map is norm-norm
continuous.

Proof. (We assume that K = R) “⇒” Assume that (xn) ⊂ SX converges to
x0 and put x∗n = fxn , n ∈ N, and x∗0 = fx0 . It follows from Theorem 4.1.3
that x∗n(x0)→ 1, for n→∞. Assume that our claim were not true, and we
can assume that for some ε > 0 we have ‖x∗n − x∗0‖ > 2ε, and therefore we
can choose vectors zn ∈ SX , for each n ∈ N so that (x∗n− x∗0)(zn) > 2ε. But
then

x∗0(x0)− x∗n(x0) ≤
(
x∗0(x0)− x∗n(x0)

)(1

ε

(
x∗n(zn)− x∗0(zn)︸ ︷︷ ︸

>2ε

)
− 1
)

=
(
x∗n(x0)−x∗0(x0)

)
+

1

ε

(
x∗0(zn)−x∗n(zn)

)(
x∗n(x0)−x∗0(x0)

)
=
(
x∗n − x∗0

)(
x0 + zn

1

ε

(
x∗0(x0)− x∗n(x0)

))
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≤
∣∣∣x∗n(x0 + zn

1

ε

(
x∗0(x0)− x∗n(x0)

))∣∣∣−
− x∗0

(
x0 + zn

1

ε

(
x∗0(x0)− x∗n(x0)

))
≤
∥∥∥x0 + zn

1

ε

(
x∗0(x0)− x∗n(x0)

)∥∥∥
− ‖x0‖ − x∗0

(
zn

1

ε

(
x∗0(x0)− x∗n(x0)

))
.

Thus if we put

yn = zn
1

ε

(
x∗0(x0)− x∗n(x0)

)
,

it follows that ‖yn‖ → 0, if n → ∞, and, using the Fréchet differentiability
of the norm that (note that

(
x∗0(x0)− x∗n(x0)

)
/‖yn‖ = ε) we deduce that

0 < ε =
x∗0(x0)− x∗n(x0)

‖yn‖
≤ ‖x0 + yn‖ − ‖x0‖ − x∗0(yn)

‖yn‖
→n→∞ 0,

which is a contradiction.
“⇐” From (4.1) it follows that for x, y ∈ SX , and h ∈ R∣∣∣∣∣‖x+ hy‖ − ‖x‖

h
− fx(y)

∣∣∣∣∣
≤

∣∣∣∣∣ fx+hy(y)

‖x+ hy‖
− fx(y)

∣∣∣∣∣
≤
∣∣fx+hy(y)− fx(y)

∣∣+

∣∣∣∣∣ fx+hy(y)

‖x+ hy‖
− fx+hy(y)

∣∣∣∣∣
≤ ‖fx+hy − fx‖+

∣∣∣∣∣ 1

1 + |h|
− 1

∣∣∣∣∣‖fx+hy‖,

which converges uniformly in y to 0 and proves our claim.

Definition 4.2.3. Let X be a Banach space with norm ‖ · ‖.
We say that the norm is uniformly Fréchet differentiable on SX if

lim
h→0

∣∣∣‖x+ hy‖ − ‖x‖
h

− fx(y)
∣∣∣,

uniformly in x ∈ SX and y ∈ SX . In other words if for all ε > 0 there is a
δ > 0 so that for all x, y ∈ SX and all h ∈ R, 0 < |h| < δ∣∣∣‖x+ hy‖ − ‖x‖

h
− fx(y)

∣∣∣ < ε.
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X is uniformly convex if for all ε > 0 there is a δ > 0 so that for all
x, y ∈ SX with ‖x− y‖ ≥ ε it follows that ‖(x+ y)/2‖ < 1− δ.

We call

δX(ε) = inf

{
1− ‖x+ y‖

2
: x, y ∈ SX , ‖x− y‖ ≥ ε

}
, for ε ∈ [0, 2]

the modulus of uniform convexity of X.
X is called uniform smooth if for all ε > 0 there exists a δ > 0 so that

for all x, y ∈ SX and all h ∈ (0, δ]

‖x+ hy‖+ ‖x− hy‖ < 2 + εh.

The modulus of uniform smoothness of X is the map ρ : [0,∞)→ [0,∞)

ρX(τ) = sup

{
‖x+ z‖

2
+
‖x− z‖

2
− 1 : x, z ∈ X, ‖x‖ = 1, ‖z‖ ≤ τ

}
.

Remark. X is uniformly convex if and only if δX(ε) > 0 for all ε > 0. X
is uniformly smooth if and only if limτ→0 ρX(τ)/τ = 0.

Theorem 4.2.4. For a Banach space X the following statements are equiv-
alent.

a) There exists a support map x→ fx which uniformly continuous on SX
with respect to the norms.

b) The norm on X is uniformly Fréchet differentiable on SX .

c) X is uniformly smooth.

d) X∗ is uniformly convex.

e) Every support map x→ fx is uniformly continuous on SX with respect
to the norms.

Proof. “(a)⇒(b)” We proceed as in the proof of Proposition 4.2.2. From
(4.1) it follows that for x, y ∈ SX , and h ∈ R∣∣∣∣∣‖x+ hy‖ − ‖x‖

h
− fx(y)

∣∣∣∣∣
≤

∣∣∣∣∣ fx+hy(y)

‖x+ hy‖
− fx(y)

∣∣∣∣∣
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≤
∣∣fx+hy(y)− fx(y)

∣∣+

∣∣∣∣∣ fx+hy(y)

‖x+ hy‖
− fx+hy(y)

∣∣∣∣∣
≤ ‖fx+hy − fx‖+

∣∣∣∣∣ 1

1 + |h|
− 1

∣∣∣∣∣‖fx+hy‖

which converges by (a) uniformly in x and y, to 0.
“(b)⇒(c)”. Assuming (b) we can choose for ε > 0 a δ > 0 so that for all
h ∈ (0, δ) and all x, y ∈ SX∣∣∣∣∣‖x+ hy‖ − ‖x‖

h
− fx(y)

∣∣∣∣∣ < ε/2.

But this implies that for all h ∈ (0, δ) and all x, y ∈ SX we have

‖x+ hy‖+ ‖x− hy‖

= 2 + h

(
‖x+ hy‖ − ‖x‖

h
− fx(y) +

(‖x+ h(−y)‖ − ‖x‖
h

− fx(−y)
))

≤ 2 + εh,

which implies our claim.
“(c)⇒(d)”. Let ε > 0. By (c) we can find δ > 0 such that for all x ∈ SX
and z ∈ X, with ‖z‖ ≤ δ, we have ‖x+ z‖+ ‖x− z‖ ≤ 2 + ε‖z‖/4.

Let x∗, y∗ ∈ SX∗ with ‖x∗ − y∗‖ ≥ ε. There is a z ∈ X, ‖z‖ ≤ δ/2 so
that (x∗ − y∗)(z) ≥ εδ/2. This implies

‖x∗ + y∗‖ = sup
x∈SX

∣∣(x∗ + y∗)(x)
∣∣

= sup
x∈SX

∣∣x∗(x+ z) + y∗(x− z)− (x∗ − y∗)(z)
∣∣

≤ sup
x∈SX

‖x+ z‖+ ‖x− z‖ − εδ/2

≤ 2 + ε‖z‖/4− εδ/2 < 2− εδ/4.

“(d)⇒(e)”. Let x 7→ fx be a support functional. By (d) we can choose
for ε > a δ so that for all x∗, y∗ ∈ SX∗ we have ‖x∗ − y∗‖ < ε , whenever
‖x∗ + y∗‖ > 2− δ .

Assume now that x, y ∈ SX with ‖x− y‖ < δ. Then

‖fx + fy‖ ≥
1

2
(fx + fy)(x+ y)
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= fx(x) + fy(y) +
1

2
fx(y − x) +

1

2
fy(x− y)

≥ 2− ‖x− y‖ ≥ 2− δ,

which implies that ‖fx − fy‖ < ε, which proves our claim.
“(e)⇒(a)”. Clear.

Theorem 4.2.5. Every uniformly convex and every uniformly smooth Ba-
nach space is reflexive.

Proof. Assume that X is uniformly convex, and let x∗∗ ∈ SX∗∗ . Since
BX is w∗-dense in BX∗∗ we can find a net (xi)i∈I which converges with
respect to w∗ to x∗∗. Since for every η > 0 there is a x∗ ∈ SX∗ with
limi∈I x

∗(xi) = x∗∗(x∗) > 1 − η, it follows that limi∈I ‖xi‖ = 1 and we can
therefore assume that ‖xi‖ = 1, i ∈ I. We claim that χ(xi) is a Cauchy net
with respect to the norm to x∗∗, which would finish our proof.

So let ε > 0 and choose δ so that ‖x+y‖ > 2−δ implies that ‖x−y‖ < ε,
for any x, y ∈ SX . Then choose x∗ ∈ SX∗ , so that x∗∗(x∗) > 1 − δ/4, and
finally let i0 ∈ I so that x∗∗(xi) ≥ 1− δ/2, for all i ≥ i0. It follows that

‖xi + xj‖ ≥ x∗(xi + xj) ≥ 2− δ whenever i, j ≥ i0,

and thus ‖xi − xj‖ < ε, which verifies our claim.
If X is uniformly smooth it follows from Theorem 4.2.4 that X∗ is uni-

formly convex. The first part yields that X∗ is reflexive, which implies that
X is reflexive.
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Chapter 5

Lp-spaces

5.1 Reduction to the Case `p and Lp

The main (and only) result of this section is the following Theorem.

Theorem 5.1.1. Let 1 ≤ p < ∞ and let (Ω,Σ, µ) be a separable measure
space, i.e. Σ is generated by a countable set of subsets of Ω.

Then there is a countable set I so that Lp(Ω,Σ, µ) is isometrically iso-
morphic to Lp[0, 1]⊕p `p(I) or to `p(I).

Moreover, if (Ω,Σ, µ) has no atoms, and is not 0, we can choose I to be
empty and, thus, Lp(Ω,Σ, µ) is isometrically isomorphic to Lp[0, 1].

Proof. First note that the assumption that Σ is generated by a countable set
say D ⊂ P(Ω) implies that Lp(µ) is separable. Indeed, the algebra generated
by D is A =

⋃∞
n=1An, where An is defined recursively for every n ∈ N as

follows: A1 = D, and, assuming, An is defined we let first

A′n+1 =
{ k⋃
j=1

Bj : k ∈ N, Bj ∈ An or Bc
j ∈ An

}
and then

An+1 =
{ k⋂
j=1

Bj : k ∈ N, Bj ∈ An or Bc
j ∈ An

}
.

This proves that A is countable. Then we observe that span(1A : A ∈ A) is
dense in Lp(µ)

We first reduce to the σ-finite case.

115
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Step 1: Lp(Ω,Σ, µ) is isometrically isomorphic to a space Lp(Ω
′,Σ′, µ′) where

(Ω′,Σ′, µ′) is a σ-finite measure space.
Let (fn) ⊂ Lp(Ω,Σ, µ) be a dense sequence in Lp(Ω,Σ, µ) and define

Ω′ =
⋃
n∈N

{
|fn| > 0

}
.

Since {|fn| > 0} is a countable union of sets of finite measure, namely

{|fn| > 0} =
⋃
m∈N
{|fn| > 1/m}

Ω′ is also σ-finite. Moreover, for any f ∈Lp(Ω,Σ, µ) it follows that {|f | >
0} ⊂ Ω′ µ a.e. Therefore we can choose Σ′ = Σ|Ω′ = {A ∈ Σ : A ⊂ Ω′} and
µ′ = µ|Σ′ .
Step 2: Assume (Ω,Σ, µ) is a σ-finite measure space. Let I be the set of all
atoms of (Ω,Σ, µ). Recall that A ∈ Σ is called an atom, if µ(A) > 0 and if
for every measurable B ⊂ A, either µ(B) = µ(A), or µ(B) = 0. Since µ is σ-
finite, I is countable, and µ(A) <∞ for all A ∈ I. We put Ω′ = Ω\

⋃
A∈I A,

Σ′ = Σ|Ω′ and µ′ = µ|Σ′ . Then

T : Lp(Ω,Σ, µ)→ `p(I)⊕p Lp(Ω′,Σ′, µ′),

f 7→

(( 1

µ1/p(A)

∫
A
fdµ : A ∈ I

)
, f |Ω′

)
,

is an isometry onto `p(I)⊕p Lp(Ω′,Σ′, µ′).
Now either µ′ = 0 or it is an atomless σ-finite measure.

In the next step we reduce to the case of µ being an atomless probability
measure.

Step 3: Assume that (Ω,Σ, µ) is σ-finite, atomless and not 0. Then there
is an atomless probability µ′ on (Ω,Σ) so that Lp(Ω,Σ, µ) is isometrically
isomorphic to the space Lp(Ω,Σ, µ

′).
Since (Ω,Σ, µ) is σ-finite there is an f ∈ L1(Ω,Σ, µ), with f(ω) > 0 for

all ω ∈ Ω and ‖f‖1 = 1. Let µ′ be the measure whose Radon Nikodym
derivative with respect to µ is f (thus µ′ is a probability measure) and
consider the operator

T : Lp(Ω,Σ, µ)→ Lp(Ω,Σ, µ
′), g 7→ g · f−1/p,

which is an isometry onto Lp(Ω,Σ, µ
′). Using an operator like T is often

called “change of density” -argument.
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Step 4: Reduction to [0, 1]. Assume (Ω,Σ, µ) is an atomless countably
generated probability space. Let (Bn) ⊂ Σ be a sequence which generates
Σ. By induction we choose for each n ∈ N0 a finite Σ-partition Pn =

(P
(n)
1 , P

(n)
2 , . . . P

(n)
kn

) of Ω with the following properties:

{B1, B2, . . . Bn} ⊂ σ(Pn) (the σ-algebra generated by Pn),(5.1)

µ(P
(n)
i ) ≤ 2−n, for i = 1, 2, . . . , kn,(5.2)

Pn is a subpartition of Pn−1 if n > 1, i.e. for(5.3)

each i ∈ {1, . . . kn−1} there are sn(i) ≤ tn(i) in {1, . . . kn}, so that

P
(n−1)
i =

tn(i)⋃
j=sn(i)

P
(n)
j .

Put for n ∈ N and 1 ≤ i ≤ kn

P̃
(n)
i =

[ ∑
j≤i−1

µ(P
(n)
j ),

∑
j≤i

µ(P
(n)
j )

)
, if j < kn and

P̃
(n)
kn

=
[ ∑
j≤kn−1

µ(P
(n)
j ),

∑
j≤kn

µ(P
(n)
j )

]
and P̃(n) = (P̃

(n)
1 , P̃

(n)
2 , . . . , P̃

(n)
kn

). Then P̃(n) is a Borel partition of [0, 1] into

intervals, with λ(P̃
(n)
i ) = µ(P

(n)
i ), for each i ≤ kn, and

⋃
n∈N P̃

(n) generate
the Borel σ-algebra on [0, 1].

For n ∈ N put

Vn =
{ kn∑
i=1

aiχP (n)
i

: ai scalars
}
,

Then Vn is a vector space and V =
⋃
n Vn is a dense subspace of LP (µ).

Similarly Ṽ , with

Ṽn =
{ kn∑
i=1

aiχP̃ (n)
i

: ai scalars
}
,

is a dense subspace of Lp[0, 1], and

T : V → Ṽ ,

kn∑
i=1

aiχP (n)
i

7→
kn∑
i=1

aiχP̃ (n)
i

,

is an isometry whose image is dense in Lp[0, 1]. Thus T extends to an
isometry from Lp(µ) onto Lp[0, 1].
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5.2 Uniform Convexity and Uniform Smoothness
of Lp, 1 < p <∞

Let (Ω,Σ, µ) be a measure space. The first goal of this section is to prove
the following

Theorem 5.2.1. Let 1 < p < ∞ and denote the modulus of uniform con-
vexity of Lp(µ) by δp. Then for any 1 < p <∞ there is a cp > 0 so that.

δp(ε) ≥

{
cpε

2 if 1 < p < 2

cpε
p if 2 < p <∞.

Lemma 5.2.2. Assume ξ, η ∈ R

a) If 2 ≤ p <∞, then

|ξ + η|p + |ξ − η|p ≥ 2(|ξ|p + |η|p).

b) If 0 < p ≤ 2

|ξ + η|p + |ξ − η|p ≤ 2(|ξ|p + |η|p).

If p 6= 2 equality in (a) and (b) only holds if either ξ or η is zero.

Proof. If p = 2 we have equality by the binomial formula.
If 2 < p <∞ and α, β ∈ R, we apply Hölder’s inequality to the function

{1, 2} → {α2, β2}, 1 7→ α2, 2 7→ β2,

the counting measure on {1, 2}, and the exponents p/2 and p/(p− 2).

α2 + β2 ≤ (|α|p + |β|p)2/p2(p−2)/p, and, thus,

|α|p + |β|p ≥ (α2 + β2)p/22(2−p)/2.(5.4)

If 0 < p < 2 we can replace p by 4/p and obtain

|α|4/p + |β|4/p ≥ (α2 + β2)2/p2(p−2)/p,

and if we replace |α| and |β| by |α|p/2 and |β|p/2 respectively, we obtain

|α|2 + |β|2 ≥ (|α|p + |β|p)2/p2(p−2)/p, or

|α|p + |β|p ≤ 2(2−p)/2(|α|2 + |β|2)p/2.(5.5)
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Since

0 ≤ ξ2

η2 + ξ2
≤ 1

we derive that

(5.6)
|ξ|p

(|η|2 + |ξ|2)p/2

{
≤ ξ2

η2+ξ2
if 2 < p

≥ ξ2

η2+ξ2
if 2 > p.

Forming similar inequalities by exchanging the roles of η and ξ and adding
them we get

(5.7) |η|p + |ξ|p
{
≤ (|η|2 + |ξ|2)p/2 if 2 < p

≥ (|η|2 + |ξ|2)p/2 if 2 > p.

Note that equality in (5.7) can only hold if η = 0 or ξ = 0.
Letting now α = |ξ + η| and β = |ξ − η| we deduce from (5.4) and (5.7)

if p > 2

|ξ + η|p + |ξ − η|p ≥
(
|ξ + η|2 + |ξ − η|2

)p/2
2(2−p)/2

= 2
(
ξ2 + η2

)p/2 ≥ 2
(
|η|p + |ξ|p

)
,

which finishes the proof of part (a), while part (b) follows from applying
(5.5) and (5.7).

Corollary 5.2.3. Let 0 < p <∞ and f, g ∈ Lp(µ). Then

‖f + g‖pp + ‖f − g‖pp

{
≥ 2(‖f‖pp + ‖g‖pp) if p ≥ 2

≤ 2(‖f‖pp + ‖g‖pp) if p ≤ 2.

If p 6= 2 equality only holds if f · g = 0 µ-almost everywhere.

Lemma 5.2.4. Let 1 < p < 2. Then there is a positive constant C = C(p)
so that

(5.8)
(∣∣∣s− t

C

∣∣∣2 +
∣∣∣s+ t

2

∣∣∣2)1/2
≤
( |s|p + |t|p

2

)1/p
.

Proof. We can assume without loss of generality that s = 1 > |t| and need
therefore to show that for some C > 0 and all t ∈ [−1, 1] we have

(5.9)
(1− t

C

)2
≤ φ(t) =

(1 + |t|p

2

)2/p
−
(1 + t

2

)2
.
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Since φ is strictly positive on [−1, 0] we only need to find C so that (5.8)
holds for all t ∈ [0, 1]. Since ξ 7→ ξ1/p is strictly concave it follows for all
0 < t < 1 (1

2
+
tp

2

)2/p
>
(1

2
+
t

2

)2
,

we only need to show that

(5.10) lim
t→1−

φ(t)

(1− t)2
> 0.

We compute

d2

dt2
φ(t) =

d

dt

[
2−(2/p)+1(1 + tp)(2/p)−1tp−1 − 1

2
(1 + t)

]
= 2−(2/p)+1(2− p)(1 + tp)(2/p)−2t2p−2

+ 2−(2/p)+1(p− 1)(1 + tp)(2/p)−1tp−2 − 1

2

and thus
d

dt
φ(t)

∣∣
t=1

= 0, and

d2

dt2
φ(t)

∣∣
t=1

= (2− p)(1/2) + (p− 1)− (1/2) = (p− 1)/2 > 0

Applying now twice the L’Hospital rule, we deduce our wanted inequality
(5.10)

Via integrating, Lemma 5.2.4 yields

Corollary 5.2.5. If 1 < p ≤ 2 and f, g ∈ Lp(µ) and if C = C(p) is as in
Lemma 5.2.4, it follows∥∥∥∥(∣∣∣f − gC

∣∣∣2 +
∣∣∣f + g

2

∣∣∣2)1/2
∥∥∥∥
p

≤
∥∥∥∥( |f |p + |g|p

2

)1/p
∥∥∥∥
p

(5.11)

= 2−1/p
(
‖f‖p + ‖g‖p

)1/p
.

Proposition 5.2.6. If 1 ≤ p < q <∞ and fj ∈ Lp, j = 1, 2, . . . then(
n∑
j=1

‖fi‖qp

)1/q

≤

∥∥∥∥∥(
n∑
j=1

|fj |q
)1/q

∥∥∥∥∥
p

.
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Proof. We can assume without loss of generality that

n∑
j=1

‖fi‖qp = 1.

We estimate∥∥∥∥∥(
n∑
j=1

|fj |q
)1/q

∥∥∥∥∥
p

=

∥∥∥∥∥
(

n∑
j=1

‖fj‖qp
( |fj |
‖fj‖p

)q)1/q∥∥∥∥∥
p

=

∥∥∥∥∥
((

n∑
j=1

‖fj‖qp
( |fj |
‖fj‖p

)q)p/q)1/p∥∥∥∥∥
p

≥

∥∥∥∥∥
(

n∑
j=1

‖fj‖qp
( |fj |
‖fj‖p

)p)1/p∥∥∥∥∥
p

(We use the concavity of the function ξ 7→ ξp/q.)

≥

∥∥∥∥∥
n∑
j=1

‖fj‖qp
( |fj |
‖fj‖p

)p∥∥∥∥∥
1/p

1

= 1,

which proves our claim.

Proof of Theorem 5.2.1. For 2 ≤ p < ∞ we will deduce our claim from
Corollary 5.2.3. For f, g ∈ Lp(µ), with ‖f‖ = ‖g‖ = 1, we deduce from the
first inequality in Corollary 5.2.3

2p =
1

2

[
‖(f + g)− (f − g)‖p + ‖(f + g) + (f − g)‖p] ≥ ‖f + g‖p + ‖f − g‖p

and thus, using the approximation (2p+ξ)1/p = 2+ 1
p21−pξ+o(ξ), we deduce

that

‖f + g‖ ≤
(
2p − ‖f − g‖p)1/p = 2− 1

p
21−p‖f − g‖p + o(‖f − g‖p),

which implies our claim.
Now assume that 1 < p < 2. Let f, g ∈ SLp(µ) with ε = ‖f − g‖p > 0.

Let C = C(p) be the constant in Corollary 5.2.5.
We deduce from Proposition 5.2.6 and Corollary 5.2.5 that(∥∥∥f−g

C

∥∥∥2

p
+
∥∥∥f+g

2

∥∥∥2

p

)1/2
≤
∥∥∥(∣∣∣f−g

C

∣∣∣2+
∣∣∣f+g

2

∣∣∣2)1/2∥∥∥
p
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≤
∥∥∥∥( |f |p + |g|p

2

)1/p
∥∥∥∥
p

= 2−1/p
(
‖f‖p + ‖g‖p

)1/p
= 1.

Solving for ‖(f + g)/2‖p leads to∥∥∥f + g

2

∥∥∥
p
≤
√

1−
∥∥∥f−g
C

∥∥∥2

p
= 1− ε2

2C
+ o(ε2)

which implies our claim.
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5.3 On “Small Subspaces” of Lp

By small subspaces of Lp[0, 1] we usually mean subspaces which are not
isomorphic to the whole space. Khintchine’s theorem, says that Lp[0, 1],
1 ≤ p ≤ ∞ contains isomorphic copies of `2, which are complemented if
1 < p <∞.

Note that all the arguments below can be made in a general probability
space (Ω,Σ,P) on which a Rademacher sequence (ri) exists, i.e. (ri) is an
independent sequence of random variables for which P(ri = 1) = P(ri =
−1) = 1/2.

Theorem 5.3.1. [Khintchine’s Theorem]
Lp[0, 1], 1 ≤ p ≤ ∞ contains a subspaces isomorphic to `2, if 1 < p < ∞
Lp[0, 1], contains a complemented subspaces isomorphic to `2.

Remark. By Theorem 5.1.1 the conclusion of Theorem 5.3.1 holds for all
spaces Lp(µ), as long as µ is a measure on some measurable space (Ω,Σ)
for which there is in Ω′ ⊂ Ω, Ω′ ∈ Σ so that µ|Ω′ is a non zero atomless
measure.

Definition 5.3.2. The Rademacher functions are the functions:

rn : [0, 1]→ R, t 7→ sign(sin 2nπt), whenever n∈N.

Lemma 5.3.3. [Khintchine inequality]
For every p ∈ [1,∞) there are numbers 0 < Ap ≤ 1 ≤ Bp so that for any
m ∈ N and any scalars (ai)

m
i=1.

(5.12) Ap

( m∑
i=1

|ai|2
)1/2

≤
∥∥∥ m∑
i=1

airi

∥∥∥
Lp
≤ Bp

( m∑
i=1

|ai|2
)1/2

.

Proof. We prove the claim for Banach spaces over the reals. The complex
case can be easily deduced (using some worse constants).

Since for p > r ≥ 1 ∥∥∥ m∑
i=1

airi

∥∥∥
Lp
≥
∥∥∥ m∑
i=1

airi

∥∥∥
Lr
,

it is enough to prove the right hand inequality for all even integers, and then
choose Bp = Bp′ with p′ = 2dp2e, for 1 ≤ p <∞ and the left hand inequality
for p = 1, and take Ap = A1.
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We first show the existence of B2k for any k ∈ N. For scalars (ai)
m
i=1 we

deduce∫ 1

0

( m∑
i=1

airi(t)
)2k

d

=
∑

(α1,α2,...αm)∈Nm0∑
αi=2k

A(α1, α2, . . . αm)aα1
1 aα2

2 . . . aαmm

∫ 1

0
rα1

1 (t)rα2
2 (t) . . . rαmm (t) dt

where A(α1, α2, . . . αm) =

(∑m
i=1 αi

)
!∏m

i=1 αi!

=
∑

(β1,β2,...βm)∈Nm0∑
βi=k

A(2β1, 2β2, . . . , 2βm)a2β1
1 a2β2

2 . . . a2βm
m

[Note that above integral vanishes if one of the exponents is odd,

and that it equals otherwise to 1].

On the other hand(∑
|ai|2

)k
=
( ∑

(β1,β2,...βm)∈Nm0∑
βi=k

A(β1, β2, . . . , βm)a2β1
1 a2β2

2 . . . a2βm
m

)

=
∑

(β1,β2,...βm)∈Nm0∑
βi=k

A(β1, β2, . . . , βm)

A(2β1, 2β2, . . . , 2βm)
A(2β1, 2β2, . . . , 2βm)a2β1

1 a2β2
2 . . . a2βm

m

≥ min
(β1,β2,...βm)∈Nm0∑

βi=k

A(β1, β2, . . . , βm)

A(2β1, 2β2, . . . , 2βm)

∑
(β1,β2,...βm)∈Nm0∑

βi=k

A(2β1, 2β2, . . . , 2βm)a2β1
1 a2β2

2 . . . a2βm
m

= min
(β1,β2,...βm)∈Nm0∑

βi=k

A(β1, β2, . . . , βm)

A(2β1, 2β2, . . . , 2βm)

∫ 1

0

( m∑
i=1

airi

)2k
dt

which implies our claim if put

B−2k
2k = min

(β1,β2,...βm)∈Nm0∑
βi=k

A(β1, β2, . . . , βm)

A(2β1, 2β2, . . . , 2βm)
= min

m≤k
min

(β1,β2,...βm)∈Nm0∑
βi=k

A(β1, β2, . . . , βm)

A(2β1, 2β2, . . . , 2βm)
.
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In order to show that we can choose A1 > 0, to satisfy (5.12) we observe
that for f(t) =

∑m
i=1 airi(t)∫ 1

0
|f(t)|2 dt =

∫ 1

0
|f(t)|2/3|f(t)|4/3 dt

≤
[ ∫ 1

0
|f(t)| dt

]2/3[ ∫ 1

0
|f(t)|4 dt

]1/3

[By Hölders inequality for p = 3/2 and q = 3]

≤
[ ∫ 1

0
|f(t)| dt

]2/3
B

4/3
4

[ m∑
i=1

a2
i

]2/3
.

Therefore∫ 1

0
|f(t)| dt ≥

[
B
−4/3
4

∫ 1

0
|f(t)|2 dt

( m∑
i=1

a2
i

)−2/3
]3/2

=
[
B
−4/3
4

m∑
i=1

|ai|2
( m∑
i=1

a2
i

)−2/3]3/2
= B−2

4

( m∑
i=1

a2
i

)1/2

which proves our claim if we let A1 = B−2
4 .

Proof of Theorem 5.3.1. Since the Rademacher functions are an orthonor-
mal basis inside L2[0, 1] it follows from Lemma 5.3.3 that `2 is isomorphically
embeddable in Lp[0, 1], for 1 ≤ p < ∞. Secondly, for 2 ≤ p < ∞ the for-
mal identity I : Lp[0, 1] → L2[0, 1] is bounded and the restriction of I to

span(ri : i ∈ N) is an isomorphism onto span(ri : i ∈ N). We conclude that
the map:

P : Lp[0, 1]→ span(ri : i ∈ N), f 7→
∞∑
n=1

(∫ 1

0
f(s)rn(s)ds

)
rn,

is a projection onto span(ri : i ∈ N), which proves that `2 is isomorphic to
a complemented subspace of Lp[0, 1], if 2 ≤ p < ∞. The same conclusion
follows also for 1 < p < 2 by duality.

Remark. The constants Ap and Bp 1 ≤ p < ∞, exhibited in the proof of
Khintchine’s inequality in Lemma 5.3.3 are far from being optimal. These
optimal constants where determined by Uffe Haagerup [Ha]. He proved the
following:
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Theorem 5.3.4. [Ha] For 0 < p < ∞ the inequality 5.12 in Lemma 5.3.3
holds for all finite sequences (aj)

m
j=1 of scalars and the following numbers

Ap and Bp:

Ap =


21/2−1/p if 0 < p ≤ p0,

21/2
(

Γ((p+1)/2)√
π

)1/p
if p0 < p < 2,

1 if 2 ≤ p <∞

and

Bp =

1 if 0 < p ≤ 2

21/2
(

Γ((p+1)/2)√
π

)1/p
if 2 < p <∞.

Here Γ(·) is the “Gamma-function”:

Γ(x) =

∫ ∞
0

e−ttx−1dt,

and p0 ∈ (1, 2) is the solution to the equation

Γ((p+ 1)/2) =

√
π

2

(p0 ≈ 1.84742). Moreover Ap and Bp are optimal in the following sense. If
A > Ap or B < Bp then there is a choice of m ∈ N and scalars (aj)

m
j=1, for

which 5.12 in Lemma 5.3.3 is violated, if one replaces Ap by A, or Bp by B,
respectively.

The next Theorem on subspaces of Lp is due to Kadets and Pe lczyński.
We first state the Extrapolation Principle.

Theorem 5.3.5. [The Extrapolation Principle]
Let X ⊂ Lp[0, 1], be a linear subspace on which ‖ · ‖p1 and ‖ · ‖p2, where
p1 < p2, are finite and equivalent. Thus, there is a C ≥ 1 so that

‖f‖p1 ≤ ‖f‖p2 ≤ C‖f‖p1 whenever f ∈ X.

(first inequality holds always by Hölder inequality).

Then for all 0 < p ≤ p1 and all x ∈ X

C(p2/p)(1−(1/λ))‖x‖p1 ≤ ‖x‖p ≤ ‖x‖p1 ,

where λ ∈ (0, 1) is defined by p1 = λp+ (1− λ)p2.
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Proof. Let 0 < p ≤ p1 and choose 0 < λ < 1 so that p1 = λp + (1 − λ)p2.
For x ∈ X it follows

‖x‖p1 =

[∫
|x(t)|λp · |x(t)|(1−λ)p2 dt

]1/p1

≤
[∫
|x(t)|p dt

]λ/p1
·
[∫
|x(t)|p2 dt

](1−λ)/p1

dt

[Hölder inequality for exponents 1/λ and 1/(1− λ)]

= ‖x‖
pλ
p1
p ‖x‖

p2(1−λ)
p1

p2 ≤ C
p2
p1

(1−λ)‖x‖
p2
p1

(1−λ)

p1 ‖x‖
pλ
p1
p

thus (since 1− p2
p1

(1− λ) = λp
p1

)

‖x‖
λp
p1
p1 ≤ C

p2
p1

(1−λ)‖x‖
pλ
p1
p and thus

‖x‖p1 ≤ C
p2
p

( 1
λ
−1)‖x‖p

which yields that
C(p2/p)(1−(1/λ))‖x‖p1 ≤ ‖x‖p.

Remark. The Interpolation is obvious, and follows from applying Hölder’s
Theorem twice:

Assume as in the previous Theorem that X ⊂ Lp[0, 1],is a linear subspace
on which ‖ · ‖p1 and ‖ · ‖p2 , where p1 < p2, are C-equivalent. Thus, there is
a C ≥ 1 so that

‖f‖p1 ≤ ‖f‖p2 ≤ C‖f‖p1 whenever f ∈ X.

Then for all p ∈ (p1, p2)

‖f‖p1 ≤ ‖f‖p ≤ ‖f‖p2 ≤ C‖f‖p1 .

Theorem 5.3.6 (Kadets and Pe lczyński). Assume 2 < p <∞ and assume
that X is a closed subspace of Lp[0, 1]. Then:

Either there is an 0 < r < p so that ‖ · ‖r and ‖ · ‖p are equivalent
norms on X. In that case it follows that X is isomorphic to a Hilbert space,
X is complemented in Lp[0, 1] and the constant of isomorphism as well as
the constant of complementation only depend on r, p and the equivalence
constant between ‖ · ‖r and ‖ · ‖p on X.

Or ‖ · ‖r and ‖ · ‖p are not equivalent on X for some r < p. Then X
contains for any ε > 0 a sequence which is (1 + ε)-equivalent to the `p-unit
vector basis.
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Proof. Let X be (w.l.o.g) an infinite dimensional subspace of Lp[0, 1]. If for
some r < p the norms ‖ · ‖p and ‖ · ‖r are equivalent on X it follows from
Theorem 5.3.5 and the following remark that ‖ · ‖2 and ‖ · ‖p are equivalent
norms on X and the constant of equivalence only depends on r, p and the
equivalence constant of ‖·‖r and ‖·‖p . Thus, X is isomorphic to a separable
Hilbert space. Moreover X, seen as a linear subspace of L2[0, 1], is closed
and thus complemented. Let P : L2[0, 1]→ X be the orthogonal projection
from L2[0, 1] onto X. Then Q = P ◦ I, where I : Lp[0, 1] → L2[0, 1] is the
formal identity, is a projection from Lp[0, 1] onto X.

Assume for all r < p the norms ‖ · ‖p and ‖ · ‖r are not equivalent on X
and let ε > 0. For n ∈ N, choose inductively rn < p, Mn > 1 and fn ∈ X so
that

Mn ≥ 2n and,

∫
{|f |>Mn}

|fi(t)|p dt < 2−n−1ε,(5.13)

whenever 1 ≤ i < n and f ∈ BLp[0,1]

Mp−rn
n = 2(5.14)

‖fn‖rn < 2−n−1ε, and ‖fn‖p = 1.(5.15)

Indeed, for n = 1 let M1 = 2 (which satisfies (5.13), since the second
condition is vacuous). Then choose r1 < p close enough to p so that (5.14)
holds. Since ‖ · ‖r1 and ‖ · ‖p are not equivalent on X, and we can choose
f1 ∈ SX so that (5.15) holds.

Assuming f1, f2, . . . fn−1, r1, r2, . . . , rn−1, andM1,M2, . . .Mn−1 have been
chosen, we first choose η > 0 so that for all i = 1, 2, . . . , n, and all measurable
A ⊂ [0, 1] with m(A) < η and all i = 1, 2, . . . , n− 1, it follows that∫

A
|fi(t)|pdt < 2−n−1ε.

Now for any f ∈ BLp[0,1] and any M > 0 we have

m({|f | > M}) ≤ 1

Mp

∫
|f(t)|p dt ≤ 1

Mp
,

So choosing Mn = max(2n, 1
η1/p

), we deduce (5.13). We can then choose

rn ∈ (0, p) close enough to p, so that (5.14), and since by assumption ‖ · ‖rn
and ‖ · ‖p are not equivalent on X, we can choose fn ∈ X so that (5.15)
holds. This finishes the recursion.
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Then∫
|fn|<Mn

|fn(t)|p dt ≤
∫
Mp−rn
n |f(t)|rn dt ≤ 2‖fn‖rn < 2−nε.

For n ∈ put An = {fn ≥Mn} \
⋃
j>n{|fj | ≥Mj} and gn = fn1An . Then

the gn’s have disjoint support and

‖fn − gn‖pp ≤
∫
|fn|<Mn

|fn(t)|p dt+
∑
j>n

∫
|fj |>Mj

|fn(t)|p dt

≤ 2−nε+
∑
j>n

∫
|fj |>Mj

|fn(t)|p dt < 2−nε+
∑
j>n

2j−1ε = 21−nε,

Fix δ > 0. For ε small enough (depending on δ), it follows that (gn) is (1+δ)-
equivalent to the `p-unit vector basis (since the gn have disjoint support .
By choosing δ small enough we can secondly ensure that∑

n∈N
‖gn − fn‖p‖g∗n‖q < 1,

where the (g∗n) are the coordinate functionals of (gn). Applying now the
Small Perturbation Lemma yields that (fn) is also equivalent to the `p unit
basis.

Remark. The Theorem of Kadets and Pe lczyński started the investigation
of complemented subspaces of Lp[0, 1], 2 < p <∞. Here are some results:

Johnson-Odell 1974: Every complemented subspace of Lp[0, 1] which
does not contain `2, must be a subspace of `p. In other words if X is an
infinite dimensional complemented subspace of Lp[0, 1] it must be either `2
or `p or contain `p⊕`2 (we are using here also that `p is prime, i.e that every
infinite dimensional complemented subspace of `p is isomorphic to `p).

Bourgain-Rosenthal-Schechtman 1981: There are uncountable many non
isomorphic complemented subspaces of Lp[0, 1].

Haydon-Odell-Schlumprecht 2011: If X is a complemented subspace of
Lp[0, 1] which does not isomorphically embed into `2⊕`p then it must contain
`p(`2).
Next Question: Assume that X is a complemented subspace of Lp[0, 1]
which is not contained in an isomorphic copy of `p(`2). What can we say
about X?
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5.4 The spaces `p, 1 ≤ p < ∞, and c0 are prime
spaces

The main goal of this section is show that the spaces `p, 1 ≤ p <∞, and c0

are prime spaces.

Definition 5.4.1. A Banach space X is said to be prime if every comple-
mented subspace of X is isomorphic to X.

The following Theorem is due to Pe lczyński.

Theorem 5.4.2. The spaces `p, 1 ≤ p <∞, and c0 are prime.

We will prove this theorem using the Pe lczynski Decomposition Method,
an argument which is important in its own right and also very pretty. Before
doing that we need some lemmas. The first one was, up to the “moreover
part” a homework problem and can be easily deduced from the Small Per-
turbation Lemma.

Lemma 5.4.3. (The Gliding Hump Argument)
Let X be a Banach space with a basis (ei) and Y an infinite dimensional

closed subspace of X. Let ε > 0. Then Y contains a normalized sequence
(yn) which is basic and (1− ε)−1-equivalent to some normalized block basis
(un).

Moreover, if the span of (un) is complemented in X, so is the span of
(yn).

Proof. Without loss of generality we can assume that ‖en‖ = 1, for n∈N.
Let b be the basis constant, and (e∗j ) the coordinated functionals of (en).

Let δn ⊂ (0, 1) a null sequence, with
∑∞

n=1 δn ≤ ε/2b. By induction we
choose for every n ∈ N yn, un ∈ SX and kn ∈ N, so that:

a) 0 = k0 < k1 < k2 < . . .,

b) un ∈ span(ej : kn−1 + 1 ≤ j ≤ kn), and

c) yn ∈ Y , and ‖un − yn‖ < δn.

For n = 1 we simply choose any y1 ∈ SY , and then by density of span(ej :
j ∈ N) in X an element x1 ∈ span(ej : j ∈ N), with ‖x1‖ = 1 and choose
k1 ∈ N so that x1 ∈ span(ej ∈ N).

Assuming kn has been chosen we can choose yn+1 ∈
⋂
i≤kn N (e∗i ) ∩ SX .

Since span(ej : j ∈ N, j > kn) is dense in
⋂
i≤kn N (e∗i ), we can choose
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un+1 ∈ span(ej : j ∈ N, j > kn) ∩ SX so that ‖xn+1 − un+1‖ < δn+1, and
finally choose kn+1, so that un+1 ∈ span(ej : j ∈ N, kn < j ≤ kn+1).

Since the basis constant of (un) does not exceed b (Proposition 3.3.3) we
deduce for the coordinate functionals (u∗n) of (un) that

sup
n∈N
‖u∗n‖ ≤ sup

n∈N

2b

‖un‖
= 2b,

and thus
n∑
j=1

‖yn − un‖ · ‖u∗n‖ ≤ 2b

∞∑
j=1

δn ≤ ε,

and we conclude therefore our claim form the Small Perturbation Lemma
3.3.10.

Proposition 5.4.4. Block bases in `p and c0 are isometrically equivalent to
the unit vector basis and their closed linear span is 1-complemented in `p,
or c0.

Proof. We only present the proof for `p, 1 ≤ p < ∞, the c0-case works in
the same way. Let (un) be a normalized block basis, and write un, n∈N, as

un =

kn∑
j=kn−1+1

ajej ,with 0 = k0 < k1 < k2 < . . . and (an) ⊂ K.

It follows for m∈N and (bn)mn=1 ⊂ K, that

∥∥∥ m∑
n=1

bnun

∥∥∥p
p

=
m∑
n=1

kn∑
j=kn−1+1

|bn|p|aj |p =
m∑
j=1

|bj |p,

and thus (un) is isometrically equivalent to (en).

For n ∈ N choose u∗n ∈ `q, u∗n ∈ span(e∗j : kn−1 < j ≤ kn), ‖u∗n‖q = 1, so
that 〈u∗n, un〉 = 1, and define

P : `p → span(un : j∈N), x 7→
∑
〈x, u∗n〉un.

For x =
∑∞

j=1 xjej ∈ `p it follows that

|〈u∗n, x〉|p =
∣∣∣〈u∗n, kn∑

j=kn−1+1

xjej

〉∣∣∣ ≤ kn∑
j=kn−1+1

|xj |p,



132 CHAPTER 5. LP -SPACES

and, thus, that

‖P (x)‖pp =
∞∑
n=1

kn∑
j=kn−1+1

|aj |p|〈u∗n, x〉|p ≤
∞∑
n=1

〈u∗n, x〉|p ≤
∞∑
n=1

kn∑
j=kn−1+1

|xj |p = ‖x‖pp.

This shows that ‖P‖ ≤ 1, and, since moreover P (un) = un, and P (X) ⊂
span(uj : j∈N), it follows that P is a projection onto span(uj : j∈N) of
norm 1.

Remark. It follows from Lemma 5.4.3 and Proposition 5.4.4 for X = `p
or c0 that every subspace Y of X has a further subspace Z which is com-
plemented in X and isomorphic to X. We call a space X which has this
property complementably minimal, a notion introduced by Casazza. In par-
ticular if Y is any complemented subspace of X the pair (Y,X) has the
Schröder Bernstein property, which means that X is isomorphic to a sub-
space Y , and Y is isomorphic to a complemented subsapce of X.

It was for long time an open question whether a complementably minimal
space is prime, and an even longer open problem was the question whether or
not `p and c0 are the only separable prime spaces. The first question would
have a positive answer if all Banach spaces X and Y for which (X,Y ) has the
Schröder Bernstein property then it follows that X and Y are isomorphic.
It is also open if complementably minimal spaces have to be prime.

Then Gowers and Maurey [GM2] constructed a space X(this is a varia-
tion of the space cited in [GM] and also does not contain any unconditional
basis sequence) which only has trivial complemented subspaces, namely the
finite and cofinite dimensional subspaces which has the property that all
the cofinite dimensional subspaces are isomorphic to X. Thus, this space is
prime, but not `p or c0.

Then Gowers [Go2] also found a counterexamples to the Schröder Bern-
stein problem, which also does not contain any unconditional basic sequence.

Both questions are still open for spaces with unconditional basic se-
quences, and thus spaces with lots of complemented subspaces. In [Sch] a
space with a 1-unconditional space was constructed which is complementably
minimal (shown in [AS]) but does not contain `p or c0. This space together
with some complemented subspace Y must either be a counterexample to
the Schröder Bernstein Problem, or it is new prime space.

The Pe lczyński Decomposition Method now proves that a complementably
minimal space is prime, if you assume some additional assumptions which
are all satisfied by `p or c0.

Let’s start with a very easy and general observation.
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Proposition 5.4.5. If X and Y are Banach spaces, with the property that
X is isomorphic to a complemented subspace of Y and if X is isomorphic
to its square, i.e. X ∼ X ⊕X, then Y is isomorphic to X ⊕ Y .

In particular if X and Y are ismorphic to their squares, isomorphic to
complemented subspaces of each other, then it follows that X ∼ X⊕Y ∼ Y .

Proof. Let Z be a complemented subspace of Y so that Y ∼ X ⊕ Z. Then

Y ∼ X ⊕ Z ∼ (X ⊕X)⊕ Z ∼ X ⊕ (X ⊕ Z) ∼ X ⊕ Y.

Remark. It is easy to see that `p ∼ `p ⊕ `p, 1 ≤ p < ∞ and c0 ∼ c0 ⊕ c0,
but it is not clear how to show directly that any complemented subspace of
`p or c0 is isomorphic to its square. So we will need an additional property
of `p and co. Nevertheless we can easily deduce the following Corollary from
Proposition 5.4.5 and Khintchine’s Theorem 5.2.1.

Corollary 5.4.6. For 1 < p < ∞ it follows that Lp[0, 1] is isomorphic to
Lp[0, 1]⊕ L2[0, 1].

Proof of Theorem 5.4.2. Let X = `p or c0. From now on we consider on
all complemented sums the `p-sum, respectively c0-sum. Note that X ∼
(⊕j∈NX)X (actually isometrically)

Let Y be a complemented subspace of X, by Proposition 5.4.5 we only
need to show that X ∼ X ⊕Y , and that can be seen as follows: we let Z be
a subspace of X so that X ∼ Y ⊕ Z, then

Y ⊕X ∼ Y ⊕ (⊕n∈NX)X

∼ Y ⊕ (⊕n∈N(Z ⊕ Y ))X

∼ Y ⊕ Z ⊕ (⊕n∈N(Y ⊕ Z))X

(consider
(
y1, (z1, x1, z2, x2, . . .)

)
7→
(
(y1, z1), (x1, z2, x2, . . .)

)
∼ (⊕n∈N(Y ⊕ Z))X

∼ (⊕n∈NX)X ∼ X.

One more open question:

Remark. L1[0, 1] cannot be prime since `1 is isomorphic to a complemented
subspaces of L1[0, 1], but it is a famous open problem whether or not this is
the only other complemented subspace? Are all the complemented subspaces
of L1[0, 1] either isomorphic to `1 or to L1[0, 1]?
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5.5 The Haar basis is Unconditional in Lp[0, 1], 1 <
p <∞

Theorem 5.5.1. (Unconditionality of the Haar basis in Lp)

Let 1 < p < ∞. Then (h
(p)
t ) is an unconditional basis of Lp[0, 1]. More

precisely, for any two families (at)t∈T and (bt)t∈T in c00(T ) with |at| ≤ |bt|,
for all t ∈ T , it follows that

(5.16)
∥∥∥∑
t∈T

ath
(p)
t

∥∥∥ ≤ (p∗ − 1)
∥∥∥∑
t∈T

bth
(p)
t

∥∥∥,
where

p∗ = max
(
p,

p

p− 1

)
=

{
p if p ≥ 2

p/(p− 1) if p ≤ 2

We will prove the theorem for 2 < p < ∞. For p = 2 it is clear since

(h
(2)
t ) is orthonormal and for 1 < p < 2 it follows from Propostion 3.4.5 by

duality (note that p∗ = q∗ if 1
p + 1

q = 1).
We first need the following technical Lemma which presents the “heart

of the proof of Theorem 5.5.1”

Lemma 5.5.2. Let 2 < p <∞ and define

v : C× C→ [0,∞), (x, y) 7→ |y|p − (p− 1)p|x|p, and(5.17)

u : C× C→ [0,∞), (x, y) 7→ αp
(
|x|+ |y|

)p−1(|y| − (p− 1)|x|
)

(5.18)

with αp = p
(

1− 1

p

)p−1
.

Then it follows for x, y, a, b ∈ C, with |a| ≤ |b|

v(x, y) ≤ u(x, y),(5.19)

u(−x,−y) = u(x, y),(5.20)

u(0, 0) = 0, and(5.21)

u(x+ a, y + b) + u(x− a, y − b) ≤ 2u(x, y).(5.22)

Proof. Let x, y, a, b ∈ C, |a| ≤ |b| be given. (5.20) and (5.21) are trivially
satisfied. Since u and v are both p-homogeneous (i.e. u(αx, αy) = |α|pu(x, y)
for α, x, y ∈ C) we can assume that |x| + |y| = 1 in order to show (5.19).
Thus, the inequality (put s = |x| and, thus, 1− s = |y|) reduces to show

(5.23) F (s) = αp(1−ps)−(1−s)p+(p−1)psp ≥ 0 for 0 ≤ s ≤ 1 and 2 ≤ p.
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In order to verify (5.23), first show that F (0) > 0. Indeed, by concavity of
lnx it follows that

ln p = ln
(
(p− 1) + 1

)
< ln(p− 1) +

1

p− 1
,

and, thus,

ln(p− 1) + 1 = ln(p− 1) +
1

p− 1
+
p− 2

p− 1
> ln p+

p− 2

p− 1
> ln p+

p− 2

p
.

Integrating both sides of the inequality

ln(x− 1) + 1 > lnx+
x− 2

x
= lnx+ 1− 2

x

from x = 2 to p > 2, implies that

ln
(
(p− 1)p−1

)
(p− 1) = ln(p− 1) > (p− 2) ln p = ln

(
pp−2

)
and, thus,

(p− 1)p−1 > pp−2,

which yields

αp = p
(

1− 1

p

)p−1
=

(p− 1)p−1

pp−2
> 1

and thus the claim that F (0) > 0.
Secondly, we claim that F (1) > 0. Indeed,

F (1) = αp(1− p) + (p− 1)p

= −(p− 1)p

pp−2
+ (p− 1)p = (p− 1)p

[
1− 1

pp−2

]
> 0.

Thirdly, we compute the first and second derivative of F and get

F ′(s) = −αpp+ p(1− s)p−1 + (p− 1)ppsp−1, and

F ′′(s) = −p(p− 1)(1− s)p−2 + (p− 1)p+1psp−2

and deduce that F (1
p) = F ′(1

p) = 0, F ′′(1
p) > 0 and that F ′′(s) vanishes

for exactly one value of s (because it is the difference of an increasing and
a decreasing function). Thus, F (s) cannot have more points at which it
vanishes and it follows that F (s) ≥ 0 for all s ∈ [0, 1] and we deduce (5.19).

Finally we need to show (5.22). We can (by density argument) assume
that x and a as well as y and b are linear independent as two-dimensional
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vectors over R. This implies that |x+ ta| and |y+ tb| can never vanish, and,
thus, that the function

G : R→ R, t 7→ t = u(x+ ta, y + tb),

is infinitely often differentiable.
We compute the second derivative of G at 0, getting

G′′(0) = αp

[
− p(p− 1)

(
|a|2 − |b|2

)(
|x|+ |y|

)p−2

− p(p− 2)
(
|b|2 −<(〈 y

|y|
, b〉2)|y|−1

(
|x|+ |y|

)p−1

− p(p− 1)(p− 2)
(
<(〈 x
|x|
, a〉) + <(〈 y

|y|
, b〉)

)2
|x|
(
|x|+ |y|

)p−3

]
.

A detailed computation of G′′(0) will be given in the appendix of this section.
Inspecting each term we deduce (recall that |a| ≥ |b|) from the Cauchy

inequality that G′′(0) < 0. Since for t 6= 0 it follows that G′′(t) = G̃′′(0)
where

G̃(s) : R→ R, s 7→ u(x+ ta︸ ︷︷ ︸
x̃

+sa, y + tb︸ ︷︷ ︸
ỹ

+sb),

we deduce that G′′(t) ≤ 0 for all t ∈ R. Thus, G is a concave function which
yields

1

2
[u(x+ a, y + b) + u(x− a, y − b)] =

1

2
[G(1) +G(−1)] ≤ G(0) = u(x, y),

which proves (5.22).

Now we are ready to deduce Theorem 5.5.1:

Proof of Theorem 5.5.1. Assume that h̃n is normalized in L∞ so that hn =

h̃n/‖h̃n‖p is a linear reordering of (h
(p)
t )t ∈ T which is compatible with

the order on T . For n ∈ N let fn =
∑n

i=1 aih̃i and gn =
∑n

i=1 bih̃i, where
(ai)

n
i=1, (bi)

n
i=1 in R, with |aj | ≥ |bj |, for j = 1, 2, . . . , n, we need to show that

‖gn‖p ≤ (1−p∗)‖fn‖. The fact that we are considering the normalization in
L∞[0, 1] instead of the normalization in Lp[0, 1] (i.e. h̃n instead of hn) will
not effect the outcome. We deduce from (5.19) that

‖gn‖p − (p− 1)p‖fn‖p =

∫ 1

0
v(fn(t), gn(t)) dt ≤

∫ 1

0
u(fn(t), gn(t)) dt.
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Let A = supp(h̃n), A+ = A∩ {h̃n > 0} and A− = A∩ {h̃n < 0}. Since fn−1

and gn−1 are constant on A we deduce∫ 1

0
u(fn(t), gn(t)) dt

=

∫
[0,1]\A

u(fn−1(t), gn−1(t)) dt

+

∫
A+

u(fn−1(t) + an, gn−1(t) + bn) dt

+

∫
A−

u(fn−1(t)− an, gn−1(t)− bn) dt

=

∫
[0,1]\A

u(fn−1(t), gn−1(t)) dt

+
1

2

∫
A
u(fn−1(t) + an, gn−1(t) + bn) + u(fn−1(t)− an, gn−1(t)− bn) dt

≤
∫

[0,1]\A
u(fn−1(t), gn−1(t)) dt+

∫
A
u(fn−1(t), gn−1(t)) dt

[By (5.22)]

=

∫ 1

0
u(fn−1(t), gn−1(t)) dt

Iterating this argument yields∫ 1

0
u(fn(t), gn(t)) dt ≤

∫ 1

0
u(f1(t), g1(t)) dt

= u(a1, b1)

=
1

2

(
u(a1, b1) + u(−a1,−b1)

)
[By (5.20)]

≤ u(0, 0) = 0 [By (5.21) and (5.22)],

which implies our claim that ‖gn‖ ≤ (p− 1)‖fn‖.

From the unconditionality of the Haar basis and Khintchine’s Theorem
we now can deduce the following equivalent representation of the norm on
Lp.

Theorem 5.5.3 (The square-function norm). Let 1 < p < ∞ and let (fn)
be an unconditional basic sequence in Lp[0, 1]. For example (fn) could be
a linear ordering of the Haar basis. Then there is a constant C ≥ 1, only
depending on the unconditionality constant of (fi) and the constants Ap and
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Bp in Khintchine’s Inequality (Lemma 5.3.3) so that for any g =
∑∞

i=1 aifi ∈
span(fi : i ∈ N) it follows that

1

C

∥∥∥ ∞∑
i=1

(
|ai|2|fi|2

)1/2∥∥∥
p
≤ ‖g‖p ≤ C

∥∥∥ ∞∑
i=1

(
|ai|2|fi|2

)1/2∥∥∥
p
,

which means that ‖ · ‖p is on span(fi : i ∈ N) equivalent to the norm

|||f ||| =
∥∥∥ ∞∑
i=1

(
|ai|2|fi|2

)1/2∥∥∥
p

=
∥∥∥ ∞∑
i=1

|ai|2|fi|2
∥∥∥1/2

p/2
.

Proof. For two positive numbers A and B and c > 0 we write: A ∼c B if
1
cA ≤ B ≤ cA. Let Kp be the Khintchine constant for Lp, i.e the smallest
number so that for the Rademacher sequence (rn)∥∥∥ ∞∑

i=1

airi

∥∥∥
p
∼Kp

( ∞∑
i=1

|ai|2
)1/2

for (ai) ⊂ K,

and let bu be the unconditionality constant of (fi), i.e.∥∥∥ ∞∑
i=1

σiaifi

∥∥∥
p
∼bu

∥∥∥ ∞∑
i=1

aifi

∥∥∥
p

for (ai) ⊂ K and (σi) ⊂ {±1}.

We consider Lp[0, 1] in a natural way as subspace of Lp[0, 1]2, with
f̃(s, t) := f(s) for f ∈ Lp[0, 1]. Then let rn(t) = rn(s, t) be the n-th
Rademacher function action on the second coordinate, i.e

rn(s, t) = sign(sin(2nπt)), (s, t) ∈ [0, 1]2.

It follows from the bu-unconditionality for any (aj)
m
j=1 ⊂ K, that

∥∥∥ m∑
j=1

ajfj(·)
∥∥∥p
p
∼bpu

∥∥∥ m∑
j=1

ajfj(·)rj(t)
∥∥∥p
p

=

∫ 1

0

(
m∑
j=1

ajfj(s)rj(t)
)p
ds for all t ∈ [0, 1],

and integrating over all t ∈ [0, 1] implies

∥∥∥ m∑
j=1

ajfj(·)
∥∥∥p
p
∼bpu

∫ 1

0

∫ 1

0

(
m∑
j=1

ajfj(s)rj(t)

)p
ds dt



5.6. APPENDIX 139

=

∫ 1

0

∫ 1

0

(
m∑
j=1

ajfj(s)rj(t)

)p
dt ds(By Theorem of Fubini)

=

∫ 1

0

∥∥∥ m∑
j=1

ajfj(s)rj(·)
∥∥∥p
p
ds

∼Kp
p

∫ 1

0

( m∑
j=1

|ajfj(s)|2
)p/2

ds =
∥∥∥( m∑

j=1

|ajfj |2
)1/2∥∥∥

p
,

which proves our claim using C = Kpbu.

Let (hj) a compatible ordering of the Haar basis. For 1 ≤ p <∞ and a
measurable function f =

∑∞
j=1 ajhj ∈ Lp we define

‖f‖Hp =
∣∣( m∑
j=1

|ajhj |2
∥∥
p

=

(∫ 1

0

( ∞∑
j=1

|aj |21supp(hj)

)p/2)1/p

,

is called

Corollary 5.5.4. For 1 < p <∞ the norms ‖ · ‖Hp and the usual Lp- norm
are equivalent. But ‖ · ‖H1 and the L1 are not equivalent (otherwise would
the Haar basis be uncondition al in L1.

5.6 Appendix: Detailed computation of G′′(0), as
defined in the proof of Lemma 5.5.2:

We write x = x1 + ix2, y = y1 + iy2, a = a1 + ia2, and b = b1 + ib2 be in C,
with |a| ≤ |b|. We define:

f : R× R, (s, t) 7→ (s+ t)p−1
(
t− (p− 1)s

)
=

s : R→ R, ξ 7→ |x+ aξ| =
√

(x1 + a1ξ)2 + (x2 + a2ξ)2

t : R→ R, ξ 7→ |y + bξ| =
√

(y1 + b1ξ)2 + (y2 + b2ξ)2

G : R→ R, ξ 7→ f
(
s(ξ), t(ξ)

)
=

1

αp
u(|x+ aξ|, |y + bξ|).

We will compute the second derivative of G with respect to ξ.

First we compute the partial first and second derivatives of f(s, t):

fs(s, t) = (p− 1)(s+ t)p−2(t− (p− 1)s)− (p− 1)(s+ t)p−1(5.24)
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= (p− 1)(s+ t)p−2
(
t− (p− 1)s− s− t

)
= −p(p− 1)(s+ t)p−2s

ft(s, t) = (p− 1)
(
s+ t

)p−2(
t− (p− 1)s

)
+ (s+ t)p−1

=
(
s+ t

)p−2(
(p− 1)t− (p− 1)2s+ s+ t

)
=
(
s+ t

)p−2(
pt− p(p− 2)s

)
= p
(
s+ t

)p−2(
t− (p− 2)s

)
fs,s(s, t) = −p(p− 1)(p− 2)(s+ t)p−3s− p(p− 1)(s+ t)p−2(5.25)

= −p(p− 1)(s+ t)p−3
(
(p− 2)s+ s+ t

)
fs,t(s, t) = −p(p− 1)(p− 2)(s+ t)p−3s(5.26)

ft,t(s, t) = p(p− 2)(s+ t)p−3
(
t− (p− 2)s

)
+ p(s+ t)p−2(5.27)

= p(s+ t)p−3
(
(p− 2)t− (p− 2)2s+ s+ t

)
= p(s+ t)p−3

(
(p− 1)t− ((p− 2)2 − 1)s

)
Secondly we compute the first and second derivatives of s(ξ) and t(ξ).

ds

dξ
=

(x1+ξa1)a1 + (x2+ξa2)a2√
(x1+a1ξ)2 + (x2+a2ξ)2

(5.28)

=
(x1+ξa1)a1 + (x2+ξa2)a2

s
dt

dξ
=

(y1+ξb1)b1 + (y2+ξb2)b2√
(y1+b1ξ)2 + (y2+b2ξ)2

(5.29)

=
(y1+ξb1)b1 + (y2+ξb2)b2

t

d2s

ξ2
=

(a2
1+a2

2)s− ((x1+ξa1)a1+(x2+ξa2)a2)2

s

s2
(5.30)

=
|a|2

s
−
(
(x1+ξa1)a1 + (x2+ξa2)a2

)2
s3

d2t

ξ2
=

(b21+b22)t− ((y1+ξb1)b1+(y2+ξb2)b2)2

s

s2
(5.31)

=
|b|2

t
−
(
(y1+ξb1)b1 + (y2+ξb2)b2

)2
t3

and thus

ds

ξ

∣∣∣
ξ=0

=
〈x, a〉
|x|

,
dt

ξ

∣∣∣
ξ=0

=
〈y, b〉
|y|

,(5.32)

d2s

ξ2

∣∣∣
ξ=0

=
|a|2

|x|
− 〈x, a〉

2

|x|3
,

d2t

ξ2

∣∣∣
ξ=0

=
|b|2

|y|
− 〈y, b〉

2

|y|3
,(5.33)
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(here we mean by 〈x, a〉 and 〈y, b〉 the scalar product in R2, where x, y, a, b
are seen as vectors in R2). Thus

G′(0) = fs(|x|, |y|)s′(0) + ft(|x|, |y|)t′(0)

G′′(0) = fs,s(|x|, |y|)
(
s′(0)

)2
+ fs(|x|, |y|)s′′(0)

+ 2fs,t(|x|, |y|)s′(0)t′(0) + ft,t(|x|, |y|)
(
t′(0)

)2
+ ft(|x|, |y|)t′′(0)

= −p(p− 1)(|x|+ |y|)p−3
(
(p− 2)|x|+ |x|+ |y|

)〈x, a〉2
|x|2

− p(p− 1)(|x|+ |y|)p−2|x|

[
|a|2

|x|
− 〈x, a〉

2

|x|3

]

− 2p(p− 1)(p− 2)
(
|x|+ |y|

)p−3|x| 〈x, a〉
|x|
〈y, b〉
|y|

+ p(|x|+ |y|)p−3
(
(p− 1)|y| − ((p− 2)2 − 1)|x|

)〈y, b〉2
|y|2

+ p
(
|x|+ |y|

)p−2(|y| − (p− 2)|x|
)[ |b|2
|y|
− 〈y, b〉

2

|y|3

]
= |a|2

(
− p(p− 1)(|x|+ |y|)p−2

)
− |b|2

(
p(|x|+ |y|)p−2 − p(|x|+ |y|)p−2(p− 2)

|x|
|y|

)
−
〈 x
|x|
, a
〉2(
p(p+1)(|x|+|y|)p−3

(
(p− 2)|x|+|x|+|y|

)
+p(p+1)(|x|+|y|)p−2

)
− 2
〈x, a〉
|x|
〈y, b〉
|y|

p(p− 1)(p− 2)
(
|x|+ |y|

)p−3|x|

+
〈 y
|y|
, b
〉2
(
p(|x|+ |y|)p−3

(
(p− 1)|y| − ((p− 2)2 − 1)|x|

)
− p
(
|x|+ |y|

)p−2
(

1− (p− 2)
|x|
|y|

))
=
(
|b|2 − |a|2

)(
p(p− 1)(|x|+ |y|)p−2

)
− |b|2p(p− 2)(|x|+ |y|)p−1|y|−1

−
〈 x
|x|
, a
〉2
p(p− 1)(p− 2)|x|

(
|x|+ |y|

)p−3

− 2
〈x, a〉
|x|
〈y, b〉
|y|

p(p− 1)(p− 2)
(
|x|+ |y|

)p−3|x|
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−
〈 y
|y|
, b
〉2
p(p− 1)(p− 2)|x|

(
|x|+ |y|

)p−3

+
〈 y
|y|
, b
〉2
p(p− 2)(|x|+ |y|)p−1|y|−1



We note that the factor of |b|2 is:

p(p− 1)(|x|+ |y|)p−2 +
(
p− p(p− 1)− p(p− 2) |x||y|

)
(|x|+ |y|)p−2

= p(p− 1)(|x|+ |y|)p−2 − p(p− 2)
(
1− |x||y|

)
(|x|+ |y|)p−2

= p(p− 1)(|x|+ |y|)p−2 − p(p− 2)(|x|+ |y|)p−1|y|−1

and the factor of
〈 y
|y| , b

〉2
equals:

(p+1)p(|x|+ |y|)p−3|y| − p(p+1)(p+3)(|x|+ |y|)p−3|x|
−p(|x|+ |y|)p−2

(
1− (p+2) |x||y|

)
= −p(p− 1)(p− 2)|x|

(
|x|+ |y|

)p−3
+ (p− 1)p(|x|+ |y|)p−2

−p(|x|+ |y|)p−2
(

1− (p+2) |x||y|

)
= −p(p− 1)(p− 2)|x|

(
|x|+ |y|

)p−3

+(p− 2)p(|x|+ |y|)p−2 + (p− 2)p |x||y|
= −p(p− 1)(p− 2)|x|

(
|x|+ |y|

)p−3
+ p(p− 2)(|x|+ |y|)p−1|y|−1


=
(
|b|2 − |a|2

)
p(p− 1)(|x|+ |y|)p−2

− |b|2p(p− 2)(|x|+ |y|)p−1|y|−1 +
〈 y
|y|
, b
〉2

(|x|+ |y|)p−1|y|−1

−

(〈 x
|x|
, a
〉

+
〈 y
|y|
, b
〉)2

p(p− 1)(p− 2)|x|
(
|x|+ |y|

)p−3
.



Chapter 6

Greedy bases

6.1 Characterization of Greedy bases, by Temlyakov
and Konyagin

We start with the Threshold Algorithm:

Definition 6.1.1. Let X be a separable Banach space with a normalized
basis (en), and let (e∗n) be the coordinate functionals. For n ∈ N and x ∈ X
let Λn ⊂ N,, with #Λn = n so that

min
i∈Λn
|e∗i (x)| ≥ max

i∈N\Λn
|e∗i (x)|,

i.e. we are reordering (e∗i (x)) into (e∗λ(i)(x)), so that

|e∗λ1(x)| ≥ |e∗λ2(x)| ≥ |e∗λ3(x)| ≥ . . . ,

and for n ∈ N we put

Λn = {λ1, λ2, . . . λn}.

Then define for n ∈ N
GTn (x) =

∑
i∈Λn

e∗i (x)ei.

(GTn ) is called the Threshold Algorithm.

Definition 6.1.2. A normalized basis (ei) is called Quasi-Greedy, if for all
x

(QG) x = lim
n→∞

GTn (x).

143
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A basis is called greedy if there is a constant C so that

(G)
∥∥x−GT (x)

∥∥ ≤ Cσn(x),

where we define

σn(x) = σn
(
x, (ej)

)
= inf

Λ⊂N,#Λ=n
inf

z∈span(ej :j∈Λ)
‖z − x‖.

In that case we say that (ei) is C-greedy. We call the smallest constant C
for which (G) holds the greedy constant of (en) and denote it by Cg.

Recall the definition of the unconditional constant and suppression un-
conditional constant of a basis (ei):

Cu = sup
{∥∥∥ ∞∑

i=1

aibiei

∥∥∥ : x =

∞∑
i=1

aiei ∈ BX and |bi| ≤ 1
}

Cs = sup
{∥∥∥∑

i∈A
aiei

∥∥∥ : x =

∞∑
i=1

aiei ∈ BX and A ⊂ N
}
.

Recall that a basis (en) of a Banach space X is unconditional if and only
if for all x =

∑∞
n=1 xnen ∈ X and any permutation π : N → N the series∑∞

n=1 xπ(n)eπ(n) also converges to x. This implies in particular that every
unconditional basis must be quasi greedy.

Example 6.1.3. The shrinking basis (en) in James space J is not quasi
greedy.

Recall

∥∥∥ n∑
j=1

xnen

∥∥∥
qv

= sup
{( l∑

j=1

|ξnj−ξnj−1 |2
)1/2

: l ∈ N and 1 ≤ n0 < n1 < . . . nl

}
For n ∈ N, let

zn =
(

1, 1− 1

n
, 1, 1− 1

n
, . . . , 1, 1− 1

n︸ ︷︷ ︸
2n coordinates

, 0, 0, . . .
)
,

then ‖zn‖qv ≤ c, where c does not depend on n. But

‖GTn (zn)‖ ≥ 2n
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Now we can concatinate infinitely many small enough multiples of the zn’s,
i.e., let n1 < n2 < n3 < . . . fast increasing (faster than k2), say nk = 2k,
k ∈ N,

yk =
(

0, 0, . . . , 0︸ ︷︷ ︸∑
j<k nj

,
1

k2

(
1, 1− 1

nk
, 1, 1− 1

nk
, . . . , 1, 1− 1

nk

)
︸ ︷︷ ︸

2nk

, 0, 0, . . .
)
.

Then

x =
∞∑
k=1

yk

converges in J , but, if we let Nk =
∑k−1

j=1 2nj + nk we deduce that

lim
k→∞

‖GTNk(x)‖qv ≥ lim
k→∞

2k

k2
=∞.

Definition 6.1.4. We call a normalized basic sequence democratic if there
is a constant C so that for all finite E,F ⊂ N, with #E = #F it follows
that

(6.1)
∥∥∥∑
j∈E

ej

∥∥∥ ≤ C∥∥∥∑
j∈F

ej

∥∥∥
In that case we call the smallest constant, so that (6.1) holds, the Constant
of Democracy of (ei) and denote it by Cd.

The following characterization of greedy bases is due to Konyagin and
Temlyakov:

Theorem 6.1.5. [KT1] A normalized basis (en) is greedy if and only it is
unconditional and democratic. In this case

(6.2) max(Cs, Cd) ≤ Cg ≤ CdCsC2
u + Cu,

where Cu is the unconditional constant and Cs is the suppression constant.

Remark. The proof will show that the first inequality is sharp. Recently
it was shown in [DOSZ1] that the second inequality is also sharp.

Proof of Theorem 6.1.5. “⇐” Assume that (ei) is unconditional and demo-
cratic. Let x =

∑
e∗i (x)ei ∈ X, n ∈ N and let η > 0. Choose x̃ =

∑
i∈Λ∗n

aiei
so that #Λ∗n = n which is up to η the best n term approximation to x (since
we allow ai to be 0, we can assume that #Λ is exactly n), i.e.

(6.3) ‖x− x̃‖ ≤ σn(x) + η.
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Let Λn be a set of n coordinates for which

b := min
i∈Λn
|e∗i (x)| ≥ max

i∈N\Λn
|e∗i (x)| and GTn (x) =

∑
i∈Λn

e∗i (x)ei.

We need to show that

‖x−GTn (x)‖ ≤ (CdCsC
2
u + Cu)(σn(x) + η).

Then

x−GTn (x) =
∑

i∈N\Λn

e∗i (x)ei =
∑

i∈Λ∗n\Λn

e∗i (x)ei +
∑

i∈N\(Λ∗n∪Λn)

e∗i (x)ei.

But we also have∥∥∥ ∑
i∈Λ∗n\Λn

e∗i (x)ei

∥∥∥ ≤ bCu∥∥∥ ∑
i∈Λ∗n\Λn

ei

∥∥∥(6.4)

≤ bCuCd
∥∥∥ ∑
i∈Λ
\
nΛ∗n

ei

∥∥∥
[Note that #(Λn \ Λ∗n) = #(Λ∗n \ Λn)]

≤ C2
uCd

∥∥∥ ∑
i∈Λn\Λ∗n

e∗i (x)ei

∥∥∥
[Note that |e∗i (x)| ≥ b if i ∈ Λn \ Λ∗n ]

≤ CsC2
uCd

∥∥∥ ∑
i∈Λ∗n

(e∗i (x)− ai)ei +
∑

i∈N\Λ∗n

e∗i (x)ei

∥∥∥
[On N\Λ∗n take all coefficients e∗i (x)

and on Λ∗n the coefficients e∗i (x)−ai]
= CsC

2
uCd‖x− x̃‖ ≤ CsC2

uCd(σn(x) + η)

and ∥∥∥ ∑
i∈N\(Λ∗n∪Λn)

e∗i (x)ei

∥∥∥ ≤ Cs∥∥∥ ∑
i∈Λ∗n

(e∗i (x)− ai)ei +
∑

i∈N\Λ∗n

e∗i (x)ei

∥∥∥(6.5)

= Cs‖x− x̃‖ ≤ Cs(σn(x) + η).

This shows that (ei) is greedy and, since η > 0 is arbitrary, we deduce that
Cg ≤ CsC2

uCd + Cs.
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“⇒” Assume that (ei) is greedy. In order to show that (ei) is democratic
let Λ1,Λ2 ⊂ N with #Λ1 = #Λ2. Let η > 0 and put m = #(Λ2 \ Λ1) and

x =
∑
i∈Λ1

ei + (1 + η)
∑

i∈Λ2\Λ1

ei.

Then it follows∥∥∥∑
i∈Λ1

ei

∥∥∥ = ‖x−GTm(x)‖

≤ Cgσm(x) (since (ei) is Cg-greedy)

≤ Cg
∥∥∥x− ∑

i∈Λ1\Λ2

ei

∥∥∥ = Cg

∥∥∥ ∑
i∈Λ1∩Λ2

ei + (1 + η)
∑

i∈Λ2\Λ1

ei

∥∥∥.
Since η > 0 can be taken arbitrary, we deduce that∥∥∥∑

i∈Λ1

ei

∥∥∥ ≤ Cg∥∥∥∑
i∈Λ2

ei

∥∥∥.
Thus, it follows that (ei) is democratic and Cd ≤ Cg.

In order to show that (ei) is unconditional let x =
∑
e∗i (x)ei ∈ X have

finite support S. Let Λ ⊂ S and put

y =
∑
i∈Λ

e∗i (x)ei + b
∑
i∈S\Λ

ei,

with b > maxi∈S |e∗i (x)|. For n = #(S \ Λ) it follows that

GTn (y) = b
∑
i∈S\Λ

ei,

and since (ei) is greedy we deduce that (note that #supp(y − x) = n)∥∥∥∑
i∈Λ

e∗i (x)ei

∥∥∥ = ‖y −GTn (y)‖ ≤ Cgσn(y) ≤ Cg‖y − (y − x)‖ = Cg‖x‖,

which implies that (ei) is unconditional with Cs ≤ Cg.

6.2 The Haar basis is greedy in Lp[0, 1] and Lp(R)

Recall (ht)t∈T , with

T = {(n, j) : n ∈ N0, j = 0, 1, 2, . . . , 2n − 1} ∪ {0},
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and h0 = 1[0,1] and for n = 0, 1, 2, . . ., and j = 0, 1, 2, . . . , 2n − 1

h(n,j) = 1[j2−n,j2−n+2−n−1) − 1[j2−n+2−n−1,(j+1)2−n).

h
(p)
(n,j) = 2n/ph(n,j).

Theorem 6.2.1. For 1 < p <∞ there are two constants cp ≤ Cp, depending
only on p, so that for all n ∈ N and all A ⊂ T with #A = n

cpn
1/p ≤

∥∥∥∑
t∈A

h
(p)
t

∥∥∥ ≤ Cpn1/p.

In particular (h
(p)
t )t∈T is democratic in Lp[0, 1].

With Theorem 6.1.5 and Theorem 5.5.1 we deduce that

Corollary 6.2.2. The Haar Basis of Lp[0, 1], 1 < p <∞ is greedy.

The proof will follow from the following three Lemmas.

Lemma 6.2.3. For any 0 < q < ∞ there is a dq > 0 so that the following
holds.

Let n1 < n2 < . . . nk be integers and let Ej ⊂ [0, 1] be measurable for
j = 1, . . . k. Then we have∫ 1

0

( k∑
j=1

2nj/q1Ej (x)
)q
dx ≤ dq

k∑
j=1

2njm(Ej).

Proof. Define

f(x) =
k∑
j=1

2nj/q1Ej (x).

For j = 1, . . . k write E′j = Ej \
⋃k
i=j+1Ei. It follows that for x ∈ E′j

f(x) ≤
j∑
i=1

2ni/q ≤
nj∑
i=1

2i/q =
2(nj+1)/q − 1

21/q − 1
≤ 21/q

21/q − 1︸ ︷︷ ︸
d
1/q
q

2nj/q.

Thus ∫ 1

0
f(x)qdx ≤ dq

k∑
j=1

2njm(E′j) ≤ dq
k∑
j=1

2njm(Ej),

which finishes the proof.
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Lemma 6.2.4. For 1 < p < ∞ there is a Cp > 0 so that for all n ∈ N,
A ⊂ T with #A = n, and (εt) ⊂ {−1, 1} it follows that∥∥∥∑

t∈A
εth

(p)
t

∥∥∥
p
≤ Cpn1/p.

Proof. Let n1 < n2 < . . . < nk be all the integers ni for which there is a
t ∈ A so that m(supp(h(p)t)) = 2−ni . For j = 1, . . . k put

Ej =
⋃

i∈{0,1,...2nj−1},(nj ,i)∈A

supp(h(p)(i, nj)).

Since

m(Ej) = 2−nj#{i ∈ {0, 1, . . . 2nj − 1}, (nj , i) ∈ A}

and thus

#{i ∈ {0, 1, . . . 2nj − 1}, (nj , i) ∈ A} = 2njm(Ej).

It follows therefore that

n =

{∑k
j=1 #{i ∈ {0, 1, . . . 2nj − 1}, (nj , i) ∈ A} =

∑k
j=1 2njm(Ej) if 0 6∈ A

1 +
∑k

j=1 2njm(Ej) if 0 ∈ A.

Assume without loss of generality that 0 6∈ A. It follows that

∥∥∥∑
t∈A

εth
(p)
t

∥∥∥
p
≤

[∫ 1

0

[ k∑
j=1

2nj/p1Ej

]p
dx

]1/p

≤ d1/p
p

[
k∑
j=1

2njm(Ej)

]1/p

= d1/p
p n1/p.

[dp as in Lemma 6.2.3]

Lemma 6.2.5. For 1 < p < ∞ there is a cp > 0 so that for all n ∈ N,
A ⊂ T with #A = n, and (εt) ⊂ {−1, 1} it follows that∥∥∥∑

t∈A
εth

(p)
t

∥∥∥
p
≥ cpn1/p.

Proof. Note that for 1 < p, q <∞ with 1
p + 1

q and s, t ∈ T it follows that

〈h(p)
t , h(q)

s 〉 = δ(t,s),
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thus the claim follows from the fact that the h
(p)
t ’s are normalized in Lp[0, 1]

and by Lemma 6.2.4 using the duality between Lp[0, 1] and Lq[0, 1]. Indeed,

∥∥∥∑
t∈A

εth
(p)
t

∥∥∥ ≥ 〈∑
t∈A

εth
(p)
t ,

∑
t∈A εth

(q)
t∥∥∥∑t∈A εth
(q)
t

∥∥∥
〉

=
n∥∥∥∑t∈A εth

(q)
t

∥∥∥ ≥ n1/p

cq
,

where cq is chosen like in Lemma 6.2.5. Our claim follows therefore by
letting Cp = 1/cq.
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