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ABSTRACT

The Heisenberg product is an associative product defined on symmetric functions which inter-

polates between the ordinary product and the Kronecker product. Heisenberg coefficients are Schur

structure constants of the Heisenberg product and generalization of both Littlewood–Richardson

coefficients and Kronecker coefficients.

In 1938, Murnaghan discovered that the Kronecker product of two Schur functions stabilizes.

We prove an analogous result for the Heisenberg product of Schur functions. In 2014, Stembridge

introduced the notion of stability for Kronecker triples which generalize Murnaghan’s classical

stability result. Sam and Snowden proved a conjecture of Stembridge concerning stable Kronecker

triples, and they also showed an analogous result for Littlewood–Richardson coefficients. We

show that any stable triple for Kronecker coefficients or Littlewood–Richardson coefficients also

stabilizes Heisenberg coefficients, and we classify the triples stabilizing Heisenberg coefficients.

We also follow Manivel and Vallejo’s idea of using matrix additivity to generate Heisenberg stable

triples.
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1. INTRODUCTION

Algebraic combinatorics is an area of mathematics implements techniques of abstract alge-

bra, especially group theory and representation theory, in combinatorial problems, and conversely,

applies combinatorial methods to problems in algebra.

Symmetric functions and representations of symmetric groups are two important and closely

related subjects in algebraic combinatorics. Due to the Frobenius character map, these two sub-

jects have isomorphic ring structures. On the ring of representations of symmetric groups, there

are two important products, the induction product and the Kronecker product, which respectively

gives structure constants Littlewood–Richardson coefficients and Kronecker coefficients. While

the Littlewood–Richardson coefficient has been well understood, very little is known about the

Kronecker coefficient. Although some special cases of Kronecker coefficients have been studied,

it is still a challenging open problem in combinatorial representation theory to find an explicit

combinatorial description for general Kronecker coefficients.

Aguiar et al. [1] and Moreira [2] introduced a (nongraded) product, Heisenberg product, on

representations of symmetric groups which interpolates between the induction product and the

Kronecker product, hence the structure constants of this new product, called Heisenberg coeffi-

cients, generalize both Littlewood–Richardson coefficients and Kronecker coefficients.

One remarkable property of Kronecker coefficients is the stability phenomenon discovered by

Murnaghan [3] in 1938. We show that the low degree components of the Heisenberg product also

have this property. Murnaghan’s stability notion was later extensively generalized by Stembridge

[4] by introducing a new concept called Kronecker stable triple. He and Sam and Snowden [5]

characterized all Kronecker stable triples. Sam and Snowden also gave an analogous result for

Littlewood–Richardson coefficients. We generalize their results to Heisenberg coefficients and

using additive matrices, followed from Vallejo’s idea [6], to generate Heisenberg stable triples.
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2. SYMMETRIC FUNCTIONS

Symmetric functions are important in algebraic combinatorics. This chapter gives an introduc-

tion to symmetric functions. For more details about this material, see [7].

In Section 2.1, we introduce the basic notations and terminologies concerning partitions. In

Section 2.2, we define several families of symmetric functions. In Section 2.3, we introduce Young

tableaux and develop the connections between some symmetric functions.

2.1 Partitions

Many objects in the study of symmetric functions and combinatorial representation theory are

parametrized by partitions. We begin by introducing partitions and presenting some elementary

results. Throughout this thesis, N is the set of nonnegative integers, and for each positive integer

n, we set [n] := {1, 2, . . . , n}.

A partition λ is a finite weakly decreasing sequence of nonnegative integers

λ = (λ1, λ2, . . . , λr)

with λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, and we consider two partitions to be the same if they only differ by

a string of zeroes at the end. The i-th part of λ is λi; the length of λ, denoted by `(λ), is the number

of nonzero parts of λ; the size of λ, written as |λ|, is the sum of all the parts of λ. If |λ| = n,

we say λ is a partition of n and write λ ` n. The partition λ can be identified with its Young

diagram, which is left-justified rows of boxes of length λ1, λ2, . . . , λr. For example, the partition

(4, 4, 1) = (4, 4, 1, 0) corresponds to the diagram on the left below,

(2.1)

2



Sometimes we may also use another notation for partitions λ = (1m12m2 . . . tmt), where mi is the

number of times i occurs in λ. For example, (4, 4, 1) can be written as (1142).

The conjugate of a partition λ, written as λ′, is the partition whose Young diagram is the

transpose of the diagram of λ, i.e. the diagram of λ′ is obtained by the reflection of the diagram of

λ over the diagonal. For example, the conjugate of (4, 4, 1) is (3, 2, 2, 2), which corresponds to the

diagram on the right in (2.1).

For partitions λ and µ, we write µ ⊂ λ to mean that the diagram of µ is contained in the

diagram of λ (or equivalently, µi ≤ λi for all i). We denote by λ/µ, called a skew diagram, the

diagram obtained by removing the diagram of µ from the the diagram of λ. We call λ/µ the shape

of the diagram. For example, let λ = (4, 4, 2) and µ = (3, 1), then µ ⊂ λ and the skew diagram

λ/µ is the following diagram,

(2.2)

LetPn be the set of all the partitions with size n. We define two orderings, reverse lexicographic

ordering (�rl) and dominance ordering(�d), on Pn. When λ, µ ∈ Pn, we say µ �rl λ if either

λ = µ or the first non-vanishing term of λi− µi is positive; we say µ �d λ if µ1 + µ2 + · · ·+ µi ≤

λ1 +λ2 + · · ·+λi for all i ≥ 1. The reverse lexicographic ordering is a total ordering. For example,

it arranges the partitions in P6 in the following order,

(1, 1, 1, 1, 1, 1) �rl (2, 1, 1, 1, 1) �rl (2, 2, 1, 1) �rl (2, 2, 2) �rl (3, 1, 1, 1) �rl (3, 2, 1)

�rl (3, 3) �rl (4, 1, 1) �rl (4, 2) �rl (5, 1) �rl (6).

The dominance ordering is only a partial ordering. For example, (4, 1, 1) and (3, 3) in P6 are

incomparable with respect to �d. Following from the definition of the two orderings, it is not hard

to show

Lemma 2.1.1. Let λ, µ ∈ Pn, then µ �d λ implies that µ �rl λ.

Another result concerning the dominance ordering is

3



Lemma 2.1.2. Let λ, µ ∈ Pn, then µ �d λ if and only if λ′ �d µ′

Proof. It is enough to show one direction. Assume µ �d λ. If λ′ �d µ
′, then there exists a positive

integer i such that

λ′1 + · · ·+ λ′j ≤ µ′1+ · · ·+ µ′j for all 1 ≤ j < i

λ′1 + · · ·+ λ′i > µ′1 + · · ·+ µ′i

In particular, we have λ′i > µ′i, and

λ′i+1 + λ′i+2 + · · · < µ′i+1 + µ′i+2 + · · · (2.3)

because λ′, µ′ ∈ Pn.

Let l = λ′i and m = µ′i, then l > m and λj ≥ i for all 1 ≤ j ≤ l. From µ �d λ, we have

µ1 + · · ·+ µm ≤ λ1 + · · ·+ λm. (2.4)

So,

(µ1 − i) + · · · (µm − i) ≤(λ1 − i) + · · ·+ (λm − i)

≤(λ1 − i) + · · ·+ (λm − i) + (λm+1 − i) + · · ·+ (λl − i)
(2.5)

Using Young diagram, it is not hard to see that the left hand side (right hand side, respectively) of

(2.5) counts the the number of boxes in the diagram of µ (λ, respectively) which are strictly to the

right of the i-th column. That is,

(µ1 − i) + · · · (µm − i) = µ′i+1 + µ′i+2 + · · ·

(λ1 − i) + · · ·+ (λm − i) + (λm+1 − i) + · · ·+ (λl − i) = λ′i+1 + λ′i+2 + · · ·

4



Combining the above two equations and (2.3), we get

(µ1 − i) + · · · (µm − i) >(λ1 − i) + · · ·+ (λm − i) + (λm+1 − i) + · · ·+ (λl − i)

≥(λ1 − i) + · · ·+ (λm − i),

which contradicts (2.4). So λ′ �d µ′.

We define some operations on partitions. If we view partitions as vectors, we can define addi-

tion, subtraction, and scalar multiplication for partitions. Let λ and µ be partitions, and a ∈ N, we

define

λ+ µ := (λ1 + µ1, λ2 + µ2, · · · ),

λ− µ := (λ1 − µ1, λ2 − µ2, · · · ),

nλ := (nλ1, nλ2, · · · ).

We define λ∪µ to be the partition whose parts are those of λ and µ, arranged in weakly decreasing

order. For example, (4, 4, 1) ∪ (4, 2, 2) = (4, 4, 4, 2, 2, 1). Note that the operations + and ∪ are

dual to each other in the following sense,

(λ+ µ)′ = λ′ ∪ µ′.

2.2 Families of Symmetric Functions

Let Xn = (x1, x2, . . . , xn) be a set of n variables. A polynomial in Z[Xn] is said to be sym-

metric if it is invariant under under the action of permuting the variables. We denote the set of

symmetric polynomials in n variables by Λn. In other words,

Λn := Z[Xn]Sn .

where Sn is the symmetric group of degree n and Sn acts on Z[Xn] by permuting the variables.

5



In the study of symmetric functions, we usually work with infinitely many variables, as the

number of variables, as long as it is large enough, does not affect the properties we are interested

in. Let m ≥ n be two positive integers, we have a natural (algebra) homomorphism from Z[Xm]

to Z[Xn] by sending xn+1 = xn+2 = · · · = xm = 0 and other xi’s to themselves. This map

induces a (surjective) homomorphism ρm,n : Λm � Λn. Using this family of maps, we define the

ring of symmetric functions Λ to be the inverse limit lim←−
n

Λn in the category of graded rings. In

other words, an element f of Λ can be written as f = (fn)n≥0, where fn ∈ Λn with ρm,n(fm) =

fm(x1, . . . , xn, 0, . . . , 0) = fn(x1, . . . , xn) for all m ≥ n, and the degrees of fn’s are bounded.

The ring Λ of symmetric functions is a Z-algebra, and we can easily extend scalars to obtain a

Q-algebra,

ΛQ := Λ⊗Z Q.

We introduce several families of symmetric functions. Each family forms a Q-basis for ΛQ, and

some of them are even Z-bases for Λ.

The first family consists of the monomial symmetric functions. Given a positive integer n, for

each α = (α1, α2, . . . , αn) ∈ Nn, we set xα := xα1
1 · · ·xαnn . Given a partition λ with `(λ) ≤ n, the

monomial symmetric polynomials in Xn is

mλ(Xn) :=
∑
α

xα, (2.6)

where α runs over all the distinct permutations of λ. For example,

m1,1(x1, x2, x3) = x1x2 + x1x3 + x2x3.

If `(λ) > n, then we set mλ(Xn) = 0. Let mλ(X) (or simply written as mλ), called the monomial

symmetric function indexed by λ, be the element in Λ corresponding to (mλ(Xn))n. For example,

m1,1 =
∑
i<j

xixj.

6



It is not hard to show that {mλ}λ∈P forms a Z-basis for Λ.

We next introduce elementary symmetric functions. For each nonnegative integer n, we set

e0 = 1 and

en :=
∑

i1<i2<···<in

xi1xi2 · · · xin = m(1n) (2.7)

For each partition λ = (λ1, λ2, . . . , λk) ∈ P , we define the elementary symmetric function indexed

by λ to be

eλ := eλ1eλ2 · · · eλk ∈ Λ. (2.8)

The generating function for the en’s is

E(t) =
∑
n≥0

ent
n =

∏
i≥1

(1 + xit) ∈ Λ[[t]] ⊂ Z[[X, t]]. (2.9)

The elementary symmetric functions form a Z-basis for Λ. For a proof, see [7].

Proposition 2.2.1. The {en}n≥1 are algebraically independent over Z and Λ = Z[e1, e2, . . .].

We introduce complete homogeneous symmetric functions. For each nonnegative integer n,

we set h0 = 1 and

hn :=
∑
λ∈Pn

mλ, (2.10)

which is the sum of all the monomial symmetric functions with degree n. For each partition

λ = (λ1, λ2, . . . , λk) ∈ P , we define the complete symmetric function indexed by λ to be

hλ := hλ1hλ2 · · ·hλk ∈ Λ. (2.11)

The generating function for the hn’s is

H(t) =
∑
n≥0

hnt
n =

∏
i≥1

(1− xit)−1. (2.12)

7



Combining (2.9) and (2.12), we get

E(t)H(−t) = 1, (2.13)

which implies that
n∑
k=0

(−1)nekhn−k = 0 (2.14)

for all n ≥ 1.

Since the en’s are algebraically independent over Z (or even Q), we consider the algebra ho-

momorphism ω : ΛQ → ΛQ defined by

ω(en) = hn. (2.15)

Using (2.14), one can show that ω(hn) = en for all n ≥ 0, which implies that ω is an involution

and induces a result analogous to Proposition 2.2.1.

Proposition 2.2.2. The {hn}n≥1 are algebraically independent over Z and Λ = Z[h1, h2, . . .].

For convenience, we usually set en = hn = 0 for all n < 0.

Another natural family of symmetric functions is the power sum symmetric functions. For each

integer n ≥ 1, we define

pn :=
∑
i≥1

xni . (2.16)

For each partition λ = (λ1, λ2, . . . , λk) ∈ P , we define the power sum symmetric function indexed

by λ to be

pλ := pλ1pλ2 · · · pλk ∈ Λ. (2.17)

The involution ω acts on pλ nicely,

w(pλ) = (−1)|λ|−`(λ)pλ. (2.18)

The family of power sum symmetric functions is not an integral basis for Λ, however, it forms a

Q-basis for ΛQ. For more details, see [7].

8



Proposition 2.2.3. The {pn}n≥1 are algebraic independent over Q and ΛQ = Q[p1, p2, . . .].

We close this section by introducing the most important family of symmetric functions, Schur

functions. For each partition λ, the Schur polynomial sλ[Xn] in the variables Xn is defined to be

sλ[Xn] =
det(xλi+j−1

i )1≤i, j≤n

det(xj−1
i )1≤i, j≤n

, (2.19)

where `(λ) ≤ n. If `(λ) > n, we set sλ[Xn] = 0. The Schur function sλ indexed by λ is the one in

Λ corresponding to (sλ(Xn))n. In particular, we have

s(1n) = en (2.20)

sn = hn (2.21)

The action of the involution ω on Schur functions is also understood,

ω(sλ) = sλ′ . (2.22)

Proposition 2.2.4. Schur functions form a Z-basis for Λ.

We can also define a Schur function using complete homogeneous symmetric functions,

sλ = det(hλj+i−j)i,j. (2.23)

This formula is called the Jacobi-Trudi determinant. We leave the last definition of Schur functions

in the next section as it involves Young tableau, a combinatorial object having extensive application

in algebraic combinatorics.

2.3 Young Tableaux

We begin by introducing Young tableaux. A Young tableau is a filling of a Young diagram

which assigns a positive integer to each box of the diagram. The partition corresponding to the

diagram is called the shape of the tableau. A Young tableau is called semistandard if the fillings is

9



weakly increasing along the rows and strictly increasing down the columns, and such tableaux are

called semistandard Young tableaux (SSYT). A Young tableaux of shape λ ` n is called standard

if it is semistandard and every number in [n] := {1, 2, . . . , n} is used exactly once in the filling,

such tableaux are called standard Young tableaux (SYT). For example, the left diagram in (2.24)

is semistandard and right one is standard.

2 2 2 3 5 5

3 4 4 4

5 5

1 2 4 5 11 12

3 7 8 10

6 9

(2.24)

Analogously, a filling of a skew diagram is called a skew Young tableau, and, similarly, we can

define semistandard skew Young tableaux and standard skew Young tableau.

For each (skew) Young tableau T , we define the weight of T to be the sequence w(T ) =

(w1, w2, . . .) where wi is number of occurrences of i in T . For example, the left tableau in (2.24)

have the weight (0, 3, 2, 3, 4, 0, . . .).

For each partition λ, the Schur function sλ is

sλ =
∑

T∈SSY T (λ)

xw(T ), (2.25)

where the sum is over all the SSYT of shape λ. For example, if λ = (6, 4, 2), the two SSYT’s in

(2.24) contribute monomials x3
2x

2
3x

3
4x

4
5 and x1x2 · · ·x12, respectively, in the summation in (2.25).

Note that, although it is not obvious from Equation (2.25), Schur functions are indeed symmetric.

Given two partitions µ and ν, since sµ ·sν is also symmetric, and Schur functions form a Z-basis

for Λ, we can consider the linear expansion of sµ · sν with respect to the Schur basis,

sµ · sν =
∑
λ

cλµ,νsλ, (2.26)

where λ runs over all the partitions. The Schur structure constant cλµ,ν is called the Littlewood–

Richardson coefficient. Remarkably, this coefficient is always a nonnegative integer and we have
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several beautiful combinatorial descriptions for it (see [7, 8, 9]). We introduce one of them below.

For a (skew) Young tableau T , we denote by r(T ) the reading word of T , which is obtained by

reading the numbers in T from right to left in successive rows, starting with the top row. A word

a = a1a2 . . . aN (ai ∈ [n]) is said to be a lattice permutation if for all 1 ≤ i ≤ n−1 and 1 ≤ r ≤ N ,

the number of occurrences of i in a1a2 . . . ar is not less than the number of occurrences of i + 1.

For example, the reading word of the following tableau T is r(T ) = 11213224, which is a lattice

permutation.

T =

1 1

1 2

2 2 3

4

(2.27)

Proposition 2.3.1 (Littlewood–Richardson Rule). Let λ, µ, and ν be partitions. The Littlewood–

Richardson coefficient cλµ,ν counts the number of semistandard skew Young tableaux T with shape

λ/µ and weight ν such that the reading word r(T ) is a lattice permutation.

We close this Chapter by showing some relations between different families of symmetric

functions. We have several different expansions for the product
∏
i,j

(1− xiyj)−1

∏
i,j

(1− xiyj)−1 =
∑
λ

z−1
λ pλ(X)pλ(Y ) (2.28)

=
∑
λ

mλ(X)hλ(Y ) =
∑
λ

mλ(Y )hλ(X) (2.29)

=
∑
λ

sλ(X)sλ(Y ) (2.30)

where zλ =
∏
i

imimi!. This suggests us to construct an bilinear form on ΛQ defined by

〈 sλ, sµ 〉 = δλ,µ, (2.31)

where δλ,µ is the Kronecker delta.

Proposition 2.3.2. Let {uλ}λ∈P and {vλ}λ∈P beQ-bases of ΛQ where uλ and vλ are homogeneous
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symmetric functions with degree |λ|. Then the following are equivalent:

(1) 〈uλ, vµ 〉 = δλ,µ for all λ and µ;

(2)
∏
i,j

(1− xiyj)−1 =
∑
λ

uλ(X)vλ(Y ).

Proof. Consider the Schur expansion of uλ and vµ

uλ =
∑
α`|λ|

aλ,αsα, vµ =
∑
β`|µ|

bµ,βsβ.

Let An = (aλ,α)λ,α`n and Bn = (bµ,β)µ,β`n be the transition matrices, where the rows and columns

are labeled by partitions and arranged in reverse lexicographic order. Then, from (2.31), we know

that (1) is equivalent to ∑
α

aλ,αbµ,α = δλ,µ, (2.32)

which means AnBt
n = I for all n ≥ 0.

On the other hand, from (2.30), we know that (2) is equivalent to

∑
λ

sλ(X)sλ(Y ) =
∑
λ

uλ(X)vλ(Y ), (2.33)

hence is equivalent to ∑
λ

aλ,αbλ,β = δα,β, (2.34)

which means AtnBn = I for all n ≥ 0. Hence (1) and (2) are equivalent.

From Proposition 2.3.2, Equations (2.28) and (2.29), we have

〈mλ, hµ 〉 = 〈hλ, mµ 〉 = δλ,µ. (2.35)

〈 pλ, pµ 〉 = zλδλ,µ. (2.36)

From (2.31), we see that this bilinear form is symmetric and positive definite, hence an inner

product on ΛQ. We call it the Hall inner product. Also, (2.22) (or (2.18)) implies that,
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Proposition 2.3.3. The involution ω is an isometry for the Hall inner product. That is,

〈w(f), w(g) 〉 = 〈 f , g 〉

for all f, g ∈ ΛQ.

For partitions λ and µ with the same size, let Kλ,µ be the number of SSYT of shape λ and

weight µ. This number is called Kostka number. It is easy to see that Kλ,λ = 1. We have the

following well-known result determining when the Kostka number is positive.

Proposition 2.3.4. Kλ,µ > 0 if and only if λ �d µ.

Using (2.25) and the symmetry of Schur functions, it is easy to see that

sλ =
∑
µ

Kλ,µmµ. (2.37)

Since the monomial symmetric functions {mλ} and the complete symmetric functions {hλ} form

dual bases, and the Schur functions {sλ} are self-dual with respect to the Hall inner product, we

have

hµ =
∑
λ

Kλ,µsλ. (2.38)

Apply the involution ω to (2.38), and use (2.15) and (2.22) we have

eµ =
∑
λ

Kλ,µsλ′ . (2.39)

For complete information about the transition matrices between those different bases for ΛQ, see

[7, Chapter 1 Section 6].
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3. REPRESENTATION THEORY

Representation theory studies algebraic structures by representing the elements as linear trans-

formations of vector spaces. In this chapter, we introduce representation theory and focus on

representations of symmetric groups, which are closely related to symmetric functions. For more

details about the material in this chapter, see [10, 11, 12].

In Section 3.1, we give the definition of representation theory and present some basic results

about the representations of finite groups. In Section 3.2, we introduce the character theory, which

is an important tool in representation theory. In Section 3.3, we describe the representations of

symmetric groups. In Section 3.4, we introduce the Frobenius character map, which builds a

bridge between the representations of symmetric groups and symmetric functions.

3.1 Representations of Finite Groups

Throughout this chapter, all the groups are finite unless it is otherwise stated and we let the

ground field be the complex numbers C, although all results work for any algebraic closed field

with characteristic 0.

A representation of a finite group G is a pair (V, ρ) of a finite dimensional complex vector

space V and a group homomorphism ρ : G→ GL(V ). When there is no confusion about the map

ρ, we may simply say that V is a representation of G; we may also just write g. v or gv for ρ(g)(v),

where g ∈ G and v ∈ V .

Equivalently, representations can be understood using modules. We extend the action of G on

V linearly, then V can be viewed as a C[G]-module where C[G] is the group algebra associated to

G defined as follows:

Definition 3.1.1. Let G be a finite group. The group algebra C[G] is a C-algebra whose additive

group is a complex vector space with basis

{1g|g ∈ G},
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and whose multiplication is defined by

1g · 1h = 1gh

and extended linearly using the distribution law. When there is no confusion, we may simply write

g for 1g for convenience.

For this reason, we also call a representation V of G a G-module. Note that C[G] can also be

viewed as a G-module where the action is defined by

g. 1h = 1gh for all g, h ∈ G,

and this representation is called the regular representation of G.

A subrepresentation of a representation V is subspace a W of V which is invariant under

the action of G, and this subrepresentation is called proper if W is a proper subspace of V . A

representation is irreducible if it does not have a proper subrepresentation.

A map ϕ from a representation (V, ρ) to a representation (W, ρ′) of G is called G-linear if it is

a linear map from V to W such that the following diagram commutes.

V W

V W

ϕ

ρ(g) ρ′(g)

ϕ

(3.1)

When there is no confusion, we simply write ϕg = gϕ. It is easy to check that Ker ϕ, Im ϕ, and

Coker ϕ are G-modules.

Let V and W be two representations of G. We denote the set of all linear maps from V to W

by Hom(V,W ). Hom(V,W ) is clearly a vector space and it also has a G-module structure. The

action of an element g ∈ G on a map ϕ ∈ Hom(V,W ) is defined as follows:

(gϕ)(v) = gϕ(g−1v) for all v ∈ V. (3.2)
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This action can be understood using the following commutative diagram:

V W

V W.

ϕ

g g

gϕ

(3.3)

In particular, if we set W = C and G acts on W as identity (this representation C is called the

trivial representation and denoted by 1G), we get a representation V ∗ = Hom(V,C) of G, and this

representation (V ∗, ρ∗) is called the dual of (V, ρ). If we fix a basis for V and take its dual basis

for V ∗, then, for any g ∈ G, we can present ρ(g) and ρ∗(g) in terms of matrices. We have

ρ∗(g) = (ρ(g−1))t. (3.4)

Let V and W be representations of groups G and H respectively. Then the tensor product V ⊗W

is a representation of G×H with the action defined by

(g, h)(v ⊗ w) = gv ⊗ hw, for all g ∈ G, h ∈ H, v ∈ V,w ∈ W. (3.5)

If G = H , then the tensor product V ⊗ W is a representation of G via the following diagonal

action:

g(v ⊗ w) = gv ⊗ gw, for all g ∈ G, v ∈ V,w ∈ W. (3.6)

We write V �W for this representation to distinguish it from the one in (3.5). With this convention,

it is not hard to get the identification

Hom(V,W ) ∼= V ∗ �W (3.7)

as G-modules.

We denote the set of allG-linear maps between two representations V andW by HomG(V,W ).

Comparing (3.1) and (3.3), we see that HomG(V,W ) = Hom(V,W )G, which is the set of elements

16



of Hom(V,W ) fixed by the action of G.

The direct sum V ⊕W of two representations V and W of G is again a G-module. We say a

representation is completely reducible if it can be written as a direct sum of irreducibles. For our

case (G is finite), any representation is completely irreducible. The key to prove this fact is the

following proposition.

Proposition 3.1.2. Let V be a representation ofG, andW be a subrepresentation of V . Then there

is an invariant subspace W ′ of V under the action of G, such that V = W ⊕W ′.

Following directly from this proposition, we have

Corollary 3.1.3. Any representation of a finite group is completely reducible.

An important result for the study of the irreducible decomposition of a representation is the

following:

Proposition 3.1.4 (Schur’s Lemma). Let V and W be two irreducible representations of G and

ϕ ∈ HomG(V,W ), then

(1) The map ϕ is either an isomorphism or 0.

(2) If V = W , then ϕ is a scalar multiple of the identity.

Proof. For (1), if ϕ is not zero, then the Im ϕ is a non-zero G-submodule of W , which implies that

Im (ϕ) = W as W is irreducible. Similarly, we can show that Ker ϕ = 0 using the irreducibility

of V . This proves that ϕ is an isomorphism.

For (2), we fix a basis for V and view ϕ as a matrix, then ϕ has an eigenvalue λ as C is

algebraically closed. Consider ϕ − λI (where I is the identity matrix) which also induces a G-

module homomorphism from V to V . Since ϕ− λI has an eigenvalue 0, it is not an isomorphism.

Hence, ϕ− λI = 0 due to part (1). So ϕ = λI .

An immediate Corollary of Schur’s Lemma is
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Corollary 3.1.5. Let V andW be two representations of a groupG with V being irreducible. Then

dim HomG(V,W ) = 0 if and only if W contains no subrepresentation isomorphic to V .

We identify two representations if they are isomorphic. Combining Corollary 3.1.3 and Schur’s

Lemma, we have

Proposition 3.1.6. For any representation V of G, there is a decomposition of V into irreducibles,

V = V ⊕m1
1 ⊕ · · · ⊕ V ⊕mkk , (3.8)

where the Vi’s are pairwise nonisomorphic irreducible representations. Moreover, this decompo-

sition is unique.

For convenience, we write this decomposition as

V = m1V1 ⊕ · · · ⊕mkVk , (3.9)

and we call mi the multiplicity of Vi in V .

We introduce two operations which are important in representation theory. Let G be a group

and H be a subgroup of G. A natural question is whether we can construct a representation of H

from a representation of G or vice versa. One direction is straightforward, while the other one is

more technical which involves the tensor of modules.

Let V be a representation of G, then we automatically have an action of H on V as H is a

subgroup of G. So V is also a representation of H . We denote this representation by ResGH V .

Conversely, suppose we have a representation W of H , then W is a left C[H]-module. As

C[H] is a subalgebra of C[G], we can view C[G] as a left C[G]-module and right C[H]-module.

So C[G]⊗C[H]W is a C[G]-module, hence a representation of G. We denote this representation by

IndGHW and call it the induced representation ofW fromH toG. An equivalent way to understand

the construction is the following

IndGHW =
⊕
g∈G/H

gW. (3.10)
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where gW = {gw |w ∈ W} is a vector space and this construction does not depend on the choice

of g for the left coset gH as W is invariant under the action of H .

Both restriction and induction are transitive. Suppose K ≤ H ≤ G are groups, and we have a

representation V of G and a representation of W of K. Then

ResGK V = ResHK (ResGH V ), (3.11)

IndGKW = IndGH (IndHKW ). (3.12)

The restriction and induction are related by the following proposition.

Proposition 3.1.7. Let V andW be representations ofG andH respectively whereH is a subgroup

of G, then any H-module homomorphism ϕ : W → ResGH V can be extended uniquely to a G-

module homomorphism ϕ : IndGHW → V . That is,

HomH(W,ResGH V ) = HomG(IndGHW,V ). (3.13)

An interesting question concerning the induction and restriction is what happens when we com-

pose them. More precisely, suppose K and H are two subgroups of G, and V is a representations

of K. What do we know about ResGH IndGK V ? This problem is solved by Mackey [13]. Note that

V can be viewed as a representation of gKg−1 for any g ∈ G with the action defined by

gkg−1. v = kv, for all k ∈ K, v ∈ V,

and we denote this representation by Vg. Then Mackey’s Decomposition Theorem says

Proposition 3.1.8 ([13], Theorem 1).

ResGH IndGK V =
⊕
HgK

IndHH∩gKg−1 ResgKg
−1

H∩gKg−1 Vg (3.14)
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3.2 Group Characters

When study the representations of a group, instead of presenting the elements of the group as

matrices, it is more convenient and efficient to just consider the corresponding characters.

Definition 3.2.1. Let V be a representation of a finite group G. We fix a basis for V and present

the action of g ∈ G on V as a matrix. Then the character of the representation V , denoted by χV ,

is the complex-valued function on G defined by

χV (g) = Tr(g), (3.15)

where Tr(g) is trace of the matrix g. It does not depend on the choice of the basis for V .

For example, the character of the regular representation C[G] of G is

χC[G](g) =

 |G|, if g = e ;

0, otherwise.
(3.16)

From the property of trace, we know that χV is a class function on G, i.e. χV is constant on the

conjugacy classes of G. Let CG be the set of all class functions on G, then CG is a vector space

(over C) whose dimension is equal to the number of conjugacy classes of G.

We can also view χV (g) as the sum of the eigenvalues of g. Since g|G| = e where e is the

identity element of G, the eigenvalues of g must be roots of unity. Hence the eigenvalues of g−1

are the conjugates of the eigenvalues of g. We present some basic results about characters.

Proposition 3.2.2. Let V and W be representations of G. Then

(1) χV (e) = dimV .

(2) χV ∗(g) = χV (g−1) = χV (g).

(3) χV⊕W = χV + χW .
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(4) χV �W = χV · χW .

By (3.7) and Proposition 3.2.2, we have

χHom(V,W ) = χV ∗�W

= χV ∗ · χW = χV · χW .
(3.17)

Let V and W be two representations of G. From Section 3.1, we know that U := Hom(V,W ) is a

G-module. Consider the action of ϕ = 1
|G|
∑
g∈G

g ∈ End(U) on U , we have

Proposition 3.2.3. ϕ is a projection from U onto UG.

Proof. For any h ∈ G, we have

hϕ =
1

|G|
h
∑
g∈G

g =
1

|G|
∑
g∈G

hg =
1

|G|
∑
g∈G

g = ϕ.

So Imϕ ⊂ UG.

Consider ϕ ◦ ϕ, we have

ϕ ◦ ϕ =
1

|G|2
∑
g∈G

∑
h∈G

gh =
1

|G|2
∑
g∈G

∑
h∈G

h =
1

|G|
∑
h∈G

h = ϕ.

So ϕ is a projection onto Imϕ. On the other hand, for any u ∈ UG, we have

ϕ(u) =
1

|G|
∑
g∈G

gu =
1

|G|
∑
g∈G

u = u. (3.18)

So UG ⊂ Imϕ and we finish the proof.

We fix a basis for UG and extend it to a basis of U . We get

dim UG = Tr(ϕ) =
1

|G|
∑
g∈G

Tr(g)

=
1

|G|
∑
g∈G

χU(g).

(3.19)
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From Section 3.1, we know that UG = HomG(V,W ) is the set of all G-linear maps from V to

W . When V and W are irreducible representations of G, by Schur’s Lemma, we have

dim UG = dim HomG(V,W ) =

 1, if V ∼= W ;

0, otherwise.
(3.20)

Combining Equation (3.17), (3.19), and (3.20), we have

1

|G|
∑
g∈G

χV (g) · χW (g) =

 1, if V ∼= W ;

0, otherwise.
(3.21)

This motives us to define an (Hermitian) inner product 〈 , 〉G on the (complex) vector space of

class functions CG:

〈 α , β 〉G =
1

|G|
∑
g∈G

α(g) · β(g). (3.22)

Then the characters of irreducible representations of G are orthonormal with respect to this inner

product, that is, if V and W are two irreducible representations of G, then

〈 χV , χW 〉G =

 1, if V ∼= W ;

0, otherwise,
(3.23)

which implies that the number of nonisomorphic irreducible representations of G is less than or

equal to the number of conjugacy classes of G. Using (3.23), we easily get the following results:

Corollary 3.2.4. Let V be a representation of G, then the following are equivalent:

(1) V is irreducible;

(2) 〈 χV , χV 〉G = 1;

(3) V ∗ is irreducible.

Suppose a representation V has the irreducible decomposition as in (3.9). From (3.23), we
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have

mi = 〈 χVi , χV 〉G (3.24)

In particular, if we set V = C[G], the regular representation of G, and apply (3.16), then we get

mi =
1

|G|
χVi(e)|G| = dim Vi. (3.25)

The above equation shows

Proposition 3.2.5. Let C[G] =
r⊕
i=1

miVi be the irreducible decomposition of the regular repre-

sentation C[G] of G, then {Vi}ri=1 is a complete list of irreducible representations of G, and the

multiplicity of mi of Vi in C[G] is equal to dim Vi.

By computing the dimension of C[G] using Proposition 3.2.5, we get an identity

dim C[G] =
r∑
i=1

(dim Vi)
2. (3.26)

The orthonormality of the irreducibles also shows that any representation is determined by its

character. When there is no confusion, we may simply write the representation for its character for

convenience. For example, we write (3.23) as follows

〈 V , W 〉G =

 1, if V ∼= W ;

0, otherwise,
(3.27)

With this notation, Proposition 3.1.7 can be rephrased as

Proposition 3.2.6 (Frobenius Reciprocity). Let V and W be representations of G and H respec-

tively where H is a subgroup of G, then

〈 V , IndGHW 〉G = 〈 ResGH V , W 〉H . (3.28)

Finally, we show that the number of irreducible representations of G is equal to the number of
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conjugacy classes of G. It is enough to prove

Lemma 3.2.7. If α ∈ CG is a class function and 〈 α , χV 〉G = 0 for all irreducible representation

V of G, then α = 0.

Proof. Consider ϕα,V :=
∑
g∈G

α(g)g ∈ End (V ). The map ϕα,V is G-linear as α is a class function.

Due to Schur’s Lemma, we have ϕα,V = λ I for some λ ∈ C. So Tr(ϕα,V ) = λ dimV . On the

other hand,

Tr(ϕα,V ) =
∑
g∈G

α(g)Tr(g)

=
∑
g∈G

α(g)χV (g)

= |G|〈 α , χV ∗ 〉G

= 0.

(3.29)

So λ = 0. Hence ϕα,V = 0 for any irreducible representation V , which implies that
∑
g∈G

α(g)g is

zero on any representation of G. In particular, we consider the regular representation C[G]. Since∑
g∈G

α(g)g = 0 on C[G], we have

0 =
∑
g∈G

α(g)g. 1e =
∑
g∈G

α(g)1g,

which means that α(g) = 0 for all g ∈ G as {1g}g∈G is a basis for C[G]. So α = 0.

Proposition 3.2.8. The number of irreducible representations of G is equal to the number of con-

jugacy classes of G. Equivalently, the characters {χV } given by the irreducible representations

form an orthonormal basis for CG.

3.3 Representations of Symmetric Groups

Given a set X , let SX be the group whose elements are bijections from X to itself. An element

of SX is called a permutation of X . In particular, the symmetric group of degree n is Sn := S[n]. It
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is known that two permutations in Sn are in the same conjugacy class if and only if they have the

same cycle type. For each cycle type, if we arrange the length of the cycles in weakly decreasing

order, we get a partition of n. So we can associate each conjugacy class with a partition of n. On the

other hand, from Proposition 3.2.8, we know that the number of irreducible representations of Sn

is equal to the number of conjugacy classes of Sn, so we can index the irreducible representations

by partitions of n. We construct an irreducible representation Vλ, called a Specht module, of Sn for

each λ ` n.

Definition 3.3.1. Let α = (α1, α2, . . . , αl) be a (weak) composition of n, written as α � n, then

the associated Young subgroup of Sn is,

Sα = Sα1 × Sα2 × · · · × Sαl , (3.30)

where Sαi permutes the set {α1+ · · ·+αi−1+1, α1+ · · ·+αi−1+2, . . . , α1+ · · ·+αi−1+αi}. The

number of elements in Sα is α! := α1!α2! · · · αl!.

We consider the induced representation Mλ (λ ` n) of the trivial representation 1Sλ from Sλ to

Sn. That is,

Mλ := IndSnSλ 1Sλ . (3.31)

Using (3.10), we can write this induced representation as

Mλ =
k⊕
i=1

σi1Sλ , (3.32)

where {σ1, σ2, . . . , σk} is transversal for the left cosets of Sλ in Sn.

We introduce Young tabloids, which are equivalence classes of Young tableaux, to help us

understand the induced representation Mλ. In this section, each Young tableau has the filling set

[n] for some n and each number in [n] is used exactly once in the filling.

Definition 3.3.2. Two tableaux T1 and T2 with the same shape λ are row equivalent (denoted by

T1 ∼ T2) if corresponding rows of the two tableaux have the same elements. An equivalence class
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of such tableaux is called a tabloid with shape λ. That is, for a Young tableaux T with shape λ, the

tabloid it represents, denoted by [T ], is

[T ] := {S ∈ YT(λ)|S ∼ T}. (3.33)

For example, the following is a tabloid with shape (2, 1).

 1 2

3

 =

 1 2

3
, 2 1

3

 (3.34)

For each partition λ ` n, we have a natural (well-defined) action of Sn on the set of all tabloids

with shape λ:

σ[T ] = [σT ], σ ∈ Sn (3.35)

where σT is the Young tableau obtained by applying σ to the entries of T . For example, take

σ = (132) ∈ S3, we have

σ
2 1

3

=
σ(2) σ(1)

σ(3)

=
1 3

2

Let Tλ be the Young tableau with shape λ whose entries in the i-th row, reading from left to right,

are λ1+ · · ·+λi−1+1, λ1+ · · ·+λi−1+2, . . . , λ1+ · · ·+λi−1+λi. For example,

T(4,2,1) =

1 2 3 4

5 6

7

.

By identifying σi1Sλ with Ti := [σiTλ], we have

Mλ = C{[T1], [T2], . . . , [Tk]}, (3.36)
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as Sn-module, where {[T1], [T2], . . . , [Tk]} is a complete list of tabloids with shape λ. In particular,

M(n) = C{[T(n)]}, (3.37)

which is the trivial representation of Sn, and

M(1n)
∼= C[Sn], (3.38)

which is the regular representation of Sn. From our definition of tabloids, it is not hard to show

that

Proposition 3.3.3. The representation Mλ of Sn is generated by any tabloid with shape λ. That is,

for any tabloid [T ] with shape λ, we have

Mλ = CSn[T ] (3.39)

Moreover, dim Mλ = n!
λ!

, the number of tabloids with shape λ.

For each Young tableau T with shape λ ` n, we associate it with two groups, the row-stabilizer,

RT = SR1 × SR2 × · · · × SRl , (3.40)

and the column-stabilizer,

CT = SC1 × SC2 × · · · × SCk , (3.41)

where R1, R2, . . . , Rl are the rows and C1, C2, . . . , Ck are the columns of T .

For example, if

T =

2 6 5 7

4 1

3

, (3.42)
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then

RT = S{2,5,6,7} × S{1,4} × S{3},

CT = S{2,3,4} × S{1,6} × S{5} × S{7}.

Let rT =
∑
σ∈RT

σ, cT =
∑
σ∈CT

sgn(σ)σ ∈ C[Sn], and vT = cT [T ] ∈ Mλ. For example, if T is the

tableau in (3.42), we have

cT = (e− (23)− (24)− (34) + (234) + (243))(e− (16)),

vT =

[
2 6 5 7

4 1

3

]
−

[
3 6 5 7

4 1

2

]
−

[
4 6 5 7

2 1

3

]
−

[
2 6 5 7

3 1

4

]

+

[
3 6 5 7

2 1

4

]
+

[
4 6 5 7

3 1

2

]
−

[
2 1 5 7

4 6

3

]
+

[
3 1 5 7

4 6

2

]

+

[
4 1 5 7

2 6

3

]
+

[
2 1 5 7

3 6

4

]
−

[
3 1 5 7

2 6

4

]
−

[
4 1 5 7

3 6

2

]
.

We have the following results.

Lemma 3.3.4. Let T be a tableau with shape λ ` n and σ ∈ Sn, then

(1) RσT = σRTσ
−1,

(2) CσT = σCTσ
−1,

(3) cσT = σcTσ
−1,

(4) vσT = σvT .

Definition 3.3.5. For each partition λ ` n, the associated Sn-module Vλ, called the Specht module,

is the submodule of Mλ spanned by {vT | T is a Young tableau with shape λ}.

From Lemma 3.3.4 (4), we know that the Specht module Vλ is generated by vT for any tableau

T with shape λ. The following lemma is important for the proof of the irreducibility of the Specht

module Vλ. For a proof, see [12].
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Lemma 3.3.6. Let S and T be Young tableaux of the shapes λ and µ respectively. If λ �d µ, then

exactly one of the following occurs:

(1) There are two distinct integers that occur in the same column of S and in the same row of T ;

(2) λ = µ and there is some α ∈ CS and β ∈ RT such that αS = βT .

We define a total ordering on the set of all Young tableaux with n boxes. The column word of

of a tableau S, denoted by col(S), is obtained by reading the numbers in S from bottom to top in

successive columns. Let S and T be Young tableaux of the shapes λ and µ, then we say S � T if

either λ �rl µ, or λ = µ and the largest entry that is in a different box in the two tableaux occurs

earlier in the column word col(S) than in col(T ). For example, this ordering arranges the Young

tableau with shape (2, 1) in the following order:

2 1

3
>

1 2

3
>

3 1

2
>

1 3

2
>

3 2

1
>

2 3

1
(3.43)

From the definition of this ordering, we can easily get that

Lemma 3.3.7. Let T be a SYT, then for any σ ∈ RT and τ ∈ CT , we have

σT � T � τT. (3.44)

Combining Lemmas 2.1.1, 3.3.6, and 3.3.7, we get

Corollary 3.3.8. If S and T are standard tableaux with T � S, then there are two distinct integers

in the same column of S and same row of T .

Using Lemma 3.3.6, we can show

Lemma 3.3.9. Let S and T be Young tableaux of the shapes λ and µ respectively, and λ �d µ. If

there is a pair of integers in the same column of S and in the same row of T , then cS[T ] = 0. If

there is no such a pair, then cS[T ] = ±vS .
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Note that Lemma 3.3.9 shows

Corollary 3.3.10. Let λ and µ be partitions of n with µ �rl λ, and T be a Young tableau with

shape λ, then we have

cTMλ = cTVλ = C · vT 6= 0 (3.45)

cTMµ = cTVµ = 0 (3.46)

From Corollary 3.3.10, we know that Vλ and Vµ are not isomorphic as Sn-modules. It also

implies that Vλ is irreducible. Indeed, if Vλ = U ⊕W , where U and W are Sn-modules, then from

(3.45), we have

C · vT = cTVλ = cTU ⊕ cTW ⊂ U ⊕W . (3.47)

So either U or W contains vT . Without loss of generality, assume that vT ∈ U , then

Vλ = C[Sn]vT ⊂ U ⊂ Vλ. (3.48)

Hence Vλ = U , and this proves the irreducibility of Vλ. For each partition λ of n, we construct an

irreducible representation Vλ of Sn. Since the number of conjugacy classes of Sn is equal to the

number of partitions of n and also to the number of irreducible representations of Sn, we have

Proposition 3.3.11. The set of Specht modules {Vλ |λ ` n} is a complete list of irreducible repre-

sentations of Sn.

Using Lemma 3.3.7, it is not hard to see that { vT |T ∈ SY T (λ) } is linear independent in Vλ.

Applying a “straightening algorithm” (see [12, Section 7.4]), we can show that these vT ’s also

span Vλ. Hence,

Proposition 3.3.12. The set { vT | T ∈ SY T (λ) } is a basis for Vλ. So dimVλ = |SYT(λ)|.

Consider two special examples, V(n) and V(1n). They are both one dimensional representations of

Sn as there is only one SYT with each of shapes (n) and (1n). By the definition of actions of Sn
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on Specht modules, it is not hard to see that V(n) is the trivial representation and V(1n) is the sign

representation ρ : Sn → GL(C), where ρ(σ) = sgn(σ) for all σ ∈ Sn.

Applying Proposition 3.3.12 to the identity (3.26), we get

n! =
∑

T∈SYT(λ)

|SYT(λ)|2. (3.49)

This identity can also be proved combinatorially using the Robinson–Schensted–Knuth (RSK)

correspondence, see [10, 12].

3.4 Frobenius Character Map

Recall that a representation of a group G is determined by its character, and the character is a

class functions on G. We consider the graded Z-module

R =
⊕
n≥0

Rn, (3.50)

where Rn is the Z-module generated by the irreducible characters of Sn and with the convention

that R0 = Z. We can endow R a ring structure by defining the (external) multiplication as follows.

Let V and W be representations of Sn and Sm respectively, then V ⊗ W is a representation of

Sn × Sm. Observe that Sn × Sm can be naturally embedded into Sn+m, hence we get an induced

representation U := IndSn+mSn×Sm V ⊗W . This product is called the induction product, and we will

study this product in more detail in Chapter 4. We define the multiplication (denoted by •) to be

χV • χW := χU . (3.51)

It is not hard to verify that this product is well-defined, commutative and associative. Hence, R is

a commutative, associative, graded ring with unit.

Recall that in Section 3.2, we define an inner product on the vector space of class functions

which makes the irreducible characters form an orthonormal basis. We use this inner product to

define a scalar product on R. Let f, g ∈ R where f =
∑
fn, g =

∑
gn and fn, gn ∈ Rn, then we
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define

〈 f , g 〉R :=
∑
n≥0

〈 fn , gn 〉Sn . (3.52)

We define a Z-linear map F : R→ ΛC := Λ⊗Z C as follows

F(f) =
∑
n≥0

F(fn) =
∑
n≥0

1

n!

∑
σ∈Sn

f(σ)pc(σ), (3.53)

where f =
∑
n≥0

fn ∈ R, fn ∈ Rn, and c(σ) denotes the cycle type of σ. This map is called the

Frobenius character map, and it builds a connection between the representations of symmetric

groups and symmetric functions by the following result

Proposition 3.4.1. The Frobenius character map F is an isometric (ring) isomorphism of R onto

Λ, where the metrics on R and Λ are defined by 〈 , 〉R and the Hall inner product respectively. In

particular, F(Vλ) = sλ and F(Mλ) = hλ.

For this reason, we also call 〈 , 〉R the Hall inner product, and simply write 〈 , 〉 for it. For a proof

of this proposition, see [7].

Recall that V(1n) is the sign representation of Sn. Let λ ` n, we consider the representation

Vλ � V1n of Sn. From Proposition 3.2.2(4) and Equation (3.53), we have

F(Vλ � V(1n)) =
1

n!

∑
σ∈Sn

χVλ(σ)sgn(σ)pc(σ) (3.54)

Note that sgn(σ) = (−1)c1+c2+···+cl−l = (−1)n−`(c(σ)), where (c1, c2, . . . , cl) = c(σ) is the cycle

type of σ. Applying (2.18) and (2.22), and Proposition 3.4.1 to (3.54), we have

F(Vλ � V(1n)) =
1

n!

∑
σ∈Sn

χVλ(σ)ω(pc(σ)) = ω(F(Vλ))

= ω(sλ) = sλ′ = F(Vλ′).

(3.55)

By Proposition 3.4.1, we have

Vλ � V(1n) = Vλ′ . (3.56)
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Hence, applying the involution ω to a symmetric function is equivalent to tensoring the correspond-

ing representation with the sign representation.
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4. PRODUCTS ON REPRESENTATIONS OF SYMMETRIC GROUPS/SYMMETRIC

FUNCTIONS

There are several interesting products on representations of symmetric groups (also on sym-

metric functions due to the Frobenius character map).

In Section 4.1, we recall the induction product which we introduced in Section 3.4. In Section

4.2, we introduce the Kronecker product and present some related results. In Section 4.3, we

define the Heisenberg product which interpolates between the induction product and the Kronecker

product and show some results about this product.

4.1 Induction product

Let V andW be representations of Sn and Sm respectively. Recall that the induction product of

V andW is IndSn+mSn×Sm(V ⊗W ). Let λ, µ, and ν be partitions of n+m, n, andm respectively. Recall

that the Littlewood-Richardson coefficient cλµ,ν is the coefficient of sλ in the Schur expansion of the

ordinary product sµ · sν of Schur functions. From Proposition 3.4.1, we can can rewrite Equation

(2.26) as

IndSn+mSn×Sm(Vµ ⊗ Vν) =
⊕
ν`n+m

cλµ,νVλ. (4.1)

So the Littlewood-Richardson coefficient cλµ,ν can also be considered as the multiplicity of Vλ in

the decomposition of IndSn+mSn×Sm(Vµ ⊗ Vν) into irreducibles, hence

cλµ,ν = 〈 IndSn+mSn×Sm(Vµ ⊗ Vν) , Vλ 〉Sn+m (4.2)

Applying Proposition 3.2.6 to (4.2), we have

cνλ,µ = 〈 IndSn+mSn×Sm(Vµ ⊗ Vν) , Vλ 〉Sn+m

= 〈 Vµ ⊗ Vν , ResSn+mSn×SmVλ 〉Sn×Sm .
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4.2 Kronecker product

Let V and W be representations of Sn. The Kronecker product of V and W is the tensor

product V �W = ResSn×SnSn
(V ⊗W ), where Sn is viewed as a subgroup of Sn × Sn through the

diagonal map. Let λ, µ, and ν be partitions of n. The Kronecker coefficient gλµ,ν is the multiplicity

of Vλ in the decomposition of ResSn×SnSn
(Vµ ⊗ Vν) into irreducibles. That is,

ResSn×SnSn
(Vµ ⊗ Vν) =

⊕
λ`n

gλµ,νVλ.

Using the above formula, we can define the Kronecker product (denoted by ∗) for symmetric

functions:

sµ ∗ sν =
∑
λ`n

gλµ,νsλ.

While the Littlewood–Richardson coefficients are well-studied and have several beautiful com-

binatorial interpretations, an explicit combinatorial or geometric description for the Kronecker

coefficients is still unknown. In 1938, Murnaghan [3] discovered a remarkable stability property

for the Kronecker coefficients. He stated without proof that for any partitions λ, µ, and ν with the

same size, the sequence
{
g
λ+(n)
µ+(n),ν+(n)

}
is eventually constant. We discuss this in more detail in

Chapter 5.

Although an explicit method to compute the Kronecker product of Schur functions is still

unknown, we have combinatorial ways to describe the Kronecker products of two power sum

symmetric functions and two complete homogeneous symmetric functions. The formula for the

power sum symmetric functions is the following:

Proposition 4.2.1. Let λ and µ be partitions with the same size, then

pλ ∗ pµ = zλ δλ,µ pλ. (4.3)

The formula for the complete homogeneous symmetric functions is more complicated. Given

a matrix A, we arrange its entries in weakly decreasing order. The result sequence is called the
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π-sequence of A and denoted by π(A). Let β, γ � n and α ` n. We denote by M(β, γ) the

set of matrices with nonnegative integer entries, row-sum vector β and column-sum vector γ, and

M(β, γ)α the subset ofM(β, γ) whose elements have π-sequence α. Then the Kronecker product

of two complete homogeneous symmetric functions can be computed using the following formula:

Proposition 4.2.2. Let β and γ be (weak) compositions of n, then the Kronecker product of hβ and

hγ is

hβ ∗ hγ =
∑

A∈M(β,γ)

hπ(A) =
∑
α`n

∑
A∈M(β,γ)α

hα.

4.3 Heisenberg product

Aguiar et al. [1] and Moreira [2] introduced a new (nongraded) product which interpolates

between the induction product and the Kronecker product.

Definition 4.3.1. (Heisenberg product) Let V andW be representations of Sn and Sm respectively.

Fix an integer l ∈ [max{m,n},m+n], and let p = l−m, q = n+m− l, and r = l−n. We have

the (commutative) diagram of inclusions (solid arrows):

Sp × Sq × Sq × Sr Sp+q × Sq+r = Sn × Sm V ⊗W

Sp × Sq × Sr Sp+q+r = Sl (V#W )l

Res
idSp×∆Sq×idSr

Ind

(4.4)

The Heisenberg product (denoted by #) of V and W is

V#W =
n+m⊕

l=max(n,m)

(V#W )l, (4.5)

where the degree l component is defined using the dashed arrows in the diagram:

(V#W )l = IndSlSp×Sq×SrResSn×SmSp×Sq×Sr(V ⊗W ). (4.6)

36



When l = m + n, (V#W )l = IndSn+mSn×Sm(V ⊗ W ), which is the induction product of repre-

sentations; when l = n = m, (V#W )l = ResSl×SlSl
(V ⊗ W ), which is the Kronecker product

of representations. The Heisenberg product connects the induction product and the Kronecker

product. Remarkably, this product is associative [1, Theorem 2.3, Theorem 2.4, Theorem 2.6].

They first construct the Heisenberg product on the category of species where the associativity is

straightforward, then they build an isomorphism from the category of species to the category of

representations of symmetric groups which preserves the Heisenberg product, hence proving the

associativity of the Heisenberg product on the representations of symmetric groups. We give a

direct proof of associativity in Appendix A. The Heisenberg coefficient hλµ,ν is the multiplicity of

Vλ in the decomposition of Vµ#Vν into irreducibles, i.e.

Vµ#Vν =
n+m⊕

l=max{n,m}

⊕
λ`l

hλµ,νVλ,

and we set hλµ,ν = 0 if λ, µ, or ν is not a partition. Similar to the Kronecker product, we can use

the above formula to define the Heisenberg product (also denoted by #) for symmetric functions:

sµ#sν =
n+m∑

l=max{n,m}

∑
λ`l

hλµ,νsλ.

As the Kronecker product, the Heisenberg product of two Schur functions is not well understood,

but there are combinatorial ways to compute the Heisenberg products of two power sum symmetric

functions and two complete homogeneous symmetric functions which generalize Proposition 4.2.1

and 4.2.2.

Proposition 4.3.2 ([1] Theorem 3.4). Let λ and µ be partitions, then

pλ#pµ =
∑

α ∪ β = λ

β ∪ γ = µ

zβ pα∪β∪γ. (4.7)

To describe the Heisenberg product of two complete homogeneous symmetric functions, we
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introduce some notation. Given three finite sequences of real numbers α, β, and γ. Let F(α, β)

be the set of matrices with real entries, zero at the top left corner, row-sum vector (ignoring the

first row) α and column-sum vector (ignoring the first column) β. We denote byH(α, β) the set of

matrices in F(α, β) with integer entries, andH(α, β)γ the subset ofH(α, β) whose elements have

π-sequence γ.

Example 4.3.3. The following matrix is inH((18, 10), (12, 18, 3))(7,6,5,5,4,4,3,2,2,1)


0 4 6 1

4 5 7 2

2 3 5 0


.

Proposition 4.3.4 ([1] Theorem 3.1). Let β and γ be two (weak) compositions, then the Heisenberg

product of hβ and hγ is

hβ#hγ =
⊕

A∈H(β,γ)

hπ(A).

Briand et al. [14] showed that four families of coefficients (Kronecker coefficients, plethysm

coefficients, Littlewood–Richardson coefficients, and the Kostka–Foulkes polynomials) share sym-

metries related to the operations of taking complements with respect to rectangles. We follow the

notations that are used in [14], and prove an analogous result for Heisenberg coefficients. We use

“bialternants” formula (2.19) of the Schur polynomial. Recall that Xn = {x1, x2, . . . , xn}, and we

define Xn
∨ := {x−1

1 , x−1
2 , . . . , x−1

n } to be the set of the inverses of variables in Xn. The partition

(kn) has n parts all equal to k. Given a partition λ, let �k,n(λ) = (k−λn, k−λn−1, . . . , k−λ1).

When k ≥ λ1 and n ≥ `(λ), the partition �k,n(λ) is the complement of λ in the n × k rectangle

(kn). With this convention and using (2.19), it is not hard to show

sλ+(kn)(Xn) = (x1x2 · · ·xn)ksλ(Xn), (4.8)

sλ(Xn
∨) = s�0,n(λ)(Xn). (4.9)
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From [1, Theorem 12.1], we have

sλ(XY +X + Y ) =
∑
µ,ν

hλµ,νsµ(X)sν(Y ), (4.10)

where X={x1, x2, . . .}, Y={y1, y2, . . .}, and XY+X+Y={xiyj, xi, yj | i, j ≥ 1}. Restricting

variables to Xm and Yn gives us

sλ(XmYn +Xm + Yn) =
∑
µ,ν

hλµ,νsµ(Xm)sν(Yn). (4.11)

Taking the inverses of variables in (4.11), we get

sλ(Xm
∨Yn

∨ +Xm
∨ + Yn

∨) =
∑
µ,ν

hλµ,νsµ(Xm
∨)sν(Yn

∨). (4.12)

Multiplying both sides by (
∏
i,j

xiyj)
k(
∏
i

xi)
k(
∏
j

yj)
k = (

∏
i

xi)
kn+k(

∏
j

yj)
km+k, for k sufficiently

large, and using (4.8) and (4.9), we get

s�k,mn+m+n(λ)(XmYn +Xm + Yn) =
∑
µ,ν

hλµ,νs�kn+k,m(µ)(Xm)s�km+k, n(ν)(Yn). (4.13)

Using (4.10) and the fact that the family of Schur polynomials {sα(Xn) | `(α) ≤ n} forms a

Z-basis for Λn, we get a rectangle symmetry for Heisenberg coefficients:

Theorem 4.3.5. Let m, n, and k be nonnegative integers and λ, µ, and ν be three partitions such

that λ ⊂ ((k)mn+m+n), µ ⊂ ((kn+ k)m), and ν ⊂ ((km+ k)n), then

hλµ,ν = h
�k,mn+m+n(λ)

�kn+k,m(µ), �km+k, n(ν). (4.14)
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5. STABILITY OF SCHUR STRUCTURE CONSTANTS

As we mentioned in Section 4.2, the Kronecker coefficient is not well understood, but Mur-

naghan [3] discovered a stability phenomenon for the Kronecker product of two Schur functions.

There are many proofs with different flavours for this fact, see [15, 16, 17]. In 2014, Stembridge

[4] vastly generalized Murnaghan’s notion of the stability of Kronecker coefficients by introducing

a new concept, Kronecker stable triple. We generalize those results to Heisenberg coefficients.

In Section 5.1, we introduce Murnaghan’s stability result and prove an analogous result for the

Heisenberg product of Schur functions. In Section 5.2, we define the stable Heisenberg coefficient,

and show how to recover the usual Heisenberg coefficients from the stable ones which generalizes

an analogue formula for the Kronecker coefficients in [15]. In Section 5.3, we introduce Stem-

bridge’s generalized stability of Kronecker coefficients and prove analogous result for Heisenberg

coefficients. In Section 5.4, We follow Vallejo’s idea [6] of using matrix additivity to generate

stable triples for Heisenberg coefficients.

The results presented in this chapter are from [18, 19]. Table 5.1 and 5.2 are from [18].

5.1 Classic Stability Result

There is some interesting general work on representation stability by Church, Ellenberg, and

Farb [20, 21, 22], and Sam and Snowden [23]. Church et al. use the FI-module to study the stability

pattern, and Sam and Snowden use the theory of twisted commutative algebras [24] to study the

stability phenomenon. In this section, we focus on the stability phenomenon of the Kronecker

product discovered by Murnaghan [3]. We introduce some notations which will be used throughout

this section. Let α be a finite integer sequence. Define α+ to be the sequence obtained from α by

adding 1 to the first part, α+ := (α1 + 1, α2, α3, . . . ); similarly, set α− := (α1 − 1, α2, α3, . . . ).

Let α = (α2, α3, . . . ) be the sequence obtained from α by removing the first part.

Given an eventually constant sequence {an}n≥0 with stable value L, we denote by SStab({an})

the smallest integer n0, such that for all n ≥ n0, an = L. We say that this sequence stabilizes when
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n ≥ M as long as M ≥ n0, and the stabilization begins at n = n0. For a sequence of symmetric

functions {Fn}n≥0, where Fn has the Schur expansion Fn =
∑
α

aαnsα (we set aαn = 0 if α is not

a partition), we say the sequence {Fn} stabilizes if for any α (not necessarily a partition), the

sequence
{
a
α+(n)
n

}
n≥0

is eventually constant, and there exist N , such that SStab(
{
a
α+(n)
n

}
) ≤ N

for all α. Let n1 be the smallest N having this property, and we denote it by FStab({Fn}). From

the definition, we have n1 = FStab({Fn}) = max
α

{
SStab(

{
a
α+(n)
n

}
)
}

. We say the sequence of

symmetric functions {Fn} stabilizes when n ≥M as long as M ≥ n1, and the stabilization begins

at n = n1.

Given a partition λ = (λ1, λ2, . . . ) and a positive integer n, let λ[n] be the sequence (n −

|λ|, λ1, λ2, . . . ). When n ≥ |λ|+λ1, λ[n] is a partition of n. The stability of the Kronecker product

means that for any partitions λ and µ, the sequence of symmetric functions
{
sλ[n] ∗ sµ[n]

}
n≥0

stabilizes when n is large enough. This phenomenon is best shown on an example. Let λ = (2)

and µ = (1, 1), we compute the Kronecker product sn−2,2 ∗ sn−2,1,1 for n ≥ 4:

s2,2 ∗ s2,1,1 = s3,1 + s2,1,1

s3,2 ∗ s3,1,1 = s4,1+s3,2+2s3,1,1 + s2,2,1 + s2,1,1,1

s4,2 ∗ s4,1,1 = s5,1+s4,2+2s4,1,1 + s3,3+2s3,2,1 + s3,1,1,1 + s2,2,1,1

s5,2 ∗ s5,1,1 = s6,1+s5,2+2s5,1,1 + s4,3+2s4,2,1 + s4,1,1,1+s3,3,1 + s3,2,1,1

s6,2 ∗ s6,1,1 = s7,1+s6,2+2s6,1,1 + s5,3+2s5,2,1 + s5,1,1,1+s4,3,1 + s4,2,1,1.

Observe that the last two equations are only different in the first part of the indexing partitions.

Indeed, for n ≥ 7, we have

sn−2,2 ∗ sn−2,1,1 = sn−1,1 + sn−2,2 + 2sn−2,1,1 + sn−3,3 + 2sn−3,2,1

+ sn−3,1,1,1 + sn−4,3,1 + sn−4,2,1,1.

In this example, the stabilization of the sequence
{
g

(n−3,2,1)
(n,2),(n−2,1,1)

}
n≥0

(the coefficients of the red
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colored terms) begins at n = 6. The sequence of symmetric functions {sn−2,2 ∗ sn−2,1,1}n≥0 stabi-

lizes when n ≥ N as long as N ≥ 7, and the stabilization begins at n = 7.

In the above example, one can also observe that, for fixed partition ν, the sequence of coeffi-

cients of sν[n] in the expansion is weakly increasing as n increases. This was shown by Brion [25]

and Manivel [26]:

Proposition 5.1.1. Let λ, µ, and ν be partitions. The sequence
{
g
λ[n]
µ[n],ν[n]

}
n

is weakly increasing.

The sequence
{
g
λ[n]
µ[n],ν[n]

}
is eventually constant according to the stability of Kronecker coeffi-

cients. Write gλµ,ν for the stable value of this sequence and call it a reduced Kronecker coefficient.

In our example, we see that g(2,1)
(2),(1,1) = 2 and g(1,1,1)

(2),(1,1) = 1. Moreover, Murnaghan [3] claimed that

gλµ,ν vanishes unless

|λ| ≤ |µ|+ |ν|, |µ| ≤ |λ|+ |ν|, |ν| ≤ |λ|+ |µ|,

which are triangle inequalities. When |λ| = |µ| + |ν|, gλµ,ν is equal to the Littlewood-Richardson

coefficient cλµ,ν [3].

Briand et al. [15] determined when the Kronecker product stabilizes and provided another

condition for the reduced Kronecker coefficient to be nonzero.

Proposition 5.1.2 ([15] Theorem 1.2). Let λ and µ be partitions. The sequence of symmetric

functions
{
sλ[n] ∗ sµ[n]

}
n≥0

stabilizes, and the stabilization begins at n = |λ|+ |µ|+ λ1 + µ1.

Proposition 5.1.3 ([15] Theorem 3.2). Let λ and µ be partitions, then

max{|ν|+ ν1| ν partition, gνλ,µ > 0} = |λ|+ |µ|+ λ1 + µ1.

Proposition 5.1.3 will be used later in the proof of Theorem 5.1.4.

By the definition of the Heisenberg product (see Diagram (4.4)), when b is much greater than a

and c, the right hand side of Equation (4.6) behaves like the Kronecker product. A natural question

is whether we can develop a stability result for this degree component.
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Theorem 5.1.4. Given nonnegative integers r and t and two partitions λ and µ, the sequence{
(sλ[n]#sµ[n−r])n+t

}
n≥0

of symmetric functions stabilizes, and the stabilization begins at n =

|λ|+ |µ|+ λ1 + µ1 + 3t+ 2r.

We give an example of the stabilization of the Heisenberg product.

Let us take λ = (1, 1), µ = (1). We check the stability of the two lowest degree components

of s(1,1)[n]#s(1)[n−1]:

s1,1,1#s1,1 = (s2,1,1,1+s1,1,1,1,1) + (s3,1+s2,2+2s2,1,1+s1,1,1,1) + (s3+s2,1),

s2,1,1#s2,1 = (s4,2,1+s4,1,1,1+s3,3,1+s3,2,2+2s3,2,1,1+s3,1,1,1,1+s2,2,2,1+s2,2,1,1,1)

+ (s5,1+3s4,2+4s4,1,1+2s3,3+8s3,2,1+6s3,1,1,1+3s2,2,2+6s2,2,1,1+4s2,1,1,1,1+s1,1,1,1,1,1)

+ (s5+5s4,1 + 7s3,2+9s3,1,1+8s2,2,1+7s2,1,1,1+2s1,1,1,1,1)

+ (s4+3s3,1+2s2,2+3s2,1,1 + s1,1,1,1).

The lowest degree component (s(1,1)[n]#s(1)[n−1])n for n ≥ 5:

(s3,1,1#s3,1)5 = s5 + 3s4,1 + 4s3,2 + 4s3,1,1 + 4s2,2,1 + 3s2,1,1,1 + s1,1,1,1,1,

(s4,1,1#s4,1)6 = s6 + 3s5,1 + 4s4,2 + 4s4,1,1 + 2s3,3 + 5s3,2,1 + 3s3,1,1,1 + s2,2,2 + 2s2,2,1,1

+ s2,1,1,1,1,

(s5,1,1#s5,1)7 = s7 + 3s6,1 + 4s5,2 + 4s5,1,1 + 2s4,3 + 5s4,2,1 + 3s4,1,1,1 + s3,3,1 + s3,2,2 + 2s3,2,1,1

+ s3,1,1,1,1,

(s6,1,1#s6,1)8 = s8 + 3s7,1 + 4s6,2 + 4s6,1,1 + 2s5,3 + 5s5,2,1 + 3s5,1,1,1 + s4,3,1 + s4,2,2 + 2s4,2,1,1

+ s4,1,1,1,1,

...

To ease comparison, we create a table for this. The coefficients are the coefficients in the expansion

in the Schur basis, of, respectively (in this order):

sn, s(n−1,1), s(n−2,2), s(n−2,1,1), s(n−3,3), s(n−3,2,1), s(n−3,1,1,1),

s(n−4,3,1), s(n−4,2,2), s(n−4,2,1,1), s(n−4,1,1,1,1).
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n coefficients in (sn−2,1,1#sn−2,1)n
3 1 1
4 1 3 2 3 1
5 1 3 4 4 2 5 3 1
6 1 3 4 4 2 5 3 1 1 1

n ≥ 7 1 3 4 4 2 5 3 1 1 2 1

Table 5.1: Schur expansion of (sn−2,1,1#sn−2,1)n for n ≥ 3.

We color the number red if it reaches the stable value and the circled numbers are where we

estimate the corresponding sequence of Heisenberg coefficients will stabilize using Corollary 5.2.2.

We can see that when n ≥ 7, the Schur expansion of this degree component always has the

same Heisenberg coefficients in the Schur expansion, and the only difference is the first part of

the indexing partitions. The stabilization of the sequence of the lowest degree components of

sn−2,1,1#sn−2,1 happens at n = 7 (using Theorem 5.1.4 with r = 1 and t = 0, the stabilization

begins at n = 2 + 1 + 1 + 1 + 2 = 7). When n ≥ 7, we have

(sn−2,1,1#sn−2,1)n = sn + 3sn−1,1 + 4sn−2,2 + 4sn−2,1,1 + 2sn−3,3 + 5sn−3,2,1

+ 3sn−3,1,1,1 + sn−4,3,1 + sn−4,2,2 + 2sn−4,2,1,1 + sn−4,1,1,1,1.

(5.1)

From Table 5.1, we can also see that different columns (i.e. sequences
{
h
ν[n]
(n−2,1,1),(n−2,1)

}
for

different ν) stabilize at different steps, we give an estimate for this in Corollary 5.2.2.

We also compute the second lowest degree component (s(1,1)[n]#s(1)[n−1])n+1 for n ≥ 5, and

create a table (see Table 5.2 on the next page) for the result, where the coefficients are the coeffi-

cients in the expansion in the Schur basis, of, respectively (in this order):

sn+1, s(n,1), s(n−1,2), s(n−1,1,1), s(n−2,3), s(n−2,2,1), s(n−2,1,1,1), s(n−3,4), s(n−3,3,1), s(n−3,2,2),

s(n−3,2,1,1), s(n−3,1,1,1,1), s(n−4,5), s(n−4,4,1), s(n−4,3,2), s(n−4,3,1,1), s(n−4,2,2,1), s(n−4,2,1,1,1),

s(n−4,1,1,1,1,1), s(n−5,5,1), s(n−5,4,2), s(n−5,4,1,1), s(n−5,3,3), 4s(n−5,3,2,1), s(n−5,3,1,1,1), s(n−5,2,2,2),

s(n−5,2,2,1,1), s(n−5,2,1,1,1,1).
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This computation shows that the sequence of the second lowest degree components of sn−2,1,1#sn−2,1

stabilizes at n = 10 (using Theorem 5.1.4 with r = 1 and t = 1, the stabilization begins at

n = 2 + 1 + 1 + 1 + 3 + 2 = 10). When n ≥ 10, we have

(sn−2,1,1#sn−2,1)n+1 = sn+1 + 7sn,1 + 15sn−1,2 + 17sn−1,1,1 + 15sn−2,3 + 34sn−2,2,1

+ 19sn−2,1,1,1 + 8sn−3,4 + 27sn−3,3,1 + 18sn−3,2,2 + 29sn−3,2,1,1

+ 10sn−3,1,1,1,1 + 2sn−4,5 + 10sn−4,4,1 + 12sn−4,3,2 + 16sn−4,3,1,1

+ 12sn−4,2,2,1 + 10sn−4,2,1,1,1 + 2sn−4,1,1,1,1,1 + sn−5,5,1 + 2sn−5,4,2

+ 3sn−5,4,1,1 + sn−5,3,3 + 4sn−5,3,2,1 + 3sn−5,3,1,1,1 + sn−5,2,2,2

+ 2sn−5,2,2,1,1 + sn−5,2,1,1,1,1.

(5.2)

To prove Theorem 5.1.4, we first prove a stability property of the Littlewood–Richardson co-

efficient.

Lemma 5.1.5. Let λ, µ and ν be partitions with |ν| = |λ|+ |µ|,

(1) If ν1 − ν2 ≥ |λ|, then cνλ,µ = cν
+

λ,µ+ .

(2) If µ1 − µ2 ≥ |λ|, then cνλ,µ = cν
+

λ,µ+ .

Proof. By Proposition 2.3.1, cγα,β (α, β, and γ are partitions) counts the number of semi-standard

skew tableaux of shape γ/β and weight α whose row reading word is a lattice permutation. Let

T γα,β be the set of these tableaux. We show that |T νλ,µ| = |T ν
+

λ,µ+|.

Note that T νλ,µ = ∅ unless µ ⊂ ν, and µ ⊂ ν if and only if µ+ ⊂ ν+, hence it is enough to

consider the case µ ⊂ ν. The skew diagrams ν/µ and ν+/µ+ differ only by a shift of the first row.

Since ν1 − ν2 ≥ |λ|, the first row (may be empty) of ν/µ is disconnected from the rest of the skew

diagram, and similarly for ν+/µ+. This gives us a natural bijection between T νλ,µ and T ν+λ,µ+ . Hence

|T νλ,µ| = |T ν
+

λ,µ+|, and (1) is proved.

The proof of (2) is the same, as µ1 − µ2 ≥ |λ| also implies that the first row of ν/µ is discon-

nected from the rest of it.
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Remark 5.1.6. When λ, µ, and ν do not satisfy the conditions in Lemma 5.1.5, the one unit shift

of the first row may fail to be a bijection between T νλ,µ and T ν+λ,µ+ . However, it is still a well-defined

injection from T νλ,µ to T ν+λ,µ+ , which means cνλ,µ ≤ cν
+

λ,µ+ . In other words, the sequence
{
c
ν+(n)
λ,µ+(n)

}
is weakly increasing and is constant when n is large.

Theorem 5.1.4 states that FStab(
{

(sλ[n]#sµ[n−r])n+t

}
n
) = |λ|+ |µ|+ λ1 + µ1 + 3t + 2r. We

first show that FStab(
{

(sλ[n]#sµ[n−r])n+t

}
) ≤ |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r, i.e.

hν
−

λ[n],µ[n−r] = hνλ[n+1],µ[n−r+1] (5.3)

for all ν ` n+ t+ 1 when n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r.

To prove (5.3), we express the Heisenberg coefficient in terms of the Littlewood-Richardson

coefficients and the Kronecker coefficients.

Lemma 5.1.7. For each ν ` l,

hνλ,µ =
∑

α ` a, ρ ` c, τ ` n
β, η, δ ` b

cλα,β c
µ
η,ρ g

δ
β,η c

τ
α,δ c

ν
τ,ρ (5.4)

where max(n,m) ≤ l ≤ n+m, a = l −m, b = m+ n− l, and c = l − n.

Proof. Consider the diagram (4.4) we used to define the Heisenberg product. Given partitions

λ ` n and µ ` m, Vλ ⊗ Vµ is a representation of Sn × Sm(= Sa+b × Sb+c). We compute the

Heisenberg product of Vλ and Vµ in three steps.

Sa×Sb×Sb×Sc
(2)

��

Sa+b×Sb+c = Sn×Sm

(1)

ss
� � //

Sa × Sb × Sc
?�

OO

$ �

22

� �

(3)
//

� u

(3.1)

((

Sa+b+c = Sl

Sa+b × Sc
( �

(3.2)
55

= Sn × Sc

(5.5)

First, we restrict the representation from Sn × Sm to Sa × Sb × Sb × Sc,
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ResSn×SmSa×Sb×Sb×Sc(Vλ ⊗ Vµ) =
⊕
α ` a
β ` b

⊕
η ` b
ρ ` c

cλα,β c
µ
η,ρ Vα ⊗ Vβ ⊗ Vη ⊗ Vρ. (1)

Second, pull back to Sa×Sb×Sc along the diagonal map of Sb. For α ` a, ρ ` c, and β, η ` b

we have,

ResSa×Sb×Sb×ScSa×Sb×Sc (Vα ⊗ Vβ ⊗ Vη ⊗ Vρ) =
⊕
δ`b

gδβ,η Vα ⊗ Vδ ⊗ Vρ. (2)

The final step is the induction from Sa × Sb × Sc to Sa+b+c(= Sl). Break this step into two

substeps as in (5.5). Given α ` a, δ ` b, and ρ ` c, we have:

IndSlSa×Sb×Sc(Vα ⊗ Vδ ⊗ Vρ) = IndSlSn×ScIndSn×ScSa×Sb×Sc(Vα ⊗ Vδ ⊗ Vρ) (3)

=
⊕
τ ` n
ν ` l

cτα,δ c
ν
τ,ρ Vν .

Combining (1), (2), and (3) together, gives

(Vλ ⊗ Vµ)l = IndSlSa×Sb×ScResSa×Sb×Sb×ScSa×Sb×Sc ResSn×SmSa×Sb×Sb×Sc(Vλ ⊗ Vµ)

=
⊕

α ` a, ρ ` c, τ ` n
β, η, δ ` b, ν ` l

cλα,β c
µ
η,ρ g

δ
β,η c

τ
α,δ c

ν
τ,ρ Vν

So for ν ` l,

hνλ,µ =
∑

α ` a, ρ ` c, τ ` n
β, η, δ ` b

cλα,β c
µ
η,ρ g

δ
β,η c

τ
α,δ c

ν
τ,ρ,

as claimed.

We set cνλ,µ = 0 when λ, µ, or ν is not a partition. Then (5.4) holds for all sequences ν with sum
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l. Applying (5.4), to prove (5.3), it is enough to show that, when n ≥ |λ|+ |µ|+λ1 +µ1 + 3t+ 2r,

∑
(α,β,η,ρ,δ,τ)∈T

c
λ[n]
α,β cµ[n−r]

η,ρ gδβ,η c
τ
α,δ c

ν−

τ,ρ =

∑
(α∗,β∗,η∗,ρ∗,δ∗,τ∗)∈T ∗

c
λ[n+1]
α∗,β∗ c

µ[n+1−r]
η∗,ρ∗ gδ

∗

β∗,η∗ c
τ∗

α∗,δ∗ c
ν
τ∗,ρ∗

(5.6)

for all ν ` n+ t+ 1, where

T = {(α, β, η, ρ, δ, τ) | α ` r + t, ρ ` t, τ ` n, β, η, δ ` n− r − t};

T ∗ = {(α∗, β∗, η∗, ρ∗, δ∗, τ ∗) | α∗ ` r + t, ρ∗ ` t, τ ∗ ` n+ 1,

β∗, η∗, δ∗ ` n− r − t+ 1}.

Define f : T 7−→ Z≥0 and f ∗ : T ∗ 7−→ Z≥0 as follows:

f(α, β, η, ρ, δ, τ) = c
λ[n]
α,β cµ[n−r]

η,ρ gδβ,η c
τ
α,δ c

ν−

τ,ρ,

f ∗(α∗, β∗, η∗, ρ∗, δ∗, τ ∗) = c
λ[n+1]
α∗,β∗ c

µ[n+1−r]
η∗,ρ∗ gδ

∗

β∗,η∗ c
τ∗

α∗,δ∗ c
ν
τ∗,ρ∗ .

Then Equation (5.6) becomes: ∑
u∈T

f(u) =
∑
u∗∈T ∗

f ∗(u∗). (5.7)

Some terms in the sums of (5.7) vanish. Let us consider only the nonvanishing terms.

Let T0 = T r f−1(0) and T ∗0 = T ∗ r f ∗−1(0), then (5.7) is equivalent to

∑
u∈T0

f(u) =
∑
u∗∈T ∗0

f ∗(u∗). (5.8)

Lemma 5.1.8. When n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r, the embedding ϕ from T to T ∗:

ϕ(α, β, η, ρ, δ, τ) = (α, β+, η+, ρ, δ+, τ+)
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induces a map ϕ|T0 from T0 to T ∗0 . Moreover, f |T0 = f ∗ ◦ ϕ|T0 .

Proof. For all u = (α, β, η, ρ, δ, τ) ∈ T0, we show that β, η, δ, and τ have large enough first

parts so that we can apply Proposition 5.1.2 and Lemma 5.1.5 to the Kronecker coefficients and

the Littlewood-Richardson coefficients appearing in the definition of f .

Since n ≥ |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r, we have

λ[n]1 − λ[n]2 = n− |λ| − λ1 ≥ |µ|+ µ1 + 3t+ 2r ≥ r + t (= |α|)

and

µ[n− r]1 − µ[n− r]2 = n− r − |µ| − µ1 ≥ |λ|+ λ1 + 3t+ r ≥ t (= |ρ|).

Using Lemma 5.1.5 (1), we get

c
λ[n]
α,β = c

λ[n+1]

α,β+ and cµ[n−r]
η,ρ = c

µ[n+1−r]
η+,ρ .

As β ⊂ λ[n], |β| ≤ |λ| < n− r − t and (β)1 ≤ λ1. Similarly, we have |η| ≤ |µ| < n− r − t and

(η)1 ≤ µ1. Since β and η are both partitions of n− r − t, they can be written as β = β[n− r − t]

and η = η[n− r − t] respectively. They both have large first parts. More specifically, we have

n− r − t ≥ |λ|+ |µ|+ λ1 + µ1 + 2t+ r ≥ |β|+ |η|+ (β)1 + (η)1.

By Proposition 5.1.2, we have

gδβ,η = gδ
+

β+,η+ = gδ
β,η
.

From Proposition 5.1.3,

|δ|+ (δ)1 ≤ |β|+ |η|+ (β)1 + (η)1
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for otherwise gδβ,η = 0, which implies that f(u) = 0, a contradiction. Hence,

|δ| − δ1 + δ2 ≤ |λ|+ |µ|+ λ1 + µ1,

which gives us

δ1 − δ2 ≥ n− r − t− |λ| − |µ| − λ1 − µ1 ≥ 2t+ r ≥ |α|.

Applying Lemma 5.1.5 (2), we get

cτα,δ = cτ
+

α,δ+ .

Since cτα,δ 6= 0, after Proposition 2.3.1, we have

τ2 ≤ δ2 + |α| and τ1 ≥ δ1.

So

τ1 − τ2 ≥ δ1 − (δ2 + |α|) ≥ 2t+ r − (r + t) = t = |ρ|.

Hence, by Lemma 5.1.5 (2), we get

cν
−

τ,ρ = cντ+,ρ.

So

f(α, β, η, ρ, δ, τ) = f ∗(ϕ(α, β, η, ρ, δ, τ))(6= 0), (5.9)

which means ϕ(T0) ⊂ T ∗0 and f |T0 = f ∗ ◦ ϕ|T0 .

To show that ϕ is a bijection between T0 and T ∗0 , we construct a reverse map.

Lemma 5.1.9. When n ≥ |λ| + |µ| + λ1 + µ1 + 3t + 2r, the map φ : (α, β, η, ρ, δ, τ) −→

(α, β−, η−, ρ, δ−, τ−) is well-defined from T ∗0 to T0. Moreover, f ∗|T ∗0 = f ◦ φ.

Proof. Take u = (α, β, η, ρ, δ, τ) ∈ T ∗0 , we first show that β−, η−, δ−, and τ− are partitions.
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Since f ∗(u) 6= 0, we get cλ[n+1]
α,β 6= 0. Applying Proposition 2.3.1, we must have β ⊂ λ and

λ[n+ 1]− β1 ≤ |α|. Hence,

β1 − β2 ≥ (n+ 1− |λ| − |α|)− λ1 ≥ |µ|+ µ1 + 2t+ r + 1 ≥ 1.

So β− is a partition. Similarly, we can show that η− is a partition. Using Proposition 5.1.2 and

Proposition 5.1.3 as we did in the proof of Lemma 5.1.8, we see that δ− is a partition for

δ1 − δ2 ≥ 2t+ r + 1 ≥ 1.

As cτα,δ 6= 0, we have τ1 ≥ δ1 and τ2 ≤ δ2 + |α|. This shows that τ− is a partition because

τ1 − τ2 ≥ δ1 − (δ2 + |α|) ≥ t+ 1 ≥ 1.

Then by the same argument as in the proof of Lemma 5.1.8, we can show that f ∗|T ∗0 = f ◦φ, which

implies that φ(T ∗0 ) ⊂ T0.

Proof of Theorem 5.1.4. Combining Lemma 5.1.8 and Lemma 5.1.9, we know ϕ is a bijection

between T0 and T ∗0 . With this and (5.9), we prove (5.8), and hence

FStab((sλ[n]#sµ[n−r])n+t) ≤ |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r.

To prove that stabilization begins at |λ| + |µ| + λ1 + µ1 + 3t + 2r, it is enough to show that

there exists ν ` n + t with ν1 = ν2 (then ν− is not a partition) such that hνλ[n],µ[n−r] 6= 0 when

n = |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r. We use the Formula (5.4) for hνλ[n],µ[n−r] 6= 0 (replace λ and ν

by λ[n] and µ[n− r] respectively, and set l = n+ t), and take

α = (a) = (r + t), ρ = (c) = (t),

β = λ[n]− α = (n− |λ| − r − t, λ1, λ2, . . . ) = (|µ|+ λ1 + µ1 + 2t+ r, λ1, . . . ),
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η = µ[n− r]− ρ = (n− r − |µ| − t, µ1, µ2, . . . ) = (|λ|+ λ1 + µ1 + 2t+ r, µ1, . . . ),

δ = (β+η)[n−r−t] = (n−r−t−|β|−|η|, β2+η2, β3+η3, . . . ) = (λ1+µ1+2t+r, λ1+µ1, . . . ),

τ = (δ1, δ2 + |α|, δ3, . . . ) = (λ1 + µ1 + 2t+ r, λ1 + µ1 + r + t, λ2 + µ2, . . . ),

ν = (τ1, τ2 + |ρ|, . . . ) = (λ1 + µ1 + 2t+ r, λ1 + µ1 + 2t+ r, λ2 + µ2, . . . ).

By the Pieri Rule, 1 = c
λ[n]
α,β = c

µ[n−d]
η,ρ = cτα,δ = cντ,ρ, as α and ρ have only one part each. Since

|δ| = |β| + |η|, we have gδβ,η = gδ
β,η

= cδ
β,η

(note that δ = β + η) which is also nonzero according

to Proposition 2.3.1.

So hνλ[n],µ[n−r] 6= 0 and ν1 = ν2 = λ1+λ2+2t+r, this proves that n = |λ|+|µ|+λ1+µ1+3t+2r

is where the stabilization begins.

When n < |λ| + |µ| + λ1 + µ1 + 3t + 2r, following the same arguments as in the proof of

Lemma 5.1.8 (except for using Proposition 5.1.1 and Remark 5.1.6 instead of Proposition 5.1.2

and Lemma 5.1.5), we can show that the map ϕ in Lemma 5.1.8 induces an injection from T0 to

T ∗0 with f |T0 ≤ f ∗ ◦ ϕ|T0 . This gives us the following corollary:

Corollary 5.1.10. Given three partitions λ, µ, and ν and two nonnegative integers r and t, the

sequence
{
h
ν[n+t]
λ[n],µ[n−r]

}
n

is weakly increasing.

5.2 Stable Heisenberg Coefficients

Given partitions λ, µ, and ν, Theorem 5.1.4 tells us that the sequence
{
h
ν+(n)
λ+(n),µ+(n)

}∞
n=0

is

eventually constant. We write h
ν

λ,µ for that constant value, and call it a stable Heisenberg coeffi-

cient. Stable Heisenberg coefficients generalize reduced Kronecker coefficients. By the way we

define a stable Heisenberg coefficient, we have

h
ν

λ,µ = h
ν+(n)

λ+(n),µ+(n), for all nonnegative integers n.
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The reason we restrict n to be a nonnegative integer is that λ + (n), µ + (n), and ν + (n) need to

be partitions. But we can drop this restriction and extend the definition by setting

h
ν−(n)

λ−(n),µ−(n) = h
ν

λ,µ, for all nonnegative integers n.

We call a finite integer sequence α = (α1, α2, . . . , αk) an h-partition if α2 ≥ α3 ≥ · · · ≥ αk > 0.

A stable Heisenberg coefficient, in the new definition, is indexed by three h-partitions, and

h
ν

λ,µ = h
ν+(n)

λ+(n),µ+(n), for all integers n.

where λ, µ, and ν are h-partitions.

Murnaghan [3] pointed out that the reduced Kronecker coefficients determine the Kronecker

product. Briand et al. [15, Theorem 1.1] gave an exact formula to recover the Kronecker coef-

ficients from the reduced ones, and Bowman et al. [27] interpreted this formula in terms of the

representation theory of the partition algebra. Analogously, the stable Heisenberg coefficients also

determine the Heisenberg product, even for small values of n. This can be proved using vertex

operators on symmetric functions, and the idea of the proof is the same as the proof of the stability

of the Kronecker product in [17]. We prove this in Appendix B.

Consider the lowest degree component of s2,1,1#s2,1 as an example. Let n = 4, then (5.1) gives

(s2,1,1#s2,1)4 = s4 + 3s3,1 + 4s2,2 + 4s2,1,1 + 2s1,3 + 5s1,2,1

+ 3s1,1,1,1 + s0,3,1 + s0,2,2 + 2s0,2,1,1 + s0,1,1,1,1.

(5.10)

We use the Jacobi-Trudi determinant (2.23) as the definition of Schur functions. We no longer

require λ to be a partition, and λ can be any finite integer sequence. Then (2.23) gives us 0 or ±1
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times some Schur function. Applying (2.23) to the right hand side of (5.10), we have

s1,3 = −s2,2, s0,3,1 = −s2,1,1, s0,2,1,1 = −s1,1,1,1, and

s1,2,1 = s0,2,2 = s0,1,1,1,1 = 0.

So (5.10) gives us

(s2,1,1#s2,1)4 = s4 + 3s3,1 + 2s2,2 + 3s2,1,1 + s1,1,1,1,

which coincides with the result we had in Section 5.1. This example shows the process to recover

the Heisenberg coefficients from the stable ones. The following theorem generalizes the formula

in [15, Theorem 1.1], and recovers the Kronecker coefficient as a special case.

Theorem 5.2.1. Let λ, µ, and ν be partitions with |ν| ≥ |λ| ≥ |µ|, then

hνλ,µ =

4|ν|−|λ|−|µ|∑
i=1

(−1)i−1h
ν†i

λ,µ, (5.11)

where ν†i = (νi − i+ 1, ν1 + 1, ν2 + 1, . . . , νi−1 + 1, νi+1, νi+2, . . . ).

Consider an example. From the example we computed in Section 5.1, we know that h(2,2)
(2,1,1),(2,1) =

2. On the other hand, using the Formula (5.11), we have

h
(2,2)
(2,1,1),(2,1) = h

(2,2)

(2,1,1),(2,1) − h
(1,3)

(2,1,1),(2,1) + h
(−2,3,3)

(2,1,1),(2,1)

− h(−3,3,3,1)

(2,1,1),(2,1) + · · · .
(5.12)

From (5.1), we have

h
(2,2)

(2,1,1),(2,1) = 4, h
(1,3)

(2,1,1),(2,1) = 2,

and

h
(2,2)†i

(2,1,1),(2,1) = 0, when i ≥ 3.
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So (5.12) gives us

h
(2,2)
(2,1,1),(2,1) = 4− 2 = 2.

Proof of Theorem 5.2.1. From Theorem 5.1.4, we know that when n ≥ |λ| + |µ| + λ2 + µ2 +

3(|ν| − |λ|) + 2(|λ| − |µ|)− |λ|, the Heisenberg coefficients of (sλ+(n)#sµ+(n))n+|ν| stabilize, i.e.

(sλ+(n)#sµ+(n))n+|ν| =
∑

τ`n+|ν|

hτλ+(n),µ+(n)sτ

=
∑

τ`n+|ν|

h
τ

λ+(n),µ+(n)sτ

=
∑

τ`n+|ν|

h
τ−(n)

λ,µ sτ .

So

(sλ#sµ)|ν| =
∑

τ`n+|ν|

h
τ−(n)

λ,µ sτ−(n). (5.13)

To get hνλ,µ from (5.13), we determine which sτ−(n)’s would give us ±sν . Suppose the length

of τ is l. From the Jacobi-Trudi formula, we know that sτ−(n) = ±sν if and only if the length of ν

is at most l and (τ1 − n, τ2, τ3, . . . , τl) + (l − 1, l − 2, . . . , 0) is a permutation of (ν1, ν2, . . . , νl) +

(l − 1, l − 2, . . . , 0). This happens when there is an i (1 ≤ i ≤ l) such that

τ1 − n+ (l − 1) = νi + l − i,

τj + (l − j) = νj−1 + (l − j + 1), j = 2, 3, 4, . . . , i,

τj + (l − j) = νj + (l − j), j = i+ 1, i+ 2, . . . , l,

which is equivalent to

τ − (n) = ν†i,
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and when this happens,

sτ−(n) = (−1)i−1sν .

So the coefficient of sν in (sλ#sµ)|ν| is

hνλ,µ =
l∑

i=1

(−1)i−1h
ν†i

λ,µ. (5.14)

Take n = 3|ν| − |λ| − |µ| ≥ |λ| + |µ| + λ2 + µ2 + 3(|ν| − |λ|) + 2(|λ| − |µ|) − |λ|, since

l ≤ |τ | = n+ |ν|, (5.4) can be written as

hνλ,µ =

4|ν|−|λ|−|µ|∑
i=1

(−1)i−1h
ν†i

λ,µ .

Now we use Theorem 5.1 to estimate when
{
h
ν[n+t]
λ[n],µ[n−r]

}
n

stabilizes for given partitions λ, µ,

and ν and nonnegative integers r and t.

Corollary 5.2.2. The sequence of Heisenberg coefficients
{
h
ν[n+t]
λ[n],µ[n−r]

}
n≥0

stabilizes when n ≥
1
2
(|λ|+ |µ|+ |ν|+ λ1 + µ1 + ν1 − 1) + r + t.

Proof. Formula (5.11) gives us

h
ν[n+t]
λ[n],µ[n−r] =

2n+4t+r∑
i=1

(−1)i−1h
ν[n+t]†i

λ[n],µ[n−r], (5.15)

So hν[n+t]
λ[n],µ[n−r] reaches the stable value when h

ν[n+t]†i

λ[n],µ[n−r] = 0 for all i ≥ 2. By Theorem 5.1.4,{
(sλ[n]#sµ[n−r])n+t

}
n≥0

stabilizes at n = |λ|+ |µ|+ λ1 + µ1 + 3t+ 2r =: m, so

h
ν[n+t]†i

λ[n],µ[n−r] = h
ν[n+t]†i+(m−n)

λ[m],µ[m−r] = h
ν[n+t]†i+(m−n)
λ[m],µ[m−r] .
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Since for i ≥ 2, we have

ν[n+ t]†i + (m− n) =(νi−1 − i+ 1, n+ t− |ν|+ 1, ν1 + 1, . . . , νi−2 + 1, νi, νi+1, . . . )

+ (m− n)

=(νi−1 − i+ 1 +m− n, n+ t− |ν|+ 1, ν1 + 1, . . . , νi−2 + 1, νi, . . . ).

When n ≥ 1
2
(|λ|+ |µ|+ |ν|+ λ1 + µ1 + ν1 − 1) + t+ r, we have

n+ t− |ν|+ 1 > νi−1 − i+ 1 +m− n, for all i ≥ 2.

So hν[n+t]†i+(m−n)
λ[m],µ[m−r] = 0 for all i ≥ 2, which proves the corollary.

We go back to Table 1 and compute the lower bound for the stabilization of each column using

Corollary 5.2.2. We circle the number corresponding to those lower bounds. We can see that, in

this case, the lower bounds are the places where the stabilizations of the Heisenberg coefficients

begin, except for h(n−3,3)
(n−2,1,1),(n−2,1), h

(n−3,2,1)
(n−2,1,1),(n−2,1), and h(n−4,1,1,1,1)

(n−2,1,1),(n−2,1).

5.3 Generalized Stability

Stembridge [4] vastly generalized Murnaghan’s stability notion by introducing the concept of

a stable triple.

Definition 5.3.1. A triple (α, β, γ) of partitions of the same size with gαβ,γ > 0 is a K-triple.

It is K-stable if, for any other triple of partitions (λ, µ, ν) with |λ| = |µ| = |ν|, the sequence{
gλ+nα
µ+nβ,ν+nγ

}
n≥0

is eventually constant.

Thus, Murnaghan showed that ((1), (1), (1)) is K-stable. Stembridge conjectured a characteri-

zation for K-stability and he proved its necessity. Sam and Snowden [5] proved the sufficiency.

Proposition 5.3.2. A K-triple (α, β, γ) is K-stable if and only if gnαnβ,nγ = 1 for all n > 0.

Sam and Snowden [5] also proved an analogous result for Littlewood–Richardson coefficients,

which can also be deduced from some earlier work (see [5, Remark 4.7]).
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Definition 5.3.3. A triple (α, β, γ) of partitions with |α| = |β| + |γ| and cαβ,γ > 0 is an LR-triple.

It is LR-stable if, for any other triple of partitions (λ, µ, ν) with |λ| = |µ| + |ν|, the sequence{
cλ+nα
µ+nβ,ν+nγ

}
n≥0

is eventually constant.

Proposition 5.3.4 ([5] Theorem 4.6). The following are equivalent for an LR-triple (α, β, γ),

(a) (α, β, γ) is LR-stable.

(b) cαβ,γ = 1.

(c) cnαnβ,nγ = 1 for all n > 0.

Remark 5.3.5. Sam and Snowden [5] did not require cαβ,γ > 0, which should be added. For exam-

ple, when β is not contained in α, we have that cαβ,γ = 0 and
{
cλ+nα
µ+nβ,ν+nγ

}
is eventually zero.

In Section 5.1, we showed that Heisenberg coefficients stabilize in low degrees, which is analo-

gous to Murnaghan’s stability result. It is worthwhile trying to also generalize stability for Heisen-

berg coefficients.

Definition 5.3.6. A triple (α, β, γ) of partitions with max{|β|, |γ|} ≤ |α| ≤ |β|+ |γ| and hαβ,γ > 0

is an H-triple. It is H-stable if, for any other triple of partitions (λ, µ, ν) with max{|µ|, |ν|} ≤

|λ| ≤ |µ|+ |ν|, the sequence
{
hλ+nα
µ+nβ,ν+nγ

}
n≥0

is eventually constant.

Our result in Section 5.1 is that ((1), (1), (1)) is an H-stable triple.

We show that the K-stable triples and LR-stable triples are H-stable. As in Section 5.1, we

begin with a stability result for Littlewood–Richardson coefficients.

Lemma 5.3.7. Given partitions λ, µ, ν, α, and a positive integer n ≥ |µ| with |λ+nα| = |µ|+ |ν|

and ν ⊂ λ+ nα, then

(1) ν − (n− |µ|)α is a partition.

(2) When n is large, we have cλ+nα
µ,ν = c

λ+(n+1)α
µ,ν+α .
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Proof. For part (1), we first show that (n−|µ|)α ⊂ ν. It is enough to prove that ((n−|µ|)α)i ≤ νi

for all i. When µ = (0) (empty partition) or αi = 0, this is trivially true. We consider the nontrivial

case. Since

|µ| = |λ+ nα| − |ν| ≥ (λ+ nα)i − νi,

we have

νi ≥ (λ+ nα)i − |µ| ≥ nαi − |µ| = (n− |µ|)αi + |µ|(αi − 1) ≥ ((n− |µ|)α)i.

We then show that ν − (n− |µ|)α is a partition. To see this, it suffices to show that

(ν − (n− |µ|)α)i ≥ (ν − (n− |µ|)α)i+1, for all i,

that is,

νi − νi+1 ≥ (n− |µ|)(αi − αi+1). (5.16)

This is obviously true when αi = αi+1. If αi > αi+1, note that νi ≥ λi + nαi − |µ| and νi+1 ≤

λi+1 + nαi+1, we have

νi − νi+1 ≥ λi + nαi − |µ| − (λi+1 + nαi+1) ≥ n(αi − αi+1)− |µ|

≥ (n− |µ|)(αi − αi+1).

So (5.16) holds, and we have proved part (1).

Part (2) follows from part (1) and Proposition 5.3.4, as (α, (0), α ) is LR-stable.

Similarly, we have the following result:

Lemma 5.3.8. Given partitions λ, µ, ν, α, and an positive integer n ≥ |µ|, with |λ| = |µ|+|ν+nα|

and ν + nα ⊂ λ, then

(1) λ− (n− |µ|)α is a partition.
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(2) When n is large, we have cλµ,ν+nα = cλ+α
µ,ν+(n+1)α.

Remark 5.3.9. Proposition 5.3.4 does not give a lower bound for what large means for n in part (2)

of Lemma 5.3.7. However, it is not hard to see that when n ≥ 2|µ|, the connected components of

the skew shapes (λ+ nα)/ν and (λ+ (n+ 1)α)/(ν + α) are the same except for some horizontal

shifts. The Littlewood–Richardson rule then implies that cλ+nα
µ,ν = c

λ+(n+1)α
µ,ν+α . Similarly, for Lemma

5.3.8 (2), n ≥ 2|µ| is enough to guarantee the stability.

Theorem 5.3.10. A K-stable triple is H-stable.

Let (α, β, γ) with α, β, γ ` s > 0 be K-stable. Suppose λ, µ, and ν are partitions with λ ` p, µ ` q,

and ν ` r and max{q, r} ≤ p ≤ q + r. Theorem 5.3.10 states that the sequence
{
hλ+nα
µ+nβ,ν+nγ

}
is

eventually constant. According to Proposition 5.1.7, we have

hλ+nα
µ+nβ,ν+nγ =

∑
Kn

cµ+nβ
ξ,θ cν+nγ

η,ρ gδθ,η c
τ
ξ,δ c

λ+nα
τ,ρ , (5.17)

where

Kn = {(ξ, θ, η, ρ, δ, τ) | θ, η, δ ` (q + r − p) + ns, ξ ∈ p− r, ρ ∈ p− q, τ ` q + ns}.

Define fn : Kn 7−→ Z≥0 as follows:

fn(ξ, θ, η, ρ, δ, τ) = cµ+nβ
ξ,θ cν+nγ

η,ρ gδθ,η c
τ
ξ,δ c

λ+nα
τ,ρ (the summands in (5.17)). (5.18)

Some terms in the sum of (5.17) vanish. Let us consider only the nonvanishing terms. Let K0
n =

Kn r f−1
n (0). To prove Theorem 5.3.10, it is enough to prove

∑
u∈K0

n

fn(u) =
∑

u∈K0
n+1

fn+1(u) (5.19)

for n sufficiently large.
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We have a natural embedding ϕn : Kn ↪→ Kn+1,

ϕn(ξ, θ, η, ρ, δ, τ) = (ξ, θ + β, η + γ, ρ, δ + α, τ + α).

We show that when n is large, ϕn induces a bijection between K0
n and K0

n+1 with fn = fn+1 ◦ ϕn.

From the definition of K-stability, we know that there exists a positive integer N , such that for all

n ≥ N , we have

gε+nαζ+nβ,π+nγ = g
ε+(n+1)α
ζ+(n+1)β,π+(n+1)γ, (5.20)

for all ε, ζ, π ` q + r − p+ (2p− q − r)s.

Lemma 5.3.11. When n ≥ N + 3p − q − 2r, ϕn|K0
n
: K0

n −→ K0
n+1 is a well-defined bijection.

Moreover, fn|K0
n

= fn+1 ◦ ϕn|K0
n
.

Proof. Take any u = (ξ, θ, η, ρ, δ, τ) ∈ K0
n. Since f(u) 6= 0, we have cµ+nβ

ξ,θ 6= 0. So θ ⊂ µ + nβ.

According to Lemma 5.3.7 and Remark 5.3.9, we know that θ − (n − p + r)β is a partition of

(q + r − p) + (p − r)s and cµ+nβ
ξ,θ = c

µ+(n+1)β
ξ,θ+β . Similarly, we can show that η − (n − p + q)γ,

τ − (n− p+ q)α, and δ − (n− 2p+ q + r)α are partitions, and

cν+nγ
η,ρ = c

ν+(n+1)γ
η,ρ+γ , cλ+nα

τ,ρ = c
λ+(n+1)α
τ+α,ρ , cτξ,δ = cτ+α

ξ,δ+α.

Since δ, θ, and η can be written as

δ = δ′ + (n− 2p+ q + r)α, θ = θ′ + (n− 2p+ q + r)β, η = η′ + (n− 2p+ q + r)γ

for some partitions δ′, θ′, and η′ of (q + r − p) + (2p− q − r)s. From (5.20), we have

gδη,ρ = gδ+αη+β,ρ+γ.

Hence, fn+1(ϕn(u)) = fn(u)(6= 0). So ϕn|K0
n

is a well-defined embedding from K0
n into K0

n+1.

To construct the inverse map, we consider ψn+1(ξ, θ, η, ρ, δ, τ) = (ξ, θ−β, η− γ, ρ, δ−α, τ −α).
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Nearly the same arguments show that the inverse map induces an injection from K0
n+1 to K0

n. So

ϕn|K0
n

is a bijection.

Proof of Theorem 5.3.10. Applying Lemma 5.3.11, we prove (5.19), hence Theorem 5.3.10.

Theorem 5.3.10 shows that some Heisenberg coefficients in low degree components stabilize.

Our next result gives a stability result for the relatively high degree components.

Theorem 5.3.12. LR-stable triples are H-stable.

The idea of the proof is the same (without using stability of Kronecker coefficients) as the proof

for Theorem 5.3.10. Given an LR-stable triple (α, β, γ) with α ` a + b, β ` a, and γ ` b, and

partitions λ ` p, µ ` q, and ν ` r with max{q, r} ≤ p ≤ q + r. We define f ′n : LRn 7−→ Z≥0 as

follows:

f ′n(ξ, θ, η, ρ, δ, τ) = cµ+nβ
ξ,θ cν+nγ

η,ρ gδθ,η c
τ
ξ,δ c

λ+nα
τ,ρ . (5.21)

where

LRn = {(ξ, θ, η, ρ, δ, τ) | θ, η, δ ` (q + r − p), ξ ` p− r + na, ρ ` p− q + nb, τ ` q + na}.

Applying Proposition 5.1.7, Theorem 5.3.12 states that

∑
u∈LR0

n

f ′n(u) =
∑

u∈LR0
n+1

f ′n+1(u) (5.22)

for all large n, where LR0
n = LRn r f ′−1

n (0).

Proof of Theorem 5.3.12. Consider the map φn : LRn ↪→ LRn+1,

φn(ξ, θ, η, ρ, δ, τ) = (ξ + β, θ, η, ρ+ γ, δ, τ + β).

Using Lemma 5.3.7, Lemma 5.3.8, and the same idea in the proof of Lemma 5.3.11, it follows that

f ′n = f ′n+1 ◦ φn on LR0
n when n is large, and it is not hard to see that φn is a bijection between
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LR0
n and LR0

n+1. So (5.22) is true, and hence we prove the theorem.

Proposition 5.3.2 and Proposition 5.3.4 (3) have a similar form. A natural question is whether

the necessary and sufficient condition for being an H-stable triple has the same form. The answer

is yes, and Pelletier [28, Theorem 3.6] proved the following direction.

Proposition 5.3.13. An H-triple (α, β, γ) is H-stable if hnαnβ,nγ = 1 for all n > 0.

Remark 5.3.14. By Propositions 5.3.2 and 5.3.4, Proposition 5.3.13 also shows that K-stable triples

and LR-stable triples are H-stable.

We prove the reverse direction and complete the characterization of H-stability using the mono-

tonicity of Heisenberg coefficients. This is deduced from the monotonicity of Littlewood–Richardson

coefficients and Kronecker coefficients. We start with the monotonicity of Kronecker coefficients.

Stembridge [17] proved the following for Kronecker coefficients.

Proposition 5.3.15. Let (α, β, γ) be a K-triple. Then

(1) the sequence
{
gλ+nα
µ+nβ,ν+nγ

}
is weakly increasing for any partitions λ, µ, and ν with the same

size.

(2) if gαβ,γ ≥ 2, then gnαnβ,nγ ≥ n+ 1.

Using the hive model of Littlewood-Richardson coefficients (see [8, 9]), we prove an analogous

result for Littlewood-Richardson coefficients.

Proposition 5.3.16. Let (α, β, γ) be an LR-triple. Then

(1) the sequence
{
cλ+nα
µ+nβ,ν+nγ

}
is weakly increasing for any partitions λ, µ, and ν with |λ| =

|µ|+ |ν|.

(2) if cαβ,γ ≥ 2, then cnαnβ,nγ ≥ n+ 1.

Proof. We follow the notation used for hives in [9, Section 4]. Let k be a positive integer larger than

the lengths of λ, µ, ν, α, β, and γ. We define (coordinatewise) addition and scalar multiplication

on hives (as what we do for vectors and matrices).

64



For (1), it suffices to show cλµ,ν ≤ cλ+α
µ+β,ν+γ . Since cαβ,γ ≥ 1, there exists a hive ∆ ∈ Hk(α, β, γ).

Then the map: ι : Hk(λ, µ, ν) ↪→ Hk(λ+ α, µ+ β, ν + γ)

ι(Θ) = Θ + ∆

where Θ ∈ Hk(λ, µ, ν), gives a well-defined injection. So (1) is proved.

For (2), we have two different hives ∆1 and ∆2 inHk(α, β, γ) as cαβ,γ ≥ 2. Then i∆1+(n−i)∆2

(0 ≤ i ≤ n) give n+ 1 different hives in Hk(nα, nβ, nγ), so cnαnβ,nγ ≥ n+ 1.

Propositions 5.1.7, 5.3.15, and 5.3.16 together imply the following:

Proposition 5.3.17. Let (α, β, γ) be a H-triple. Then

(1) the sequence
{
hλ+nα
µ+nβ,ν+nγ

}
is weakly increasing for any partitions λ, µ, and ν with max{|µ|, |ν|} ≤

|λ| ≤ |µ|+ |ν|.

(2) if hαβ,γ ≥ 2, then hnαnβ,nγ ≥ n+ 1.

Proof. For (1), it is enough to show hλµ,ν ≤ hλ+α
µ+β,ν+γ . Since hαβ,γ > 0, by Formula (5.4), there exists

a sextuple (ξ, θ, η, ρ, δ, τ) of partitions with appropriate sizes such that cβξ,θ c
γ
η,ρ g

δ
θ,η c

τ
ξ,δ c

α
τ,ρ > 0.

The triples appearing in the coefficients on the left hand side are LR-triples or K-triples. As in the

proof of Theorems 5.3.10 and 5.3.12, applying Proposition 5.1.7, we write

hλµ,ν =
∑
u∈Λ

fu and hλ+α
µ+β,ν+γ =

∑
u′∈Λ′

f ′u′ ,

where Λ and Λ′ are sets of sextuples of partitions with appropriate sizes, fu and f ′u′ are the

summands given by the sextuples u and u′. We view the sextuples as vectors whose coordi-

nates are partitions, so we may define addition and scalar multiplication for them. The map

u −→ u + (ξ, θ, η, ρ, δ, τ) =: u′ embeds Λ into Λ′. From Proposition 5.3.15 and Proposition

5.3.16, we know that fu ≤ f ′u′ , so (1) is proved.

For (2), if hαβ,γ ≥ 2, then there are two possibilities.
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Case 1. There exists a sextuple (ξ, θ, η, ρ, δ, τ) of partitions with appropriate sizes such that

cβξ,θ c
γ
η,ρ g

δ
θ,η c

τ
ξ,δ c

α
τ,ρ ≥ 2. So all the five coefficients on the left hand side are positive and at

least one of them is at least 2. From Formula (5.4), Propositions 5.3.15 and 5.3.16, we have

hnαnβ,nγ ≥ cnβnξ,nθ c
nγ
nη,nρ g

nδ
nθ,nη c

nτ
nξ,nδ c

nα
nτ,nρ ≥ n+ 1.

Case 2. Two distinct sextuples u = (ξ, θ, η, ρ, δ, τ) and u′ = (ξ′, θ′, η′, ρ′, δ′, τ ′) give positive

summands for hαβ,γ . Then iu + (n − i)u′ (1 ≤ i ≤ n) gives n + 1 different sextuples, and due

to Propositions 5.3.15 and 5.3.16, they all give positive summands for hnαnβ,nγ , so hnαnβ,nγ ≥ n + 1.

Hence, we prove the proposition.

Combining Proposition 5.3.13 and 5.3.17, we achieve the main theorem of this thesis.

Theorem 5.3.18. An H-triple (α, β, γ) is H-stable if and only if hnαnβ,nγ = 1 for all n > 0.

5.4 Additive Matrices

Manivel [29] and Vallejo [6] used additive matrices to produce examples of K-stable triples.

We first recall some definitions and results concerning additive matrices, then we give an analogous

result for H-stable triples.

Definition 5.4.1. A p × q matrix A = (ai,j) with nonnegative integer entries is called K-additive

if there exist real numbers x1, x2, . . . , xp, y1, y2, . . . , yq, such that

ai,j > ak,l =⇒ xi + yj > xk + yl

for all i, k ∈ [p] and j, l ∈ [q].

Recall that in Section 4.2, we define M(β, γ)α to be the set of nonnegative integer matrices

with row-sum (resp. column-sum) vector β (resp. γ) and π-sequence α, where β and γ are (weak)

compositions of some n and α is a partition of n.
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Proposition 5.4.2 ([6] Theorem 1.1). Let α, β, and γ be partitions of the same size. If there is a

matrix A ∈M(β, γ)α which is K-additive, then (α, β, γ) is K-stable.

Moreover, Manivel [29, Section 5.3] showed that each K-additive matrix defines a regular face of

the corresponding Kronecker polyhedron, of minimal dimension.

One of the most important steps in Vallejo’s proof of Proposition 5.4.2 is is the Proposition

4.2.2. We introduce H-additive matrices and use Proposition 4.3.4 to show that each H-additive

matrix gives an H-stable triple.

Definition 5.4.3. A (p + 1) × (q + 1) matrix A = (ai,j) with nonnegative integer entries and

a1,1 = 0 is called H-additive if there exist real numbers x1 = 0, x2, . . . , xp+1, y1 = 0, y2, . . . , yq+1,

such that

ai,j > ak,l =⇒ xi + yj > xk + yl

for all (i, j), (k, l) ∈ [p+ 1]× [q + 1]r {(1, 1)}.

With this definition, the matrix in Example 4.3.3 is H-additive (consider setting x0 = y0 =

0, x1 = 1, x2 = −1, y1 = 1, y2 = 3, y3 = −2). Recall that in Section 4.3, for (weak) compositions

α and β, and a partition γ, we define H(α, β)γ to be the set of nonnegative integer matrices with

zero at the top left corner, row-sum vector (ignoring the first row) α, column-sum vector (ignoring

the first column) β, and π−sequence γ.

Theorem 5.4.4. Let α, β, and γ be partitions with max{|β|, |γ|} ≤ |α| ≤ |β| + |γ|. If there is a

matrix A ∈ H(β, γ)α which is H-additive, then (α, β, γ) is H-stable.

Remark 5.4.5. Theorem 5.4.4 is equivalent to Proposition 5.4.2 if |α| = |β| = |γ|. The only

LR-stable triples it can produce are in the form (β ∪ γ, β, γ). It is not hard to see cβ∪γβ,γ = 1.

The proof for Theorem 5.4.4 is similar to Onn and Vallejo’s proof [6, 30] for Proposition 5.4.2

with some changes, as we are looking at slightly different matrices. Consequently, we only give a

sketch.
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We first recall some basic notions, many introduced in [6, 30], which will be used in our

proof. We move away from integers for a while and work with real numbers. For a vector a =

(a1, a2, . . . , am) ∈ Rm, we denote by π(a) the vector formed by the entries of a arranged in weakly

decreasing order. We say that a is dominated by b (both are vectors in Rm), written as a 4 b, if

m∑
i=1

ai =
m∑
i=1

bi and
k∑
i=1

π(a)i ≤
k∑
i=1

π(b)i, for all k ∈ [m].

If a 4 b and π(a) 6= π(b), then we write a ≺ b. In particular, when a and b are partitions of some

integer n, then 4 coincides with the dominance ordering �d for partitions.

For a permutation ρ ∈ Sm, we set aρ := (aρ(1), aρ(2), . . . , aρ(m)). The permutohedron deter-

mined by a is the convex hull of the vectors of the form aρ:

P (a) = conv{aρ | ρ ∈ Sm}.

Proposition 5.4.6 (Rado [31]). P (a) = {x ∈ Rm | x 4 a}.

Suppose α and β are two finite sequences of real numbers whose lengths are p and q respec-

tively. Recall that in Section 4.3, for (weak) compositions α and β, we define F(α, β) to be

the set of matrices with real entries, zero at the top left corner, row-sum vector (ignoring the

first row) α and column-sum vector (ignoring the first column) β. We consider the linear map

Φ : F(α, β) −→ Rpq+p+q,

Φ(A) = (a1,2, a1,3, . . . , a1,q+1, a2,1, a2,2, . . . , a2,q+1, . . . , ap+1,1, ap+1,2, ap+1,q+1),

whereA = (ai,j) ∈ F(α, β). A matrixA ∈ F(α, β) is real-minimal if there is no other matrixB ∈

F(α, β) such that π(B) ≺ π(A). Real-minimality has the following equivalent interpretations.

Proposition 5.4.7. Let A ∈ F(α, β). The following are equivalent:

(1) A is real-minimal.

68



(2) P (Φ(A)) ∩ Φ(F(α, β)) = {Φ(A)}.

(3) there exists a hyperplane H ⊂ Rpq+p+q containing Φ(F(α, β)) such that

P (Φ(A)) ∩H = {Φ(A)}.

See [30, Section 5] for the proof of this proposition. Although the matrices we are working with

are different, the proof still applies.

Proposition 5.4.8. Let A ∈ F(α, β), a = Φ(A). Then A is real-minimal if and only if there is

some vector n ∈ Rpq+p+q such that

(1) n is orthogonal to Φ(F(α, β)).

(2) For each transposition σ = (s s+1) ∈ Spq+p+q such that as 6= as+1, one has 〈n , σa− a 〉 >

0.

Remark 5.4.9. The second condition is equivalent to 〈n , x− a 〉 > 0 for all x ∈ P (a), x 6= a.

Again, one can use the proof in [30, Proposition 6.1] to prove this. The definition of H-additivity

can be extended naturally to matrices with real entries, and we next show that real-minimality is

equivalent to H-additivity for real matrices.

Theorem 5.4.10. Let A ∈ F(α, β). Then A is real-minimal if and only if A is H-additive.

Following Onn and Vallejo [30], we first construct a matrix. Let M = (mi,j) be a (p+ q)× (pq +

p+ q) matrix with

mi,j =


1, if 1 ≤ i ≤ p and i(q + 1) ≤ j ≤ q + i(q + 1);

1, if p+ 1 ≤ i ≤ p+ q and j = s− p+ k(q + 1), for some 0 ≤ k ≤ p;

0, otherwise.
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For example, if p = 2 and q = 3, then

M =



0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1

1 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1 0

0 0 1 0 0 0 1 0 0 0 1


.

Let r1, r2, . . . , rp+q be the rows of M . From the definition of M , it is obvious that these p + q

vectors are linearly independent. The set Φ(F(α, β)) is exactly the set of (transpose of) solutions

of the following matrix equation:

Mx = y

where y = (α1, . . . , αp, β1, . . . , βq)
′. For a vector z = (x2, . . . xp+1, y2, . . . , yq+1), we have

zM = Φ((xi + yj)(i,j)∈[p+1]×[q+1]),

where we set x1 = y1 = 0.

Proof of Theorem 5.4.10. Suppose A ∈ F(α, β) is real-minimal, then there exists a vector n ∈

Rpq+p+q satisfying the two conditions in Proposition 5.4.8. Since n is orthogonal to Φ(F(α, β)), n

must be in the row space of M . So there are unique numbers x2, . . . , xp+1, y2, . . . , yq+1 such that

−n = x2r1 + · · ·+ xp+1rp + y2rp+1 + · · ·+ yq+1rp+q.

Let z = (x2, . . . xp+1, y1, . . . , yq+1), then −n = zM = −Φ((xi + yj)). Following the arguments in

[30, Theorem 6.2] proves this theorem.

From Proposition 5.4.6, 5.4.7, and Theorem 5.4.10, we have
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Corollary 5.4.11. Let A ∈ F(α, β). Then A is H-additive if and only if

P (π(A)) ∩ Φ(F(α, β)) = {Φ(A)}.

Vallejo showed that the Kronecker coefficient indexed by the K-triple produced by a K-additive

matrix is 1.

Lemma 5.4.12 ([32] Corollary 4.2). Let A ∈ M(β, γ)α be K-additive where α, β, and γ are

partitions with the same size, then gαβ,γ = 1.

The same is true for Heisenberg coefficients and H-additive matrices.

Lemma 5.4.13. LetA ∈ H(β, γ)α be H-additive, where α, β, and γ are partitions with max{|β|, |γ|} ≤

|λ| ≤ |β|+ |γ|, then hαβ,γ = 1.

Proof. We first show that hαβ,γ ≥ 1. Suppose β = (β1, β2, . . . , βp), γ = (γ1, γ2, . . . , γq). Since

A = (aij) is additive, then there exists real numbers xi’s and yj’s (i ∈ [p+1] and j ∈ [q+1]) satisfy

the condition in Definition 5.4.3. After permuting rows and columns if necessary, we may assume

x2 ≥ x3 ≥ · · · ≥ xp+1 and y2 ≥ y3 ≥ · · · ≥ yq+1. By H-additivity, this assumption implies that

ai,j ≥ ai,j+1 for all 1 ≤ i ≤ p+1, 2 ≤ j ≤ q, and ai,j ≥ ai+1,j for all 2 ≤ i ≤ p, 1 ≤ j ≤ q+1. Set

β(1) = (a2,1, a3,1, . . . , ap+1,1) , γ(1) = (a1,2, a1,3, . . . , a1,q+1), β(2) = β − β(1), and γ(2) = γ − γ(1),

then these four are all partitions and, by the Littlewood–Richardson rule, we have

cβ
β(1),β(2) = cγ

γ(1),γ(2)
= 1. (5.23)

Let A(1) be the the submatrix of A obtained by removing the first row, and A(2) be the submatrix

of A(1) obtained by removing the first column. We set α(1) = π(A(1)) and α(2) = π(A(2)). From

Remark 5.4.5, we have

cαγ(1),α(1) = cα
(1)

β(1),α(2) = 1, (5.24)

as α = γ(1) ∪ α(1) and α(1) = β(1) ∪ α(2). Note that A(2) ∈M(β(2), γ(2))α(2) is K-additive, so, due
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to Lemma 5.4.12, we have

gα
(2)

β(2),γ(2) = 1. (5.25)

Using Proposition 5.1.7 and Equations (5.23), (5.24), and (5.25), we have hαβ,γ ≥ 1.

On the other hand, using Equation (2.38) and properties of Kostka numbers, we have

hαβ,γ = 〈 sβ#sγ , sα 〉 ≤ 〈hβ#hγ , sα 〉 = 〈
∑

A∈H(β,γ)

hπ(A) , sα 〉

= 〈
∑
δ

|H(β, γ)δ|hδ , sα 〉 = 〈
∑
δ

∑
ε<δ

|H(β, γ)δ|Kε,δ sε , sα 〉

=
∑
δ4α

|H(β, γ)δ|Kα,δ

(5.26)

Since A ∈ H(β, γ)α is H-additive, according to Corollary 5.4.11, we have

P (α) ∩ Φ(H(β, γ)) = {Φ(A)}.

Hence, it follows that |H(β, γ)δ| = 0 for all δ ≺ α, and |H(β, γ)α| = 1. Equation (5.26) shows

that hαβ,γ ≤ 1, and proves the lemma.

Proof of Theorem 5.4.4. If a matrix A is H-additive, then nA is H-additive. Consequently, by

Lemma 5.4.13, hnαnβ,nγ = 1 for all n > 0. By Proposition 5.3.13, (α, β, γ) is H-stable.

Remark 5.4.14. One may prove Theorem 5.4.4 without using Proposition 5.3.13. See [6, Section

5], and the proof there applies here. Also, as in [30, Theorem 7.1], given a rational matrix A with

zero at the top left corner, it can be decided in polynomial time whether A is H-additive.
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6. CONCLUSION

In general, we expect that Heisenberg coefficients share some properties which Littlewood–

Richardson coefficients and Kronecker coefficients have. The rectangular symmetry showed in

Chapter 4 and the classic/generalized stability results in Chapter 5 are examples of this. There are

some other directions we can try.

There are also combinatorial formulas for the Kronecker product of two Schur functions when

one of the index partitions is a hook shape partition or is a two row partition. Can we find combina-

torial formulas for the Heisenberg product sµ#sν when µ is a hook shape partition or a two-rows

partition? Formula (5.4) suggests that this is possible.

People have studied the Littlewood–Richardson cone and the Kronecker cone, and they showed

that the Littlewood–Richardson coefficient and the Kronecker coefficient have polynomiality [33,

34] and quasi-polynomiality [29] respectively. We can try to verify that whether the Heisenberg

coefficient have quasi-polynomiality.

The triples of partitions of nonvanishing Heisenberg coefficients form a semigroup, which

suggests us considering the cone, called Heisenberg cone, generated those triples. People already

studied and had some results about the Littlewood–Richardson cone and the Kronecker cone, and

these two cones sit naturally inside the Heisenberg cone. It would be interesting to explore relations

among the three cones.
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APPENDIX A

PROOF OF THE ASSOCIATIVITY OF THE HEISENBERG PRODUCT

In this appendix, we prove the associativity of the Heisenberg product using representation

theory.

We study three types of double cosets. We start with the double cosets of Young subgroups.

Let α = (α1, α2, . . . , αl) and β = (β1, β2, . . . , βm) be two (weak) compositions of n. For each

σ ∈ Sn, we get an l ×m matrix A = (aij) of nonnegative integers, where

aij = |{α1+ · · ·+αi−1 + 1, . . . , α1+ · · ·+αi} ∩ σ{β1+ · · ·+βi−1 + 1, . . . , β1+ · · ·+βi}|. (A.1)

It is not hard to check that A ∈M(α, β).

Proposition A.0.1. (Young subgroup double coset theorem) Let α and β be two compositions of

n. The map σ → (aij) given by (A.1) induces a bijection from the set of double cosets SασSβ to

M(α, β).

For a proof, see [35]. In particular, when l = m = 2, the Young subgroups Sα and Sβ can be

written as Sα = Si × Sn−i and Sβ = Sj × Sn−j , and the element inM(α, β) has the form

 a i−a

j−a n−i−j+a

 , (A.2)

where max{0, i + j − n} ≤ a ≤ min{i, j}. Let σa ∈ Sn be one of the elements (for this element

see [36, Chapter 5]) corresponding to the matrix in (A.2), such that

Sβ ∩ σ−1
a Sασa = Sa × Sj−a × Si−a × Sn−i−j+a (A.3)

σaSβσ
−1
a ∩ Sα = Sa × Si−a × Sj−a × Sn−i−j+a (A.4)
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Let Tα := Sa× Si−a× Sj−a× Sn−i−j+a, then Tα is a subgroup of Sα, and it can also be viewed as

a subgroup of Sβ by switching the middle two factors Si−a and Sj−a. Combining (A.3) and (A.4)

and applying Mackey’s Decomposition Theorem, we get

ResSnSα IndSnSβ =
⊕
a

IndSαTa ResSβTa . (A.5)

To visualize this, we consider the diagram

Sn

Sj × Sn−j Si × Sn−i

⊕
a

Sa × Si−a × Sj−a × Sn−i−j+a

ResInd

Res Ind (A.6)

The left hand side of (A.5) follows the blue arrows and the right hand side follows the red arrows.

Another type of double coset is the following. Let α � n, then Sα×Sn is a subgroup of Sn×Sn.

Note that Sn can also be viewed as a subgroup of Sn × Sn along the diagonal map, and it is not

hard to show that Sn · (Sα×Sn) = Sn×Sn. So Sn \Sn×Sn / Sα×Sn has only one double coset.

Choosing the identity element to be the representative of the double coset and applying Mackey’s

Decomposition Theorem, we get

ResSn×SnSn
IndSn×SnSα×Sn = IndSnSα ResSα×SnSα

. (A.7)

where the two restrictions in the above equations are the pull backs of the diagonal maps. Similarly,

we can show that

ResSa+b×Sc×Sa+b+cSa+b×Sc IndSa+b×Sc×Sa+b+cSa×Sb×Sc×Sa+b+c = IndSa+b×ScSa×Sb×Sc ResSa×Sb×Sc×Sa+b+cSa×Sb×Sc . (A.8)

The last type of double coset has the form (G×H ′)\ (G×H) / (G′×H) where G′ and H ′ are
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subgroups of finite groups G and H respectively. It is easy to show that there is only one double

coset. We choose the identiy element to be the representative of the double coset and apply the

Mackey’s Decomposition Theorem,

ResG×HG×H′ IndG×HG′×H = IndG×H
′

G′×H′ ResG
′×H

G′×H′ . (A.9)

LetU , V , andW be representations of Sl, Sm, and Sn respectively. To show that the Heisenberg

product is associative, we need to show that

(U#V )#W = U#(V#W ) (A.10)

We first compute the left hand side of (A.10). By the definition of the Heisenberg product, we have

(U#V )#W =
⊕
i,j

IndSl+m−i−jS(l+m−i−j,j,n−j)
Res

S(l+m−i,n)
S(l+m−i−j,j,n−j)

Ind
S(l+m−i,n)
S(l−i,i,m−i,n)

Res
S(l,m,n)

S(l−i,i,m−i,n)
U⊗V⊗W.

(A.11)

To visualize this, see the (solid) blue arrows in Diagram (A.20). Since all the groups in Diagram

(A.20) are Young subgroups, we just write their index compositions for convenience. Note that the

arrows for (A.11) in Diagram (A.20) has the pattern “ ↘↗↘↗ ”. Our goal is straightening this

pattern by applying Mackey’s Decomposition Theorem to get a pattern of “ ↘↗ ”. To achieve

our goal, we need the following straightening steps. Applying (A.5), we have

Res
S(l+m−i,n)
S(l+m−i−j,j,n)

Ind
S(l+m−i,n)
S(l,m−i,n)

=
⊕
k

Ind
S(l+m−i−j,j,n)
S(k,l−k,l+m−i−j−k,k+j−l,n)

Res
S(l,m−i,n)
S(k,l−k,l+m−i−j−k,k+j−l,n)

. (A.12)

See the “block” in (A.20) labeled by (A.12). The left hand side follows the dashed blue arrows

and the right hand side follows the dashed red arrows, and we illustrate the following steps in the

diagram in the same way. Applying (A.5) again, we have

Res
S(l,m−i,n)
S(k,l−k,m−i,n)

Ind
S(l,m−i,n)
S(l−i,i,m−i,n)

=
⊕
t

Ind
S(k,l−k,m−i,n)

S(t,l−i−t,k−t,i+t−k,m−i,n)
Res

S(l−i,i,m−i,n)
S(t,l−i−t,k−t,i+t−k,m−i,n)

. (A.13)
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Applying (A.9), we have

Res
S(l+m−i−j,j,n)
S(l+m−i−j,j,j,n−j)

Ind
S(l+m−i−j,j,n)
S(k,l−k,l+m−i−j−k,k+j−l,n)

=

Ind
S(l+m−i−j,j,j,n−j)
S(k,l−k,l+m−i−j−k,k+j−l,j,n−j)

Res
S(k,l−k,l+m−i−j−k,k+j−l,n)
S(k,l−k,l+m−i−j−k,k+j−l,j,n−j)

.

(A.14)

Applying (A.7), we have

Res
S(l+m−i−j,j,j,n−j)
S(l+m−i−j,j,n−j)

Ind
S(l+m−i−j,j,j,n)
S(l+m−i−j,l−k,k+j−l,j,n−j)

= Ind
S(l+m−i−j,j,n−j)
S(l+m−i−j,l−k,k+j−l,n−j)

Res
S(l+m−i−j,l−k,k+j−l,j,n−j)
S(l+m−i−j,l−k,k+j−l,n−j)

.

(A.15)

Applying (A.9), we have

Res
S(l+m−i−j,l−k,k+j−l,j,n−j)
S(l+m−i−j,l−k,j+k−l,n−j)

Ind
S(l+m−i−j,l−k,k+j−l,j,n−j)
S(k,l−k,l+m−i−j−k,k+j−l,j,n−j)

=

Ind
S(l+m−i−j,l−k,j+k−l,n−j)
S(k,l−k,l+m−i−j−k,k+j−l,n−j)

Res
S(l+m−i−j,l−k,k+j−l,n−j)
S(k,l−k,l+m−i−j−k,k+j−l,n−j)

.

(A.16)

Applying (A.9), we have

Res
S(k,l−k,m−i,n)
S(k,l−k,l+m−i−j−k,j+k−l,j,n−j)

Ind
S(k,l−k,m−i,n)
S(k,l−i−t,i+t−k,m−i,n)

=

Ind
S(k,l−k,l+m−i−j−k,j+k−l,j,n−j)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,j,n−j)

Res
S(k,l−i−t,i+t−k,m−i,n)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,j,n−j)

.

(A.17)

Applying (A.8), we have

Res
S(k,l−k,l+m−i−j−k,j+k−l,j,n−j)
S(k,l−k,l+m−i−j−k,j+k−l,n−j)

Ind
S(k,l−k,l+m−i−j−k,j+k−l,j,n−j)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,j,n−j)

=

Ind
S(k,l−k,l+m−i−j−k,j+k−l,n−j)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,n−j)

Res
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,j,n−j)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,n−j)

.

(A.18)

Applying (A.9), we have

Res
S(k,l−i−t,i+t−k,m−i,n)
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,n−j)

Ind
S(k,l−i−t,i+t−k,m−i,n)
S(t,l−i−t,k−t,i+t−k,m−i,n)

=

Ind
S(k,l−i−t,i+t−k,l+m−i−j−k,j+k−l,n−j)
S(t,l−i−t,,k−t,i+t−k,l+m−i−j−k,j+k−l,n−j)

Res
S(t,l−i−t,k−t,i+t−k,m−i,n)
S(t,l−i−t,k−t,i+t−k,l+m−i−j−k,j+k−l,n−j)

.

(A.19)
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To better understand what we get after all the straightening steps, we parametrize our indices i, j, k,

and t. Let

a = t, b = j + k − l, c = n− j, d = l − i− t,

e = k − t, f = i+ t− k, g = l +m− i− j − k.

These new indices can be visualized using the following Venn diagram

a

g c

e

b

d

l

m n

f

(A.21)

where all the numbers in the red (green, blue respectively) circle add up to l (m,n respectively).

Then Diagram (A.20) shows that

(U#V )#W =
⊕

Ind
S(a+b+c+d+e+f+g)

S(a,b,c,d,e,f,g)
Res

S(l,m,n)

S(a,b,c,d,e,f,g)
U ⊗ V ⊗W, (A.22)

where the direct sum are taken over all the possible a, b, c, d, e, f, g fit the Venn diagram (A.21). By

the symmetry of the right hand side of (A.22), it is not hard to see that (U#V )#W = U#(V#W ),

which shows the associativity of the Heisenberg product.
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APPENDIX B

ANOTHER PROOF OF THE STABILITY OF HEISENBERG COEFFICIENTS

We give another proof of the stability of Heisenberg coefficients using vertex operators. Note

that some of the notations we use here are different from those in [17].

Recall that we defined a scalar product (2.31) on symmetric functions. The adjoint, with respect

to this scalar product, of the operation of multiplying by a symmetric function f ∈ Λ is denoted

by Df : Λ −→ Λ. That is,

〈Df (g), h 〉 = 〈 g, fh 〉 for all g, h ∈ Λ (B.1)

Let Λ∧ be the algebra of symmetric formal series, and σ1, σ−1 ∈ Λ∧, where σ1 := h0 + h1 + · · · ,

and σ−1 = e0 − e1 + e2 − · · · . We can naturally extend the scalar product and the adjoint operator

to Λ∧. In Section 5.2, we extend the indices of Schur functions from partitions to finite integer

sequences.

Definition B.0.1. The linear map Γ : Λ→ Λ∧ is defined by

Γ (sα) =
∑
n∈Z

sα[n] (B.2)

and extending to Λ linearly. Here, α = (α1, . . . , αl) is a finite integer sequence and α[n] =

(n− α1, α2, . . . , αl).

This map can be interpreted using the operator we introduced.

Lemma B.0.2 ([17] Lemma 3.2). For any f ∈ Λ, we have Γ (f) = σ1Dσ−1(f).

Lemma B.0.3 ([17] Lemma 3.3). Dσ1 and Dσ−1 are ring automorphisms of Λ, with (Dσ1)
−1 =

Dσ−1 . Moreover, Dσ−1f = f(X − 1) and Dσ1(f) = f(X + 1).
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Let λ be a partition, then it is not hard to see

s(X + 1) =
∑
µ

aλµ sµ(X) (B.3)

where aλµ = 1 if λ/µ is a horizontal strip (no two boxes in the same column); aλµ = 0 otherwise. In

particular, aλµ = 0 unless µ ⊂ λ.

Lemma B.0.4. Let λ be a partition and f ∈ Λ, then

Dsλ(σ1 f) = σ1

∑
µ⊂λ

aλµDsµ(f). (B.4)

Proof. For any g ∈ Λ, we have

〈Dsλ(σ1 f) , g 〉 = 〈σ1 f , sλ g 〉 = 〈 f ,Dσ1(sλ g) 〉

= 〈 f , (sλ g) (X + 1) 〉 (Lemma B.0.3)

= 〈 f, sλ(X + 1) g(X + 1) 〉

=
∑
µ⊂λ

aλµ 〈 f , sµ(X) g(X + 1) 〉 (Equation (B.3))

=
∑
µ⊂λ

aλµ 〈Dsµ(f) , Dσ1(g) 〉 (Lemma B.0.3)

=
∑
µ⊂λ

aλµ 〈σ1Dsµ(f) , g 〉,

which proves the lemma.

Lemma B.0.5 ([17] Theorem 2.1). Let {Uλ} and {Vλ} form dual bases of Λ, and f, g ∈ Λ. Then,

(σ1 f) ∗ (σ1 g) = σ1

∑
α,β

(DUα(f)) (DVβ(g))(Uα ∗ Vβ), (B.5)

where the sum is taken over all partitions α and β and ∗ is the Kronecker product.
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Let r, t, λ, and µ be as stated in Theorem 5.1.4, then
∑
n∈Z

(sλ[n]#sµ[n−r])n+t can be written as

∑
α ` t+r
β ` t

(Dsα(Γ (sλ)) ∗Dsβ(Γ (sµ))) sα sβ. (B.6)

By Lemma B.0.2 and B.0.4, we have

Dsα(Γ (sλ)) = Dsα(σ1Dσ−1(sλ))

= σ1

∑
γ

aαγ Dsγ (Dσ−1(sλ))
(B.7)

Similarly, we have

Dsβ(Γ (sµ)) = Dsβ(σ1Dσ−1(sµ))

= σ1

∑
ρ

aβρ Dsρ(Dσ−1(sµ))
(B.8)

Using Lemma B.0.5, we have

(B.6) =
∑

α ` t+r
β ` t

∑
γ,ρ

aαγ a
β
ρ

(
(σ1Dsγ (Dσ−1(sλ))) ∗ (σ1Dsγ (Dσ−1(sλ)))

)
sα sβ

=
∑
α,β,γ,ρ

aαγ a
β
ρ σ1

∑
η,τ

(
Dsη(Dsγ (Dσ−1(sλ))) (Dsτ (Dsρ(Dσ−1(sµ))

)
(sη ∗ sτ ) sα sβ

=
∑
α,β,γ,ρ

aαγ a
β
ρ σ1Dσ−1

(∑
η,τ

(Dsη(Dsγ (sλ))) (Dsτ (Dsρ(sµ)))Dσ1(sη ∗ sτ )Dσ1(sα)Dσ1(sβ)
)

= σ1Dσ−1

(∑
α, β, γ
ρ, η, τ

aαγ a
β
ρ (Dsη(Dsγ (sλ))) (Dsτ (Dsρ(sµ))) (sη ∗ sτ )(X+1)sα(X+1)sβ(X+1)

)
(B.9)

where α ` t+r, β ` t, γ, ρ, η, and τ are all partitions. Note that a summand in the last expression

of (B.9) is zero unless

η ⊂ λ, γ ⊂ λ, τ ⊂ µ, and ρ ⊂ µ (B.10)

The conditions in (B.10) shows that the degrees of the Schur functions (in variables set X) appear-
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ing in the Schur expansion of the summation of the last expression of (B.9) are bounded above by

d := |λ|+ |µ|+ 2t+ r. Suppose the summation is equal to
∑
|ν|≤d

aν sν . Then by Lemma B.0.2 and

Equation (B.9), we have

∑
n∈Z

(sλ[n]#sµ[n−r])n+t = σ1Dσ−1(
∑
|ν|≤d

aν sν) =
∑
|ν|≤d

σ1Dσ−1(aν sν)

=
∑
n∈Z

∑
|ν|≤d

aν sν[n].

(B.11)

This shows the stability of the degree component (sλ[n]#sµ[n−r])n+t, and it is not hard to see that

this degree component stabilizes when n ≥ 2d = 2|λ| + 2|µ| + 4t + 2r. Equation (B.11) also

proves that the stable formula for (sλ[n]#sµ[n−r])n+t applies for even small n’s, which is why we

have (5.13).

87


	ABSTRACT
	DEDICATION
	ACKNOWLEDGMENTS
	CONTRIBUTORS AND FUNDING SOURCES
	TABLE OF CONTENTS
	LIST OF TABLES
	Introduction
	Symmetric Functions
	Partitions
	Families of Symmetric Functions
	Young Tableaux

	Representation Theory
	Representations of Finite Groups
	Group Characters
	Representations of Symmetric Groups
	Frobenius Character Map

	Products on Representations of symmetric groups/symmetric functions
	Induction product
	Kronecker product
	Heisenberg product

	Stability of Schur Structure constants
	Classic Stability Result
	Stable Heisenberg Coefficients
	Generalized Stability
	Additive Matrices

	Conclusion
	REFERENCES
	APPENDIX Proof of the Associativity of the Heisenberg Product
	APPENDIX Another Proof of the Stability of Heisenberg coefficients

