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Chapter 1

Some Basic Background

In this chapter we want to recall some important basic results from Func-
tional Analysis most of which were already covered in the Real Analysis
course Math607/608 and can be found in the textbooks [Fol] and [Roy].

1.1 Normed Linear Spaces, Banach Spaces

All our vectors spaces will be vector spaces over the real field R or the
complex field C. In the case that the field is undetermined we denote it by
K.

Definition 1.1.1. [Normed linear spaces]

Let X be a vector space over K, with K =R or K = C. A semi norm on
X is a function || - || : X — [0, 00) satisfying the following properties for all
z,yeX and AeK

L. |l +y| < |lz|| + ||lyll (triangle inequality) and
2. |Aall = ]A| - [l2] (homogeneity),

and we call a semi norm || - || a norm if it also satisfies
3. |lz]| =0 < x =0, for all z € X.

In that case we call (X, || - ||), or simply X, a normed space. Sometimes we
might denote the norm on X by || - ||x to distinguish it from some other
norm || - ||y defined on some other space Y.

For a normed space (X, || - ||) the sets

Bx ={reX:|z||<1}and Sx ={z € X : ||z]| =1}

are called the unit ball and the unit sphere of X, respectively.

5
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Note that a norm || - || on a vector space defines a metric d(-,-) by
d(z,y) =z —yll,  =yelX,
and this metric defines a topology on X, also called the strong topology.

Definition 1.1.2. [Banach Spaces]
A normed space which is complete, i.e., in which every Cauchy sequence
converges, is called a Banach space.

To verify that a certain norm defines a complete space it is enough, and
sometimes easier to verify that absolutely converging series are converging;:

Proposition 1.1.3. Assume that X is a normed linear space so that for all
sequences (x,,) C X for which ) ||z||, < oo, the series > x, converges (i.e.
lim,, — o0 Z?:l x; exists in X ).

Then X is complete.

Proposition 1.1.4. A subspace of a Banach space is a Banach space if and
only if it is closed.

Proposition 1.1.5. [Completion of normed spaces]
If X is a normed space, then there is a Banach space X so that:

There is an isometric embedding I from X into X, meaning that I :
X — X is linear and ||I(z)| = ||z||, for z€ X, so that the image of X under
I is dense in X.

Moreover X is unique up to isometries, meaning that whenever Y is
a Banach space for which there is an isometric embedding J : X — Y,
with dense image, then there is an isometry J : X — Y (i.e. a linear
bijection between X and Y for which ||J(Z)|| = ||Z|| for all # € X), so that
JolI(z)=J(z) for all ze X.

The space X is called the completion of X.
Let us recall some examples of Banach spaces.

Examples 1.1.6. Let (©,%, 1) be a measure space, and let 1 < p < oo,
then put

Lp(p) :

{f : © — K measurable : / |fIPdu(z) < oo}.
Q
For p = oo we put

Loo(p):={f: Q2> Kmble:3C p({weQ:|f(w)| > C}) =0}.
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Then L£,(u) is a vector space, and the map

1/p
Il Lo) SR, f oo ( / If(w)lpdﬂ(w)> ,
Q
if 1 <p< oo, and
D-lloe s Lool) = By F s sup{C > 0: p({we s [f(w)] = C}) > 0},

if p = o0, is a seminorm on £, ().
For f,g € L,(n) define the equivalence relation by

f~g:<= f(w)=g(w) for p-almost all w € Q.

Define L,(u) to be the quotient space L£,(i)/ ~. Then || - ||, is well de-
fined and a norm on Ly (x), and turns Ly(p) into a Banach space. Although,
strictly speaking, elements of L,(x) are not functions but equivalence classes
of functions, we treat the elements of L,(x) as functions, by picking a rep-
resentative out of each equivalence class. Equality then means p almost
everywhere equality.

If ACR,or ACR? deN, and p is the Lebesgue measure on A we
write L,(A) instead of L,(u). If I' is a set and p is the counting measure on
I' we write £,(I") instead of L,(p). Thus

60) = {a: T o Kol = (Xlenl) " < oo}, i1 <p < oo,
vyel

and

loo(T) ={z(): T = K: ||z]loo = sup |z,] < 00}.
~yel'

If I' = N we write £, instead of ¢,(N) and if I' = {1,2,...,n}, for some
n € N we write £ instead of £,({1,2,...,n}).
The set
co ={(xn, :neN) CK: nh_}ngoxn =0}

is a linear closed subspace of £, and, thus, it is also a Banach space (with

I+ lloo)-

More generally, let S be a (topological) Hausdorff space, then

Cy(S) ={f:S — K continuous and bounded}
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is a closed subspace of (. (S), and, thus, Cy(S) is a Banach space. If K
is a compact space we will write C'(K) instead of Cy(K) (since continuous
functions on compact spaces are automatically bounded). If S is locally
compact then

Co(S) = {f : S — K continuous and {|f| > c} is compact for all ¢ > 0}

is a closed subspace of Cy(S), and, thus, it is a Banach space.

Let (€2,3) be a measurable space and assume first that K = R. Recall
that a finite signed measure on (Q,Y) is a map p : X — R so that u(0) =0,
and so that

oo [e.@]
u( U E,) = Z w(Ey), whenever (E,) C ¥ is pairwise disjoint.
n=1 n=1

The Jordan Decomposition Theorem says that such a signed measure
can be uniquely written as the difference of two positive finite measure pu*
and p~ for which there is a partition (27,27) of Q into two measurable
sets so that ™ (Q27) = u=(Q7) = 0.

If we let
lpllo = ™ ( Q) + 1~ ()= sup  pu(A) - u(B),
A,BeX disjoint
then || - ||, is a norm, the variation norm, on

M(Y) = Mr(¥) :={u: ¥ — R: signed measure},

which turns M (X) into a real Banach space.
If K = C, we define

M(2) = Mc(M) = {p+iv: p,v € Mg(%)},
and define for pu + iv € M¢(X)

e+ ivllo = VAl + I3

Then Mc(Y) is a complex Banach space.

Assume S is a topological space and Bg is the sigma-algebra of Borel sets,
i.e. the o-algebra generated by the open subsets of S. We call a (positive)
measure on Bg a Radon measure if

1) w(A) = inf{u(U) : U C S open and A C U} for all A € Bg, (outer
regularity)
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2) w(U) =sup{p(C) : C C S compact and C' C U} for all U C S, (inner
regularity on open sets) and

3) it is finite on all compact subsets of .S.

If K = R a signed Radon measure is the difference of two finite positive
Radon measure, and, as before, if K = C then u + iv, where y and v are
two real valued Radon measures, is a signed Radon measure

We denote the set of all signed Radon measures by M(S). Then M(S)
is a closed linear subspace of M (Bg).

It can be shown (cf. [Fol, Proposition 7.5]) that a o-finite Radon measure
is inner regular on all Borel sets.

Proposition 1.1.7. [Fol, Theorem 7.8]

Let X be a locally compact space for which all open subsets are o-compact
(i.e. a countable union of compact sets). Then every Borel measure which
is bounded on compact sets is a Radon Measure.

There are many ways to combine Banach spaces to new spaces.

Proposition 1.1.8. [Complemented sums of Banach spaces|
If X; is a Banach space for alli€l, I some index set, and 1 < p < o0,
we let

(@iel Xi)gp = {(xz‘)z‘el 1w € X, fori€l, and (||zi]| :i€1) € ép(D}-

We put for x € (@ig Xi)zp

1/p
, , a:‘p,> if 1 <p< oo,
fll = e Dy, = § (Sl )

sup;er [|il x; if p=oo.
Then || - || is a norm on ( @icr X;), and ( ®icr Xi), is a Banach space.

p P
We call (@z‘el Xi)e the £, sum of the X;, i € I.

P
Moreover,

(@Z‘GIXi)CO = {(.’Bi)ie[ € (@iEIXi)éoo Ve>0 {Z e I: ”l'z” > C} 18 ﬁm'te}

s a closed linear subspace of ( Dicr Xi)e , and, thus also a Banach space.
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If all the spaces X; are the same spaces in Proposition 1.1.8, say X; =X,
for i € I we write £,(1,X), and ¢o(Z,X), instead of (@iGIXi)gp or (@iEIXi)co’
respectively. We write £,(X), and ¢o(X) instead of £,(N, X) and ¢y(N, X),
respectively, and £;(X), instead of £,({1,2,...,n}, X), for neN.

Note that if I is finite then for any norm || - || on R, the norm topology
on (®X;)|. does not depend on || - ||. By ®ierX; we mean therefore the
norm product space, which is, up to isomorphism unique, for example in
this case (BicrXi)e, ~ (DXier)e, -

If X and Y are Banach space we often denote the product space X x Y
also X @Y.
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1.2 Operators on Banach Spaces, Dual Spaces

If X and Y are two normed linear spaces, then for a linear map (we also say
linear operator) T': X — Y the following are equivalent:

a) T is continuous,

b) T is continuous at 0,

c) T is bounded, i.e. |T| = sup,ep, [T (7)| < oo.
In this case || - ||, as defined in (c), is a norm on

L(X,Y)={T: X — Y linear and bounded}

which turns L(X,Y) into a Banach space if Y is a Banach space, and we
observe that

T ()| < ||T| - ||| for al T € L(X,Y) and z € X.

We call a bounded linear operator T': X — Y an <somorphic embedding if
there is a number ¢ > 0, so that c||z| < |[|T(x)||. This is equivalent to saying
that the image T'(X) of T is a closed subspace of Y and 7" has an inverse
T-!:T(X) — Y which is also bounded.

An isomorphic embedding which is onto (we say also surjective) is called

an isomorphy between X and Y. If | T(z)|| = ||z|| for all z € X we call T
an isometric embedding, and call it an isometry between X and Y if T is
surjective.

If there is an isometry between two spaces X and Y we write X ~ Y.
In that case X and Y can be identified for our purposes. If there is an
isomorphism 7 : X — Y with ||T|| - |T7!| < ¢, for some number ¢ > 1 we
write X ~. Y and we write X ~ Y if there is a ¢ > 1 so that X ~. Y.

If X and Y are two Banach spaces which are isomorphic (for example if
both spaces are finite dimensional and have the same dimension), we define

dpy(X,Y) = inf{||T| - |77 : T : X = Y, T isomorphism},

and call it the Banach Mazur distance between X and Y. Note that always
dpy(X,Y) > 1.

Remark. If (X, | - ||) is a finite dimensional Banach space over K, K = R
or K = C, and its dimension is n € N we can, possibly after passing to an
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isometric image, assume that X = K". Indeed, let x1,x2,...x, be a basis
of X, and consider on K" the norm given by:

n
(a1, ag,...,a,)|lx = H Zaja?jH, for (a1, aq,...a,) € K"
j=1
Then
n
I:'K"—= X, (ai,a9,...,an)— Zajxj,
is an isometry. Therefore we can always assume that X = (K", |- ||x). This

means By is a closed and bounded subset of K", which by the Theorem
of Bolzano-Weierstrafl, means that By is compact. In Theorem 1.5.4 we
will deduce the converse and prove that a Banach space X, for which By is
compact, must be finite dimensional.

Definition 1.2.1. [Dual space of X]
If Y = K and X is a normed linear space over K, then we call L(X,K) the
dual space of X and denote it by X*.

If ¥ € X* we often use (-,-) to denote the action of 2* on X, i.e. we
write (z*, z) instead of x*(x).

Theorem 1.2.2. [Representation of some Dual spaces]

1. Assume that 1 < p < o0 and 1 < q < oo with 1% + % =1, and assume
that (2, %, 1) is a measure space without atoms of infinite measure.
Then the following map is a well defined isometry between L;(,u) and

Lg(p)-

Wi L) > L), (9(0).S) = / A0l dn),
for g € Ly(p), and f € Ly(p

2. Assume that S is a locally compact Hausdorff space, then the map

W M(S) > Co(S), (¥(n), f) = / £(6) dute
for pe M(S) and f € Co(S
is an isometry between M(S) and C§(S).

Remark. If p = oo and ¢ = 1 then the map ¥ in Theorem 1.2.2 part
(1) is still an isometric embedding, but in general (i.e. if Loo(u) is infinite
dimensional) not onto.
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Example 1.2.3. ¢ ~ {; (by Theorem 1.2.2 part (2)) and ¢} ~ {s (by
Theorem 1.2.2 part (1)) .
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1.3 Baire Category Theorem and its Consequences

The following result is a fundamental Theorem in Topology and leads to
several useful properties of Banach spaces.

Theorem 1.3.1. (The Baire Category Theorem, c.f [Fol, Theorem 5.4])
Assume that (S,d) is a complete metric space. If (U,) is a sequence of open
and dense subsets of S then (2, Uy is also dense in S.

Often we will use the Baire Category Theorem in the following equivalent
restatement.

Corollary 1.3.2. If (C,) is a sequence of closed subsets of a complete metric
space (S,d) whose union is all of S, then there must be an n € N, so that
Cy, the open interior of Cy, is not empty, and thus there is an x € Cy, and
an € >0 so that B(z,e) ={z € S :d(z,z) <e) C Cp.

Proof. Assume our conclusion were not true. Let U, = S\ Cy, for n € N.
Then U, is open and dense in S. Thus [,y Uy is also dense, in particular
not empty. But this is in contradiction to the assumption that (J,, .y Cn =

S. O

The following results are important applications of the Baire Category
Theorem to Banach spaces.

Theorem 1.3.3. (The Open Mapping Theorem, cf [Fol, Theorem 5.10])
Let X and Y be Banach spaces and let 7' € L(X,Y’) be surjective. Then T’
is also open (the image of every open set in X under T is open in Y').

Corollary 1.3.4. Let X and Y be Banach spaces and T € L(X,Y) be a
bijection. Then its inverse T—1 is also bounded, and thus T is an isomor-
phism.

Theorem 1.3.5. (Closed Graph Theorem, c.f. [Fol, Theorem 5.12])

Let X and Y be Banach spaces and T : X — Y be linear. If T has a closed
graph (i.e I'(T) = {(z,T(z)) : * € X} is closed with respect to the product
topology in X x Y'), then T is bounded.

Often the Closed Graph Theorem is used in the following way:

Corollary 1.3.6. Assume thatT : X — Y is a bounded, linear and bijective
operator between two Banach spaces X and'Y. Then T is an isomorphism.
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Theorem 1.3.7. (Uniform Boundedness Principle, c.f. [Fol, Theorem 5.13])
Let X and Y be Banach spaces and let A C L(X,Y). If for all x € X
suppe |T(z)|| < oo then A is bounded in L(X,Y), i.e.

sup [T = sup sup |T(x)] < oc.
TeA z€EBx TEA

An important consequence of the Uniform Boundedness Principle is the
following

Theorem 1.3.8. [Theorem of Banach-Steinhaus]

a) If A C X, and sup,c 4 [(x*, z)| < o0, for all z* € X*, then A is (norm)
bounded.

b) If A C X*, and sup ¢4 [(x*,2)| < o0, forallz € X, then A is (norm)
bounded.

In particular, weak compact subsets of X and weak™ compact subsets of X*
are norm bounded.

Proposition 1.3.9. (Quotient spaces)
Assume that X is a Banach space and that Y C X is a closed subspace.
Consider the quotient space

XY ={z+Y:ze X}

(with usual addition and multiplication by scalars). For x € X put T =
r+Y € X/Y and define

T = inf = inf = dist(x,Y).
[y = inf sl = inf fla +3llx = dist(z,¥)

Then || - ||x/y is norm on X/Y which turns X/Y into a Banach space.
Proof. For 1,22 in X and A € K we compute
_ ~inf
171 + Z2|lx/y Jnf |21 + 22 + |
= ian lx1 +y1 + z2 + 2|

Y1,Y2€

_yhyaeY(H vyl llez 4 ge2ll) = | Lixyy + [1Z2llx/y



16 CHAPTER 1. SOME BASIC BACKGROUND

and

IAZ1llx/y
= inf ||A
inf [Aa1 + ]

= inf ||A = |A| - inf =|Al-|z .
Inf M@+ )l = Al inf flzn +yll = A [71]lx/ v

Moreover, if ||Z|x/y = 0, it follows that there is a sequence (y,) in Y,
for which lim,,_,~ ||z — yn|| = 0, which implies, since Y is closed that z =
limy, 400 ¥, € Y and thus T = 0 (the zero element in X/Y). This proves
that (X/Y, |- ||x/y) is a normed linear space. In order to show that X/Y
is complete let z,, € X with Yy [|Znllx/y < oo. It follows that there are
yn €Y, n €N, so that

S
Z ||xn + ynHX < 09,

n=1
and thus, since X is a Banach space,

oo

T = Z(xn + Yn),

n=1
exists in X and we observe that
n n o
Jz=>a] < o=@ +w|| < Xl + il =uow 0
j=1 j=1 J=n+l1
which verifies that X/Y is complete. O
From Corollary 1.3.4 we deduce

Corollary 1.3.10. If X and Y are two Banach spaces and T : X —Y is a
linear, bounded and surjective operator, it follows that X/N (T) and Y are
isomorphic, where N'(T) is the null space of T.

Proof. Since T is continuous N (7T') is a closed subspace of X. We put
T:X/N(T)—=Y, x+N(T)w— T(x).

Then T is well defined, linear, and bijective (linear Algebra), moreover, for
reX

17 (z + N(T)I = ol T @+ 2]
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<7 oy [+ z[l = 1T - [l + N (D)l x /v (1) -

Thus, T is bounded and our claim follows from Corollary 1.3.4. O

Proposition 1.3.11. For a bounded linear operator T : X — Y between
two Banach spaces X and 'Y the following statements are equivalent:

1. The range T(X) is closed.

2. The operator T : X/N(T) — Y, T — T(z) is an isomorphic embed-
ding,

3. There is a number C > 0, so that dist(z, N (T)) = infyep ||z — y| <
ClIT ()]l
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1.4 The Hahn Banach Theorem

Definition 1.4.1. Suppose that V is a vector space over K. A real-valued
function p on V, satisfying

e p(0) =0,
e p(z+y) < p(z) +p(y), and
e p(A\x) = Ap(x) for A > 0,

is called a sublinear functional on V.
Note that 0 = p(0) < p(z) + p(—=), and, thus, p(—z) > —p(z).

Theorem 1.4.2. (The analytic Hahn-Banach Theorem, real version, c.f.
[Fol, Theorem 5.6])

Suppose that p is a sublinear functional on a real vector space V', that W
is a linear subspace of V' and that f is a linear functional on W satisfying
f(y) < p(y) for ally € W. Then there exists a linear functional g on V
such that g(x) = f(x) for allz € W (g extends f) and such that g(y) < p(y)
for all y € V' (control is maintained).

Theorem 1.4.3. (The analytic Hahn-Banach Theorem, complex version,
c.f. [Fol, Theorem 5.7])

Suppose that p is a seminorm on a complex vector space V', that W is a linear
subspace of V' and that f is a linear functional on W satisfying | f(x)| < p(x)
for all x € W. Then there exists a linear functional g on V' such that
g(x) = f(z) for allz € W (g extends f) and such that |g(y)| < p(y) for all
y € V (control is maintained).

Corollary 1.4.4. Let X be a normed linear space Y a subspace and y* € Y*.
Then there exists an extension x* of y* to an element in X* with ||z*| =

Iy
Proof. Put p(x) = [ly*|[|]. B

Corollary 1.4.5. Let X be a normed linear space, Y a subspace of X,
and v € X with h = dist(z,Y) > 0. Then there exists an x* € X*, with
z*ly =0, ||z*]| and x*(z) = h.

Proof. Consider Z = {y +ax : y € Y and a € K}. Note that every z € Z
has a unique representation z = y + ax, with y € Y and a € K. Indeed, if
Y1 + a1z = Yo + asx, with y1,y2 € Y and aq, a2 € K, then we observe that
a; = ag, because otherwise x = (y1 — y2)/(a1 — az) € Y. Thus also y; = yo.
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We define f : Z — K, y + ax — ah. The unique representation of each
z € Z implies that f is linear, and it follows for ¢ # 0 and y € Y that

|y +az)| =alé < |allla™"y + || = |ly + az]].

Thus ||f|| < 1 We can therefore apply the Hahn-Banach Theorem 1.4.2 to
the linear functional f on Z and the norm p(x) = ||z||. and extend it to an
x* € X*, with [[z*|| =1 O

Corollary 1.4.6. Let X be a normed linear space and x € X. Then there
is an x* € X*, ||z*|| = 1, so that (z*,x) = ||z|.

Proof. Let p(x)=||z|| and f(ax)=cal x|, for ax €span(x)={azx : a€K}. O

Definition 1.4.7. (The Canonical Embedding, Reflexive spaces)
For a Banach space we put X** = (X*)* (the dual space of the dual space
of X).

Consider the map

XX — X with x(z) : X* = K, (x(x),z") = (2, z), for re X.
The map x is well defined (i.e. x(z) € X** for z € X), and since for z € X

Ix(@)|x+ = sup [z, )] < |z,
z*eB x*
it follows that [|x||z(x,x+) < 1 . By Corollary 1.4.6 we can find for each
x € X an element z* € By~ with (z*, ) = ||z||, and thus ||x(z)||x+ = ||z| x.
It follows therefore that x is an isometric embedding of X into X**. We
call x the canonical embedding of X into X**.
We say that X is reflezive if x is onto.

Remark. There are Banach spaces X for which X and X** are isomet-
rically isomorphic, but not via the canonical embedding. An Example by
R. C. James will be covered in Chapter 3.

Definition 1.4.8. (The adjoint of an operator)
Assume that X and Y are Banach spaces and T : X — Y a linear and
bounded operator. Then adjoint of T is the operator

T Y= X" y" '~y oT,

(le. (T*(y*),xz) = (y*oT,z) = (y*,T(x)) for y* € Y* and = € X).



20 CHAPTER 1. SOME BASIC BACKGROUND

Proposition 1.4.9. Assume X and Y are Banach spaces and T : X — Y
a linear and bounded operator. Then T™ is a bounded linear operator from
Y* to X*, and ||T*|| = ||T|.

Moreover if T is surjective T is an isomorphic embedding, and if T is
an wsomorphic embedding T™ is surjective.

Proof. Since for y* € Y*, we have that T*(y*) is the composition y* o T it
follows that T*(y*) € X* and ||[T*(y*)|| < |IT*]| - ||l¥*]|, and thus ||T*|| <
|T||. Conversely, for an arbitrary small ¢ > 0 we can find z € By, so
that | T'(z)|| > ||T'|] — . Then, by the Hahn Banach Theorem, we can
choose y* € Sy~, so that |y*(T'(x))| > [[T(x)]], and, thus [T > T(y")[| =
ly*(T'(x))| > ||T|| — €, which implies that | T%| > ||T||, since ¢ > 0 was
arbitrary.

If T: X — Y is surjective, we can, by the Open Mapping Theorem
(Corollary 1.3.3), find an p > 0 so that pBy C T(Bx), and thus it follows
for y* € Y™, that

I7*(y")l = sup |y*(T(x))| = sup |y (y)| = sup [y" ()| =rlyl,
z€Bx yeT(Bx) yepBy
which shows that 7™ is an isomorphic embedding.

If T: X — Y is an isomorphic embedding, and x* € X* we can define
2*: T(X) = K by 2*(T(x)) := 2*(z) (i.e. 2* =2*oT~!). Then we use the
Hahn Banach Theorem to extend z* to an element y* € Y*. For all z € X
it follows that

(T*(y"),2) = (", T(2)) = (7, T(x)) = 2" (x).

Since x* € X* was arbitrary, this shows that 7™ is surjective.
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1.5 Finite Dimensional Banach Spaces

Theorem 1.5.1. (Auerbach bases)
If X = (K™, | -) is an n-dimensional Banach space, then X has a basis
Z1,%2,...Ty for which there are functionals z7, ...z, € X*, so that

a) |lzj|l = [la}|| =1 for all j =1,2,...,n,
b) foralli,j=1,2,...,n

if i = j,

T’ . :51":
(i 5) = %) Lﬁ#f

We call in this case (z;,2}) an Auerbach basis of X.

Proof. We consider the function

Det : X" = X x X x X = K,
| —
n times

(uy,ug,...uy) — det(uy,ug, ... upy).

Thus, we consider u; € K", to be column vectors and take for uy, us, ... u, €
K" the determinant of the matrix which is formed by vectors u;, for ¢ =
1,2,...n. Since (Bx)™ is a compact subset of X™ with respect to the prod-
uct topology, and since Det is a continuous function on X™ we can choose
T1,T9,...Ty, in Bx so that

‘Det(mh To,. .. xn)‘ = » Wm%xeBX |Det(u1, U, . . un)|
sU2,.. . Un

By multiplying x; by the appropriate number o € K, with |a| = 1, we can
assume that

Det(x1,z2,...2,) € R and Det(z1,x2,...2,) > 0.

Define fori =1,...n

Det(x1,... 21,2, 541, ...,
.ZU;‘(X—>K, T ( ) 7 y Ly L1, 7n)7
Det(x1, g, ... xy)

It follows that z} is a linear functional on X (taking determinants is linear
in each column), and

<x;k7xl> =1,
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Det(l‘l, e o Lj—1, Ty g1y - ,l‘n) -1

x;|| = sup [{z],x)| = sup
H l| :EEBXK v >‘ rE€Bx Det(fL‘l,SEQ,...l’n)

(by the maximality of Det(z1,x2,...x,) on (Bx)"),

Det(:zl,...xi_1,$j,3:i+1,...,:cn) . ...
Tl ) = =0ifs ,1,7€{1,2,...,n
(i, 25) Det(z1, T2, ... Ty) 70 bt )
(by linear dependence of columns)
which finishes our proof. O

Corollary 1.5.2. For any two n-dimensional Banach spaces X and Y it
follows that
dBM(Xv Y) < TL2.

Remark. Corollary 1.5.2 Is not the best result one can get. Indeed from
the following Theorem of John (1948) it is possible to deduce that for any
two n-dimensional Banach spaces X and Y it follows that

dpnm (X, Y) <n.

Theorem 1.5.3. (John’s theorem)
Let X = (K", || - ||) be an n-dimensional Banach space. Then there is an
invertible matriz T' so that

Bgz C T(Bx) C \/ﬁB@.
Theorem 1.5.4. For any Banach space X
X is finite dimensional <= Bx is compact.

Proof. The implication “=" was already noted in the remark in Section 6.2
the implication “«<=” will follow from the following Proposition. O

Proposition 1.5.5. The unit ball of every infinite dimensional Banach
space X contains a 1-separated infinite sequence.

Proof. By induction we choose for each n € N an element x, € B, so
that ||z; — x| > 1, for j = 1,2,...,n — 1. Choose an arbitrary z; € Sx.
Assuming 1,9, ...,x,—1 have been chosen, let F' = span(x1,...,Ty-1),
(the linear space generated by z;, j = 1,2,...,n —1). X/F is infinite
dimensional, thus there is a z € X so that

1=|Z||x/Fp = inf ||z 4+ y| = inf z+y|| = min z+y
17l yGFH | YEF |lylI<1+|l2| | | yEF [lyl<1+|ll H I
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where the last equality follows from the assumed compactness of the unit
ball. We can therefore choose x,, = z + y so that y € F' and

zZ+ Y|l = min z4+9ll=1
Izl = im0 =1,

it follows that
L= |Znllx/p < |70 — x4 forall j =1,2,...,n— 1.
O

Remark. With little bit more work (see Exercise in Homeowrk) one can
find in the unit ball of each infinite dimensional Banach space X a sequence
() with ||z, — x,|| > 1, for all m # n in N. This is a result of Kottman
[Kot].

A much deeper result by J. Elton and E. Odell (see [EO]) says that for
each infinite dimensional Banach space X there is a € > 0 and a sequence
(xn) C Bx with ||z, — x| > 1+ ¢, for all m # n in N.

Definition 1.5.6. An operator T': X — Y is called a finite rank operator
if T(X) is finite dimensional. In this case we call dim(7'(X)) the rank of T
and denote it by rk(7T).

For y € Y and z* € X™* we denote the operator

X =Y, zw—yla )
by y ® x*. Clearly, y ® * is of rank one.

Proposition 1.5.7. Assume that X and Y are Banach spaces and that
T :X =Y is a linear bounded operator of finite rank n. Then there are
x],x5,...,xy € X and y1, Y2,...,Yn 10 Y so that

n
T=> y@d]
j=1
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Chapter 2

Weak Topologies and
Reflexivity

2.1 Topological Vector Spaces and Locally Convex
Spaces

Definition 2.1.1. [Topological Vector Spaces and Locally Convex Spaces]

Let E be a vector space over K, with K =R or K = C and let 7 be a
topology on E. We call (E,T) (or simply F, if there cannot be a confusion),
a topological vector space, if the addition:

+:ExE—=E, (r,y)—zx+y,
and the multiplication by scalars
- KxE—=E, (\z)— Az,

are continuous functions. A topological vector space is called locally convex
if 0 (and thus any point z € FE) has a neighbourhood basis consisting of
convex sets.

Remark. Topological vector spaces are in general not metrizable. Thus,
continuity, closedeness, and compactness etc, cannot be described by se-
quences. We will need nets.

Assume that (I, <) is a directed set . This means

o (reflexivity) i <4, for all i € I,

e (transitivity) if for ¢,j,k € I we have i < j and j < k, then i < k, and

27



28 CHAPTER 2. WEAK TOPOLOGIES AND REFLEXIVITY

e (existence of upper bounds) for any i,j € I there is a k € I, so that
1 <kandj<k.

A net is a family (x; : i€1) indexed over a directed set (I, <).

A subnet of a net (z; :i€1)is a net (y; : j€J), together with a map
J+ ij from J to I, so that x;; = y;, for all j € J, and for all iy € I there is
a jo € J, so that i; > i for all j > jo.

Definition 2.1.2. In a topological space (T, T'), we say that a net (z; : i € I)
converges to z, if for all open sets U with x € U there is an ig € I, so that
x; € U for all i > io. If (T,T) is Hausdorff = is unique and we denote it by
limie[ ZTi.

Using nets we can describe continuity, closeness, and compactness in
arbitrary topological spaces:

a) A map between two topological spaces is continuous if and only if the
image of converging nets are converging.

b) A subset A of a topological space S is closed if and only if the limit
point of every converging net in A is in A.

c) A topological space S is compact if and only if every net has a con-
vergent subnet.

Note: A subnet of a sequence is not necessarily a subsequence.

Example 2.1.3. An important example of directed sets and nets indexed
by them, are neighborhood bases:

Let (T, T) be a topological space, = € T, and U, a neighborhood basis of
x, i.e. Uy C P(T), with

1. z € U° forall U € U,,
2. Foreach open V C T, with x € V, thereis a U € U,, for which U C V,
3. For any Uy, Uy € U, there is U € U, with U C Uy N Us.

Then U, is a directed set, with respect to reverse inclusion.

Pick y(U) € U, for each U € Uy, then (y(U) : U € U,) is a net which
converges to = (exercise).

Assume that T is compact (in particular Hausdorff) and let (zy,)peny C T
be a sequence in T', of pairwise distinct elements. Then (z,,) may not have a
convergent subsequence. Nevertheless it has a convergent subnet, which can
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be defined as follows: Let = € T' be an accumulation point of (x,) (exercise:
there is an accumulation point) which means that {n € N : x,, € U} is
infinite for each open U C T which contains z. Let U, be a neighborhood
basis of . Then put for each U € Uy, U = TminfneNe, U} -

It follows (exercise) that (x7) is a subnet of (z,,) which converges to z.

In order to define a topology on a vector space F which turns F into a
topological vector space we (only) need to define an appropriate neighbor-
hood basis of 0.

Proposition 2.1.4. Assume that (E,T) is a topological vector space. And
let
U ={U eT,0€U}.

Then
a) Forallz € E, x+Uy ={z+U : U € Up} is a neighborhood basis of x,
b) for allU € Uy there is a V € Uy so that V +V C U,
¢) for allU € Uy and all R > 0 there is a V € Uy, so that

{AMeK:|N<R}-VCU,
d) for allU € Uy and x € E there is an € > 0, so that A\x € U, for all
A € K with [\ < e,

e) if (E,T) is Hausdorff, then for every x € E, x # 0, there is a U € Uy
with x € U,

f) if E is locally convex, then for all U € Uy there is a conver V € T,
with V C U.

Conversely, if E is a vector space over K, K=R or K=C, and
U c{U eP(E): 0 U}

is non empty and is downwards directed, i.e. if for any U,V €Uy, there is
a Welh, with W C UNV and satisfies (b), (c¢) and (d), then

T={VCE:VzeVIUecl: z+UCV},

defines a topological vector space for which Uy is a neighborhood basis of 0.
(E,T) is Hausdorff if U also satisfies (e) and locally convex if it satisfies

().
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Proof. Assume (F,T) is a topological vector space and Uy is defined as
above.

We observe that for all z € E the linear operator T, : £ — FE, z+ z+x
is continuous. Since also T, o1 _, =T _, o T, = Id, it follows that T}, is an
homeomorphism, and thus maps open neighborhoods of 0 to open neighbor-
hoods of z, which implies (a). Property (b) follows from the continuity of
addition at 0. Indeed, we first observe that Upg = {V x V : V € Up} is a
neighborhood basis of (0,0) in E x E, and thus, if U € Uy, then there exists
aV € Uy so that

VxVc(+ ) ) ={(z,y) e EXE:x+yecU},

and this translates to V +V C U.

The claims (c¢) and (d) follow similarly from the continuity of scalar
multiplication at 0. If E is Hausdorff then Uy clearly satisfies (e) and it
clearly satisfies (f) if F is locally convex.

Now assume that Uy C {U € P(E) : 0 € U} is non empty and downwards
directed, that for any U,V € Uy, there is a W € Uy, with W C U NV, and
that Uy satisfies (b), (c) and (d). Then

T={VCE:VeeVIUEUy: ©+UCV},

is finitely intersection stable and stable by taking (arbitrary) unions. Also
(), E € T. Thus T is a topology. Also note that for z € FE,

U, ={z+TU:U €Uy}

is a neighborhood basis of .

We need to show that addition and multiplication by scalars is continu-
ous. Assume (x; : 4 € I) and (y; : @ € I) converge in E to € E and y€ E,
respectively, and let U €Uy. By (b) there is a Vel with V+V C U. We
can therefore choose iy so that z; €x +V and y; € x + V, for i > ip, and,
thus, z; +yi € v +y+V +V Caz+y+ U, for i > 4. This proves the
continuity of the addition in F.

Assume (x; : i € I) converges in E to x, (A; : i € I) converges in K to
A and let U € Uy. Then choose first (using property (b)) V' € Uy so that
V +V C U. Then, by property (c) choose W € Uy, so that for all p € K,
lp| < R := |\l +1 it follows that pW C V and, using (d) choose ¢ € (0,1)
so that px € W, for all p € K, with |p| < e. Finally choose iy € I so that
x; € x+ W and |A — \j| < e (and thus |\;| < R for ¢ > ig), for all i > i in
I (and thus also |\;| < R for ¢ > iyp).

Aiti =Nz —x) + (M= Nz+ e e e+ AW+ V C e+ V4V C Az + U
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If Uy satisfies (e) and if z # y are in E, then we can choose U € Uy
so that y — x ¢ U and then, using the already proven fact that addition
and multiplication by scalars is continuous, there is V so that V —V C U.
It follows that z +V and y + V are disjoint. Indeed, if z 4+ v1 = y + vo,
for some wv1,v9 € V it would follows that y — x = vo — vy € U, which is a
contradiction.

If (f) is satisfied then E is locally convex since we observed before that
Uy ={x+ U :U € Up} is a neighborhood basis of z, for each = € E. O

Let E be a vector space over K, K = R or K = C, and let F' be a
subspace of
E# = {f: E — K linear}.
Assume that for each x € F there is an z* € F so that z*(z) # 0, we say in
that case that F' is separating the elements of E from 0. Consider

n

Uy = { ﬂ{aﬁ €E:|zj(zx)|<e}:neNuz €F, andeg; > 0,1 = 1,...,n}.
j=1

Up is finitely intersection stable and it is easily checked that U, satisfies

that assumptions (b)-(f). It follows therefore that Uy is the neighborhood
basis of a topology which turns E into locally convex Hausdorff space.

Definition 2.1.5. If F is a topological vector space over K, we call
E*={f:FE — K: f linear and continuous}.

Definition 2.1.6. [The Topology o(F, F)]
Let E be a vector space and let F' be a separating subspace of E7.
Then we denote the locally convex Hausdorff topology generated by

n
Uy = { ﬂ{azEE: 2} (z)| <&} :neN,zf€F, and g; > 0, i=1,...,n},
j=1

by o(E, F).

If E is a locally convex space we call o(E, E*), as in the case of Banach
spaces, the Weak Topology on E and denote it also by w. If E, say £ = F*,
for some locally convex space F', we call o(F*, F') the weak* topology and
denote it by w* (if no confusion can happen).

From the Hahn Banach Theorem for Banach spaces it follows that the
weak topology turns a Banach space X into a Hausdorff space, and we can
see (X, o(X, X*)) as a locally convex space. Similarly (X*, o(X*, X)) is a
locally convex space which is Hausdorff.
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Proposition 2.1.7. Assume that X is a Banach space and that X* denotes
its dual with respect to the norm. Then

*

(X, 0(X, X")" = X* and (X*,0(X*, X)) = X.

Proposition 2.1.7 follows from a more general principle.

Proposition 2.1.8. Let E be a locally convex space and E* its dual space.
Equip E* with the topology o(E*, E). Then (E*, o(E*, E)), and (E, o(E, E*))
are locally convex spaces whose duals are E and E*, respectively (where we
identify e € E in the canonical way with a map defined on E*).

Remark. Proposition 2.1.8 means the following: Start with an arbitrary
locally convex space E, and let E* be its dual. Then for the topology
o(E*, E), i.e. the coarsest topology on E* for which all elements of E are
continuous, you have “reflexivity” in the sense that the dual of the locally
convex space (E*,0(E*, E)) is E again.

Proof of Proposition 2.1.8. We will only show that (E*,U(E*,E))* =F
and leave the second part as an exercise. It is clear that E belongs to
(E*, o(E, E))* in the following sense: If e € E and if x(e) is the function on

*

E* which assigns to f € E* the scalar (f,e), then x(e) is in (E*,0(E*, E))".
From now on we identify e with x(e) and simply write e instead of y(e).

Assume ¢ : E* — K is linear and o(E*, E')-continuous. We need to show
that ¢ = x(e) = e for some e € F.

U={feE" (¢, /)| <1} =9¢""(-11)

is then an o(F, E*)-open neighborhood and thus there are ey, es,...,e, € E
and € > 0 so that

N{f € E*| ey, /)l <} C U

j=1
It follows from this that
ﬂ ker(e;) C ker(o).
j=1

Indeed,

ﬂ ker(ej) = ﬂ ﬂ{f € B[ [{ej, )] < de}
j=1

6>07=1
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=N6- N7 € B lfes. )l < 2)

0>0 j=1
c(\s-U
6>0
=(o-{feE :|(o. /) <1}
6>0
= ({f € E*: (¢, f)| < 6} = ker(¢)).
6>0

Now an easy linear algebra argument implies that ¢ is a linear combination
of ey, es,...,e, which yields that ¢ € F. O

Proposition 2.1.9. Let E be a vector space and let F' be a separating sub-
space of E¥.
For a net (z;)ic; CE and x € E

limz; =z ino(E,F) < Va*eF lim(z*, z;) = (2", 2).
icl il
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2.2 Geometric Version of the Hahn-Banach The-
orem for locally convex spaces

We want to formulate a geometric version of the Hahn-Banach Theorem.

Definition 2.2.1. A subset A of a vector space V over K is called convex
if for all a,b € A and all X € [0,1] also Aa + (1 — \)b € A.
If A C V we define the convex hull of A by

conv(A) = ﬂ {C:AcCcV,C convex }

= {Z)\jaj :neN,\je€[0,1],a;€ A, fori=1,...,n, and Z)\jzl}.
j=1 j=1

A subset A C V is called absorbing if for all x € V there is an 0 < r < 00 so
that =/r € A. For an absorbing set A we define the Minkowski functional
by

pa:V —10,00),x — inf{\>0:x/\ € A}.
A is called symmetric if for all A € K, [A\| = 1, and all z € A, it follows that
Az € A.

Lemma 2.2.2. Assume C is a convex and absorbing subset of a vector space
V. Then pco is a sublinear functional on V', and

(2.1) {fveVipucw)<l}cCc{veV:uc(v) <1}

If V is a locally convex space space and if 0 is in the open kernel of C,
then pc s continuous at 0.

Proof. Since C' is absorbing 0 € C' and pc(0) = 0. If u,v € V and € > 0
is arbitrary, we find 0 < A\, < pc(u) + € and 0 < A, < puc(v) + ¢, so that
u/Ay € C and v/\, € C and thus

U+ v A U v v

ST W WIS W LA WIS W W

which implies that pc(u+v) < Ay + Ay < pe(u) + pe(v) + 2¢, and, since,
e > 0 is arbitrary, puc(u+v) < po(u) + pe(v).
Finally for A\ >0and v e V

e (Av) :inf{r >0: % € C’} = )\inf{g : % € C’} = Auc(v).



2.2. GEOMETRIC VERSION OF THE HAHN-BANACH THEOREM 35

To show the first inclusion in (2.1) assume v € V with pc(v) < 1, there
isa 0 < \<1sothat v/ € C, and, thus,

v:A§+(1—A)06(J.

The second inclusion is clear since for v € C' it follows that v = 7 € C.

If V is a locally convex space and 0 € C°, then there is a an open convex
neighborhood U of 0, so that 0 € U C C. Now let (x;) be a net which
converges in V' to 0. Since with U also €U is a neighborhood of 0, for € > 0,
we obtain for any € > 0 an ig € I, so that for all ¢ > i in I it follows that
x; € eU.

pe (i) < pu (i) < epev () < e.

O]

Theorem 2.2.3. (The Geometric Hahn-Banach Theorem for locally convex
spaces) Let C' be a non empty, closed convex subset of a locally conver and
Hausdorff space E and let xo € E\ C.

Then there is an x* € E* so that

sup R((a*, 7)) < R((*,z0)).
xeC

Proof. We first assume that K = R and we also assume w.l.o.g. that 0 € C
(otherwise pass to C' — z and xp — = for some x € C). Let U be convex
open neighborhood of 0 so that C'N (xg + U) = 0, then let V' be an open
neighborhood of 0 so that V. —V C U and let D = C'+ V. It follows
that also (zg + V)N D = (. Therefore up(z) > 1, for all z € zy + V.
Since V' is open there is a 0 < § < 1 so that (1 —d)xp € xo + V and thus
pp(zo) = t25up((1 —d)zo) > 1.

From Lemma 2.2.2 it follows that pup is a sublinear functional on F,
which is continuous at 0.

On the one dimensional space Y = span(z() define

f:Y =R, axy— aup(xg).

Then f(y) < up(y) for all y € Y (if y = awp, with o > 0 this follows from
the positive homogeneity of up, and if o < 0 this is clear). By Theorem
1.4.2 we can extend f to a linear function F', defined on all of E, with
F(x) < pp(x) for all x € E. Since up is continuous at 0 it follows F is
continuous at 0 and thus in E*.

Moreover, if € C' it follows that F(xg) > 1 > sup,ccpup(x)) > 1. If
K = C we first choose F', by considering F to be a real locally convex space,
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and then put f(x) = F(z) — iF(ixz). It is then easily checked that F' is a
complex linear bounded functional on E. O

Corollary 2.2.4. Assume that A and B are two convex closed subsets of a
locally convex space E, with for which there is an open neighborhood U of 0
with (A+U) N (B+U) = 0.

Then there is an z* € E* and o € R so that

R((z*,z)) < a < R((z",y)), forallz € A and y € B.

Proof. Consider

C:A—B:{x—y:xeAandyeB}.

we note that 0 ¢ C' is convex and that, applying Theorem 2.2.3, we obtain
an z* € X* so that

sup R({z*,z)) < R({z*,0)) = 0.

zeC

But this means that for all x € A and all y € B R({z*,x —y)) < 0 and thus
R((2", 2)) < R((2", ).
O

An easy consequence of the geometrical version of the Hahn-Banach
Theorem 2.2.3 is the following two observation.

Proposition 2.2.5. If A is a convex subset of a Banach space X then
v — ZH'H

If a representation of the dual space of a Banach space X is not known,
it might be hard to verify weak convergence of a sequence directly. The
following Corollary of Proposition 2.2.5 states an equivalent criterium for a
sequence to be weakly null without using the dual space of X.

Corollary 2.2.6. For a bounded sequence (x,,) in Banach space X it follows
that (zy,) is weakly null if and only if for all subsequences (zy), all e > 0
there is a conver combination z = Z;?:l Njzj of (z5) (i.e. Xy > 0, for
1=1,2,...,k, and Zé‘:l)‘j =1) so that ||z|| < e .
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2.3 Reflexivity and Weak Topology

Proposition 2.3.1. If X is a Banach space and Y s a closed subspace of
X, then o(Y,Y*) = o(X,X*)NY, i.e. the weak topology on'Y is the weak
topology on X restricted to Y .

Theorem 2.3.2. (Theorem of Alaoglu, c.f. [Fol, Theorem 5.18] )
Bx+ is w* compact for any Banach space X.

Sketch of a proof. Consider the map

®: By - [[{AeK: A< [z}, o= (27(2) : 2 X).
zeX

Then we check that ® is continuous with respect to w* topology on Bx«
and the product topology on [, x{A € K: [A] < ||z||}, has a closed image,
and is a homeorphism from B% onto its image.

Since by the Theorem of Tychanoff [ . x{A € K : [A] < |||} is compact,
®(Byx-+) is a compact subset, which yields (via the homeomorphism ®~1)
that Bx~ is compact in the w* topology. O

Theorem 2.3.3. (Theorem of Goldstein)
Bx s (via the canonical embedding) w* dense in Bx««.
Proof. We need to show that X(BX)U(X**’X*)

= By
— 0o (X**,X*) . .
Now x(Bx) is closed in the locally convex space (X**, o(X**, X*))

whose dual is by Proposition 2.1.7 X*. So assume that z{* € By« \

X(BX)U(X**’X*) Then by the Geometrical Hahn Banach Theorem 2.2.3
we can find z* € X* so that
sup R(z™(27)) < R(xg" (2"))
e ex(Bx)

But

sup R(z*(27)) = sup R(z"(z)) = [|27]| and R(z"(z)) < [|27||
z**ema(x**x*) r€Bx
which is a contradiction. ]

Theorem 2.3.4. Let X be a Banach space. Then X is reflexive if and only
if Bx is compact in the weak topology.
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Proof. Let x : X — X™** be the canonical embedding.
“=” If X is reflexive and thus x is onto it follows that x is an home-
omorphism between (Bx,o(X,X*)) and (Bx+=,o(X*™,X*)). But by the
Theorem of Alaoglu 2.3.2 (Bx+«,0(X**, X*)) is compact.
“<” Assume r** € Bxs++. By Goldstein’s Theorem 2.3.3 there is a net
(xi)ier C Bx, for which (x(x;) : ¢ € I) converges in o(X*™*, X*) to z**.
Since By is assumed to be o(X, X*) compact there is a subnet (z;: j € J)
which converges in o(X, X*) to some x € Bx thus it follows for all z* € X*
that

2" (@) =l () = lim " (2)) = o (2) = x(2) (o)

which implies that z** = x(x).

Theorem 2.3.5. For a Banach space X the following are equivalent.
a) X is reflexive,
b) X* is reflexive,
c) every closed subspace of X is reflezive.

Proof. “(a)=(c)” Assume Y C X is a closed subspace. Proposition 2.2.5
yields that By = BxNY is a (X, X*)-closed and, thus, (X, X*)-compact
subset of Bx. Since, by the Theorem of Hahn-Banach (Corollary 1.4.4),
every y* € Y* can be extended to an element in X*, it follows that o(Y,Y™)
is the restriction of o(X, X*) to the subspace Y. Thus, By is o(Y,Y™)-
compact, which implies, by Theorem 2.3.4 that Y is reflexive.

“(a)=(b)” If X is reflexive then o(X*, X**) = o(X*, X). Since by the
Theorem of Alaoglu 2.3.2 Bx+ is o(X™*, X)-compact the claim follows from
Theorem 2.3.4.

“(c)=(a)” clear.

“(b)=-(a)” If X* is reflexive, then, by “(a)=(b)” , applied to X*, X** is also
reflexive and thus, the implication “(a)=-(c)” yields that X is reflexive. [

Similar ideas as in the proof of Theorem 2.3.3 are used to show the
following result which characterizes when a Banach space X is a dual space
of another space.

Theorem 2.3.6. Assume that X is a Banach space and Z is a closed sub-
space of X*, so that Bx is compact in the topology o(X,Z), and so that

[2|] = sup.cp, |2(z)]-
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Then Z* is isometrically isomorphic to X and the map
T:X =27 xw— fy, with f,(z) = (z,2), forx € X and z € Z,

s an isometrical isomorphism onto Z*.

Proof. We first note that T'(Bx) is 0(Z*,Z) dense in Bz«. Indeed, if this
is not true we can apply the Geometric Hahn Banach Theorem for lo-
cally convex spaces (Theorem 2.2.3) applied to the locally convex space
(Z*, o(Z*, Z)) whose dual is by Proposition 2.1.7 (Z,O'(Z, Z*)), and obtain
elements z* € Sz« and z € Sz so that

1=|z]| = sup (z,2) < (2", 2) =1,
rEBx

which is a contradiction.
Secondly, our assumption says that T'(Bx) is o(Z*, Z)-compact. To see
that note that if (z;);er is a net in X and z* € Z*, then

(fx;)ier converges to z* with respect to o(Z*, Z)

= 11I51<.?U1,Z> =(z"z) forall z€ Z
1€

<= 2" €T(Bx) and 0(X,Z") — lin}(mi, z) = z* (By assumption).
1€
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2.4 Annihilators, Complemented Subspaces

Definition 2.4.1. (Annihilators, Pre-Annihilators)
Assume X is a Banach space. Let M C X and N C X*. We call

Mt ={z* € X* :VaeM (2*,z) =0} C X*,
the annihilator of M and
N, ={re X :Vz"eN (z*,2) =0} C X,
the pre-annihilator of N.

Proposition 2.4.2. Let X be a Banach space, and assume M C X and
N C X*.

a) M* is a closed subspace of X*, M+ = (span(M))*, and (M*+), =
span(M),

b) Ny is a closed subspace of X, N; = (span(N)),, and span(N) C
(NL)*

¢) span(M) = X <= M+ ={0}.

Proof. We only show (a), (b) can be shown similarly and (c) is clear, and
we only show the third claim of (a). If z € span(M) and 2* € M* then
2*(x) =0, and thus z € (M),

Assume z¢ € (M*), but xg ¢ span(M), then by the Corollary 1.4.5
of Hahn Banach Theorem there is an z* € X* for which z*(zp) > 0 and
x*\m =0, and thus * € M+ which implies that 2*(x¢) = 0 which is a
contradiction. O

Proposition 2.4.3. If X is Banach space and Y C X is a closed subspace
then (X/Y)* is isometrically isomorphic to Y+ via the operator

D (X)Y) = Y, with ®(2)(z) = 2*(T).
(recallT =z +Y € XY forxze X).

Proof. Let @Q: X — X/Y be the quotient map.

For z* € (X/Y)*, ®(z*), as defined above, can be written as ®(z*) =
2z*0 Q. Thus ®(z*) € X*. Since Q(Y) = {0} it follows that ®(z*) € Y.
For z* € (X/Y)* we have

[@(z*)]l = sup (z%,Q(x)) = sup (2", 7) = [|z"[ (x/v)+

.TEBX feBx/y
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where the second equality follows on the one hand from the fact that ||Q(z)|| <
lz||, for z € X, and on the other hand, from the fact that for any 7 = x+Y €
X/Y there is a sequence (y,,) C Y so that limsup,,_, ||z + ya| = [|Z]|-

Thus & is an isometric embedding. In order to show that ® is onto let
z* € Y+ c X*. We define

2 XY =K, z+4+Y — (2% z).
First note that this map is well defined (since (x*,x + y1) = (x*,x + ya) for

y1,y2 € Y). Since z* is linear, z* is also linear, and |(z*,T)| = |[(z*, x)|, for
all z € X, and thus [|2*(|(x/y)- = [|z*||. Finally, since

(®(z%),2) = (7, Q(2)) = (&7, x),
it follows that ®(z*) = x*, and thus that ® is surjective. O

Proposition 2.4.4. Assume X andY are Banach spaces andT € L(X,Y).
Then

T(X)* = N(T*) and T*(Y*) C N(T)*

(2.3) T(X)=N(T*)y and T*(Y*), = N(T).
Proof. We only prove (2.2). The verification of (2.3) is similar. For y* € Y*

Y eT(X)h «— VzeX (y\T(x))=0
— VeeX (T*(y"),z)=0
— T*(y") =0 < y* e N(T%),
which proves the first part of (2.2), and for y* € Y* and all z € N(T),
(

it follows that (IT™(y*),z) = (y*,T'(z)) = 0, which implies that T*(Y™*) C
N(T)*+, and, thus, T*(X*) C N(T)* since , N(T)* is closed. O

Definition 2.4.5. Let X be a Banach space and let U and V' be two closed
subspaces of X. We say that X is the complemented sum of U and V and
we write X = U @V, if for every x € X there are u € U and v € V, so that
x = u + v and so that this representation of z as sum of an element of U
and an element of V' is unique.

We say that a closed subspace Y of X is complemented in X if there is
a closed subspace Z of X so that X =Y & Z.
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Remark. Assume that the Banach space X is the complemented sum of the
two closed subspaces U and V. We note that this implies that UNV = {0}.
We can define two maps

P: X—UandQ: X —>V

where we define P(z) € U and Q(x) € V by the equation z = P(z) + Q(y),
with P(x) € U and Q(z) € V (which, by assumption, has a unique solution).
Note that P and @ are linear. Indeed, if P(x1) = u1, P(x2) = ug, Q(x1) =
v1, Q(z2) = ve, then for A\, p € K we have Az + pze = Aug + pug + Avy + pos,
and thus, by uniqueness P(A\x1 + pxa) = Aug + pug, and Q(A\xy + pag) =
Avy + pvs.

Secondly it follows that Po P = P, and Q o Q = ). Indeed, for any
x € X we we write P(z) = P(x)+0 € U+ V, and since this representation
of P(z) is unique it follows that P(P(x)) = P(x). The argument for @ is
the same.

Finally it follows that, again using the uniqueness argument, that P is
the identity on U and @ is the identity on V.

We therefore proved that

a) P is linear,
b) the image of P is U
c¢) P is idempotent, i.e. P? = P

We say in that case that P is a linear projection onto U. Similarly @ is a
a linear projection onto V', and P and Q) are complementary to each other,
meaning that P(X)NQ(X) = {0} and P+Q = Id. A linear map P: X — X
with the properties (a) and (c) is called projection.

The next Proposition will show that P and ) as defined in above remark
are actually bounded.

Lemma 2.4.6. Assume that X is the complemented sum of two closed sub-

spaces U and V. Then the projections P and Q as defined in above remark
are bounded.

Proof. Consider the norm || - || on X defined by

lzll = [P (2)]| + [[Q)], for z € X.
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We claim that (X, || - ||) is also a Banach space. Indeed if (z,,) C X with

Y Mzall =D 1P+ Y Q)| < oo
n=1 n=1 n=1

Then u =3 2 Plxzy,) e U, v=>"",Q(zy) € V (U and V are assumed
to be closed) converge in U and V' with respect to || - ||, respectively. Since
| -1l <l |l also x =377 | =, converges with respect to || - || and

n

xZEQxHZAE;EZ(P@ﬂ+Q@ﬂ):AQ;EQP@¢+£E;§;Q@%y:u+u
n= J= J=

J=1

and

=520 e 35+~

= Hu - En:P(;rn) + Hv — z": Q(xn)‘
j=1 Jj=1

(here all series are meant to converge with respect to || - ||) which proves that
(X, | - II) is complete.

Since the identity is a bijective linear bounded operator from (X, ||-||) to
(X, ||-]]) it has by Corollary 1.3.6 of the Closed Graph Theorem a continuous
inverse and is thus an isomorphy. Since ||P(x)| < |z| and ||Q(z)] < ||=||
we deduce our claim. O

—n—oo 0,

Proposition 2.4.7. Assume that X is a Banach space and that P : X — X,
s a bounded projection onto a closed subspace of X .
Then X = P(X) ®@ N(P).

Theorem 2.4.8. There is no linear bounded operator T : £o, — Loy SO that
the kernel of T equals to cg.

Corollary 2.4.9. ¢y is not complemented in .

Proof of Theorem 2.4.8. For n € N we let e} be the n-th coordinate func-
tional on L, i.€.

e i loo — K, x = (x5) = Tp.
Step 1. If T': £, — £ is bounded and linear, then

N(T) = (Y N(e o T).

n=1
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Indeed, note that

reN(T) < VneN e (T(x)) = (e, T(z))=0.

In order to prove our claim we will show that ¢y cannot be the intersection
of the kernel of countably many functionals in % _.

Step 2. There is an uncountable family (N, : a € I) of infinite subsets of N
for which N, N Ny is finite whenever o # 3 are in 1.

Write the rational numbers Q as a sequence (g; : j €N), and choose for
each r € R a sequence (nx(r) : k €N), so that (g,, () : k €N) converges to
r. Then, for r€R let N, = {ng(r) : k€N}. The family (N, : r € R) then
satisfies the claim in Step 2.

For acl, put o = 1N, €4, i.€.

To = (E1%: keN) with £ = {1 ik € No
0 if k& Ng,.

Step 3. If f € €5 and ¢g C N(f) then {a € I : f(x4) # 0} is countable.

In order to verify Step 3 let 4, = {a : |f(zq)| > 1/n}, for n € N.
It is enough to show that for n € N the set A, is finite. To do so, let
a1, Q9,...,q; be distinct elements of A,, and put x = Z?Zl sign(f(xaj))xaj
(for a € C we put sign(a) = a/|a|) and deduce that f(z) > k/n. Now
consider M; = Nq;\U,; Na;- Then Nq, \ M; is infinite, and thus it follows
for

k
= sign(f(za;)las,
j=1

that f(z) = f(Z) (since z — & € ¢p). Since the M;, j = 1,2,...,k are
pairwise disjoint, it follows that ||Z||.c = 1, and thus

k
n

< fl@) = f(@) < £l

Which implies that A, can have at most n| f|| elements.

Step 4. If ¢g C oy N(fn), for a sequence (f,,) C €%, then thereisan o € T

so that zo € ()~ N (fn). In particular this implies that co # (,,cn N (fn)-
Indeed, Step 3 yields that

C={aecl: fo(za) #0 for some n € N} = U{ae[:fn(xa);éO},

neN

is countable, and thus I \ C is not empty. O
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Remark. Assume that Z is any subspace of £, which is isomorphic to ¢y,
then Z is not complemented. The proof of that statement is a bit harder.

Theorem 2.4.10. [So| Assume Y is a subspace of a separable Banach space
X and T 'Y — ¢y is linear and bounded. Then T can be extended to a
linear and bounded operator T:X — co. Moreover, T can be chosen so that
17N < 2|77

Corollary 2.4.11. Assume that X is a separable Banach space which con-
tains a subspace Y which is isomorphic to cy. Then Y is complemented in
X.

Proof. Let T :'Y — ¢o be an isomorphism. Then extend 7' to T:X = c
and put P=T"1oT. 0

Proof of Theorem 2.4.10. Note that an operator T': Y — ¢ is defined by a
o(Y*,Y) null sequence (y) C Y*, i.e.

T:Y — ¢, y ((ys,y) :n eN).

We would like to use the Hahn Banach Theorem and extend each y;, to an
element z} € X with ||y*| = ||} ||, and define

T(z) := ((zF,z) : n e N), reX.
But the problem is that (z}) might not be o(X*, X) convergent to 0, and

n
thus we can only say that ((z},z) : n € N) € o, but not necessarily in cg.
Thus we will need to change the x;, somehow so that they are still extensions
of the ¥ but also o(X*, X) null.

Let B = ||T||Bx+. B is o(X*, X)-compact and metrizable (since X
is separable). Denote the metric which generates the o(X*, X)-topology by
d(-,-). Put K = BNY"*. Since Y+ C X*is o(X*, X)-closed, K is o(X*, X)-
compact . Also note that every o(X*, X)-accumulation point of (z}) lies in
K. Indeed, this follows from the fact that z}(y) = v (y) —n—oo 0, for all
y € Y. This implies that lim,,_,~ d(z}, K) = 0, thus we can choose (z;)) C K
so that lim,_,o d(z}, z%) = 0, and thus (z} — 2;) is o(X™*, X)-null and for

y € Y it follows that (z} — 2%, y) = (z},y), n€N. Choosing therefore

T:X — co, x— ((x), — 2z, x) :n €N),
yields our claim. O

Remark. Zippin [Zi] proved the converse of Theorem: if Z is an infinite-
dimensional separable Banach space admitting a projection from any sepa-
rable Banach space X containing it, then Z is isomorphic to c¢p.
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2.5 The Theorem of Eberlein Smulian

For infinite dimensional Banach spaces the weak topology is not metrizable
(see Exercise in Homework). Nevertheless compactness in the weak topology
can be characterized by sequences.

Theorem 2.5.1. (The Theorem of Eberlein- Smulian)
Let X be a Banach space. For subset K the following are equivalent.

(X,X7)

a) K is relatively o(X, X*) compact, i.e. K° 18 compact.

b) Every sequence in K contains a o(X, X™*)-convergent subsequence.
¢) Every sequence in K has a o(X, X*)-accumulation point.
We will need the following Lemma.

Lemma 2.5.2. Let X be a Banach space and assume that there is a count-
able set C' = {x} : n € N} C Bx+, so that C; = {0}. In that case we say
that C is total for X.

Consider for x,y

d(z,y) = 27" (z},x —y)|.
n=1

Then d is a metric on X, and for any o(X, X™)-compact set K, o(X, X™)
cotncides on K with the metric generated by d.

The proof of Lemma 2.5.2 goes along the lines of an Exercise in this
section.

Lemma 2.5.3. Assume that X is separable. Then there is a countable total
set C' C X*.

Proof. Let D C X be dense, and choose by the Corollary 1.4.6 of the The-
orem of Hahn Banach for each element z € D, an element y; € Sy« so
that (yX,z) = ||z||. Put C = {y}; : x € D}. If z € X, x # 0, is arbi-
trary then there is a sequence (z) C D, so that limy_,. xx = x, and thus
limy 00 (yy,, ) = [|z|| > 0. Thus there is an z* € C so that (z*,z) # 0,
which implies that C' is total.

O
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Proof of Theorem 2.5.1. “(a)=>(b)” Assume that K is o(X, X*)-compact
(if necessary, pass to the closure) and let (x,,) C K be a sequence, and put
Xo = span(z, : n € N). Xj is a separable Banach space. By Proposition
2.2.5 the topology o(Xo, X{) coincides with the restriction of o(X, X*) to
Xo. Thus, Ko = K N Xy is 0(Xo, X§)-compact. Since X is separable, by
Lemma 2.5.3 there exists a countable set C' C Bx:, so that C| = {0}.

It follows therefore from Lemma 2.5.2 that (Ko, o(Xo, Xg) N Kp) is
metrizable and thus (x,) has a convergent subsequence in Ky. Again, using
the fact that on X the weak topology coincides with the weak topology on
X, we deduce our claim.
“(b)=(c)” clear.
“(c)=-(a)” Assume K C X satisfies (c). We first observe that K is (norm)
bounded. Indeed, for z* € X* the set Ay« = {{z*,2) : z € K} C K is
the continuous image of A (under z*) and thus has the property that every
sequence has an accumulation point in K. This implies that A« is bounded
in K for all £* € X* but this implies by the Banach Steinhaus Theorem
1.3.8 that A C X must be bounded.

Let x : X — X*™ be the canonical embedding. By the Theorem of

Alaoglu 2.3.2, it follows that (K)U(X**’X*) is o(X™*, X*)-compact. There-
fore it will be enough to show that X(K)U(X RN X(X) (because this

would imply that every net (x(x;) : i € I) C x(K) has a subnet which
o(x(X),X™*)) converges to some element x(z) € x(X)).

So, fix z3* € x(K) (XX Recursively we will choose for each k € N,
z, € K, and for each k€N a finite set A} C Sx+, so that

(24) |2t — x(zk), )| < Z for all z* € U Aj, itk > 1,
0<j<k
(2.5) Vz™espan(xp®, x(z;), 0<j<k)|z*|| > max [(«™,z")] > M
T*EA} 2
For k = 0 choose A} = {z*}, «* € Sx*, with |z*(z§*)| > ||z§*||/2, then
condition (2.5) is satisfied, while condition (2.4) is vacuous.

Assuming that z1,x2,..., 7,1 and Aj, A7,..., A7, have been chosen
for some k£ > 1, we can first choose zj, € K so that (2.4) is satisfied (since
A7 is finite for j = 1,2,...,k — 1), and then, since span(zg*, x(z;),j <k) is
a finite dimensional space we can choose A}, C Sx~ so that (2.5) holds.

By our assumption (c¢) the sequence (zj) has an (X, X*)- accumulation
point xg. By Proposition 2.3.1 it follows that

o(X,X™*)

zg €Y =span(zy : k€N) " = span(zy : k€N)
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We will show that x§* = x(20) (which will finish the proof ). First note
that for any z* €J;oy 4]

‘(:cg* — X(xo),x*)‘ < liminf (‘(x(’g* — X(:L'k),:n*ﬂ + }(x*,xk — xo>}) =0.

k—o0

Secondly consider the space Z = span(z{*, x(xx), kEN)M C X** it follows
from (2.5) that the set of restrictions of elements of | J;~; A} to Z is total
in Z and thus that

x5t — x(xo) € ZN ( G A};)L = {0},
k=1

which implies our claim. O
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2.6 Characterizations of Reflexivity by Ptak

We present several characterization of the reflexivity of a Banach space,
due to Ptak [Ptak]. We assume in this section that our Banach spaces are
defined over the real field R.

Theorem 2.6.1. The following conditions for a Banach space X are equiv-
alent

1. X is not reflexive.

2. For each 6 € (0,1) there are sequences (z;);¢; C Bx and (x})52, C
Bx+, so that

0 ifj <1, and
0 ifj>i.

(2.6) w;(z;) = {
3. For some 0 > 0 there are sequences (x;);2, C Bx and (x})2, C Bx=,
for which (2.6) holds.
4. For each 6 € (0,1) there is a sequence ()5, C Bx, so that

(2.7) dist(conv(:vl,:ng, ey Tp), CONV(Xpg 1, Tygo, - - )) > 0.

5. For some 0 > 0 there is a sequence (x;);2; C Bx, so that (2.7) holds.
For the proof we will need Helly’s Lemma.

Lemma 2.6.2. Let Y be an infinite-dimensional normed linear space yi,
Yoy ooy Yy €Y*, M >0 and let c1,ca,...,c, be scalars.
The following are equivalent

(M) The Moment Condition
For all € > 0 there exists y € Y with

lyll = M +¢ and yi(y) = ¢ for k=1,2,...,n.

(H) Helly’s Condition

n n
* n
’ E ajCj‘ < MH E a;y; H for any sequence (a;)j—; of scalars.
j=1 j=1
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Proof. “(M) = (H)”. Let ¢ > 0 and assume y € Y satisfies the condition
in (M). Then

\Zam\ - \Zajyj )| <yl Za]yj

which implies (H), since € > 0 was arbitrary.

“(H) = (M)” We will first need a Lemma

(M +¢) HZa]yJ

Lemma 2.6.3. Let X be a Banach space and assume that x7,2*2,...,x;,

are linear independent in X*. Then there exists x1,x2,...,x, € X so that

. 1 ifi=jy,
zi(xi) = 6ij = L
0 ifi#j.

Proof. By the Theorem of Hahn Banach there are x7*,25*, ..., x}

so that z7*(z]) = d;; for 1 <i,j < n. Let € > 0 (to be chosen later small
enough). By Goldsteln s Theorem 2.3.3 there are 21, 22, ... 2, in X, so that
|75 ()| <e,if i # j and [z](2;) — 1] <e. Let A= (aiJ)Zj:l be the n by
matrix defined by a;; = 2j(z;). Assuming that ¢ has been chosen small
enough, we deduce that A is invertible and let B = (b; ;);;_; be its inverse
Defining now z; = >+, b; sz, it follows that

n n
wi) = Y bt (ws) = Y bjsasi = 0ji-
s=1 s=1

O]

Assume (H) and let ¢ > 0. We can assume that not all the y; are
vanishing (otherwise also all the ¢, have to be equal to 0, and any y €
{yt,vs, .. yi Yt with |ly|| = M + ¢ will satisfy the conditions in (M)). We
can also, for the same reason assume that not all ¢;’s vanish. Secondly,
we can assume, after reordering the y}‘, that for some k € {1,2,...,n} the
sequence (y;k)é":l is linear independent and y ., Y5 o;---, ¥y € span(y; :
j =1,2,...,k). This implies that if we have a y € Y, with |ly]| = M + ¢
and y;‘(y) =¢j, for j = 1,2,...,k, then it also follows that y]*(y) = ¢;, for

j=k+1,k+2,...,n. Indeed, for j = k+1,k+2,...,n, choose scalars (agj) :
i:1,2,...,k)sothaty;’fzzk ()yl,forj—k—i-l k+2,...,n. Now, the

i=1%;

inequality in (H) implies that ¢; = Zk (j)cz, forj=k+1,k+2,....n

i=1

Indeed, choose a; = —1, a; =0, ifi € {k+1,k+2,...,n}\{j} and a; = aEJ),
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ifi € {1,2,...,k}, which implies that the right hand of the equation in (M)
vanishes. This yields that yj(y) =cj, forj=k+1,k+2,...,n.

We can therefore restrict ourselves to satisfy the second condition in
(H) for all j = 1,2,..., k. Define for j = 1,2,...,k the affine subspace
H; ={y €Y :y;(y) = ¢;}. Then

k

G = ﬂHj:{yEY:y;f(y):cj, for j=1,2...n}
j=1

is not empty, by Lemma 2.6.3, and if we pick y € G, then G = y+ G, where
G is the closed subspace

k
Go= [y eY :yjy) =0}

=1
We need to show that
(2.8) N:=inf{|y|:y e G} <M.

Then our claim would follow, since the Intermediate Value implies that there
must be some y in G for which N < M + ¢ < |ly|| < co. Without loss of
generality we can assume that N > 0. We define G = span(G), and note
that if y € G

(2.9) G = span(yg, Go) = {ry : r € K,y € G} where yp € G.

We choose a functional g* in the dual of the span of G so that g*(y) = N,
for all y € G This can be done by picking a fixed point yy € G, and choosing
by Hahn Banach ¢* € G* , with ¢*(yo) = N and which vanishes on the
linear closed subspace Gy.

We note that [|g*|| > 1. Indeed, otherwise choose a sequence (y,,) C G,
with lim, . ||yn|| = N, and note that

N =g"(yn) < Ig°11 - lynll =n—oo [lg7IIN < N

which is a contradiction.

Secondly, we note that ||g*|] < 1, we use (2.9) and find r e Rand y € G
so that ¢*(ry) > ||ry|| > |r|N, which is a contradiction since ¢g*(ry) = rN.

Thus |ly*|| = 1.

We let y* be a Hahn Banach extension of g* to a functional defined on
all of Y.
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For all y € Y, we have that if y;f(y) = ¢y, for j =1,2,...,k (and thus
y € G) it follows that y*(y) = N. Thus, we have for all y € Y if y7(y) = 0,
for j =1,2,...,k, then y*(y) = 0, in other words, the intersection of the null
spaces of the y}‘-‘, j=1,2,...,k, is asubset of the null space of y*. This means

that y* is a linear combination of the y;, i=1,2,... k say y* = Z;?:l ajy;.
This also implies that N = y*(y) = Z?:l a;y;(y) = Zk

=1 @5Cj, for y € G.
Thus, by our assumption (H)

k
.1 Q4iCy
_ N _ Z;l G
Hy H H E =1 ajy;‘H

which proves our claim (2.8) and finishes the proof of the Lemma.

O]

Proof of Theorem 2.6.1. “(i)=-(ii)”
Claim:Assume that X is not reflexive and that # € (0,1). Thn there is a
functional z*** € X*** that ||[z™*| = 1, 2***|x = 0 and 2**(2**) > 0 for
some z** € X** with [|[z™] < 1

Indeed, by Proposition 2.4.3

(X/E(X))" = x(X)T = {2 : ™| (x) = 0.

Since X is not reflexive, we pick z** € X** so that

Z**+ X *k = lnf ** **:1.
I + XD = ot

Using Hahn Banach, we find 2™ € S (x). with 2***(2**) = 1. Choose ¢ > 0
so that ﬁ > 0, then choose y** € z**+x(X) with ||y**|| < 14 and finally
let 2** = y** /(1 +¢)2. It follows ||z**|| < 1 and z***(2**) = (1 +¢)? > 6.

Now we will choose inductively x,, € Bx and z}, € Bx+, n € N, at each
step assuming that the condition (2.6) holds up to n, and additionally, that
() = 0.

For n = 1 we simply choose zj € Sx~ so that z**(z}) = 0 and then we

choose z1 € Bx so that 2](x1) = 6. Assuming we have chosen z1,z2,...,z,
and z7, 25, ...,z so that
0 if j <i<mn,and
(2.10) zi(w;) = o
0 ifi<j<n.
Since x***(x;) =0 for j =1,2,...,n and «**(2**) > 0, the elements

T1,%2,...,Tn, ™, seen as functionals on X*, together with the numbers
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0,0,...,0,0 and M = x*%zx**) < 1 satisfy Helly’s condition (H). Indeed, for
scalars aq, ..., a,11 we have

|an 110 = Man 127 (27)]

n n
= M|z*** ( Z a;xj+ an+1x**)‘ < MH Z a;x™* (xj) + apq12™*
Jj=1 Jj=1

We can therefore choose an z,_ ; € X*, |zy || <1 so that x},_(z;) = 0 for
all j =1,2,...,n and ™ (x}, ;) = 0.

Secondly, we note that the functionals x7,z3,...,z;,;, the numbers
0,0,...,0, and the number M = ||z**|| < 1 satisfy Helly’s condition. Indeed,

for scalars a1, ..., a1 we have
n+1 n+1

_ NE TN

’ g aje‘ —’ E ajx™(x})
Jj=1 Jj=1

We can therefore find z,41 € Bx, so that $;($n+1) =0, for all j =
1,2,...,n.

“(ii)=(iv)” and “(ili)=(v)” Fix a 6 € (0,1) for which there are sequences
(zj) C Bx and (2}) C Bx~ for which (2.6) holds. Let z = 377 ajz; €
conv(zy,xa,...,o,) and z = Z?’;nﬂ bjzj € conv(Tyy1,Tnt2,...) then

n+1
< M3 a5
j=1

Iz =2l = 21 (z = 2) = 214 (y) = 6,

which implies our claim.

“(iv)=(v)” obvious.

“(v)=(i)” Assume that for # > 0 and the sequence (z;) C By satisfies (2.7).
Now assume that our claim is false and X is reflexive.

Define C), = conv(z; : j > n+ 1), for n € N, then the sets Cy,, n € N, are
weakly compact, C1 D Cy D .... Thus there is an element v € ﬂneN C,. We
can approximate v by some u € conv(z; : j € N), with |[u—v|| < §/2. There
is some n so that v € conv(zy,...,z,). But now it follows, since u € Cj41,
that dist(conv(z1,...,2n), conv(Tni1, Tni2,-..)) < [|v — ul| < /2, which is
a contradiction and finishes the proof.

O]
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2.7 The Principle of Local Reflexivity

In this section we proof a result by J. Lindenstrauss and H. Rosenthal [LR]
which states that for a Banach space X the finite dimensional subspaces
of the bidual X** are in a certain sense have “similar” finite dimensional
subspaces of X.

Theorem 2.7.1. [LR] [The Principle of Local Reflexivity]
Let X be a Banach space and let F C X** and G C X* be finite dimensional
subspaces of X** and X* respectively.

Then, given € > 0, there is a subspace E of X containing F N X (we
identify X with its image under the canonical embedding) with dim E =
dim F' and an isomorphism T : F — E with |T|| - ||T7|| < 1 + ¢ such that

(2.11) T(x)=zifre FNX and
(2.12) (x*, T(x™)) = (™, 2%) if 2" € G,x™ € F.

We need several Lemmas before we can prove Theorem 2.7.1. The first
one is a corollary of the Geometric Hahn-Banach Theorem

Proposition 2.7.2. (Variation of the Geometric Version of the Theorem of
Hahn Banach)
Assume that X is a Banach space and C C X is convex with C° # () and
let x € X\ C (sox could be in the boundary of C'). Then there exists an
x* e X* so that

R(z*, 2) < (x*,z) for all z € CY,

and, if moreover C is absolutely convez (i.e. if px € C for all x € C and
p € K, with |p| <1), then

|(x*,2)| < 1= (2*,2) for all 2z€C°.

Lemma 2.7.3. Assume T : X — Y is a bounded linear operator between
the Banach spaces X andY and assume that T(X) is closed.

Suppose that for some y € Y there is an x** € X** with ||z**|| < 1, so
that T**(z**) = y. Then there is an x € X, with ||z|| < 1 so that T(x) = y.

Proof. We first show that there is an 2 € X so that T'(x) = y. Assume this
where not true, then we could find by the Hahn-Banach Theorem (Corollary
1.4.5) an element y* € Y*, so that y*(z) =0, forall z € T(X) and (y*,y) =1
(T'(X) is closed). But this yields (T™*(y*), z) = (y*,T(z)) =0, for all z € X,
and, thus, T*(y*) = 0. Thus

0= (™, T"(y") = (T @), y") = (w,y") = 1,
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which is a contradiction.

Secondly, assume that y € T'(X) \ T(B%). Since T is surjective onto
its (closed) image Z = T'(X) it follows from the Open Mapping Theorem
that T'(B%) is open in Z, and we can use variation of the geometric version
of the Hahn-Banach Theorem, Proposition (2.7.2), and chose z* € Z*, so
that (2*,T(x)) < 1 = (2*,y) for all © € B%. Again by the Theorem of
Hahn-Banach (Corollary 1.4.4) we can extend z* to an element y* in Y*. It
follows that

1T (y")Il = sup (IT"(y*),z) = sup (", T'(2)) <1,
z€EB% reB$

and thus, since [|z**|| < 1, it follows that

Y™ ) = (" T (2™)| = (2™, T (y"))| < 1,
which is a contradiction. O

Lemma 2.7.4. Let T : X — Y be a bounded linear operator between two
Banach spaces X andY with closed range, and assume that F': X —Y has
finite rank.

Then T + F' also has closed range.

Proof. Assume the claim is not true. Put S =T 4+ K and consider the map
S:X/N(S) =Y, z+N(S)— S(z)

which is a well defined linear bounded Operator, and which by Proposition
1.3.11 cannot be an isomorphism onto its image.
Therefore we can choose sequence (z;) in X/N(S), with ||Z,]| = 1 and
Ty, € Zn, with 1 < ||z,| <2, for n € N, so that
lim S(z,) = lim S(x,) =0 and dist(z,, N (S)) > 1.
n—o0 n—oo
Since the sequence (F(z,) : n € N) is a bounded sequence in a finite
dimensional space, we can, after passing to a subsequence, assume that
(F(xy,) : n€N) converges to some y € Y and, hence,
lim T'(z,) = —y.
n—oo
Since T has closed range there is an x € X, so that T'(x) = —y. Using again
the equivalences in Proposition 1.3.11 and the fact that T'(z,) — —y = T'(z),
if n 7 o0, it follows for some constant C' > 0 that

Tim_dist(2 — 2, V(7)) < lim C||T(z —2,)] =0,
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and, thus,
y—Fl@) = lim Fla) - F(z) € FN(T))

so we can write y — F'(x) as
y — F(z) = F(u), where u e N(T).
Thus

le dist(zy, — x — u, N(T')) = 0 and ILm | F(zy) — F(z) — F(u)|| = 0.

F| (1) has also closed range, Proposition 1.3.11 yields (C being some posi-

tive constant)

lim sup dist(zp, —x—u, N (F)NN(T)) < limsup C||F(zy)—F(z)—F(u)|| = 0.
n—00 n—00

Since T'(z+u) = —y = —F(z+u) (by choice of u), and thus (T+F)(x+u) =

0 which means that x + u € N(T + F). Therefore

lim sup dist(x,,, N (T + F)) = limsup dist(z,, — x — u, N(T + F))

n—oo n—oo

< limsup dist(z, — z — u, N(T) NN (F)) = 0.

n—oo

But this contradicts our assumption on the sequence (x,). O

Lemma 2.7.5. Let X be a Banach space, A = (a;;)i<m j<n an m be n
matriz and B = (b; j)i<pj<n @ p by n matriz, and assume that B has only
real entries (even if K= C).

Suppose that y1,....,ym € X, yi,...,y, € X*, &,...,§ € R, and

7, .1yt € B satisfy the following equations:
n
(2.13) > aigait =i, foralli=1,2,...,m, and
j=1
n
(214) <y:, Z bz,]x;*> = fia fO’F all i = 1, 2, ey P
j=1
Then there are vectors x1,...,T, € B satisfying:
n
(2.15) Zam-xj =y, foralli=1,2,...,m, and
j=1

(2.16) (vt

n
=

bijj) =& foralli=1,2,..p.
1
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Proof. Recall from Linear Algebra that we can write the matrix A as a
product A=U o PoV, where U and V are invertible and P is of the form

I, 0
P=("
(5 )
where 7 is the rank of A and I, the identity on K".
For a general s by ¢t matrix C' = (¢; ;)i<s,j<¢ consider the operator

t
To 0 (X) = (X)), (21,29, ..,2) (Zci,jxj L= 12m>
j=1

If s = ¢ and if C' is invertible then T is an isomorphism. Also if C(!) and
C®) are two matrices so that the number of columns of C1) is equal to the
number of rows of C? one easily computes that Tomoc@ = Toa) o Toe).
Secondly it is clear that Tp is a closed operator (P defined as above), since
Tp is simply the projection onto the first r coordinates in £ (X).

It follows therefore that T4 = Ty o Tp o Ty, is an operator with closed
range. Secondly define the operator

Sa 05 (X) = 02(X) @ 2,
(T1,...2pn) — (TA(ZL'l, e Tp), <<y;‘, Z bi7jxj>)j:1>.
j=1

Sa can be written as the sum of T4 and a finite rank operator and has
therefore also closed range by Lemma 2.7.4.
Since the second adjoint of S%" is the operator

SA 5 (XT7) = L5 (X)) @ 5,
kk kk kk kk kk * - kk p
(%1 oLy ) = (TA (xl 7oLy )7 <<yi>zbi,jx]‘ >)i—1>
=1 -
with

t
T 00 (X)) 07 (X5, (0%, 5, . o) o (Zai,jx;* : i:1,2,...,m),
j=1

our claim follows from Lemma 2.7.3. O
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Lemma 2.7.6. Let E be a finite dimensional space and (z;)Y., is an e-net
of Sg for some 0 <e <1/3. If T: E — FE is a linear map so that

(I—¢) < |IT(zj)| £ (1 +¢), forallj=1,2,...N.

Then L3 -
el < IT@) < Nl for all z€F,
and thus : )2
_ 1+e¢
T NT7H) < ——r—.
(1—¢)(1—3e)

We are now ready to proof Theorem 2.7.1.

Proof of Theorem 2.7.1. Let I C X™ and G C X™* be finite dimensional

subspaces, and let 0 < ¢ < 1. Choose ¢ > 0, so that % < e, and a

d-net (wj*)jvzl of Sp. It can be shown that (x;*)évzl span all of F', but we

can also simply assume without loss of generality, that it does, since we can
add a basis of F.
Let

N
S:RYN 5 F, (1,62, EN) = Y &,
j=1
and note that S is surjective.

Put H = S~YF N X), and let (a(i) :1=1,2,...,m) be a basis of H,
write a(® as ¢ = (@i1,a;2,...a;N), and define A to be the m by N matrix

A = (aij)i<m,j<n. Fori=1,2,...,m put
N
Y; = S(a(’)) = Zai7jx;7* e FnNnX,
j=1
choose x7,5,...,25 € Sx+ so that <x;‘*,x;) > 1 — 4, and pick a basis

{97.95, .. g;} of G.
Consider the following system of equations in N unknowns 27*, 23*,

L2y in X
N
E aijz;t =y fori=1,2,....,m
i=1
k% * k% * .
(277, 27) = (", 27) for j =1,2,..., N and

(23, g1) = (@3, gp) for j=1,2,...,N and k = 1,2,..., L.
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By construction z;* = a:;-‘*, 7 =1,2,..., N, is a solution to these equations.
Since [[7*[| =1 <1+, for j =1,2,..., N, we can use Lemma 2.7.5 and
find z1,x9,... 25y € X, with |lz;]| =1 <14, for j =1,2,..., N, which
solve above equations.

Define

N
SRV S X, (&8, ) P Y &

We claim that the null space of S is contained in the null space of S1. Indeed
if we assumed that & € KV, and ZJ 1 & = 0, but Z] 127" # 0, then,
Lemma 2.7.6 (consider the operator F' — RN, ** — (2**, %)) there is an

'L
i€{1,2,...N} so that
N
(21,3 a7) #0,
j=1

but since (27", z}) = (z;,2]) this is a contradiction.
It follows therefore that we can find a linear map T : F — X so that
S1 = T'S. Denoting the standard basis of RY by (ei)i<n we deduce that

x; = Si(e;) =T o S(ej) =T (x*), and thus
146 > lail| = T ()| = [{a7, )| = (277, 27)[ > 1= 0.

By Lemma 2.7.6 and the choice of § it follows therefore that ||T'|| - |77 <
1+e.
Note that for (e H = S™HFNX), say =31, B;a® . we compute

BiS1(a ZBZ Zawl‘]
N .
Zai,jx;f* =3 BS(a) = 5(6),
=1

=1

N'Mg i Mg

We deduce therefore for x € F'N X, that T'(z) =
Finally from the third part of the system of equations it follows, that

(2%, T(x3%)) = (2%, zj) = (2%, 2;), forall j =1,2,...,N and 2" €G ,
and, thus (since the z7* span all of ), that

(x*, T (x™)) = (™, z%), for all z** € F and z* €G.
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Chapter 3

Bases in Banach Spaces

Like every vectorspace a Banach space X has an algebraic or Hamel basis,
i.e. asubset B C X, sothat every x € X is in a unique way the (finite) linear
combination of elements in B. This definition does not take into account
that we can take infinite sums in Banach spaces and that we might want
to represent elements z € X as converging series (with possibly infinite non
zero elements). Hamel bases are also not very useful for Banach spaces,
since the coordinate functionals might not be continuous.

3.1 Schauder Bases

Definition 3.1.1. (Schauder bases of Banach Spaces)

Let X be an infinite dimensional Banach space. A sequence (ep) C X is
called Schauder basis of X, or simply a basis of X, if for every x € X, there
is a unique sequence of scalars (a,) C K so that

[e9)
T = g Apen.
n=1

Examples 3.1.2. For n € N let

en=10(0,...0,1,0,...) e KN
——

n—1 times

Then (ey,) is a basis of £,, 1 < p < oo and cg. We call (ey,) the unit vector
basis of {, and co, respectively.

Remarks. Assume that X is a Banach space and (e,) a basis of X.
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a) (ep) is linear independent.
b) span(e, : n€N) is dense in X, in particular X is separable.

c) Every element x is uniquely determined by the sequence (a,) so that
T = Z;; anén. So we can identify X with a space of sequences in

KN, for which > anep converges in X.
Proposition 3.1.3. Let X be a normed linear space and assume that (e,) C
X has the property that each x € X can be uniquely represented as a series

o0
x = Zanen, with (an) C K

n=1

(we could call (e,) Schauder basis of X but we want to reserve this term
only if X is a Banach space).
Forn € N and x € X define e} (x) € K to be the unique element in K,

so that
[o.¢]
xr = Z ey (z)en.
n=1

Then e} : X — K s linear.
Forn € N let

n
P,: X —span(ej: j <n), z— Ze;i(:c)en.
j=1

Then P, : X — X are linear projections onto span(e; : j < n) and the
following properties hold:

a) dim(P,(X)) =n,
b) PnOPm:PmOPn: min(m,n)» fOTm7n€N7
¢) limy, o0 Pp(z) = x, for every z € X.

Conversely if (P, : n € N) is a sequence of linear projections satisfying
(a), (b), and (c), and moreover are bounded, and if e; € Pi(X) \ {0} and
en € Po(X)NN(P,—1), with e, # 0, if n > 1, then each x € X can be
uniquely represented as a series

(e o]
xr = Z anen, with (an) C K,

n=1

so in particular (ey) is a Schauder basis of X in the case that X is a Banach
space.
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Proof. The linearity of e} follows from the unique representation of every
z € X asx = ) 72, e (r)e,, which implies that for 2 and y in X and
a, B ek,

n n
oz + By = lim a) ej(r)e; + 5 e;(y)e;
j=1 =1
n

= lim >~ (acj (@) + Bej(w)e; = Y (acj () + Bej w))es.
j=1

7=1

and, on the other hand

(o.9]
ar + Py = Ze}f(ax + BY)e;j.,

=1

thus, by uniqueness, ej(az + By) = aej(x) + Bej(y), for all j € N. The
conditions (a), (b) and (c) are clear.

Conversely, assume that (P,) is a sequence of bounded and linear projec-
tions satisfying (a), (b), and (c). By (b) P,—1(X) = P,o P,—1(X) C P (X),
for n € N (put Py = 0)and, thus, by (a), the codimension of P,,_;(X) inside
P,(X)is 1. Soife; € Pi(X)\ {0} and e, € P(X) NN (Pp—1), if n > 1,
then for z € X, by (b)

Pn—l(P (x)_Pn 1( :Pn—l(x)_Pn 1( ) 0,
and thus P,(z) — P,—1(x) € N(P,-1) an
Po(2) = Proa(z) = Pu(Po(2) = Proa (7)) € Pa(X )
and therefore P, (z) — P,—1(z) € P, (X) N N(P,—1). Thus, we can write

P,(x) — Py—1(x) = apen, for n € N, and it follows from (c) that (letting
Py =0)

)

x = lim P,(x) = lim E P;( (x) = lim g ajej = E aje;.
n—o0 n—o00 n—00 4 . —
j= j=

In order to show uniqueness of this representation of x assume z = Z(;; bje;.
From the continuity of P,, — P,,—1, for m € N it follows that

amem = (Py, — Pp—1)(x) = lim (P, — P (Zb e]) = bmem,

n—oo

and thus a,, = by,. ]
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Definition 3.1.4. (Canonical Projections and Coordinate functionals)

Let X be a normed linear space and assume that (e;) satisfies the assump-
tions of Proposition 3.1.3. The linear functionals (e;,) as defined in Proposi-
tion 3.1.3 are called the Coordinate Functionals for (e,) and the projections
P,, n € N, are called the Canonical Projections for (ey,).

Proposition 3.1.5. Suppose X is a normed linear space and assume that
(en) C X has the property that each x € X can be uniquely represented as a
series

o0
T = Z anen, with (a,) C K.

n=1

If the canonical projections are bounded, and, moreover, sup,cy || Pl < oo
(i.e. uniformly the P, are bounded), then (e;) is a Schauder basis of its
completion X.

Proof. Let P, : X = X, n €N, be the unique extensions bounded of B,.
Since P, has finite dimensional range it follows that P,(X) = P,(X) =
span(e; : j < n) is finite dimensional and, thus, closed. (P,) satisfies there-
fore (a) of Proposition 3.1.3. Since the P, are continuous, and satisfy the
equalities in (b) of Proposition 3.1.3 on a dense subset of X, (b) is satisfied
on all of X. Finally, (c) of Proposition 3.1.3 is satisfied on a dense subset of
X, and we deduce for T € X, T = limg_.oo T, with z, € X, for k€N, that

[ = Pa@)] < 17— sl + sup Py I il + 1 — Pl
J

and, since (P,) is uniformly bounded, we can find for given ¢ > 0, k large
enough so that the first two summands do not exceed €, and then we choose
n € N large enough so that the third summand is smaller than e. It follows
therefore that also (c) is satisfied on all of X. Thus, our claim follows from
the second part of Proposition 3.1.3 applied to X. ]

Our goal is now to show the converse of Proposition 3.1.3, and prove
that if (ey) is a Schauder basis, then the canonical projections are uniformly
bounded, and thus that the coordinate functionals are bounded.

Theorem 3.1.6. Let X be a Banach space with a basis (e,) and let (e}) be
the corresponding coordinate functionals and (P,) the canonical projections.
Then P, is bounded for every n € N and

b =sup || Pl 1(x,x) < o0,
neN
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and thus ey, € X* and

[ Pn — P 2b
lenllx- = <
" lenll lexl]

We call b the basis constant of (e;). If b =1 we say that (e;) is a monotone
basis.

Furthermore there is an equivalent renorming || - || of (X, |- ||) for which
(en) is a monotone basis for (X, | ).

Proof. For x € X we define
lzll = sup || P ()],
neN

since ||z|| = im0 || Po ()|, it follows that ||z|| < [|z] < oo for z € X.
It is clear that || - || is a norm on X. Note that for n € N

[Pall = sup [ Pa(@)]
zeX Jall<1

= sup sup ||Pn o Py(x)]
zeX [lz||<1 meN

= Sup Sup ||Pmin(m,n) (IL‘)H <L
zeX, |z]<1 meN

Thus the projections P, are uniformly bounded on (X, - ||). Let X
be the completion of X with respect to || - ||, P,, for n € N, the (unique)
extension of P, to an operator on X. We note that the P, also satisfy the
conditions (a), (b) and (c) of Proposition 3.1.3. Indeed (a) and (b) are purely
algebraic properties which are satisfied by the first part of Proposition 3.1.3.
Moreover for x € X then

(3.1) I = Po(z)ll = sup 1P () = Prain (i) (@)
= sup || Pn(z) — Pp(x)| — 0 if n — oo,
m>

which verifies condition (c). Thus, it follows therefore from the second part
of Proposition 3.1.3, the above proven fact that |P,|| < 1, for n € N, and
Proposition 3.1.5, that (e;,) is a Schauder basis of the completion of (X, ||||)
which we denote by (X, || - ||).

We will now show that actually X = X, and thus that, (X, - [) is
already complete. Then it would follow from Corollary 1.3.6 of the Closed
Graph Theorem that || - || is an equivalent norm, and thus that

C =sup sup [[Py(z)| = sup [lz]| < oco.
neNzeByx rEBx
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So, let # € X and write it (uniquely) as & = > iy ajej, where this
convergence happens in || - ||. Since || - || < |- ||, and since X is complete the
series )77 aje; also converges with respect to || - [| in X to say = € X.
Important Side Note: This means that the sequence of partial sums
(2?21 aje;) converges in (X, ||-||) to z, which means that (a,) is the unique
sequence in K, for which x = Z(;; aje;. In particular this means that

P, (x) = Zajej = P,(&), for all n € N.
j=1

But now (3.1) yields that P,(x) also converges in | - || to x.
This means (since (P, (z) cannot converge to two different elements) that
x = Z, which finishes our proof. O

After reading the proof of Theorem 3.1.6 one might ask whether the last
part couldn’t be generalized and whether the following could be true: If || - ||

and [|- || are two norms on the same linear space X, so that ||-|| < ||-||, and so
that (|| - ]|, X) is complete, does it then follow that (X, || - ||) is also complete
(and thus || - || and || - || are equivalent norms). The answer is negative, as

the following example shows.

Example 3.1.7. Let X =/, with its usual norm ||-||2 and let (by:v€T") C S,
be a Hamel basis of I' (I" is necessarily uncountable). For x € {5 define |z||,

llzll =) |z,
vyel

where z = Zver z,by is the unique representation of z as a finite linear
combination of elements of (b, : y€I'). Since ||by||2, for v € T, it follows for
T = ZWEF z,by € f3 from the triangle inequality that

lall = Y- lal = 3 llzblle = || D" 20|, = lizlz
yel’ yel’ yel’

Finally both norms ||| and || - ||, cannot be equivalent. Indeed, for arbitrary
e > 0, there is an uncountable set I C T, so that ||by —by/|2 <€, 7,7 € T",
(I' is uncountable but Sy, is in the || - ||2-norm separable). For any two
different elements v, € I it follows that

16y = byll <& <2=[b, — byl

Since € > 0 was arbitrary this proves that ||-|| and |- || cannot be equivalent.
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Definition 3.1.8. (Basic Sequences)
Let X be a Banach space. A sequence (z,,) C X \{0} is called basic sequence
if it is a basis for span(z, : n € N).

If (ej) and (f;) are two basic sequences (in possibly two different Banach
spaces X and Y). We say that (e;) and (f;) are isomorphically equivalent
if the map

T :span(e; : j € N) — span(f;j : j € N), Zajej |—>Za]f],

extends to an isomorphism between the Banach spaces between span(e; : j € N)
and span(f; : j € N).

Note that this is equivalent with saying that there are constants 0 < ¢ <
C so that for any n € N and any sequence of scalars ()\j)?zl it follows that

Dot ) W B )
j=1 j=1 j=1

Proposition 3.1.9. Let X be Banach space and (xz, : n € N) C X \ {0}.
The (xy,) is a basic sequence if and only if there is a constant K > 1, so that
for all m <n and all scalars (a;)7_; C K we have

m n
i=1 i=1

In that case the basis constant is the smallest of all K > 1 so that (3.2)
holds.

Proof. “=7” Follows from Theorem 3.1.6, since K := sup,,cy || Pn|| < oo and
Pm(zzl:l aixi) =3 4Ty, if m <nand (a;)7; CK.

“«<” Assume that there is a constant K > 1 so that for all m < n and all
scalars (a;)7_; C K we have

m n
H E a;T; §KH E a;T;||.
i=1 i=1

We first note that this implies that (x,,) is linear independent. Indeed, if we
assume that 2?21 ajx; = 0, for some choice of n€N and (aj)?:1 Cc K, and
not all of the a; are vanishing, we first observe that at least two of a;-s cannot
be equal to 0 (since x; # 0, for j €N), thus if we let m := min{j : a; # 0},
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it follows that > 7" ajz; # 0, but 3°%_; ajz; = 0, which contradicts our
assumption.

It follows therefore that (z,) is a Hamel basis for (the vector space)
span(x; : j € N), which implies that the projections P, are well defined on
span(z; : j € N), and satisfy (a), (b), and (c) of Proposition 3.1.3. Moreover,
it follows from our assumption that

m
| P || = sup {H ZajxjH :n €N, (q)i; CK,
j=1

n
T E 1} <K
j=1

Thus, our claim follows from Proposition 3.1.5.

Also note that the proof of “=” implies that the smallest constant so
that 3.2 is at most as big as the basis constant, and the proof of “<” yielded
that it is at least as large as the basis constant. O

Remark. It was for a long time an open problem whether or not every
separable Banach space admits a Schauder basis. 1973 this was solved by
Enflo [En] in the negative. He constructed the first separable Banach space
which does not admit a Schauder basis.

Every separable Hilbert space has a basis (for example an orthogonal
basis). Thus, every subspace of a Hilbert space has also a basis. It was
shown [Jo] that only Banach space which in some sense are “very close” to
a Hilbert space, have the property that each of their subspaces have bases.
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3.2 Bases of C[0,1] and L,[0, 1]

In the previous section we introduced the unit vector bases of ¢, and co.
Less obvious is it to find bases of function spaces like C[0, 1] and L, [0, 1].

3.2.1 The Schauder or Spline basis on C[01]

Let (t,,) C [0, 1] be a dense sequence in [0, 1], and assume that t; = 0, t = 1.
It follows that

(3.3)  mesh(ty,ta,...t,) = 0, if n — oo, where
mesh(ty,to,...t,) = max {|tZ — t;] : t; is neighbor of ti}.
=1,2,...n
For f € C|0, 1] we let Py(f) to be the constant function taking the value f(0),
and for n > 2 we let P,(f) be the piecewise linear function which interpolates
the f at the points t1, to,...t,. More precisely, let 0 =51 < s0 < ...5, =1
be the increasing reordering of {¢1,ta,...t,}, then define P,(f) by

P.(f):]0,1] —» K, with
Sj — S S — 8]’71

Pa(f)(8) = ————f(sj-1) +

i — 851 5 — 851 f(Sj)v or s [53 1, 5]]

We note that P, : C[0,1] — C]0, 1] is a linear projection and that || B,|| = 1,
and that (a), (b), (c) of Proposition 3.1.3 are satisfied. Indeed, the image
of P,(C0,1]] is generated by the functions f; = 1, fao(s) = s, for s € [0, 1],
and for n > 2, f,,(s) is the functions with the property f(t,) =1, f(t;) =0,
Jj€1{1,2,... }\{tn}, and is linear between any ¢; and the next bigger ¢;. Thus
dim(P,(C[0,1])) = n. Property (b) is clear, and property (c) follows from
the fact that elements of C0,1] are uniformly continuous, and condition
(3.3).

Also note that for n > 1 it follows that f,, € P,(C|0,1]) "N (P,—1) \ {0}
and thus it follows from Proposition 3.1.3 that (f,,) is a monotone basis of
1o, 1].

3.2.2 The Haar basis of L,[0, 1]

Now we define a basis of Ly[0, 1], the Haar basis of Lp[0,1]. Let
T={(n,j):neNyg,j=1,2,...,2"U{0}.
We partially order the elements of T' as follows

(n1,41) < (n2,j2) <= [(J2 —1)27"%,5227"™] C [(j1 — 1)27™, j127™]
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= (1 —1)27" < (2 —1)27™ < jp27™ < 127™, and ng <ny

whenever (ny, j1), (n2,j2) € T
and

0 < (n,j), whenever (n,j) e T\ {0}

Let 1 < p < oo be fixed. We define the Haar basis (h:)ier and the in Ly,
(p))

normalized Haar basis (hy
ho = h(()p) =1on [0,1] and for n € Ny and j = 1,2,...,2" we put

teT as follows.

hing) = LG—ny2-n = 1z-m) — Lg=dyz-nja—n))-
and we let

Ay = supp(hn) = [ = D27",427"),

1

ALy = G- 027G - D)

_ N

We let h(oo) = h(n’j). And for 1 <p < o0

(n,j) —
h .
() _ (nd)  _ on
M) = Ihmpllp 2 /p(l[(j—l)rn,(j—%)?—n - 1[(3‘—%)2—“)42—”))‘

Note that ||h¢||, =1 for all t € T" and that supp(h¢) C supp(hs) if and only
if s <t.

Theorem 3.2.1. If one orders (hgp))teT linearly in any order compatible

with the order on T then (hgp)) is a monotone basis of L,[0,1] for all 1 <
p < oo.

Remark. a linear order compatible with the order on T is for example the
lexicographical order

ho, h(o,1), h1,1)s P(1,2)s R2,1)s Pzj2ys - -

Important observation: if (hy : ¢t € T) is linearly ordered into hg, h, ...,
which is compatible with the partial order of T, then the following is true:
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If j,n are in N and j < n then h; is constant on the support of h,,
thus we obtain:

If n € N an if
n—1
h = Zajhj,
7=1

is any linear combination of the first n —1 elements, then A is constant
on the support of h,. Moreover, h can be written as a step function

N
h = Z bjlls;_1.55)s
j=1

with 0 = sp < s1 < ...sp, so that

/] hn ()t = 0.
Si_1

J

As we will see later, if 1 < p < oo, any linear ordering of (hy : t € T') is
a basis of Ly[0,1], but not necessarily a monotone one.

Proof of Theorem 8.2.1. First note that the indicator functions on all dyadic
intervals are in span(h; : t€7'). Indeed:

ho + ho,1)

lo,1/2) = 5 ;
Lo ho— ey
(1/2,1] = 5 ;

Yo,1/2) = P
5 .
Since the indicator functions on all dyadic intervals are dense in L]0, 1]
it follows that span(h; : t€T) = L,[0, 1].

Let (hy) be a linear ordering of (hip ))teT which is compatible with the
ordering of T'.

Lo,1/2) =

Let n € N and let (a;)}_; be a scalar sequence. We need to show that

n—1 n
H Z aih;|| < H Z a;h;
i=1 i=1
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As noted above, on the set A = supp(h,) the function f = Y77 !a;h; is
constant, say f(x) = a, for x € A. Therefore we can write

La(f + anhy) = 1a+(a+an) + 14-(a — an),

where AT is the first half of the interval A and A~ the second half. From
the convexity of [0,00) 3 r — 7P, we deduce that

[|a + anl? + |a — an|p] > |al?,

N |

and thus
/[f—l—anhn\pdx:/Ac\f|pd:v—|—/A|a+an]p1A++\a—an|p1Adac
= " | f|Pdx + %m(A)“a—l—an\p%— la — an|”]
> [ Afrde e ma)lar = [ 1g7ds

which implies our claim. O

Proposition 3.2.2. Since for 1 <p < oo, and 1 < g < oo, with % + % it 18
easy to see that for s,t €T

(3.4) (P By = 5(s, 1),

we deduce that (h@)tGT are the coordinate functionals of (hgp))teT.
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3.3 Shrinking, and boundedly complete bases

Proposition 3.3.1. Let (e,,) be a Schauder basis of a Banach space X, and
let (e}) be the coordinate functionals and (P,) the canonical projections for

(en)'
Then

a) P;(w*)zz (", ej)e :Z x(ej), 7, forneN and z* € X*.
7=1

b) ¥ =o(X*, X) —nli_{]gOP (), for z* e X*.

c) (e}) is a Schauder basis of span(e}, : n€N) whose coordinate function-
als are (ey).

Proof. (a) For neN, 2" € X* and x =372 (e}, v)e; € X it follows that

(Py(z*),x) = (x¥, Py(x)) = <x*,zn:<e;,x>ej> = <Zn:<x*,ej>e;,x>
=1 1

and thus

(b) For x € X and z* € X*
(", x)y = lim (2%, Pyz) = lim (P)(z"), z).

n—oo n—oo

(c) It follows for m < n and (a;)!; C K, that

m
H Z a;e;
i=1

IN

n
H E a;e; H E a;e;
=1 =1

It follows therefore from Proposition 3.1.9 that (e} ) is a basic sequence, thus,

a basis of span(e},), Since (x(ej),e;) = (€], e;j) = d; 5, it follows that (x(ey))
are the coordinate functionals for (e} ). O
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Remark. If X is a space with basis (e, ) one can identify X with a vector
space of sequences x = (&,) C K. If (e}) are coordinate functionals for (ey)
we can also identify the subspace span(e}, : n€N) with a vector space of
sequences z* = (n,) C K. The way such a sequence x* = (1,,) € X* acts on
elements in X is via the infinite scalar product:

L x) = <Z77n€:n Z§n€n> = Znngn

neN neN neN

We want to address two questions for a basis (e,) of a Banach space X
and its coordinate functionals (e}):

1. Under which conditions does it follow that X* = span(e})?

*

2. Under which condition does it follow that the map J : X — span(e},) ,
with
J(x)(z") = (2%, z), for r€ X and z* € span(e},),

an isomorphy or even an isometry?
We need first the following definition and some observations.

Definition 3.3.2. [Block Bases]
Assume (z,,) is a basic sequence in Banach space X, a block basis of (x,) is
a sequence (z,) C X \ {0}, with

kn
Zn = Z ajxj, for n € N, where 0 = ky < k1 < k2 < ... and (a;) C K.
j:knfl‘i’l

We call (z,,) a convex block of (zy,) if the a; are non negative and ZJ 410 =
1.

Proposition 3.3.3. The block basis (zy) of a basic sequence (xy) is also a
basic sequence, and the basis constant of (zy) is smaller or equal to the basis
constant of (xy,).

Proof. Let K be the basis constant of (z,), let m <nin N, and (b;)}_; C K.
Then

(3 3 e

ll]kll

Hszl
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k;
gKHi Z biajxjH :KHin’Z’
i=1

i=1 j=k;_1+1
O

Theorem 3.3.4. For a Banach space with a basis (e,) and its coordinate
functionals (e})) the following are equivalent.

a) X* =span(e} : n € N) (and, thus, by Proposition 3.5.1, (e}) is a basis
of X* whose canonical projections are P} ).

b) For every z* € X*,

lim sup |(z*,z)| = 0.

tim (2% spane, gomll =
n—o0 span(esj>m) N0 pespan(ejj>n),|z]| <1

¢) Every bounded block basis of (e) is weakly convergent to 0.
We call the basis (ey,) shrinking if these conditions hold .
Remark. Recall that by Corollary 2.2.6 the condition (c) is equivalent with

¢’) Every bounded block basis of (e,) has a further convex block which
converges to 0 in norm.

Proof of Theorem 3.3.4. “(a)=(b)” Let z* € X* and, using (a), write it as
a* =372 ajej. Then

m  sp J@hal=lim sp @5 (T— P)@)
N0 pespan(e;j>n) ||z <1 N0 pespan(ej:i>n),||z]| <1
= lim sup (I = Py) ("), @)
n—00

xespan(e;j:j>n),llz|| <1
< I (1 = P})(")] = 0.

“(b)=-(c)” Let (z,) be a bounded block basis of (z), say

kn
Zn = Z a;Tj, fOl“’I’LEN,WithO:]{I0<k21<k‘2<...and(aj)CK.
j:kn—1+l

and z* € X*. Then, letting C' = sup,cy | 2,

(2", zn)| < sup |{(z*, 2)| =n—o0 0, by condition (b),
z€span(e;:j>kn_1),|2||<C
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thus, (z,) is weakly null.
“=(a)= —(c)” Assume there is an z* € Sx~, with 2* ¢ span(e} : j € N). It
follows for some 0 < e <1

(3.5) e = limsup ||z* — Py (z*)] > 0.
n—oo
By induction we choose 21, 23,...in Bx and 0 = kg < k1 < ..., so that z, =

Z?an,lﬂ aje;, for some choice of (aj);?ikniﬁ_l and [(z*, zp)| > €/2(1+ K),
where K = sup,cy || Pj]|- Indeed, let z; € Bx Nspan(e;), so that [(z*, 21)| >
€/2(1+ K) and let k; = min{k : z; € span(e; : j < k). Assuming 21, 22, ...2p
and k1 < k2 < ...k, has been chosen. Using (3.5) we can choose m > k,
so that ||z* — P (z*)|| > £/2 and then we let Z,41 € Bx Nspan(e; : i € N)
with
(@ = Boa™), Enen)] = 27 Fner — PG )| > /2.
Finally choose
2n+1 - Pm(ZnJrl)

= €B
Zn+1 1+ K X

and

kpy1 = min {k: : Znt1 € span(e; 1 j < k:)}
It follows that (z,) is a bounded block basis of (e,) which is not weakly
null. =

Examples 3.3.5. Note that the unit vector bases of £,, 1 < p < oo, and
¢p are shrinking. But the unit vector basis of ¢; is not shrinking (consider
(1,1,1,1,1,1...) € £} = ).

Proposition 3.3.6. Let (e;) be a shrinking basis for a Banach space X and

(e7) its coordinate functionals. Put

n
Y = {(ai) C K:sup H ZajejH < oo}.
n =
Then Y with the norm

)

n
lai)l =sup | 3 aje;
neN j=1

is a Banach space and

T:X™ =Y, o= (™, ¢e]))jen,

1s well defined and an isomorphism between X** and Y.
If (ey) is monotone then T is an isometry.
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Remark. Note that if a; = 1, for j € N, then in ¢

but the series > jen aj€; does not converge in co.
Considering X as a subspace of X** (via the canonical embedding) the
image of X under T is the space of sequences

oo
Z = {(ai) eyY: Zajej converges in X}.
j=1

Proof of Proposition 3.3.6. Let K denote the basis constant of (e,,), (e};) the
coordinate functionals, and (P,) the canonical projections. It is straightfor-
ward to check that Y is a vector space and that | - || is a norm on Y.

For z* € X* and 2** € X** we have by Proposition 3.3.1

n

Pr(z*) = Z(x*,eﬁe} and

j=1
n n n

(Bt at) = (000, 3ot es)es ) = Doa epetses) = (o, ot

j=1 j=1 j=1
which implies that

n
(36) AT =sup | Yot s = sup |77 @) | < K.
neN j=1 neN

Thus T is bounded and ||T|| < K.
Assume that (a,) € Y. We want to find ™ € X** so that T'(z**) =
(ap). Put

n
*k 5.
Ty = g ajej, for n € N.
J=1

(where we identify X with its canonical image in X** and, thus, e; with
x(e;) € X**) Since

n
ol = || D ases]
j=1

. < |I(ap)]|l, for all n € N,
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and since X* is separable (and thus (Bx=+,o(X**, X*)) is metrizable) (z}*
has a w*-converging subsequence :L":{; to an element z** with

[l | < dim sup [l < [|(aj)]-
n—oo

It follows for m € N that

(x™,er) = lim (x)*,er))

’rrm h n;’-m = Qm,
J—00

and thus it follows that T'(z**) = (a;), and thus that T is surjective.

Finally, since (e})) is a basis for X* it follows for any z**

n
1T = sup | S e
neN j=1

= sup ‘Z@**»ejﬂx*,@ﬂ‘
neEN,z*€Bxx =1
= sup sup (™, P;(z*)) > ||2™* (since Pj(z*) = z* if n — c0),
I*EB)(* neN
which proves that 7" is an isomorphism, and, that ||7'(z*)| > ||=**||, for
™ € X**. Together with (3.6) that shows T is an isometry if K = 1. O

Now we want to discuss the“dual problem”. Let (e;) be the basis
of a Banach space X and (€})72; its coordinate functionals. Let Z =

span(e} : j € N) C X*. Consider the Operator:

S: X =7 x|z (ie T(x)(z)=z),forzeZ.

Question: Under which conditions is S an onto isomorphism?
We first show that it is always an isomorphic embedding;:

Lemma 3.3.7. Let X be a Banach space with a basis (ey), with basis con-
stant K and let (e}) be its coordinate functionals. Let Z = span(ef, : n€N) C
X* and define the operator

S: X =27 z—x)|z ie S)(z)=(z,z), forz€ Z and x€ X.
Then S is an isomorphic embedding of X into Z* and for all x € X.
1
2zl < IS@)I < llzl.

Moreover, the sequence (S(ey)) C Z* are the coordinate functionals of (e})
(which by Proposition 3.3.1 is a basis of Z).



3.3. SHRINKING, AND BOUNDEDLY COMPLETE BASES 81

Proof. For x € X note that

[S@)l = sup  [(z,2)] < sup [(z", z)| = |||,
z€2,||zllx* <1 z*EB x
By Corollary 1.4.6 of the Hahn Banach Theorem.
On the other hand, again by using that Corollary of the Hahn Banach
Theorem, we deduce that
[z = sup [(w",z)]
w*EBx*
= sup lim [(w*, P,(x))|
’w*GBX* n—oo

= sup lim [(F(w"),z)|

’LU*EBx* n—oo n

<sup sup [(Py(w*),z)
neENw*eBxx

< sup sup (2, ) = KI|S(2)]].
neN zEspan(e;:jgn),HzHgK

O]

Theorem 3.3.8. Let X be a Banach space with a basis (ey), and let (e})
be its coordinate functionals. Let Z = span(ef :neN) C X*. Then the
following are equivalent

a) X is isomorphic to Z*, via the map S as defined in Lemma 3.5.7

b) (e}) is a shrinking basis of Z.

n
c) If (a;) C K, with the property that

n

sup H ZajejH < 00,

neN =1
then 27 aje; converges.
In that case we call (ey,) boundedly complete.

Proof. “(a)=-(b)” Assuming condition (a) we will verify condition (b) of
Theorem 3.3.4 for Z and its basis (e). So let z* € Z*. By (a) we can write
z* = S(x) for some z € X. Since z = lim,_,oc Py(z), where (P,) are the
canonical projection for (ey), we deduce that

sup (z",w) = sup (S(z),w)

wespan(ef:j>n),||lw|<1 wéspan(e:j>n),||lw||<1
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= s (wa)
wespan(e;:j>n),l|lw[|<1
= sup (w, (I — Pp)(x))

wespan(ef:j>n),||lw||<1
< (= Po)(@)[ =ns00 0.

It follows now from Theorem 3.3.4 that (e}) is a shrinking basis of Z.
“(b)=-(c)” Assume (b) and let (a;) C K so that

n n
()]l = sup H ZajejH = sup H Zan(ej)H < oo.
neN j=1 neN j=1

The sequence (z3;") C X**, with 2" = >0 a;x(e;), is bounded in X**
and must therefore have an o(X™**, X*)-converging subnet whose limit we
denote by z**. It follows that a; = (z**, e;‘»), for all j € N.

Let z* be the restriction of z** to the space Z (which is a subspace of
X*). Since by assumption (e]) is a shrinking basis of Z and since by Lemma
3.3.7 (S(ej))jen are the coordinate functionals we can write z* in a unique
way as

Z* = Z bjS(ej).
7j=1

But this means that a; = (z**,¢j) = (2*,€}) = bj, for all j € N and
since S is an isomorphism between X and its image it follows that Z;’il a;e;
converges in norm in X.

“(c)= (a)” By Lemma 3.3.7 it is left to show that the operator S is surjec-
tive. Thus, let z* € Z*. Since (e}) is a basis of Z and (S(e,)) C Z* are
the coordinate functionals of (e}), it follows from Proposition 3.3.1 that z*
is the w™* limit of (z) where

n
Z=> (25,€5)S(e)).

=1

Since w*-converging sequences are bounded it follows that

sup H i(z*, ej>S(ej)H < oo
j=1
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By our assumption (c) it follows therefore that z = > 222, (2*, €])e; converges
in X, and moreover

n

S(x) = lim_ z;w, e5)S(ej) = 2,
j:

which proves our claim. O

Theorem 3.3.9. Let X be a Banach space with a basis (ey,). Then X is re-
flezive if and only if (e;) is shrinking and boundedly complete, or equivalently
if (ej) and (e}) are shrinking.

Proof. Let (e}) be the coordinate functionals of (e,,) and (P,) be the canon-
ical projections for (e,).

“=" Assume that X is reflexive. By Proposition 3.3.1 it follows for every
e X*

* ks KK\ o * (K
rr=w nh_{r;oPn(x) w nh_}noloPn(x ),

which implies that 2* € span(e® : n € N)', and thus, by Proposition 2.2.5
x* € span(e} :n € N)”.H. It follows therefore that x* = span(ef : n € N)M
and thus that (e;) is shrinking (by Proposition 3.3.1).

Thus X* is a Banach space with a basis (ej) which is also reflexive. We
can therefore apply to X* what we just proved for X and deduce that (e})
is a shrinking basis for X*. But, by Theorem 3.3.8 (in this case Z = X*)
this means that (e,) is boundedly complete.

“<” Assume that (e,) is shrinking and boundedly complete, and let x** €
X**. Then

n

¥ =o(X™ X") — nh_}ngo Z<CC**, e;)x(ej)
j=1

has (e¥) as a basis, since (e;) is shrinking

[ By Proposition 3.3.1 and the fact that X* = span(e] : j € N)
j

n

= - tim Y e)x(es) € x(X)
j=1

Since sup,en || X7, (P (z*), €} )e;]| < oo, and
since (ej) is boundedly complete

which proves our claim. O
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The last Theorem in this section describes by how much one can perturb
a basis of a Banach space X and still have a basis of X.

Theorem 3.3.10. (The small Perturbation Lemma)
Let (x,) be a basic sequence in a Banach space X, and let (x}) be the

coordinate functionals (they are elements of span(x; :j€N) ) and assume
that (yn) is a sequence in X such that

o0
(3.7) c=> |lon = yall - 23]l < 1.
n=1
Then there exists an onto isomorphism S : X — X, with

1 =l < IS@)] < (L + )]

and s(xj) = yj;, for all j € N.
Moreover:

a) (yn) is also basic in X and isomorphically equivalent to (x,), more
precisely

oo o0
(l—c)HZanazn < HZanyn
n=1 n=1

for all in X converging series x = anp.

)

oo
< (14 C)H Zana:n
n=1

b) If span(z; : j€N) is complemented in X, then so is span(y; : j€N).

¢) If (xy) is a Schauder basis of all of X, then (yn) is also a Schauder
basis of X and it follows for the coordinate functionals (y)) of (yn),
that y;, € span(z; : jEN), for neN.

Proof. By Corollary 1.4.4 of the Hahn Banach Theorem we extend the func-
tionals z, to functionals z} € X*, with ||z ||z ||, for all neN.
Consider the operator:

oo
T:X—>X, =z~ Z(fc;,:v)(xn — Yn).
n=1

Since > 7 ||xn — yull - [|l25]| < 1, T is well defined, linear and bounded and
IT|| < ¢ < 1. It follows S = Id — T is an isomorphism between X and it
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self. Indeed, for x € X we have, ||S(x)| > ||z|| = |T|| - [|z]| > (1 —¢)||z| and
if y € X, define z = > o0, T"(y) (T° = Id) then

(1d - T)( ZT“ ~T(Y W) = 3T - YT W) = v
n=0 n=0

n=1

Thus Id — T is surjective, and, it follows from Corollary 1.3.6 that Id — T
is an isomorphism between X and itself.

(a) We have (I —T)(xy) = yn, for n€N, this means in particular that (yy)
is basic and (x,) and (y,) are isomorphically equivalent.

(b) Let P : X — span(z, : n€N) be a bounded linear projection onto
span(x, : n€N). Then it is easily checked that

Q: X —span(y, : neN), z~ (Id—T)oPo(Id—T) (),

is a linear projection onto span(y, : n€N).
(c) If X = span(zy : ne€N), then, since I — T is an isomorphism, (y,) =
((I =T)(zy)) is also a Schauder basis of X.

Moreover define for k and ¢ in N,

=

k
y&k) = Z Y, ) Z ) i) :L‘ € span(x T} :jeN).
Jj=1 j=1

It follows from Proposition 3.3.1, part (b), that w* — limg_, yz‘ K = yr,

which implies that y; (z) = 372 (yf, z;) (2}, z), for all z € X, and thus for
k>4

195 = Yl = sup [y; — ¥ k) @)

TEBx

x
= sup ‘ Z (i, x5) (7, :c)‘

o0
= swp | 37 (uia; —y)aja)

o0
<yl D Mz —yll - 5] — 0, if k — oo
j=k+1
so it follows that y} = || - || — limg_—00 (7 i € Span(x; : J€N) for every i €N,

which finishes the proof of our claim (c). O
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3.4 Unconditional Bases

As shown in the Homework there are basic sequences which are no longer
basic sequences if one reorders them (like the Haarbasis in L;0,1] or the
summing basis in ¢p). Unconditional bases are defined to be bases which are
bases no matter how one reorders them.

We will first observe the following result on unconditionally converging
series

Theorem 3.4.1. For a sequence (xy) in Banach space X the following
statements are equivalent.

a) For any reordering (also called permutation) o of N (i.e. 0 : N — N
is bijective) the series ), oy To(n) converges.

b) For any e > 0 there is ann € N so that whenever M C N is finite with
min(M) > n, then || 3 ,cpr @nll < e

¢) For any subsequence (n;) the series )y xn; converges.
d) For sequence (;) C {1} the series Y322, ejzn; converges.

In the case that above conditions hold we say that the series ) x, converges
unconditionally.

Proof. “(a)=-(b)” Assume that (b) is false. Then there is an € > 0 and for
every n € N there is a finite set M C N, n < min M, so that || >_,cp, z;l| = €.
We can therefore, recursively choose finite subsets of N, My, My, M3 etc.
so that min M1 > max My, and || 3_,cp, @5l = €, for n € N. Now con-
sider a bijection o : N — N, which on each interval of the form [max M,,_1 +
1, max M, (with My = 0) is as follows: The interval [max M,,_1+1, max M,,_1+
#M,] will be mapped to M,, and [max M,_1 + #M,,, max M,] will be
mapped to [max M,_1 + 1,max M,] \ M,. It follows then for each n € N

that
max My 1+#Mn

IS ol = 5 ol =
J n

j=max M, _1+1

and, thus, the series ) 7,(,) cannot be convergent, which is a contradiction.
“(b)=(c)” Let (n;) be a subsequence of N. For a given € > 0, use condition
(b) and choose n € N, so that || 3 2] < €, whenever M C N is finite and
min M > n. This implies that for all ig <14 < j, with 49 = min{s : ny > n},
it follows that || Y7_. z,.|| < e. Since € > 0 was arbitrary this means that
the sequence (Zgzl Tp,)jen is Cauchy and thus convergent.
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“(c)=(d)” If () is a sequence of +1’s, let NT = {n € N: ¢, = 1} and
N~ ={neN:¢g, =—1}. Since

znjijj: Z xj— Z xj, for n € N,
j=1

JENt j<n JEN™,j<n

and since Y i+ o, @5 and Yo o n- i<, T converge by (c), it follows that
> j—1€jT; converges.

“(d)= (b)” Assume that (b) is false. Then there is an € > 0 and for every
n € N there is a finite set M C N, n < min M, so that || > ;. z;[ > e
As above choose finite subsets of N, My, My, M3 etc. so that min M, >
max M, and [| 3 ;cy, z;l| > €, for n € N. Assign &, = 1if n € ey My
and €, = —1, otherwise.

Note that the series > > (1 + &, )z, cannot converge because

k 1 max Mj,
ZZ v =5 Z (1+ en)xy, for keN.
Jj=1lieM; n=1

Thus at least one of the series Y o> |, and Y 7 | €2, cannot converge.

“=(b)= —(a)” Assume that o : N — N is a permutation for which )z, ;)
is not convergent. Then we can find ane > 0and 0 = kg < k1 < ky < ... so

that
kn
H > %o)H 2 e
j:kn—1+1
Then choose M1 = {o(1),...0(k1)} and if M; < My < ... M, have been
chosen with min M1 > max M; and ||ZZ.€M], || > e, ifi=1,2,...,n,

choose m € N so that o(j) > max M, for all j > k,, (we are using the fact
that for any permutaion o, lim;_, 0(j) = 0o0) and let

Mpi1={o(km +1),0(km +2),...0(kn+1)},

then min(M,,41) > max M, and || ZieMj x;|| > €. It follows that (b) is not
satisfied. 0

Proposition 3.4.2. In case that the series Y x, is unconditionally con-
verging, then Y xq;y = Y x; for every permutation o : N — N.

Definition 3.4.3. A basis (e;) for a Banach space X is called unconditional,
if for every x € X the expansion x = ) (e}, z)e; converges unconditionally,
where (e}) are coordinate functionals of (e;).

A sequence (x,) C X is called unconditional basic sequence if (x,) is an

unconditional basis of span(z; : j€N).
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Proposition 3.4.4. For a sequence of non zero elements (x;) in a Banach
space X the following are equivalent.

a) (x;) is an unconditional basic sequence,

b) There is a constant C, so that for alln € N, all A C {1,2,...,n} and
all scalars (a;)j_; CK,

35) | S | < || S|
jEA j=1

¢) There is a constant C', so that for allm € N, all (g5)}_; C {£1} and
all scalars (a;)7_; C K,

n n
(39) HZEJCij]H SC,HZCLJl‘jH
j=1 7j=1

In that case we call the smallest constant C = K, which satisfies (3.8) the
supression-unconditional constant of (x,,) for alln, A C {1,2,...,n} and all
scalars (a;)7_y C K and we call the smallest constant C' = K, so that (3.9)
holds for alln, (;)7—; C {£1} and all scalars (a;)7_; C K the unconditional
constant of (x,).

Moreover, it follows

(3.10) K, < K, < 2K,.

Proof. “(a)=-(b)” Assume that (b) does not hold. We can assume that (z,)
is a basic sequence with constant b. Then (Exercise) we choose recursively
ko < k1 <kay..., Ay C{kpn-1+1,kn_1+1,...k,}, and scalars (aj);?;k%lH
so that

k
~ 1
H Z ajxjH > 1 and H Z aj:UjH < — for all neN.

jeAn j=kn 141 "

For any [ < m, we can choose i < jsothat k; 1 <[ < k; and kj_1 <m < ky,
and thus

m
H Z AsTs
s=l

7j—1 ky m
+ Z H Z AsTs —I-H Z AsTs
t=i+1

ki
< H g GsTs
s=l s=ki—1+1 S=k‘j,1+

(where the second term is defined to be 0, if i > j — 1)
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2% =1 2%
< = 4 —
GRSV AP DR

It follows therefore that x = Z;; a;x; converges, but by Theorem 3.4.1 (b)
it is not unconditionally.

“(b) <= (c)” and (3.10) follows from the following estimates for n € N,
(a’j)?:l - K? AC {172a TL} and (6]) =1 - {:l:l}

[Ssenal <] 3 wmle] 3 omfu
7j=1 ] ) 1

]—1 gj=1 j=legj=—

1
H ZajxjH < 5 H Zajfcj + E aja:JH + H Za]mj Z a;x;

JjeEA je{1,2,..}\A je{1,2,..}\A

“(b)="(a) First, note that (b) implies by Proposition 3.1.9 that (z,) is a ba-
sic sequence. Now assume that for some x = zj Lajz; € span(z; : j € N)
is converging but not unconditionally converging. It follows from the equiv-
alences in Theorem 3.4.1 that there is some € > 0 and of N, My, My, Mj
etc. so that min My, 11 > max M, and || > ,cp, ajz;l| > €, for n € N. On
the other hand it follows from the convergence of the series Z]oil a;x; that

max(Mn)
lim sup H Z ajasz =0,
n—oo .
j=1+max(Mp_1)
and thus
| Sicasy a3
sup = 0,
max(My,)
n—o00 H Z] 1-+max(Mp_1) ajl'jH
which is a contradiction to condition (b). O

Proposition 3.4.5. Assume that X is a Banach space over the field C with
an unconditional basis (en), then it follows if 3 72| anen is convergent and
(Bn) C{B € C:|B| =1} that 3332, Braney, is also converging and

H Z /Bn@nen
neN

Proof. Exercise . O
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Proposition 3.4.6. If X is a Banach space with an unconditional ba-
sis, then the coordinate functionals (e}) are also a unconditional basic se-
quence, with the same unconditional constant and the same suppression-

uncondtional constant.

Proof. Let K,, and K, be the unconditional and suppression unconditional
constant of X.
Let o* =) _nnmey and (g,) C {£1} then

H Z Enln€, o= sup < Z Enliner, Z gnen>
neN

z=3 17 Enen€Bx neN

= sup Z Ennnén

o=} 01 énen€Bx N

2 e
ne

sup
z=Yy > &nen€Bx

Using the Hahn Banach Theorem we can similarly show that if K is the
unconditional constant of (e}) then

H Zgnfnen X < KZ < H Z{ngn X
neN neN

Thus K,, = K. A similar argument works to show that K is equal to the
suppression unconditional constant of (e). O

The following Theorem about spaces with unconditional basic sequences
was shown By James [Ja]

Theorem 3.4.7. Let X be a Banach space with an unconditional basis (e;).
Then either X contains a copy of cg, or a copy of £1 or X is reflexive.

We will need first the following Lemma (Exercise)

Lemma 3.4.8. Let X be a Banach space with an unconditional basis (ey)
and let K, its constant of unconditionality. Then it follows for any con-
verging series ), -y nén and a bounded sequence of scalars (by,) C K, that
ZneN anbney s also converging and

H Z anbnen
neN

where K = K, if K=R, and K = 2K,, if]K:(C.

€n

neN
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Proof of Theorem 3.4.7. We will prove the following two statements for a
space X with unconditional basis (e,).

Claim 1: If (e,) is not boundedly complete then X contains a copy of cy.
Claim 2: If (e,) is not shrinking then X contains a copy of ¢;.

Together with Theorem 3.3.9, this yields the statement of Theorem 3.4.7.
Let K, be the constant of unconditionality of (e,) and let K/ = K,, if
K =R, and K}, = 2K,, if K=C.
Proof of Claim 1: If (e,) is not boundedly complete there is, by Theorem
3.3.8, a sequence of scalars (ay) such that

neN

n e.)
sup H E ajejH = (1 < o0, but g aje; does not converge.
j=1 j=1

This implies that there is an ¢ > 0 and sequences (m;) and (n;) with 1 <
mi1 < nyp < mg < nyg < ...in N so that if we put y, = >
k € N, it follows that ||yx|| > €, and also

ng mg—1
lyxll < H ZajejH + H Z ajejH <2Ch.
Jj=1 j=1

ngk o
ey @€ for

For any k£ € N and any sequence of scalars ()\j)g’?zl it follows therefore from
Lemma 3.4.8, that

k k ng
H Z )\jyj‘ < 2K, max \)\]]H ZyjH < 2K,K,sup \)\]]H ZaiejH < 2K, K Cisup |\l
— J<k — i<k — i<k
j=1 J=1 i=1
On the other hand for every jy < n that

n
1 €
| o Am]| 2 g Ivsomsol = - max il
jzl S S —

Letting ¢ = ¢/K,, and C = 2K, K,C1, it follows therefore for any n € N and
any sequence of scalars ()‘j)?:l that

N =illen < || D Aits]| < CIOV= o
j=1

which means that (y;) and the unit vector basis of ¢y are isomorphically
equivalent.
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Proof of Claim 2. (e,) is not shrinking then there is by Theorem 3.3.4 a
bounded block basis (y,) of (e,) which is not weakly null. After passing to
a subsequence we can assume that there is a * € X*, ||2*| = 1, so that

= inf |[(z*, > 0.
e = inf |z, yn)|

We also can assume that ||y,|| = 1, for n € N (otherwise replace y, by
Yn/||yn|| and change e accordingly).

We claim that (y,) is isomorphically equivalent to the unit vector basis
of /1. Let n € N and (aj)?zl C K. By the triangle inequality we have

n n
H Z%w” <Y layl,
=1 =1

On the other hand we can choose for j =1,2,...,n ¢; = sign(a;(z*, y;)) if
K =R and ¢; = a;(z*, y;)/|a;(x*,y;)|, if K= C (if a; = 0, simply let ¢ = 1)
and deduce from Lemma 3.4.8

n n n n
1
H Z%’%‘H e Z%’%‘%’H > ‘Zﬁjaﬂw*ayﬁ‘ >eY lagl,
j=1 w1 j=1 j=1

which implies that (y,) is isomorphically equivalent to the unit vector basis
of 51. O

Remark. It was for long time an open problem whether or not every infinite
dimensional Banach space contains an unconditional basis sequence. If this
were so0, every infinite dimensional Banach space would contain a copy of ¢
or a copy of £1, or has an infinite dimensional reflexive subspace space. In
[GM], Gowers and Maurey proved the existence of a Banach space which
does not contain any unconditional basic sequences. Later then Gowers [Go]
constructed a space which does not contain any copy of ¢y or £1, and has no
infinite dimensional reflexive subspace.
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3.5 James’ Space

The following space J was constructed by R. C. James [Jal]. It is a space
which is not reflexive and does not contain a subspace isomorphic to ¢y or
f1. By Theorem 3.4.7 it does not have an unconditional basis. Moreover
we will prove that J**/x(J) is one dimensional and that J is isomorphically
isometric to J** (but of course not via the canonical mapping).

We will define the space J over the real numbers R.

For a sequence (§,) C R we define the quadratic variation to be

l
H(fn)”qv = SUP{<Z|§nj —fnj_1]2>1/2 :leNand 1 <ng<ni < nl}
j=1

:sup{||(§nj &y i =12, )|l :l€Nand 1 <ng <ny < nl}
and the cyclic quadratic variation norm to be

1

1En)llego = sup{ >

! 1/2
<|§n0—§nl\2+z |€n; —fnj71]2) :leNand1<ny<n < nl}
j=1

Remark. Let (&,) C R with ||(&,)|lqu and assume that ng < n; < ng < ...
are such that

! N
(3.11) I o = (3 Iy = &y
j=1

(for example if (&,) has only finitely many non zero coefficients the supre-
mum is achieved). We note the following:

1. We can assume that ng = 1 (otherwise we add it)

2. If nj_1 < n < n; then z; lies between Tn;_, and T, forl <j <l
Other wise we could add n to the n;’s, and make the sum in (3.11)
larger

3. If xj_1 < xp; then zy,, , < xy; (zig-zag condition), for 1 < j < 1.

4. x; is a local extreme point in the sequence (a:nj,l, aznj,a:njﬂ), but this
does not mean that every local extreme point must be among the n;’s.

Note that for a bounded sequences (&), (n,) C R

H(fn + nn)HqU = sup {H(gm + Mn; — "gni—l - 777‘61'—1)2:1”2 e N7 no <np <.. 'nl}
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< sup{H({m - gmfl)lileQ + H(Tlnz - Tlnifl)é:lHQ tleN,no<.. ‘nl}
< sup{H(Em —fmfl)ézlﬂg leNyng<n < nl}
—i—sup{H(nni —nni_l)i-:ng :leN,ng<n < nl}

= 1(€)llgo + 1(n)llgo

and similarly

I(&n + 77n)||cqv < ||(§n)chv + H(nn)Hqu-

and we note that
1
V2

Thus || - ||qo and || - ||cq» are two equivalent semi norms on the vector space

T = {(&) CR:[|(&)llqw < o0}

&) lgw < NElleqv < V2II(En)llgo-

and since
[(E)llgp =0 <= [[(§n)llegp = 0 <= (&) is constant

| - llqu and || - ||cqu are two equivalent norms on the vector space
J={(&) CR: lim & =0 and ||(&)llgw < o0}

Proposition 3.5.1. The space J with the norms ||-||q» and ||-||cqu s complete
and, thus, a Banach space.

Proof. The proof is similar to the proof of showing that /¢, is complete. Let
(zx) be a sequence in J with ;- ||z < 0o and write zp = (§k,5))jen,
for k€ N. Since for j, k€N it follows that

€l = 1m [E) = €| < l12kllgo

it follows that

&= &)

keN

exists and for z = (&;) it follows that « € ¢y (co is complete) and

l
1/2
lz|lgw = sup{(Z |€n, —§nj71]2> :leNand 1 <ng<n < nl}
j=1



3.5. JAMES’ SPACE 95

l
< sup { Z <Z ‘g(k’,ng) B é(k,njfl)P)l/Q :leNand 1<np<.. ~nl}
keN =1

< 3 lleallgw < o0

keN

and for m € N

-5

qu

ﬂup{(i‘ i Eking) — Ekymj—1)

j=1 k=m+1

) l
< Sup{ Z (Z ‘g(k‘,nj) - é(k,nj71)|2)1/2 :l€Nand 1<np<.. -nl}

k=m+1 j=1

2)1/2:ZEN and 1<ng < nl}

(By the triangle inequality in £)
o0

< Z lzk||qu — 0 for m — oo.
k=m+1

O

Proposition 3.5.2. The unit vector basis (e;) is a monotone basis of J for
both norms, || - |lqv and || - ||cqu-

Proof. First we claim that span(e; : jeN) = J. Indeed, if x = (&,) € J,
and ¢ > 0 we choose [ and 1 < ng <ny <...n;in N so that

!
D 1€n; = Enyal? > Nl e

j=1
But this implies that
ni+1
o~ ; geill = 100,00 npz Enypas Il < .

(n;+1) times

In order to show monotonicity, assume m < n are in N and (a;)!"; C R.
For ¢ € N let

a; ifi<m a; fi<n
&= . and 7; = .
0 otherwise 0 otherwise.
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For x = > 2, &e; and y = Y .0 nie; we need to show that ||z < [|yllqe
and ||z]|cqu < ||yllequ- So choose I and ng < n; < ...n; in N so that

l
||33”3u = Z |€nj - é-nj71|2'
j=1

Then we can assume that n; > n (otherwise replace [ by [ 4+ 1 and add
ni+1 =n+ 1) and we can assume that n;_; < m (otherwise we drop all the
n;’s in (m,n] ), and thus

!
l2]30 = D 1n; — n,oal® = Zlnnj My * < [9llgo-
j=1

The argument for the cyclic variation norm is similar. O

Our next goal is to show that (e,) is a shrinking basis of J. We need
the following lemma

Lemma 3.5.3. For any normalized block basis (u;) of e; in J, and m € N
and any scalars (a;), it follows that

m
(3.12) H S ai
=1

Proof. Let (n;) CR and kg =0 < k; < k2 < ... in N so that for i € N

k;
U; = E njej.

Jj=ki—1+1

< V5 ()i -

Let fort =1,2,3...mand j =k;—1+ 1,k;—1 +2,...k; put §j = a; -n;, and

T = Zalul = ijej.

For given [ € Nand 1 <ng <ny <...<n; we need to show that

l m
(313) Z‘fn] _gnj_l‘z S 5Za’?
7=1 =1

We put §; = n; = 0, whenever j > ky,.
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Fori=1,2,...,mdefine 4; ={1<j<l:ki—y <nj_1 <n; <k} and
Ap ={1<j<1:kyn_1 <n;}. It follows that

oG =gl =al > =l < allullg,

JEA; JEA;
and thus .

Yol —gal <) a.
JjeUiq A i=1
Now let A =J;; Ai and B = {j <1:j & A}. For each j € B there must
exist [(j) and m(j) in {1,2,...,m — 1} so that
kigy—1 <nj-1 < ki) < Fingj) <1 < kg

and thus

|£nj - gnj71|2 = |am(j)+177nj - al(j)nnjfl‘Q

2 2 2 2 2 2
< 200 (j) 117, T 20135y S 2055y 205

(for the last inequality note that |n;| <1 since ||u || = 1).
For j,j' € B it follows that I(j) # I(j') and m(j) # m(j'), 7 # 7’ and
thus

l
D lny = Eua P = D 1n, = nya P+ D K, = Gy
j=1

JjEA jeEB
n n
2 2 2 2
S D EE) B IEED PTEL)
i=1 JEB jEB i=1
which finishes the proof of our claim. O

Corollary 3.5.4. The unit vector basis (ey,) is shrinking in J.

Proof. Let (u,) be any block basis of (ey), which is w.l.o.g. normalized.
Then by Lemma 3.5.3

1 n

EHE ujH < 5/ v/m = 0if n — oo,
X qu
J=1

By Corollary 2.2.6 (uy,) is therefore weakly null. Since (u,) was an arbitrary
block basis of (ey,) this yields by Theorem 3.3.8 that (e,,) is shrinking. [
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Definition 3.5.5. (Skipped Block Bases)
Assume X is a Banach space with basis (e,,). A Skipped Block Basis of (ey,)
is a sequence (u,) for which there are 0 = kg < k1 < k2 < ... in N, and
(a;) C K so that
ken—1
Uy = Z aje;, for n € N.
j=kn_1+1

(i.e. the k,,’s are skipped).
Proposition 3.5.6. Fvery normalized skipped block sequence of the unit

vector basis in J is isomorphically equivalent to the unit vector basis in ls.
Moreover the constant of equivalence is V5.

Proof. Assume that

kn—1
Uy = E aje;, forn € N.
J=kn—1+1

with 0 = ko < k1 < k2 < ... in N, and (a;) C K, and ay, = 0, for n € N.

For n € N we can find [,, and k,,_1 = pén) < pgn) < ...py, = ky in N so that

Now let m € N and (b;)", C R we can string the p(-")

; ’s together and deduce:

m

9 m In )
2 2
> E b; E (a (n) — Q (n) ) = E b; .
qu - , Pj—1 Pj—1
=1 7j=1

=1

[
n=1

On the other hand it follows from Lemma 3.5.3 that

m 2 m
H§ boug|| <5302,
qu X
n=1 i=1

O

Corollary 3.5.7. J is hereditarily fo, meaning every infinite dimensional
subspace of J has a further subspace which is isomorphic to (5.
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Proof. Let Z be an infinite dimensional subspace of J. By induction we
choose for each n € N, 2, €7, u, €J and k, €N, so that

(3.14) 12nllqy = llunllg = 1 and ||z, — unllqe < 27477,

(3.15) up, € span(e; : kp—1 < j < ky)

Having accomplished that, (u,) is a skipped block basis of (e,) and by
Proposition 3.5.6 isomorphically equivalent to the unit vector basis of /5.
Letting (u}) be the coordinate functionals of (uy,) it follows that |lu}| < v/5,
for n € N, and thus, by the third condition in (3.14),

o0
S g llwn — 2all < V5271 < 1,
n=1

which implies by the Small Perturbation Lemma, Theorem 3.3.10, that (z;,)
is also isomorphically equivalent to unti vector bais in £s.

We choose z; € Sz arbitrarily, and then let u; € span(e; : j €N), with
lu]lqo = 1 and |jug —21||q0 < 2% Then let k1 € N so that u; €span(e; : j <
k1). If we assume that 21, 29,...,... 2, U1, U2,..., Uy, and k1 < ko < ...k,
have been chosen we choose 2,1 € ZN{ej,...e; }1 (note that this space is

infinite dimensional and a subspace of span(e; : j > ky,41)) and then choose
Unt1 € span(ej : § > kni1), [tuntillgp = 1, with |[uns1 — zns1llge < 2427771
and let k,, 11 €N so that u,,1 €span(e; : j < kpy1). O

Using the fact that (e,) is a monotone and shrinking basis of J (see
Proposition 3.5.2 and Corollary 3.5.4) we can use Proposition 3.3.6 to rep-
resent the bidual J** of J. We will now use the cyclic variation norm.

(3.16) J* {(fn CR:sup H Z&el

neN

<)

and for x** = (&,) € J**

(3.17) ||=™|

Jxx = Sup ||(§15€27 ce. 7571)070’ .. -)chv
neN

1/2

l
= supmae | (6 — G0+ D_ (6 —6)7)
j=1

leNko<k1<...k;

2 2 l 2 1/2
(&8, + € + D (60— &,)°)
j=1
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The second equality in (3.17) can be seen as follows: Fix an n € N and
consider
§ ifj<n

2™ = (&,6,...,6,0,0,...), thus 2™ = (&), with £ =
J J 0 else

Now we let [ and 1 < k1 < ko < ... < k; in N be chosen so that
!
n L) _ o) (n) _ ()
o2 = 5 (6 — & O —¢ )?).
J:

There are two cases: Either k; < n. In this case 5,2?) = &k, for all j <, and
thus

!
1/2
2 2 2
o2 = (6o — &r)2+ D (6 —66)7)
j=1
which leads to the first term in above “max”. Or k; > n. Then we can
assume without loss of generality that k;_; < n (otherwise we can drop

ki-1) and we note that £\ = 0, while g,ﬁ? =&, forall j <11, and thus

1 l 1/2 -1 1/2
o = 5 (R4 =60)%) = (o =60 )%)
i=1 =1

which, after renaming [ — 1 to be [, leads to the second term above “max”.

Remark. Note that there is a difference between

||(£1a €2a .- ~)||cqv

and

sup “(5175% ER 7‘57“0707 .. ')HCQU
neN

and there is only equality if limy, o0 &, = 0.

It follows that for all #** = (&,) € J**, that e} () = lim, o &, exists,
that (1,1,1,1,...) € J**\ J, and that

a* —el (x)(1,1,1,...) € J.

Theorem 3.5.8. J is not reflexive, does not contain an isomorphic copy of
co or {1 and the codimension of J in J** is 1.
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Proof. We only need to observe that it follows from the above that

T ={(&) CR: (&) lequ < 00}
— {(gj) +&oo(1,1,1..) t [(€5)]]equ < 00, jlggogj =0 and & € R},

where the second equality follows from the fact that if (&, ) has finite quadratic

variation then lim;_, ., §; exists. ]
It follows therefore from Theorem 3.4.7

Corollary 3.5.9. J does not have an unconditional basis.

Theorem 3.5.10. The operator

T:J% = d, 2™ =(§) = (nj) = (meso(2™), f—es(¢77), So—eso (277), )

s an isometry between J™* and J with respect to the cyclic quadratic varia-
tion.

Proof. Let ** = (&;) € J** and

z= () = (—ex (™), &1 — e (27), & — e (™), ...
By (3.17)
V2|z*|

1/2

l
= sup max (fko fkl2+z — &) ) ,
j=1

leNko<k1<...k;

(fk;o + &, + Z —&k;y) )1/2

7=1
l

1/2
2 2
= sup max ((Ukoﬂ = Myr1)” + E (Mhej+1 — Mhey_y+1) ) ,
1EN ko<k1<...k; =

!
T 1/2
((nko+1+eoo($ )2+ (M1 €5 (%)) + Z Ukj+1—77kj,1+1)2)
7j=1

! 1/2
— 2 2
= sup max ((Uko+1 - nkH—l) + Z(nij - 77kj_1+1) ) )
IEN ko <k <...ky =
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!
1/2
((nk0+1 —m)?+ (= 1) + > (k41 —nkj,1+1)2>
j=1

!
1/2
:max( sup <77k0_77k12+z k_nkjl ) )
leEN1<ko<k1<...k; j=1
2 : 2\ /2
sup (g =) + D, = ,)?)
leEN,1=ko<k1<...k; j=1

(For the first part we rename k; + 1 to to be k;, for the second part, we
rename 1 to be ko, kg + 1 to be ki,....., and k; + 1 to be k;+1, and then we

rename [ + 1 to be 1)

z
1/2
= sup ((nko —w)? Yk — nkj,l)z) ,
leNko<k1<...k; j=1
= V2| zlego-

Since T is surjective this implies the claim.
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Chapter 4

Convexity and Smoothness

4.1 Strict Convexity, Smoothness, and Gateaux
Differentiablity

Definition 4.1.1. Let X be a Banach space with a norm denoted by || - ||.
A map
frXAN{0} = XPN\{0}, [ fa

is called a support mapping whenever:

a) f(Ax) = Afy, for A >0 and

b) If x € Sy, then ||f;|| = 1 and f.(x) = 1 (and thus f.(z) = ||z||* for
all z € X).

Often we only define f, for x € Sx and then assume that f, = ||z f5/|2|,
for all x € X \ {0}.

For x € X a support functional of x is an element z* € X*, with ||z*|| =
||| and (z*, ) = ||z[|>. Thus a support map is a map f.y : X — X*, which
assigns to each x € X a support functional of x.

We say that X is smooth at xo € Sx if there exists a unique f, € Sx=,
for which f,(z) = 1, and we say that X is smooth if it is smooth at each
point of Sx.

The Banach space X is said to have Gateaux differentiable norm at xg €
Sx, if for all y € Sx

- lwo + hyll — [lzoll
x = lim
p(zo,y) = lim Y
exists, and we say that || - || is Gateaux differentiable if it is Gateaux differ-

entiable norm at each zg € Sx.

105
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Example 4.1.2. For X = L,[0,1], 1 < p < oo the function

p/q 1-2
zllp = llzllp *lz(t)]

[ Lpl0,1] = Lg[0,1], fo(t) = sign(z(t))‘m‘

is a (and the only) support function for L,[0, 1].
In L1[0,1], not every element has a unique support functional!

In order to establish a relation between Gateaux differentiability and
smoothness we observe the following equalities and inequalities for any x €
X,y € Sx,and h > 0:

fe(y) _ fa(hy)
2 I
/—iL
_ fa(@) = |l2® +fa(hy)
hllz|
_ folathy) — |l
hliz|
_ Ufule 4 hy) — [
- hij]
_ Ifellle + hy] 2]
- hijz|
_ e+ byl = o]
h
_ =+ hyl? — |l + hyll]|=|
- hllz + hyll
|+ hyll* — | fasny(@)]
hljz + hy||
. fﬂchhy('r + hy) - ’f1+hy(x>‘
a hllz + hy||
. hfx-i—hy(y) + f:c-&-hy(x) - ’fx-i-hy(x”
a hllz + hy|l
hf:c—l—hy(y) o fx-‘rhy(y)
= hllz+hyll o+ hyl)

and thus for any = € X, y€ Sy, and h > O:

foy)  fole+hy)l = 2l _ llo+hyll —ll2ll _ forny(y)
el — hi] - h = e+ hyll

(4.1)
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Theorem 4.1.3. Assume X is a Banach space and xo € Sx.
The following statements are equivalent:
a) X is smooth at xg.

b) Every support mapping f : x +— f, is norm to w* continuous from Sx
to Sx+ at the point xy.

c¢) There exists a support mapping fy : © +— fi which is norm to w*
continuous from Sx to Sx» at the point xq.

d) The norm is Gateauz differentiable at xg.

In that case

b () — (o) — T 1700 =l
o 9 -

lim 3 for ally € Sx.

Proof. =(b) = —(a). Assume that (z;) C Sx is a net, which converges
in norm to zo, but for which f,, does not converge in w* to f,,, where
f(y + X — X™ is a support map. After passing to a subnet we can assume
by Alaoglu’s Theorem 2.3.2 that (f;,) converges in w* to some z* € Bx=
(which is not fg,).

As
|* (20) — 1]
= [z"(x0) — fa,(x3)]
< [a*(2o) = fa; (@0)| + [ fa; (w0 — 24)
< [z%(x0) = fa; (wo)| + w0 — @il| —ier 0,
it follows that 2*(z¢) = 1, and since ||z*|| < 1 we must have ||z*|| = 1. Since

x* # fz,, X cannot be smooth at z.

(b) = (c) is clear (since by The Theorem of Hahn Banach there is always
at least one support map).

(c) = (d) Follows from (4.1), and from applying (4.1) to —y instead of y
which gives

2o — byl = ||zo 2o + h(—y)|| — ||lzo oo (=Y
I . = llzoll _ | é M = llzoll <_ o(=¥) _ oo ()
“hjzo] ol o]

and

lzo = hyll = llwoll _ _llzo + A=)l = llzoll o _ faotn(-)(=%) _ frorn-)®)
—hllzoll hllzoll - |yg;0+h( I llzo +h(=y)ll
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(d) = (a) Let f € Sz« be such that f(z¢) = ||zo|| = 1. Since (4.1) is true
for any support function it follows that

< o+ hyll — floll

f(y) 0 , for all ye Sx and h > 0,
and
zo — hy| —|l= xo+ (—y)|| — [|x
oo =yl —llonl _ ot (il =looll ¢ g,y _ g,

for all y € Sx and h > 0.

Thus, by assumption (d), p(zo,y) = f(y), which proves the uniqueness of
f € Sx+ with f(zg) = 1. O

Definition 4.1.4. A Banach space X with norm ||| is called strictly convex
whenever S(X) contains no non-trivial line segement, i.e. if for all z,y € Sy,
x # y it follows that ||z 4+ y| < 2.

Theorem 4.1.5. If X* is strictly convex then X is smooth, and if X* is
smooth the X is strictly convex.

Proof. 1f X is not smooth then there exists an xg € Sx, and two functionals
x* #y* in Sx» with 2*(z9) = y*(z¢) = 1 but this means that

2" + 97| = (2 + ") (w0) = 2,

which implies that X* is not strictly convex. If X is not strictly convex then
there exist  # y in Sx so that |[Axz + (1 —N)y|| =1, forall0 < X < 1. So
let * € Sx« such that

* x—i—y)
— ) =1
x( 2
But this implies that
T+y 1 1 1 1
1= *( >:7* e < Z 7:17

which implies that z*(x) = z*(y) = 1, which by viewing x and y to be
elements in X**, implies that X™* is not smooth. O
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4.2 Uniform Convexity and Uniform Smoothness

Definition 4.2.1. Let X be a Banach space with norm || - ||. We say that
the norm of X is Fréchet differentiable at o € Sx if

i 10+ Ayl = [|zoll

h—0 h

exists uniformly in y € Sx.
We say that the norm of X is Fréchet differentiable if the norm of X is
Fréchet differentiable at each xy € Sx.

Remark. By Theorem 4.1.3 it follows from the Frechét differentiability of
the norm at zg that there a unique support functional f;, € S% and

llwo + hyl| — Jlzol
1 - p—
hg% h ffo(y) 07
uniformly in y and thus that (put z = hy)
R R G
z2—0 IE4|

In particular, if X has a Fréchet differentiable norm it follows from The-
orem 4.1.3 that there is a unique support map x — f,.

Proposition 4.2.2. Let X be a Banach space with norm || - ||. Then the
norm is Fréchet differentiable if and only if the support map is norm-norm
continuous.

Proof. (We assume that K =R) “=” Assume that (z,) C Sx converges to
xo and put z; = fz,, n € N, and 2§ = f,. It follows from Theorem 4.1.3
that x} (z¢) — 1, for n — co. Assume that our claim were not true, and we
can assume that for some € > 0 we have ||z} — z§|| > 2¢, and therefore we
can choose vectors z, € Sx, for each n € N so that (z;, — z{))(z,) > 2¢. But
then

) = #5(w0) < (a8(r0) — 5 e0)) (2 (a(en) = () — 1)
>2¢
= (o)~ (0) + = (28 (an) ~ 5 (an) (2 (0) — ()

= (a5~ 25) (w0 + 2n_ (a3(r0) — 3(x0)))
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< Jot (0 + 20 (o) — (o) ) |-

Thus if we put
1 * *
Yn = an(l‘()(l'O) - l’n(l'o)),
it follows that ||y,| — 0, if n — oo, and, using the Fréchet differentiability
of the norm that (note that (zfj(zo) — #};(0))/|lyn|| = ) we deduce that

0<e— 1?6(1’0) — J}Z(Hfo) < on + ynH _ H$0|| _ xS(yn) —n—o0 0,

[1ynl] B ynl

which is a contradiction.
“<” From (4.1) it follows that for z,y € Sx , and h € R

x+ hy|| — ||=
I hll ] R
fm—i—hy(y)
<l fa(v)
la+hyll
fa:—i—hy(y)
< _ JTTY\I)
1
which converges uniformly in y to 0 and proves our claim. O

Definition 4.2.3. Let X be a Banach space with norm || - ||.
We say that the norm is uniformly Fréchet differentiable on Sx if

il Byl — ol
h—0 h

~ f:0)]:

uniformly in x € Sx and y € Sx. In other words if for all € > 0 there is a
d > 0 so that for all z,y € Sy and all h e R, 0 < |h| < §

[l + hyl| — |z
h

— fx(y)‘ <e.
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X is uniformly convez if for all € > 0 there is a § > 0 so that for all
z,y € Sx with ||z — y|| > € it follows that |[(z + y)/2|| < 1 — 6.
We call

2200 oy e Sl -l ze}, for ¢ € [0,2)

(5)((6) = inf {1 —

the modulus of uniform convezxity of X.
X is called uniform smooth if for all € > 0 there exists a § > 0 so that
for all z,y € Sx and all h € (0, 0]

|z + hyl| + ||z — hy|| < 2+ eh.

The modulus of uniform smoothness of X is the map p : [0, 00) — [0, 00)

T+ z xr—z
px (1) = s.up{H I + I I —1l:z,ze X, |z|| =1,z < 7’}.

2 2

Remark. X is uniformly convex if and only if dx(¢) > 0 for all e > 0. X
is uniformly smooth if and only if lim,_,o px(7)/7 = 0.

Theorem 4.2.4. For a Banach space X the following statements are equiv-
alent.

a) There exists a support map x — f, which uniformly continuous on Sx
with respect to the norms.

b) The norm on X is uniformly Fréchet differentiable on Sx.
¢) X is uniformly smooth.
d) X* is uniformly convex.

e) Every support map x — f, is uniformly continuous on Sx with respect
to the norms.

Proof. “(a)=(b)” We proceed as in the proof of Proposition 4.2.2. From
(4.1) it follows that for x,y € Sx , and h € R

|2 + hy|| — =]

fz-i—hy(y) .
< T+ hyl fz(y)‘
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< ‘fm+hy(y) - fx(y)‘ =+ m - fw+hy(y)
< foJrhy - fJIH + 1+ ‘h‘ -1 ”fz+hyH

which converges by (a) uniformly in = and y, to 0.
“(b)=-(c)”. Assuming (b) we can choose for ¢ > 0 a § > 0 so that for all
h € (0,6) and all z,y € Sx

hull —
|2 + Z;LII Izl ¢ o

<e/2.

But this implies that for all h € (0,9) and all z,y € Sx we have

lz + hyll + [l = hy

ol h(nm ol =l g (et Ml el fw<—y>>>

<2+ e¢h,

which implies our claim.
“(c)=(d)”. Let € > 0. By (c) we can find § > 0 such that for all x € Sx
and z € X, with ||z|| <4, we have ||z + z|| + ||z — z|| < 2+ ¢||z||/4.

Let x*,y* € Sx+ with ||[z* — y*|| > €. Thereis a z € X, ||z]| < /2 so
that (z* — y*)(z) > €6/2. This implies

lz* + " = sup [(z" +y")(z)|

rESx

= sup |2*(z+2) +y"(z — 2) — (=" —y*)(2)|
TESx

< sup ||z +z||+ ||z — 2| —e€d/2
TESx

<2t el|z]) /4 —e8/2 < 2 — ed/4.

“(d)=(e)”. Let z — f be a support functional. By (d) we can choose
for e > a J so that for all 2*,y* € Sx« we have ||z* — y*|| < e, whenever
la* +y*|| >2-9 .

Assume now that z,y € Sx with ||z — y|| < J. Then

et 12 S0+ )M +0)
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= o) + fy) + 5 Fely — ) + 2 fyle — )
>2— oyl 22—,

which implies that || f, — fy|| < €, which proves our claim.
“(e)=(a)”. Clear. O

Theorem 4.2.5. Every uniformly conver and every uniformly smooth Ba-
nach space is reflexive.

Proof. Assume that X is uniformly convex, and let ™ € Sx«. Since
Bx is w*-dense in By« we can find a net (z;)je; which converges with
respect to w* to x**. Since for every n > 0 there is a z* € Sy« with
limjer a*(x;) = «**(2*) > 1 —n, it follows that lim;es ||2;|| = 1 and we can
therefore assume that ||z;|| =1, i € I. We claim that x(z;) is a Cauchy net
with respect to the norm to z**, which would finish our proof.

So let € > 0 and choose 6 so that ||z+y| > 2—¢ implies that ||z —y|| < ¢,
for any x,y € Sx. Then choose z* € Sx=«, so that **(«*) > 1 — §/4, and
finally let ig € I so that ™ (x;) > 1 —0/2, for all i > ig. It follows that

llzi + x| > 2" (x; + z;) > 2 — § whenever 4,5 > i,

and thus ||z; — ;|| < e, which verifies our claim.

If X is uniformly smooth it follows from Theorem 4.2.4 that X* is uni-
formly convex. The first part yields that X* is reflexive, which implies that
X is reflexive. 0
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Chapter 5

L,-spaces

5.1 Reduction to the Case ¢, and L,

The main (and only) result of this section is the following Theorem.

Theorem 5.1.1. Let 1 < p < 0o and let (2,3, u) be a separable measure
space, i.e. X is generated by a countable set of subsets of ).

Then there is a countable set I so that L,(§2,%, ) is isometrically iso-
morphic to Ly[0,1] &, €,(I) or to £y(I).

Moreover, if (2, %, u) has no atoms, and is not 0, we can choose I to be
empty and, thus, L,(Q, X, 1) is isometrically isomorphic to L0, 1].

Proof. First note that the assumption that ¥ is generated by a countable set
say D C P(12) implies that L,(u) is separable. Indeed, the algebra generated
by D is A = |J,2; Apn, where A, is defined recursively for every n € N as
follows: A; = D, and, assuming, A,, is defined we let first

k
;H_l:{UBj:kEN,BjGAnOI'B]C'GAn}
j=1

and then

k
Anﬂ:{ﬂBj;keN,BjeAnorB;eAn}.
j=1

This proves that A is countable. Then we observe that span(l: A € A) is
dense in L, (p)
We first reduce to the o-finite case.

115
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Step 1: L,(£2, %, ) is isometrically isomorphic to a space L, (€Y', ¥/, /') where
(Q, %, 1) is a o-finite measure space.
Let (fn) C Lp(Q2, X, ) be a dense sequence in L, (€2, X, 1) and define

' = J {Ifal > 0}.

neN

Since {|f,| > 0} is a countable union of sets of finite measure, namely

{Ifnl >0} = [ J {Iful > 1/m}

meN

(Y is also o-finite. Moreover, for any f € L,(2,%, ) it follows that {|f| >
0} C & u a.e. Therefore we can choose X' = X|gy ={A e X : AC Q'} and
w = plsy.

Step 2: Assume (£, X, p) is a o-finite measure space. Let I be the set of all
atoms of (2,3, u). Recall that A € ¥ is called an atom, if (A) > 0 and if
for every measurable B C A, either u(B) = p(A), or u(B) = 0. Since u is o-
finite, I is countable, and p(A) < oo for all A € I. We put Q' = Q\J,; 4,
¥ =3¥|g and i/ = p|sy. Then

T: LP(Qv Evu) - EP(I) 6910 LP(le Z/):U’,)7

= ((M/AMM:AGI)J!Q/)

is an isometry onto £,(I) @) L,y (', X, pt/).

Now either p/ = 0 or it is an atomless o-finite measure.

In the next step we reduce to the case of y being an atomless probability
measure.

Step 3: Assume that (2, %, i) is o-finite, atomless and not 0. Then there
is an atomless probability p on (2,%) so that L,(2, X, ) is isometrically
isomorphic to the space L,(£, X, yt/).

Since (2,3, p) is o-finite there is an f € Li1(Q, %, p), with f(w) > 0 for
all w € Q and ||f|l1 = 1. Let y/ be the measure whose Radon Nikodym
derivative with respect to p is f (thus y' is a probability measure) and
consider the operator

T : Lp(Qa Ea /‘L) - LP(Q7 E’:U’/)v g = g- f_l/pa

which is an isometry onto L,(2, X, /). Using an operator like T is often
called “change of density” -argument.
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Step 4: Reduction to [0,1]. Assume (€,%,p) is an atomless countably
generated probability space. Let (B,) C ¥ be a sequence which generates
3. By induction we choose for each n € Ny a finite X-partition P

(Pl(n) PQ(n) (n)) of 2 with the following properties:

5 P

(5.1) {Bi1,Ba,...By} C 0(Py) (the o-algebra generated by P,,),
(5.2) M(P(n)) <27 fori=1,2,...,ky,
(5.3) Ppisa Subpartltlon of Pn_l if n>1,1ie. for

each i € {1,...ky—1} there are s,(i) < t,(i) in {1,...k,}, so that

tn(7)
]Di(n_l) _ U P](n)
J=sn(i)

PutforneNand1<i <k,

[ u(PI), S (P ),ifj<k:n and
j<i—1 j<z

= P> > (P
J<kn—1 J<kn

and P = (]51("), ]52(n) )) Then P is a Borel partition of [0, 1] into

pn
k
intervals, with )\( ) = (P ) for each i < ky, and |, ey P generate
the Borel o- algebra on [0, 1].
For n € N put

kn

V, = {Zaixp‘(n) s a; scalars},
i=1 ’

Then V,, is a vector space and V = |J, V,, is a dense subspace of Lp(u).
Similarly V', with
k'"/

v, = {Z aiX pin) * G scalars},

i=1

is a dense subspace of L,[0,1], and

kn n
T:V =V, Zaixpgn> —> Zaz‘Xp(n)a

i=1 =1

is an isometry whose image is dense in L,[0,1]. Thus T extends to an
isometry from L, (p) onto Ly[0,1]. O
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5.2 Uniform Convexity and Uniform Smoothness
of L,, 1 <p<oo

Let (£2,%, u) be a measure space. The first goal of this section is to prove

the following

Theorem 5.2.1. Let 1 < p < oo and denote the modulus of uniform con-

vezity of Ly(p) by dp. Then for any 1 < p < oo there is a ¢, > 0 so that.

2 .
5,(e) > Cpe z.f1<p<2
cpe?  if2 < p < oo.
Lemma 5.2.2. Assume £, € R

a) If 2 < p < oo, then
€+ 0P + 1€ —n" = 2(|¢[° + [n[*).

b) If0<p<2
€+ + 1€ =" < 2([¢[° + [n]”).

If p # 2 equality in (a) and (b) only holds if either £ or n is zero.

Proof. 1f p = 2 we have equality by the binomial formula.
If 2 <p<ooand a,f €R, we apply Holder’s inequality to the function

the counting measure on {1,2}, and the exponents p/2 and p/(p — 2).

o® + % < (lafP + |B[P)*/P2P~2)/P " and, thus,
(5.4) lal? + |B]P > (o + B2)P/222-P)/2,

If 0 < p < 2 we can replace p by 4/p and obtain
| P + | B[P > (o + p2)?P2lP=2)/p,
and if we replace |a| and |S| by |a[P/? and ||P/? respectively, we obtain

[af + |8 > (laf? + |8")720-2/7, o
(55) jaf? + |8 < 20D/l + |52,
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Since
52
T
we derive that
2 .
<P < e if2<p
(5.6) FCERPIey) 5 ]
(In]* + [£]?)P ZW it 2> p.

Forming similar inequalities by exchanging the roles of n and ¢ and adding
them we get

< (I + |gP)P? it 2 <p

P p
(5.7) nl” =+ [¢] {> (Jn|? + |€]?)P/? if 2 > p.

Note that equality in (5.7) can only hold if n =0 or £ = 0.
Letting now « = |{ + 7| and 8 = |£ — n| we deduce from (5.4) and (5.7)
ifp>2
2,(2—
Sl +1E =P > (I + I — )20/
=2(e2+ )" > 2(Inl” + ¢l"),

which finishes the proof of part (a), while part (b) follows from applying
(5.5) and (5.7). O

Corollary 5.2.3. Let 0 < p < oo and f,g € Ly(p). Then

> 2(I/1lp+ llgll) i p=2

If +gllp + Hf—ng{ )
’ Tl 2B+ Ngllp) i e < 2.
If p # 2 equality only holds if f - g =0 u-almost everywhere.

Lemma 5.2.4. Let 1 < p < 2. Then there is a positive constant C = C(p)
so that

sft‘Q

- s +t’2)1/2 < (|s|p + |t|p>1/p'

o (S ;

Proof. We can assume without loss of generality that s = 1 > |¢| and need
therefore to show that for some C' > 0 and all ¢ € [—1, 1] we have

oo (S e (S (!
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Since ¢ is strictly positive on [—1, 0] we only need to find C so that (5.8)
holds for all ¢ € [0,1]. Since & — £/7 is strictly concave it follows for all

0<t<l
(1 . tp>2/p S <1 n t)2
2 2 2 2/
we only need to show that

0

(5.10) s e

> 0.

We compute

d? d 1
To(t) = [27 P A )Tt (14
= 9-(@/PH1(9 _ p)(1 4 1P)(2/P) =222

4 2*(2/p)+1(p _ 1)(1 + tp)(Q/p)*ltpr _ %

and thus p
£¢(t)‘t:1 =0, and

2
%yﬂmﬁl=@—mﬂﬂ%+0%4)—ﬂﬂ)=@—1w2>0

Applying now twice the L’Hospital rule, we deduce our wanted inequality
(5.10) O

Via integrating, Lemma 5.2.4 yields

Corollary 5.2.5. If 1 <p <2 and f,g € L,(p) and if C = C(p) is as in
Lemma 5.2.4, it follows

e (52

p§H<UP;wPYW

_ 1/p
=277 (|77 + llgl?)

Proposition 5.2.6. If 1 <p <g<oo and f; € L, j =1,2,... then

n 1/‘1
(zumg) .
j=1

<§§:|fﬂq)l/q
=1

p
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Proof. We can assume without loss of generality that
o lfillE = 1.
j=1
We estimate
n q 1/‘1
P J=1 7l P
n p/a\ 1/p
!f ‘! a
Jj=1 J P
n 1/p
£l
> S (e)
2 W\ g,
P
(We use the concavity of the function & — v/ 1))
1/p
!fg
> 1fi H =1,
‘ 2 155, )
which proves our claim. O

Proof of Theorem 5.2.1. For 2 < p < oo we will deduce our claim from
Corollary 5.2.3. For f,g € L,(p), with || f|| = [|g]| = 1, we deduce from the
first inequality in Corollary 5.2.3

1
=S+ ==l +I(f +9)+F =D = If +aglP + 1 f =gl

and thus, using the approximation (2P +£)V/P = 243 Lol=p¢ 1 0(¢), we deduce

that
1 1-p P p
2 1f = gll” +o([lf — gl

If + gl < (22 = IIf —gI")/P =2~

which implies our claim.
Now assume that 1 < p < 2. Let f,g € S () with e = [|f —gl|, > 0.

Let C' = C(p) be the constant in Corollary 5.2.5.
We deduce from Proposition 5.2.6 and Corollary 5.2.5 that

(01520 < D02+
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< H(Iflp—glglpy/p

_ 1/p
=27 (|if P+ lgl7) = 1.

Solving for ||(f + g)/2, leads to
= 2
R e

which implies our claim. O
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5.3 On “Small Subspaces” of L,

By small subspaces of L,[0,1] we usually mean subspaces which are not
isomorphic to the whole space. Khintchine’s theorem, says that L,[0, 1],
1 < p < oo contains isomorphic copies of ¢2, which are complemented if
1 <p<oo.

Note that all the arguments below can be made in a general probability
space (€,3,P) on which a Rademacher sequence (r;) exists, i.e. (r;) is an
independent sequence of random variables for which P(r; = 1) = P(r; =
—1)=1/2.

Theorem 5.3.1. [Khintchine’s Theorem]
Lp[0,1], 1 < p < oo contains a subspaces isomorphic to £a, if 1 < p < 0o
L,[0,1], contains a complemented subspaces isomorphic to ly.

Remark. By Theorem 5.1.1 the conclusion of Theorem 5.3.1 holds for all
spaces Ly(u), as long as p is a measure on some measurable space (€, X)
for which there is in Q' C Q, Q' € ¥ so that plq is a non zero atomless
measure.

Definition 5.3.2. The Rademacher functions are the functions:
rn o [0,1] = R, t +— sign(sin 2"7t), whenever ne€N.

Lemma 5.3.3. [Khintchine inequality]
For every p € [1,00) there are numbers 0 < A, < 1 < B, so that for any
m € N and any scalars (a;);",.

(5.12) Ap(i ]ai|2)1/2 <| iam < Bp(i \ai|2>1/2.
=1 =1 =1

Proof. We prove the claim for Banach spaces over the reals. The complex
case can be easily deduced (using some worse constants).

Since for p >r > 1

)

m m
| an],, = | Ko,
i=1 i=1
it is enough to prove the right hand inequality for all even integers, and then
choose B, = By with p’ = 2[F], for 1 < p < oo and the left hand inequality
for p =1, and take A, = A;.
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We first show the existence of By for any k € N. For scalars (a;)]", we
deduce

1om
/0 (; airi(t))% d

1
= Z Alar, oo, ... am)altay? .. agm / rO () rS2(t) .. e (t) dt
(ay,ag,...am)ENGY 0
S ai=2k

(Z?il O‘i)!
T2, a!

= ST A(251,282, ... 2Bm)ay a3 L aZim
(ﬂla/BQNH/B"L)eNgL

> Bi=k

[Note that above integral vanishes if one of the exponents is odd,

where A(aq, e, ...ap) =

and that it equals otherwise to 1].

On the other hand

(Sla?)

2681 2
o < Z A(B17/827"';Bm)alﬁla2ﬁ2...a?yf}m)
(B1,B2;---Bm)ENG?

> Bi=k

= A1, B2, - - - Bm) 261 262 2B:m
- Z A(251,252’.__7257%)14(25172/52,...,2ﬂm)a1 a2l | g2

(B1,B2,---Bm)ENT?

> Bi=k
. A(B1, B2, .-+, Bm) 281 28 2
> min LAk ML A(2B1,2B0, . .., 2Bm)a " as’? .. aBm
= (81,890 Bm) €N A(Qﬁh 2627 . 72/87”) Z . ( Bl ﬁQ /Bm) 1 2 m
S s e
: A(B1, B2y -+, Bm) /1< . )%
= min a;r; dt
(ﬁ1,/3§-.ﬂm)€N6” A(281,282,...,2Bm) Jo ; o
Bi=k B

which implies our claim if put

B2—k2k; _ min A(Bla ﬂ27 cee 76771) — min min A(ﬂl? 162) cee 7ﬁm)

(B1,B2,-.Brm) ENTY A(261,2B2,...,20Bm) m<k (B1.82,...Bm)ENT® A(2p1,2p, . .. ,Qﬁm).
> Bi=k > Bi=k
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In order to show that we can choose A; > 0, to satisfy (5.12) we observe
that for f(t) =Y /%, a;ri(t)

1 1
IRy RO VOTE
0
1
/If ]| / retar)

[By Holders inequality for p = 3/2 and ¢ = 3]
2/3
< [/O £(8)] dt] *piss [Zaf] .
i=1

Therefore

=1
_ [344/3Z!a IZ(ia?>2/3r/2= 42(§:a3)1/2
=1 =1 =1
which proves our claim if we let Ay = B 2, O

Proof of Theorem 5.3.1. Since the Rademacher functions are an orthonor-
mal basis inside L»]0, 1] it follows from Lemma 5.3.3 that ¢ is isomorphically
embeddable in L,[0,1], for 1 < p < oco. Secondly, for 2 < p < oo the for-
mal identity I : L,[0,1] — L2[0,1] is bounded and the restriction of I to
span(r; : ¢ € N) is an isomorphism onto span(r; : i € N). We conclude that
the map:

P : L,[0,1] = span(r; : i € N), [ i (/01 f(s)rn(s)ds)rn,

is a projection onto span(r; : i € N), which proves that ¢, is isomorphic to
a complemented subspace of Ly[0,1], if 2 < p < co. The same conclusion
follows also for 1 < p < 2 by duality. 0

Remark. The constants A, and B, 1 < p < oo, exhibited in the proof of
Khintchine’s inequality in Lemma 5.3.3 are far from being optimal. These
optimal constants where determined by Uffe Haagerup [Hal. He proved the
following;:
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Theorem 5.3.4. [Ha] For 0 < p < oo the inequality 5.12 in Lemma 5.53.3

holds for all finite sequences (aj)?";l of scalars and the following numbers
Ap and By:

91/2—1/p if 0 < p < po,
p
A, = 21/2(%) if po<p<2,
1 if2<p< o0
and
1 f0<p<2

P2 () sy <o,

™

Here I'(+) is the “Gamma-function”:

oo
I'(x) = / et L,
0
and py € (1,2) is the solution to the equation

™

N+ 1)/2) =Y

(po =~ 1.84742). Moreover A, and B, are optimal in the following sense. If
A > A, or B < By then there is a choice of m € N and scalars (a;)72;, for
which 5.12 in Lemma 5.3.3 is violated, if one replaces A, by A, or B, by B,

respectively.

The next Theorem on subspaces of L, is due to Kadets and Pelczynski.
We first state the Eztrapolation Principle.

Theorem 5.3.5. [The Extrapolation Principle]
Let X C Lpl0,1], be a linear subspace on which || - ||p, and || - ||p,, where
p1 < p2, are finite and equivalent. Thus, there is a C' > 1 so that

[fllpy < 1 fllps < Clfllpy whenever f € X.

(first inequality holds always by Hélder inequality).
Then for all 0 <p < p1 and all x € X

CwPA=CM 2, < 2]y < N2y,

where A € (0,1) is defined by p1 = Ap+ (1 — A)pa.
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Proof. Let 0 < p < p; and choose 0 < A < 1 so that p; = Ap + (1 — A\)pe.
For z € X it follows

1/p1
||'CL‘”p1 = |:/ |CC(t)|>\p . |$(t)|(1_>\)1’2 dt:|

< [ / ]m(t)\pdt} o [ / (1) dt} R

[Holder inequality for exponents 1/ and 1/(1 — )]

PA p2(1=2) P2 (1_}) pA

21— 1
— |l2llZ 2]l T < O Y g )

i p — 2
thus (since 1 — 22(1 — A) = &)

Ap P2

2
|2t < oY |jz)|2t and thus
P2 1_1
Iz llp, < € 57z

which yields that
C®/PA=Q/ )| < |-

O]

Remark. The Interpolation is obvious, and follows from applying Holder’s
Theorem twice:

Assume as in the previous Theorem that X C L,|0, 1],is a linear subspace
on which || - ||,, and || - ||p,, where p; < pa, are C-equivalent. Thus, there is
a C > 1 so that

[fllpy < fllpe < Clifllpy whenever f e X.
Then for all p € (p1,p2)

1fllpr < e < N fllps < ClISf llp -

Theorem 5.3.6 (Kadets and Pelczyniski). Assume 2 < p < oo and assume
that X is a closed subspace of Ly[0,1]. Then:

FEither there is an 0 < r < p so that || - ||, and || - ||, are equivalent
norms on X . In that case it follows that X is isomorphic to a Hilbert space,
X is complemented in Ly[0,1] and the constant of isomorphism as well as
the constant of complementation only depend on r, p and the equivalence
constant between || - ||, and || - ||, on X.

Or || - |l» and || - ||, are not equivalent on X for some r < p. Then X
contains for any € > 0 a sequence which is (1 + €)-equivalent to the ,-unit
vector basis.
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Proof. Let X be (w.l.0.g) an infinite dimensional subspace of L,[0,1]. If for
some 7 < p the norms || - ||, and || - ||, are equivalent on X it follows from
Theorem 5.3.5 and the following remark that || - ||2 and || - ||, are equivalent
norms on X and the constant of equivalence only depends on r, p and the
equivalence constant of ||-||, and [|-||, . Thus, X is isomorphic to a separable
Hilbert space. Moreover X, seen as a linear subspace of L[0,1], is closed
and thus complemented. Let P : L3]0,1] — X be the orthogonal projection
from L[0,1] onto X. Then Q = P oI, where I : L,[0,1] — L2[0,1] is the
formal identity, is a projection from L,[0, 1] onto X.

Assume for all r < p the norms || - ||, and || - ||, are not equivalent on X
and let € > 0. For n € N, choose inductively 7, < p, M, > 1 and f, € X so
that

(5.13) M, > 2" and, / | ()P dt < 27" e,
{If1>Mn}
whenever 1 <7 <n and f € Br o1
(5.14) MP=m =2
(5.15) I fallr, <27 le, and || fall, = 1.

Indeed, for n = 1 let M; = 2 (which satisfies (5.13), since the second
condition is vacuous). Then choose 1 < p close enough to p so that (5.14)
holds. Since | - ||, and || - ||, are not equivalent on X, and we can choose
f1 € Sx so that (5.15) holds.

Assuming f1, fo,... fn_1,71,72,...,7n—1, and My, Mo, ... M,,_1 have been
chosen, we first choose 17 > 0 so that for alli = 1,2,... n, and all measurable
A C[0,1] with m(A) <npandalli=1,2,...,n—1, it follows that

/ |fi(D)Pdt < 27" e,
A

Now for any f € By, [o,1) and any M > 0 we have

ml(1f1> M) < 5 [IFOPa <

So choosing M,, = max(2", —-), we deduce (5.13). We can then choose

’ nl/p
rn € (0,p) close enough to p, so that (5.14), and since by assumption || - ||,
and || - ||, are not equivalent on X, we can choose f, € X so that (5.15)

holds. This finishes the recursion.
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Then
/ \h@pﬁé/MﬁWﬂmmﬁﬁwhm<?”
| fro| <My

For n € put An = {fn > Mn}\Uj>n{|fj‘ > Mj} and gn = fnlAn' Then
the g,’s have disjoint support and

HhﬁWSAK m\m+2/ oy

>n

=2 €+Z/ ’fn ’pdt<2 g+223 15_2171

>n j>n

Fix 0 > 0. For € small enough (depending on 9), it follows that (gy,) is (1+9)-
equivalent to the £p-unit vector basis (since the g, have disjoint support .
By choosing § small enough we can secondly ensure that

> Ngn = fallpllgnlly < 1,

neN

where the (g;) are the coordinate functionals of (g,). Applying now the
Small Perturbation Lemma yields that (f,,) is also equivalent to the £, unit
basis. O

Remark. The Theorem of Kadets and Pelczynski started the investigation
of complemented subspaces of L,[0,1], 2 < p < co. Here are some results:
Johnson-Odell 1974: Every complemented subspace of L,[0,1] which
does not contain ¢, must be a subspace of £,. In other words if X is an
infinite dimensional complemented subspace of Ly[0, 1] it must be either £5
or £, or contain £, & {3 (we are using here also that ¢, is prime, i.e that every
infinite dimensional complemented subspace of ¢, is isomorphic to £p).
Bourgain-Rosenthal-Schechtman 1981: There are uncountable many non
isomorphic complemented subspaces of Ly[0, 1].
Haydon-Odell-Schlumprecht 2011: If X is a complemented subspace of
L,[0, 1] which does not isomorphically embed into £2@¢, then it must contain
tp(La).
Next Question: Assume that X is a complemented subspace of L,[0, 1]
which is not contained in an isomorphic copy of £,(f2). What can we say
about X7
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5.4 The spaces {,, 1 < p < oo, and ¢y are prime
spaces

The main goal of this section is show that the spaces £,, 1 < p < 0o, and ¢y
are prime spaces.

Definition 5.4.1. A Banach space X is said to be prime if every comple-
mented subspace of X is isomorphic to X.

The following Theorem is due to Pelczynski.
Theorem 5.4.2. The spaces {,, 1 < p < oo, and co are prime.

We will prove this theorem using the Pelczynski Decomposition Method,
an argument which is important in its own right and also very pretty. Before
doing that we need some lemmas. The first one was, up to the “moreover
part” a homework problem and can be easily deduced from the Small Per-
turbation Lemma.

Lemma 5.4.3. (The Gliding Hump Argument)

Let X be a Banach space with a basis (e;) and'Y an infinite dimensional
closed subspace of X. Let € > 0. Then Y contains a normalized sequence
(yn) which is basic and (1 — &)~ '-equivalent to some normalized block basis

Moreover, if the span of (u,) is complemented in X, so is the span of

(Yn)-

Proof. Without loss of generality we can assume that ||e,|| = 1, for n€N.

Let b be the basis constant, and (e}) the coordinated functionals of (e;,).
Let 0, C (0,1) a null sequence, with > > 6, < &/2b. By induction we
choose for every n € N y,,, u,, € Sx and k,, € N, so that:

a) 0:k0<k‘1<k‘2<...,
b) uy, € span(e; : kn—1 +1 < j < k), and
¢) yn €Y, and ||uy — yn|| < On.

For n = 1 we simply choose any y; € Sy, and then by density of span(e; :
j € N) in X an element z; € span(e; : j € N), with ||z1]| = 1 and choose
k1 € N so that 1 € span(e; € N).

Assuming k, has been chosen we can choose y,11 € ;<) N(ef) N Sx.
Since span(e; : j € N,j > ky) is dense in (), N(e}), we can choose
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unt1 € span(e; : j € N,j > k,) N Sx so that ||zp41 — uny1] < dpt1, and
finally choose kp11, so that u,41 € span(e; : j € N,k < j < kpga).

Since the basis constant of (u,) does not exceed b (Proposition 3.3.3) we
deduce for the coordinate functionals (u}) of (u,) that

2b
sup [|uy|| < sup 2b,

neN neN [[unl| B

and thus

n

o0
Dy —unll - lupll <2077 60 <,

J=1 Jj=1

and we conclude therefore our claim form the Small Perturbation Lemma

3.3.10. 0

Proposition 5.4.4. Block bases in £, and co are isometrically equivalent to
the unit vector basis and their closed linear span is 1-complemented in £,
or ¢g.

Proof. We only present the proof for ¢,, 1 < p < oo, the cp-case works in
the same way. Let (u,,) be a normalized block basis, and write u,, n€N, as

kn
Uy, = E ajej, with 0 = ko < k1 < ko < ... and (a,) C K.
j:kn—1+1

It follows for meN and (b,)]"_; C K, that

m m kn m
[ b =32 32 alflag = Y b,
n=1 7j=1

n=1j=kp_1+1

and thus (uy,) is isometrically equivalent to (ey,).
For n € N choose u;, € £y, uy, € span(€] : kn—1 < j < ky), [lupllg =1, so
that (u},u,) =1, and define

P :l, — span(u, : jEN),z Z<1’7U;>Un

For v = 3772, xjej € 4, it follows that
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and, thus, that

o0 k‘n oo &) kn
IP@IE=>" > lalPllup,a)P <D (upa)P <> > JaylP = [l«|b.
n=1

n=1 j:kn71+1 n=1 j:knfl“l'l

This shows that ||P|| < 1, and, since moreover P(uy,) = uy,, and P(X) C
span(u; : j€N), it follows that P is a projection onto span(u;:j€N) of
norm 1. O

Remark. It follows from Lemma 5.4.3 and Proposition 5.4.4 for X = ¢,
or ¢y that every subspace Y of X has a further subspace Z which is com-
plemented in X and isomorphic to X. We call a space X which has this
property complementably minimal, a notion introduced by Casazza. In par-
ticular if Y is any complemented subspace of X the pair (Y, X) has the
Schroder Bernstein property, which means that X is isomorphic to a sub-
space Y, and Y is isomorphic to a complemented subsapce of X.

It was for long time an open question whether a complementably minimal
space is prime, and an even longer open problem was the question whether or
not ¢, and cq are the only separable prime spaces. The first question would
have a positive answer if all Banach spaces X and Y for which (X, Y") has the
Schroder Bernstein property then it follows that X and Y are isomorphic.
It is also open if complementably minimal spaces have to be prime.

Then Gowers and Maurey [GM2] constructed a space X (this is a varia-
tion of the space cited in [GM] and also does not contain any unconditional
basis sequence) which only has trivial complemented subspaces, namely the
finite and cofinite dimensional subspaces which has the property that all
the cofinite dimensional subspaces are isomorphic to X. Thus, this space is
prime, but not ¢, or cp.

Then Gowers [Go2| also found a counterexamples to the Schréder Bern-
stein problem, which also does not contain any unconditional basic sequence.

Both questions are still open for spaces with unconditional basic se-
quences, and thus spaces with lots of complemented subspaces. In [Sch] a
space with a 1-unconditional space was constructed which is complementably
minimal (shown in [AS]) but does not contain ¢, or c¢g. This space together
with some complemented subspace Y must either be a counterexample to
the Schroder Bernstein Problem, or it is new prime space.

The Petczynski Decomposition Method now proves that a complementably
minimal space is prime, if you assume some additional assumptions which
are all satisfied by £, or co.

Let’s start with a very easy and general observation.
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Proposition 5.4.5. If X and Y are Banach spaces, with the property that
X is isomorphic to a complemented subspace of Y and if X is isomorphic
to its square, i.e. X ~ X @& X, then Y 1is isomorphic to X @Y.

In particular if X and Y are ismorphic to their squares, isomorphic to
complemented subspaces of each other, then it follows that X ~ X @Y ~ Y.

Proof. Let Z be a complemented subspace of Y so that Y ~ X & Z. Then
Y~ X Z~ (X0 X)0Z~ XD (XPZ)~XDY.
O

Remark. It is easy to see that ¢, ~ ¢, © {,, 1 < p < oo and ¢y ~ co @ cp,
but it is not clear how to show directly that any complemented subspace of
¢y, or cp is isomorphic to its square. So we will need an additional property
of £, and c,. Nevertheless we can easily deduce the following Corollary from
Proposition 5.4.5 and Khintchine’s Theorem 5.2.1.

Corollary 5.4.6. For 1 < p < oo it follows that Ly[0,1] is isomorphic to
L,[0,1] & Lo[0,1].

Proof of Theorem 5.4.2. Let X = £, or ¢y. From now on we consider on
all complemented sums the /,-sum, respectively cp-sum. Note that X ~
(@jenX)x (actually isometrically)

Let Y be a complemented subspace of X, by Proposition 5.4.5 we only
need to show that X ~ X @Y, and that can be seen as follows: we let Z be
a subspace of X so that X ~Y @ Z, then

YOX~Y D (BnenX)x
~Y & (Bnen(Z@®Y))x
~Y ®ZD (@nen(Y ®Z))x
(consider (yl,(zl,xl,ZQ,a:Q,...)) > ((yl,zl), (a:l,zQ,a:z,...))
~ (@®nen(Y ® 2))x
~ (@nENX)X ~ X.

One more open question:

Remark. L]0, 1] cannot be prime since ¢; is isomorphic to a complemented
subspaces of L]0, 1], but it is a famous open problem whether or not this is
the only other complemented subspace? Are all the complemented subspaces
of L]0, 1] either isomorphic to ¢; or to L;[0,1]?
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5.5 The Haar basis is Unconditional in L,[0,1], 1 <
p < 00

Theorem 5.5.1. (Unconditionality of the Haar basis in L)

Let 1 < p < oo. Then (hi”)) is an unconditional basis of Ly[0,1]. More
precisely, for any two families (at)ier and (b)ier in coo(T) with |a| < |bl,
for allt € T, it follows that

(5.16) | > an®| < @ = v S wn?|
teT teT
where
p*:max(p Py {p ifp=>2
-1 p/lp—=1) ifp<2

We will prove the theorem for 2 < p < oco. For p = 2 it is clear since
(h@) is orthonormal and for 1 < p < 2 it follows from Propostion 3.4.5 by
duality (note that p* = ¢* if % + % =1).

We first need the following technical Lemma which presents the “heart
of the proof of Theorem 5.5.1”

Lemma 5.5.2. Let 2 < p < 0o and define
(5.17) v:CxC — [0,00), (z,y) = |y|P — (p — D)P|z|P, and
1
(5.18) u:CxC—1[0,00),  (,9)— ap(lz]+y))" (lyl — (p — 1)|=])
. 1\p—1
with oy = p(l — 5) .

Then it follows for x,y,a,b € C, with |a| < |b]

(5.19) v(z,y) < ulx,y),

(5.20) u(—z,—y) = u(z,y),

(5.21) u(0,0) =0, and

(5.22) u(x +a,y+0b) +ulx —a,y —b) <2u(x,y).

Proof. Let x,y,a,b € C, |a| < |b| be given. (5.20) and (5.21) are trivially
satisfied. Since u and v are both p-homogeneous (i.e. u(az, ay) = |aPu(z,y)
for a, z,y € C) we can assume that |z| + |y| = 1 in order to show (5.19).
Thus, the inequality (put s = |z| and, thus, 1 — s = |y|) reduces to show

(5.23) F(s) = ap(1—ps)—(1—s)P+(p—1)Ps? > 0for 0 < s <1and 2 <p.
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In order to verify (5.23), first show that F'(0) > 0. Indeed, by concavity of
Inz it follows that

np=In(p—1)+1) <ln(p—1)+ —
and, thus,

1 2 2 2
In(p—1)+1=In(p —1)+—+—>1np+—>1np+p—

-1 1 1 p
Integrating both sides of the inequality

-2 2
1n(m—1)+1>lnx+l‘7:lnx+1—f
x x

from x = 2 to p > 2, implies that

n((p-1P")p-1)=Ip-1)>(p-2)np=I(pP?)
and, thus,
(p - 1)}0*1 > pp*Q’
which yields

1\p-1 —1)p-t
oep:p<1—2;> :(]97)>1

and thus the claim that F'(0) > 0.
Secondly, we claim that F'(1) > 0. Indeed,

F1) =ap(l=p)+(p—-1)7

:—(p__l)er(p—l)”:(p—l)”ll—ppl_zl > 0.

pP=2

Thirdly, we compute the first and second derivative of F' and get

F'(s) = —opp +p(1 — s)pf1 +(p— 1)”105”*17 and
F'(s) = —p(p—1)(1 = 5)P % + (p— 1)PH ps’ >

and deduce that F(%) = F’(%) =0, F”(%) > 0 and that F”(s) vanishes
for exactly one value of s (because it is the difference of an increasing and
a decreasing function). Thus, F(s) cannot have more points at which it
vanishes and it follows that F'(s) > 0 for all s € [0, 1] and we deduce (5.19).

Finally we need to show (5.22). We can (by density argument) assume
that x and a as well as y and b are linear independent as two-dimensional
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vectors over R. This implies that |z 4+ ta| and |y + tb| can never vanish, and,
thus, that the function

G:R—>R, t—t=u(x+ta,y+th),

is infinitely often differentiable.
We compute the second derivative of G at 0, getting

&(0) o [ = o= 1) (JaP = ) (o] + yl)?~

—p(p—2) (| - m%,bwyrl(m + )"

= p(p = 1) = 2) (R({ ) + %<<|Z|,b>>)2|x|(|w| + |yr)p‘3] -

A detailed computation of G”(0) will be given in the appendix of this section.

Inspecting each term we deduce (recall that |a| > |b]) from the Cauchy
inequality that G”(0) < 0. Since for ¢ # 0 it follows that G”(t) = G"(0)
where

G(s):R—=R, s+ u(x+ta+tsa,y—+tb+sb),
N—— N——

z g
we deduce that G”(t) < 0 for all t € R. Thus, G is a concave function which
yields

SluCe 0,y +8) +u(e — a,y — b)) = 21G) + G(-1)] £ G(O) = u(z,y),

which proves (5.22). O
Now we are ready to deduce Theorem 5.5.1:

Proof of Theorem 5.5.1. Assume that ﬁn is normalized in L, so that h, =
hn/||hnllp is a linear reordering of (hgp ))t € T which is compatible with
the order on T. For n € Nlet f,, = > 1", a;h; and g, = S bih;, where
(a;)?_q, (bi) 4 in R, with |a;| > |bj|, for j = 1,2,...,n, we need to show that
llgnllp < (1—p*)||fnll.- The fact that we are considering the normalization in
Loo[0,1] instead of the normalization in L,[0,1] (i.e. h, instead of h,) will

not effect the outcome. We deduce from (5.19) that

1 1
lgnll” = (p = V)" ful” :/0 v(fn(t); gn(t)) dt S/O u(fn(t), gn(t)) dt.
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Let A = supp(hy), At = An{h, >0} and A~ = AN {h, < 0}. Since f, 1
and g,_1 are constant on A we deduce

1
| utnoroeya
= [ a0 o)
[0,1\A
+ / u(fnfl(t) + anygnfl(t) + bn) dt
A+
=+ /_ u(fn—l(t) — Qn, gn—l(t) - bn) dt

_ / W(fro1 (), g1 (t)) dt
[0,1\A

4 [ s ®) s 9110+ B0) + 0ot () = angua (6= ) e
A

= /[0,1}\A ulfn-1(t); g1 () dt + /A“(fnl(t)a gn-1(t)) dt
By (5.22)]

1
:/O u(fr—1(t), gn-1(t)) dt

Iterating this argument yields

1

/Mh@%@%é/uwwﬂwﬂt
0 0

=u(ay, by)

= & (u(an,br) + u(~a1, b)) [By (5.20)

< u(0,0) = 0 [By (5.21) and (5.22)],
which implies our claim that ||g,| < (p — 1) fn]|- O

From the unconditionality of the Haar basis and Khintchine’s Theorem

we now can deduce the following equivalent representation of the norm on
L,.
P

Theorem 5.5.3 (The square-function norm). Let 1 < p < oo and let (fy)
be an unconditional basic sequence in Lyl0,1]. For example (f,) could be
a linear ordering of the Haar basis. Then there is a constant C > 1, only
depending on the unconditionality constant of (f;) and the constants Ay, and
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B, in Khintchine’s Inequality (Lemma 5.3.8) so that for any g =Y oo aifi €
span(f; : i € N) it follows that

2 2 (1asl15:2) || < gy < 2 (tasP15:2) ")

which means that || - ||, is on span(f; : i € N) equivalent to the norm

£l = H i <|ai|2|fi|2>1/2Hp _ H g Iai|2|f¢|2H;Z.

Proof. For two positive numbers A and B and ¢ > 0 we write: A ~. B if
%A < B < cA. Let K, be the Khintchine constant for L,, i.e the smallest
number so that for the Rademacher sequence (r,)

HZam ~EK, (Z|al\) for (a;) C K,

and let b, be the unconditionality constant of (f;), i.e

o0 o0

H E oia;i fi|| ~b, H E a; fi
. p : p
=1 =1

~ We consider Ly[0,1] in a natural way as subspace of L0, 12, with
f(s,t) == f(s) for f € Ly[0,1]. Then let r,(t) = ry(s,t) be the n-th
Rademacher function action on the second coordinate, i.e

)

for (a;) C K and (0;) C {£1}.

(s, t) = sign(sin(2"7t)), (s,t) € [0,1]%.

It follows from the b,-unconditionality for any (a;)7L; C K, that

“ p
HZ%J’}(')H ~

. P
Jj=1 J=

1/ m »
= / Z ajfj(s)rj(t)> ds for all t € [0, 1],
0 ;
7=1

and integrating over all ¢ € [0, 1] implies

Hiajfj bﬁ//( a;jf;(s ](t)>pd8dt
j=1

(o)
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/ / < a; fi(s rg(t)>p dt ds(By Theorem of Fubini)
_/O HZajfj(S)Tj(-)Hst
/ <Z\agfy ) ds = H( \ajf]’ ) Hp,

which proves our claim using C' = K,b,. O

Let (h;) a compatible ordering of the Haar basis. For 1 < p < co and a
measurable function f = Zj’;l ajh; € L, we define

m ) /2 1/p
HM&ZKE}WWMZ(A(E]W%WMJ ) :
j=1 j=1

is called

Corollary 5.5.4. For 1 < p < oo the norms |- || a, and the usual Ly,- norm
are equivalent. But || - || g, and the L1 are not equivalent (otherwise would
the Haar basis be uncondition al in Ly.

5.6 Appendix: Detailed computation of G"(0), as
defined in the proof of Lemma 5.5.2:

We write x = x1 + ix9, y = y1 + iy2, a = a1 + tas, and b = by + iby be in C,
with |a| < [b]. We define:

FiRXR, (s,t) = (s+t)P H(t—(p—1)s) =
s:RoR, &0 |z+4af| = /(x1+ a16)? + (22 + af)?
t:R=R, & [y +0El = V(41 + 0162 + (Y2 + bof)?

G RR, € [(5(6),H)) = —ulla +at], Iy + be)).
P

We will compute the second derivative of G with respect to &.
First we compute the partial first and second derivatives of f(s,):

(524)  f(s,t)=(p—D(s+ )2t —(p—1)s) = (p— (s + )"
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= (- V(s + P2t (p—1)s—s—1)
— —p(p— 1)(s+ )" %s

fils,t) = (p =D (s + )" 2t — (p—1)s) + (s + )P
= (s+ 0" Hp-1)t—(p—1)2s+s+1)
=(s+ t)p_Q(pt —p(p—2)s) =p(s+ t)p_2 (t—(p—2)s)
(5:25) fos(s,t) =—p(p—1)(p—2)(s+ )" >s —p(p — 1)(s + )"~
=—plp—D(s+t)*((p—2)s+s+1)
(5.26)  fsu(s,t) = —pp—1)(p—2)(s + t)p %s
5.27)  fii(s,t) =pp—2)(s+ )P (t — 2)s) + p(s + )P~
(s+tp3( 2)t — )S—I—S—I—t)
p(s+t)P 3 ((p— 1)t — ( f2)f1))

Secondly we compute the first and second derivatives of s(§) and t(&).

ds  (z1+E&ar)ar + (v2+Eaz)as

5.28 - =
(5.28) A€ \/(z1+a1€)? + (z2+asf)?
_ (x1+&€ar)ar + (zo+E&az)as
S
(5.29) dt  (y1+€b1)b1 + (y2+Eba)be
A€ \/(y1+b18)2 + (y2+b28)?
_ (148b1)b1 + (y2+8b2)bo
t
r1t+ar)a zotas)as)?
(5.30) Ps _ (ai+ay)s - ‘ ”z B —
3 s
_ w _ ((z1+E&ar)ar + ($2+§a2)a2)2
= 5
2 B2 b2Vt — ((y1H€b1 ) b1+ (y2 kb2 ) b2)?
(5.31) L (bi+b3) —
§ s
P ()b + (yatEbo)bo)’
ot 3
and thus
ds <£13',CL> dt <y7 b>
5.32 a1 = R
( ) 13 ‘&20 || & ‘5:0 |y‘
(5.33) s) o (w0 d% ‘ _ B (y,0)?
52 £=0 ’$| ‘I‘|3 ’ 52 ¢= 0 |y| ’y|3 )
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(here we mean by (z,a) and (y,b) the scalar product in R?, where z,y,a,b
are seen as vectors in R?). Thus

G'(0) = fs(lzl, [y1)s'(0) + fell], [y)¥'(0)

G"(0) = fus(l2l. [y (s'(0))” + fulle], yl)s"(0)
+2fs 1, ly)s' )¢ (0) + fue(l], [y]) (¢(0)) + fu(|], [y])" (0)
T, a 2
= —pp = Dl + " (0 — Dl + o] + o) ‘;3|2>
_ _ p—2 @ - <w,a>2
plp = Dlal + Iyl lel | T = 5
— 2p(p — 1)(p — 2) (Je] + Iyl)" e <T;j> ﬁy?
2
+p(lz| + y)P 2 ((p = Dyl — ((p — 2)* = 1)|z]) %TQ)
p—2 _ _ T E _ (yab>2
+p(lal + [y1)" " (lyl = (0 — 2)]]) [ Wl WF ]

= la]?( = pp — 1)(|2| + [y])"2)

— [of? (p(lx\ +IyDP2 = p(lz] + |y (p — 2)‘5:)

= () o 1ol ) (2l ) 0+ )+ )

) (5,1)

= 1yl

- <z|’b>2 (p(\xl + )P ((p = Dyl — (p — 2)> = 1))

plp—1)(p —2) (|| + [y[)* ||

. o
—p(lz| + ly]) 2<1 — (- 2)\yy>>
= (Ib* = lal*) (p(p — V(|| + [y])*~?)
— [bP*p(p = 2)(J| + [y |y
T 2 -
- <H’a> p(p =V (p = 2)|z|(|=| +y)"

(z,a) (y,b)

o e D@ =2 (el + )" e
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Yy 2 p—
{28 Plo =1 = 2)lal(Jal + o))"~

+(5.0) o =21l + ol ol
We note that the factor of |b|? is:
p(p = V(] + [P 2 + (p = pp — 1) = p(p — 2) ) (2] + y])P~2
=p(p = D)(|z| + [y)?~2 = pp = 2) (1 = &) (2] + [y~
= p(p — D)(|z| + [y))P~2 — p(p — 2)(|z| + |y|)P~y| ™
and the factor of <ﬁ, b>2 equals:

(p+D)p(|z| + [y))P 2|yl — p(p+1)(p+3)(|=] + Iy!)‘pl‘?’liv\

—ple] + P2 (1 - (+2)f)
= —p(p—1)(p — 2)lz| (2] + [y)*~* + (0 — Dp(|z| + |y])P~2
—plle] + P2 (1 - +2) )
= —p(p—1)(p — 2)|z|(|z| + )"~
+(p = 2)p(lz] + y)P~2 + (0 — 2)pf
L= —p(p — D)(p — 2zl (J] + [y))" " + pp — 2) (2] + ly))P~ |y~

= (1bI* — lal*)p(p — 1) (|z] + [y))P~*

1y - Y \2 1 -
= (o = 2)(hel + o™+ (12 0) (el Jyl)? ol

2
- <<|i|a> + <|ly/|b>> p(p = 1)(p = 2)|2|(|z] + |y)" .




Chapter 6

Greedy bases

6.1 Characterization of Greedy bases, by Temlyakov
and Konyagin

We start with the Threshold Algorithm:

Definition 6.1.1. Let X be a separable Banach space with a normalized
basis (e ), and let (e}) be the coordinate functionals. For n € N and z € X
let A, C N,, with #A,, = n so that

i * > a; *
min le; (z)| = . le; ()],

i.e. we are reordering (e} (x)) into (ej(i) (z)), so that

leX, ()] > e}, (2)] > [e3, (@) > ...,
and for n € N we put
An — {)\1,)\2, . )\n}

Then define for n € N
GT(x) = 3 ei(@)es.

€A,

(GT) is called the Threshold Algorithm.

Definition 6.1.2. A normalized basis (e;) is called Quasi-Greedy, if for all
x

(QG) = lim GT(z).

n—0o0
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A basis is called greedy if there is a constant C' so that
(G) |z — Gr(z)|| < Con(),
where we define

= ) = inf inf —xl|.
O'n(:E) On (xv (6])) ACI\%E#:AZH zEspaIllr(lej:jeA) ”Z :L‘H

In that case we say that (e;) is C-greedy. We call the smallest constant C
for which (G) holds the greedy constant of (e,) and denote it by C.

Recall the definition of the unconditional constant and suppression un-
conditional constant of a basis (e;):

Cy = sup {H i a;bie;
i=1

Cs = sup {H Z a;e;
€A

Recall that a basis (e,) of a Banach space X is unconditional if and only
if for all = Y 07 | xpe, € X and any permutation 7 : N — N the series
Sy Tr(n)€r(n) also converges to x. This implies in particular that every
unconditional basis must be quasi greedy.

o0
Tx = Zaiei € Bx and |b;] < 1}
i=1

:x:Zaiei € Bx andACN}.
=1

Example 6.1.3. The shrinking basis (e,) in James space J is not quasi

greedy.
Recall
n l ) 1/2
Hanen :sup{<2\§nj—§nj_1]) :lENand1§n0<n1<...nl}
j=1 7 j=1
For n € N, let

1 1 1
zn:(1,1—f,1,1—f,...,1,1—f,o,o,...>,
n n n

2n coordinates

then ||z,|/q0 < ¢, where ¢ does not depend on n. But

IG5 (zn)ll > 2n
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Now we can concatinate infinitely many small enough multiples of the z,’s,

i.e., let ny < g < ng < ... fast increasing (faster than k?), say nj = 2F,
keN,
1 1 1 1
= (0,0,...,0,f2 (1,1—f,1,1—f,...,1,1—f>,0,0,...>.
~——— k Nk Nk Nk
2 i<k Q‘n’k
Then

o0
r=> yk
k=1

converges in J, but, if we let N, = Zf;ll 2n; + ny we deduce that

k

. 2
1%, @)llgw > lim =5 = oc.

lim
k—o0 ~ k—oo k2

Definition 6.1.4. We call a normalized basic sequence democratic if there

is a constant C' so that for all finite E, FF C N, with #FE = #F it follows
that

o I5ef <c| 5ol

In that case we call the smallest constant, so that (6.1) holds, the Constant
of Democracy of (e;) and denote it by Cjy.

The following characterization of greedy bases is due to Konyagin and
Temlyakov:

Theorem 6.1.5. [KT1] A normalized basis (ey,) is greedy if and only it is
unconditional and democratic. In this case

(6.2) max(Cy, Cy) < Cy < C4CC2 4 Cy,
where Cy, is the unconditional constant and Cs is the suppression constant.

Remark. The proof will show that the first inequality is sharp. Recently
it was shown in [DOSZ1] that the second inequality is also sharp.

Proof of Theorem 6.1.5. “<” Assume that (e;) is unconditional and demo-
cratic. Let z = ) ef(z)e; € X, n € Nand let n > 0. Choose T = ;. a;e;
so that #A} = n which is up to 7 the best n term approximation to (éince
we allow a; to be 0, we can assume that #A is exactly n), i.e.

(6.3) = 2| < onlz) + 1.
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Let A,, be a set of n coordinates for which

. T
b= min (@) = max Jef(x)] and G (@) = ZA i (x)e.

We need to show that
|l — G (2)]| < (CaCsC + Cu)(on(x) +n).
Then

z—GF(z) = Z e; (z)e; = Z e; (z)e; + Z e; (z)e;.

1€N\A,, €A \An 1€EN\(AxUAR)

But we also have

(6.4) H Z e; (z)ei|| < bC, Z e
iEAE\An iEAE\ A
<0CCal| Y e

iEANAZE
[Note that #(A, \ A)) = #(A), \ Ay)]
< cgcdH S el)e
€A \AY
[Note that |e; (z)| > bifi € Ay \ A}, ]
< cscgcdH S (ei@) —aei+ Y el(@e
1€}, 1€EN\AS,
[On N\ A} take all coefficients e; ()
and on A the coefficients e (z)—a;]
= 0.C2Cu|la — ] < CuC2Culon(x) + 1)

and

65 | > dwel| <cf Y@ -aea+ Y @

1EN\ (A% UAR) €AY, 1EN\A¥
= Csllz — z[| < Cs(on(z) +n).

This shows that (e;) is greedy and, since n > 0 is arbitrary, we deduce that
Cy < CsC2Cy + Cs.
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“=" Assume that (e;) is greedy. In order to show that (e;) is democratic
let A1, Ay C N with #Aq = #Ay. Let n > 0 and put m = #(A2 \ A1) and

T = Zei—i—(l—i—n) Z €;.
i€Ay 1€A2\A1

Then it follows

|3

€A

= [lz = Gy (@)

< Cyom(x) (since (e;) is Cy-greedy)

§C’gH:E— Z e ngH Z ei+(1+n) Z eill-

€A1\ A2 1€A1NA2 1€A2\ A1

Since 1 > 0 can be taken arbitrary, we deduce that
|z eza] 2
€N 1€Ag

Thus, it follows that (e;) is democratic and Cy < C.
In order to show that (e;) is unconditional let z = ) el (x)e; € X have
finite support S. Let A C S and put

y = Zef(w)ei +0b Z €i,
(IS 1€S\A
with b > max;eg |ef(x)]. For n = #(S \ A) it follows that

i€S\A

and since (e;) is greedy we deduce that (note that #supp(y — z) = n)

| Y cit@e

€A

= lly = GR W)l < Cyon(y) < Cylly — (y — 2)|| = Cyll],

which implies that (e;) is unconditional with Cs < Cy. O

6.2 The Haar basis is greedy in L,[0,1] and L,(R)
Recall (h¢)ier, with

T ={(n,j) :neNy,j=0,1,2,...,2" — 1} U {0},
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and ho = 1pq) and for n =10,1,2,...,and j =0,1,2,...,2" -1

hingy = Lj2-n jo-ryo-n-1) = Ljjo-nqo-n-1 (j11)2-n).

h(p)

_ on/
(ng) = 2"y

n?j)‘
Theorem 6.2.1. For1 < p < oo there are two constants ¢, < Cp, depending
only on p, so that for allm € N and all A C'T with #A =n

cpnl/p < H ZhEP)H < Cpnl/p.
teA

In particular (hi”))teT is democratic in L0, 1].
With Theorem 6.1.5 and Theorem 5.5.1 we deduce that
Corollary 6.2.2. The Haar Basis of Lpy[0,1], 1 < p < 0o is greedy.
The proof will follow from the following three Lemmas.

Lemma 6.2.3. For any 0 < g < oo there is a dg > 0 so that the following
holds.

Let n1 < nmg < ...ny be integers and let Ej C [0,1] be measurable for
j=1,... k. Then we have

1 k k
/ (Z onil 11 (m))qdaz <d, Y 2"m(E;).
U j=1
Proof. Define
k
Fo) =3 209/ ().
j=1

For j =1,...k write E; = E; \ UL, E;. It follows that for z € E

J 7 ,
4 o(nj+1)/q _ 1 21/q
f(x)g 2 qS 2q_ 21/q_1 §21/q_12]q'
=1 =1 ~——

Thus
1 k k
/0 fla)lde < dg Y 2"m(E)) < dg» 2"m(E;),
j=1 j=1

which finishes the proof. O
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Lemma 6.2.4. For 1 < p < oo there is a C, > 0 so that for all n € N,
A C T with #A =n, and (&) C {—1,1} it follows that

|Sen?| <o

teA

Proof. Let n1 < ng < ... < ni be all the integers n; for which there is a
t € A so that m(supp(h®t)) = 27", For j = 1,...k put

Ej = U supp(h®) (i, n})).
i€{0,1,...2" —1},(n; i) €A

Since
m(E;) =2""#{i € {0,1,...2% — 1}, (n;,i) € A}

and thus
#{i€{0,1,...2" —1},(n;,i) € A} = 2" m(E}).
It follows therefore that

Zfl#{ze{o,l,. 2" — 1}, (ny,i) € A} =Y 0 2m(E;) i 0¢ A
1+ Y8 2mim(E;)) if 0 € A.

Assume without loss of generality that 0 ¢ A. It follows that

1.k » 1/p k 1/p
et < | [ [Soovmmsfas| < Soamiy | < i
teA P 0 “i=1 j=
[d, as in Lemma 6.2.3]
[

Lemma 6.2.5. For 1 < p < oo there is a ¢, > 0 so that for all n € N,
A CT with#A =n, and (e¢) C {—1,1} it follows that

H Zsth(p H > cpn p,

teA

Proof. Note that for 1 < p,q < oo with % + % and s,t € T it follows that

<h§p)7 h(q)> = 5(t,s)a

s



150 CHAPTER 6. GREEDY BASES

thus the claim follows from the fact that the h?’ )’s are normalized in L,[0,1]
and by Lemma 6.2.4 using the duality between L,[0, 1] and L0, 1]. Indeed,

HZ&th H> <Z€tht)7 EtEAEth H>

dtea 5th

B n nl/
H ZteA 5th1(:q) H -

where ¢, is chosen like in Lemma 6.2.5. Our claim follows therefore by
letting Cp = 1/c,. O

I
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