SINGULAR ALGORITHMS FOR WU’S METHOD

CHRIS STRADER

1. INTRODUCTION TO AUTOMATED THEOREM PROVING

The main tool used when studying polynomial systems and doing polynomial computa-
tions is a Groebner basis. However, a Groebner basis computation can often require a vast
amount of computer resources. This can be problematic since there are many applications
that can be modelled with polynomial systems. One such application is proving geometric
theorems mechanically. The basic idea is to take a constructive geometric statement and
translate the geometry into a set of polynomial equations. Since a computer can work
with algebraic statements, algorithms can be constructed that then prove the theorem
algebraically.

In order to see how the conversion of geometric theorems to algebraic statements is
done consider the Median Theorem: The medians of a triangle are concurrent.

2 CHRIS STRADER

By choosing the coordinate axes appropriately the translation into polynomials becomes
quite simple. If the x-axis is one side of the triangle with a vertex as the origin then one
will be left with 3 free parameter choices and 7 fixed parameters.The notation we use
throughout this paper is that the u;’s are freely chosen parameters and the x;’s are fixed
parameters that depend on the u;’s. The polynomials are listed in the Maple calculation
below. To see how one mechanically proves a theorem once the equivalent polynomial
system is obtained some additional definitions are needed.

The following definition is an oversimplification of what is needed to mechanically prove
theorems, but it will introduce the general concept and show us where to exert our efforts
to effectively prove theorems mechanically.

Definition 1. We say that the conclusion g follows strictly from the hypotheses hq, ..., hy
if g€ I(V) C R [uy, e, U, T1, ..y Ty |, where V=V({hy, ..., hy,)).

The following proposition is our test to determine if g follows strictly from a set of
hypotheses.

Proposition 2. If g € \/(hi, ..., hy), then g follows strictly from hy, ..., hy,.

Proof. The proof is quite simple. If g € \/(hq,..., h,) then g°€ (hq, ..., h,) for some s.
Hence g vanishes whenever (hy, ..., h,) vanish. O

We observe the first drawback of this approach. If our coefficient field is not alge-
braically closed, then the converse of Proposition 2 will not hold. However, this approach
is useful because of its algorithmic flavor; we can use the radical membership algorithm

to determine if g € \/(h1, ..., hy).

Now I will use Maple to show that the median theorem polynomials satisfy these con-
ditions.

with(Groebner) :

hl := 2%x3-u3:

h2 := 2xx4-ul:

h3 := 2xxb-u2:

hd := 2xx2-u2:

h5 := (x1-ul)-(u3-x1):

h6 := x7x(x6-x1)-x6%(x7-x2):

h7 := x7*(ul-x3)-u2*(x6-x3):

g := x7*(x6-x4)-(x7-x5)*(x6-u3) :

J1 := [h1,h2,h3,h4,h5,h6,h7,1-g*y]:
GBJ1 := gbasis(J1, plex(ul,u2,u3,x1,x2,x3,x4,x5,x6,x7,y));

VvV VV V V V V VYV VYV

GBJ1 := [1]

SINGULAR ALGORITHMS FOR WU’S METHOD 3

First note that the ordering did not have to be pure lexicographic, any ordering will
suffice. However, these calculations can become very costly. Furthermore, there is a major
drawback to this method. Since the wu;’s are arbitrary choices one could choose them in
such a way that the theorem becomes degenerate. These degenerate cases could cause
the test of the theorem, i.e. is g € \/(hq, ..., hy), to fail. Although we now have two huge
hurtles, efficiency and degeneracies, to overcome we are not at an impasse.

Wu Wen-Tsun developed his own approach for proving theorems in 1977. While Wu
was working he realized that much of the algebraic ground work for his method was
already provided by J.F. Ritt. Wu then implemented much of Ritt’s algebra to create
an algorithm that is more efficient and covers the degeneracies better than the Groebner
basis approach. I will now discuss the algorithms that I wrote in Singular that use Wu’s
basic method. These algorithms solve the efficiency portion of the problem.

2. PSEuUDO DIVISION

The main tool used in Wu’s algorithm is pseudo division. Although the name may
indicate otherwise, pseudo division is actually just a slight variation on regular polyno-
mial division in one variable followed by a clearing of denominators. This is why Wu’s
method is computationally superior to the Groebner basis method; all that is needed to
perform Wu’s basic method is a series of divisions in one variable, which is easily handled
by a computer. By Wu’s basic method I refer to the algorithm that proves theorems but
does not handle degeneracies (this is the class of theorems for which I wrote code). More
complicated theorems will yield significantly more complicated Gréebner bases, but more
complicated theorems do not affect Wu’s basic method because the basic method only
involves polynomial division.

Now I will explain my Singular pseudo division algorithm. Consider
f,g € kluy, ..., um, x1, ..., ,]. The notation used in my Singular code for pseudo dividing
f by g with respect to the variable x; is pdiv(g, f,x;). When working in Singular only
one ring can be active at a time. The first steps in the routine pdiv create a new ring in
which all the variables except x; become parameters. Essentially the following map & is
created:

D k[ug, ey Upy T1y ey Tp| > k(U o Uiy T1y ey Ty ooy Ty) [24
Here is the first part of the Singular code:

proc pdiv (poly g,poly f,int z) {

\\ First I need to initialize integers with the same names as the
\\ variables in my original ring so that I can create a new ring

4 CHRIS STRADER

\\ with the ui’s and xj’s (with j!=z) as parameters.

int j;
for(j=1; j<=7; j=j+1)
{
if (j!=z) {int x(j);}
}
int u(1..7);

\\ I need several conditional statements to handle various choices
\\ of z. Note that this method is not totally general. The

\\ code needs to be slightly changed depending on the number

\\ of variables in the original ring.

if (z==1) {ring S=(0,u(1..7),x(2..7)), var(z), Dp;}

if (z==7) {ring S=(0,u(1..7),x(1..6)), var(z), Dp;}

if (z!=1 && z!=7) {ring
S=(0,u(1..7),x(1..z-1) ,x(z+1..7)) ,var(z) ,Dp; }

\\ imap is the map \Phi described earlier.

poly pf= imap(r,f);

poly pg= imap(r,g);

\\ The polynomials in the new ring are then sent to my division

\\ (DIV) procedure. DIVcount merely counts the number of times the
\\ while loop executes in DIV.

poly prem = DIV(pg,pf); int i = DIVcount(pg,pf);

\\ This next step clears the denominator of the remainder so
\\ that the remainder can be passed back to the priginal ring.

prem= premx(leadcoef (pg)) ~i;

\\ Now I just set the original ring, imap the remainder, and return
\\ the remainder.

SINGULAR ALGORITHMS FOR WU’S METHOD 5

setring r;
poly rem =imap(S,prem); return(rem)

}

To see why the clearing of the denominator is necessary and to observe why the leading
coefficient of g is the only term that could appear in the denominator of the remainder
observe my DIV procedure.

proc DIV (poly g, poly f) {

\\ This procedure divides f by g.

poly q = 0;
poly r = £f;

\\ This next condition is necessary because if g is a unit, and hence has
\\ deg=0, then g will divide f and the remainder will be 0. This will
\\ lead to divisions by zero when successive pseudo divisions are done.

if (deg(g)==0) {return (g)}

\\ Upon each pass through the while loop the remainder r will pick up a
\\ factor of lead(g) in the denominator. When I pass r back to the

\\ original ring I need to first multiply r by lead(g) raised to the

\\ number of times the while loop was executed. DIVcount returns the

\\ number of times the while loop was executed.

else

{
while (r != 0 && deg(g) <= deg(r))
{
q

r

q + (lead(r)/lead(g));
r - (lead(r)/lead(g))*g;

}
return(r)
}
}

The reason that clearing of denominators is necessary is that the division takes place
in a polynomial ring with a coefficient fraction field k(u1, -..tum, 1, -.., T4, -.., T) and the
remainder is passed back to the original ring with the coefficient field of just k. Thus to
make sense, the remainder cannot have coefficients that exist outside the base field &.

6 CHRIS STRADER

3. TRIANGULATION OF POLYNOMIAL SYSTEMS

Now that I have a system of polynomials from a theorem I want to obtain the following
triangular form:

fl - fl(ula"';unaxl)a

f2 = fg(’u,l, very Upy L1, .TQ),

f’n = fn(ula veey Up, 1, axn)

This form can be obtained by the following general algorithm:
1. Input an ideal I = (hy,...h,).
2. Take h; where the degree of h; in z, is 1. Then perform pdiv(hj, h;, z,) for all j#i.
Repeat this for z,_q, ..., 2.
3. If there is a variable z; such that there is no polynomial h; such that the deg(h;,z;) =
1 then choose any h; and h'j such that deg(h;, z;), deg(h'j,aci) > 0.
4. Let prem = pdiv(h;, h'j, z;) and then do pdiv(h'j, prem, z;). Within finitely many steps
you will obtain a pseudo remainder that will satisfy the condition in Step 2 in z;. Return
to Step 2.

My triangulation procedure is not this general. This is due to the fact that most
geometric theorems are in near triangular form if the polynomial equivalents are chosen
cleverly enough. Thus my triangulation procedure merely loops through the input ideal
n times and performs pseudo divisions that are sufficient to triangulate most theorems (I
have not yet come across a theorem that my procedure would not triangulate, but one
should note that the procedure is not totally general). Here is the Singular code:

proc triang (ideal w) {
\\ First I’11 initialize 2 integers for loop counters.

int a,b;

\\ The following nested loop determines which pseudo divisions take place.
\\ The outer loop starts at 1 and the inner loop performs n-1 pseudo

\\ divisions in order to eliminate x(2),...,x(n) from the first

\\ polynomial. Then the outer loop is activated again and it commands the

\\ inner loop to perform n-2 pseudo divisions with the second polynomial.

\\ This continues and when both loops are completed the triangular system
\\ is returned.

SINGULAR ALGORITHMS FOR WU’S METHOD 7

for(a=1; a<size(w); a=a+l)

{
for(b=a+1; b<=size(w); b=b+1)
{
wlal= pdiv(w[al,w[bl, (b));
}
}

return(w) }

To see why this system is useful consider the following proposition.

Proposition 3. Suppose that f; = --- = f,, = 0 are the triangular equations obtained from
hy = -+ = hy, = 0 by the algorithm described above. Then V ({hy,...;hn)) TV ({f1, -, [n))-

Proof. By the pseudo division algorithm, all the pseudo remainders can be written as
r = lead(g)'hy — qhy for h; pseudo divding hy, where i is the number of times the while
loop is executed and g € k[uy, ..., Um, 1, ..., Tp]. This implies r € (hy, ho) C (h1, ..., hy).
Hence, (f1, ..., fn) C {h1, ..., hy) and taking the variety of the two ideals proves the theorem
since the variety operation is inclusion reversing.

O

4. SUCCESSIVE PSEUDO DIVISION

Now we will see why the triangular form and pseudo division will help us prove theorems.
First, I need to define the notion of successive pseudo division. Let fi,..., f, be the
triangular system of a set of hypotheses and let g be the conclusion. Successive pseudo
division is defined to be the following computations:

Rn—l = pdlU(f, fna mn)
Rn—Q = pdiU(Rn—la fn—la xn—l)
RO = pdiv(Rlaflaxl)
Now I can state the theorem that is at the heart of Wu’s method.

Theorem 4. Consider a set H of hypotheses hy,...,h, and a conclusion ¢g. If Ry = 0
when successive pseudo division s computed with g and fi, ..., fn, the triangular form of
H, then g follows from H.

Proof. Just consider the following substitution method for writing Ry:

8 CHRIS STRADER

Rn—l = pd“)(fa fna -Tn) = dzng - Qan

Rn72 = Z"__ll(ding - ann) - anlfnfl
Rnf?: = ;71_22(d271_11d;ng - dznf_llchbfn - anlfnfl) - QR72fnf2

Ry = di*dy?---d)rg— (A1fi+...+ Anfn)

Note that A;,..., A, € R [uy, ..., U, T1, ..., T,] and that d; is the leading coefficients of
fi in ;. Thus if Ry = 0 then when the f;’s vanish either g vanishes on one of the d;’s
vanishes. However, a d; vanishing corresponds to a degenerate geometric configuration,
so we can conclude that g follows from H when Ry = 0. O

The Singular procedure for successive pseudo division is the most straightforward. The
procedure just takes an ideal in the form (fi, ..., f,, 9) and loops through the ideal back-
wards and performs the divisions. Here is the code:

proc spdiv (ideal w) {
\\ In order for this procedure to work corectly the ideal

\\ v must be entered in the following way:fl,...,fn,g.

int a,c;

int b= size(w);
ideal R;
size(R)=b-1;

R[b-1]1= pdiv(w[b],w[b-11, (b-1));

for(a=b-2; a>1; a=a-1)

{
Rlal= pdiv(R[a+1],w[al,a);
}
return(R)
}

I will now illustrate this on an example with my Singular procedures.

5. AN EXAMPLE OF Wu’sS METHOD

I will prove Pappus’s theorem using the algorithms I have described above. Here is the
statement of the theorem:

SINGULAR ALGORITHMS FOR WU’S METHOD 9

Theorem 5. Let the vertices A1, By, C1, Aa, By, Cy of a hexagon lie on 2 distinct lines.
Then the points of intersection of opposite sides BoCy and B1Cs, C3A, and C1A,, AsB;
and A1 Bsy, are collinear.

82 C2
A2

C1

The first objective one must complete before obtaining an equivalent system of equations
for a theorem is to determine which parameters in the geometrical construction can be
freely chosen and which parameters will then be fixed. If the origin is placed at A; then B,
and C can be freely chosen on the z-axis. Then A, and B, could be freely chosen above
the z-axis. This would leave either the x or the y value of Cy free, since (5 is collinear
with A; and B,. This will leave the three points of intersection completely determined.

A1 : (0,0),B1 : (Ul,O),Cl : (UQ,O),
Ay (U3,U4),BQ : (Us,us),CQ : (U7,$1),
P (29,23),Q : (24,25), R : (w,27)

Now I will formulate 7 equations that are equivalent to the geometric assumptions of
the theorem. If this system is consistent then it will imply that PQR are collinear, which
is the same as saying the equation that represents PQR being collinear is satisfied.

10 CHRIS STRADER

A9 ByCy are collinear : (ug — ug)(ur — us) — (us — usg)(r1 — ug) =0
AyPBj are collinear : (x3 — uq)(r2 — u1) — x3(z9 — uz) =0
A1PBy are collinear : x3(xe — us) — zo(x3 —ug) =0
AyQC are collinear : (x5 — ug)(xy — ug) — x5(x4 —uz) =0
A1QC5 are collinear : x5(xq —u7) — x4(x5 — 1) =0
ByRC, are collinear : (x7 — ug)(xg — uz) — x7(x6 —us) =0
B1RC5 are collinear : x7(xe —ur) — (v —u1)(x7 —21) =0

The following relation is our conclusion.

PQR are collinear : (x3 — x5)(x6 — x4) — (o — 24)(x7 — 25) =0
Now here is exactly what needs to be entered into Singular to prove the theorem.
ring r=0, (x(1..7),u(1..7)), 1lp;

ideal i= (u(6)-u(4))*(u(7)-u(5)) - (x(1)-u6))*(u(5)-u(3d)),
x@)-u@))*(x(2)-u(1)) - xB)*(x(2)-u(3d)),
x(3)*(x(2)-u(5)) - x(2)*(x(3)-u(6)),
(x(5)-u(4))*(x(4)-u(2)) - x(5)*(x(4)-u(3)),
x(8)*(x(4)-u(7)) - x(4)*(x(56)-x(1)),
(M) -u(6))*(x(6)-u(2)) - x(7)*(x(6)-u(5)),
x(7)*(x(8)-u(7)) - x(B)-u(1))*(x(7)-x(1));

triang(i);

_[11=x(1) *u(3) -x (1) *u(5) -u(3) *u(6) +u(4) *u(5) ~u(4) *u(7) +u(6) *u(7)

_[2]=-x(2) *¥u (1) *u(6) +x(2) *u (3) *u(6) -x(2) *u (4) *u (5) +u (1) *u(4) *u(5)

_[31=x(2) *u(6) -x(3) *u(5)

_[A]=—x(1D)*x(4)*u(2)+x (1) *x(4) *u(3) -x(4) *u(4) *u(7) +u(2) *u(4) *u(7)

_[5]1=x(1) *x(4) -x(5) *u(7)

_[6]=—x (1) *x(6) *u(2) +x (1) *x(6) *u(5) +x (1) *u (1) *u(2) -x (1) *u (1) *u(s)
+x(6) *u (1) *u(6)-x(6) *u(6)*u(7)-u(1)*u(2) *u(6)+u(2) *u(6) *u(7)

_[71=x (1) *x(6) —x (1) *¥u (1) +x (7) *u (1) -x(7) *u(7)

ideal j=triang(i);
ideal c= j+ (x(3)-x(5))*(x(6)-x(4)) - (x(2)-x(4))*(x(7)-x(5));

spdiv(c);

SINGULAR ALGORITHMS FOR WU’S METHOD 11

_[11=0
_[2]=-x (1) *x (4) *¥u(2) +x(1) *x(4) *u(3) -x (4) *u (4) *u (7) +u(2) *u (4) *u(7)
_[3]=-x (1) *x(4) *u(2) +x(1) *x(4) *u(3) -x(4) *u (4) *u (7) +u(2) *u (4) *u(7)
_[4]=—x(1)*x(4) *u(2) +x (1) *x (4) *u(3) -x (4) *u (4) *u (7) +u(2) *u(4) *u(7)
_[5]=x(1) ~2*%x (4) ~2*u(2)-x (1) ~2*x (4) ~2*u(5)-x (1) ~2*x (4) *u (1) *u (2) +
+x (1) ~2%x (4) ¥u (1) *u(5) -x (1) *x (3) *x (4) *u (2) *u (7) +x (1) *x (3) *x (4) *u(5)
*u (7)) +x (1) *x(3) *u (1) *u(2) *u(7) -x (1) *x(3)*u (1) *u(5) *u(7)-x(1) *x (4) "2
*u (1) *u(6)+x (1) *x(4) ~2*%u(6) *u(7) +x (1) *x(4) *u (1) *u(2) *u(6) -x(1) *x(4)
*u (2) *xu (6) *u (7)+x (3) *x (4) *u (1) *u(6) *u(7) -x(3) *x (4) *u(6) *u(7) "2-x(3)
*u (1) *u(2) *u(6) *u(7) +x(3)*u(2) *u(6) *u(7) ~2
_[6]1=-x(1)*x(3) *x(4) *u(2) +x (1) *x(3) *x (4) *u (5) +x (1) *x (3) *u (1) *u (2) -
-x (1) *x(3)*u (1) *u(5)+x (1) *x(4) *x(5) *u(2) -x (1) *x(4) *x(5) *u(5) -x (1) *x (5)
*u (1) *u(2)+x (1) *x (5) *u (1) *u(5) +x (3) *x (4) *u (1) *u(6) -x(3) *x (4) *u (6) *u (7)
-x (3)*xu(1)*u(2)*u(6)+x(3) *u(2) *u(6) *u(7)-x(4) *x(5) *u (1) *u(6) +x (4) *x (5)
*u(6)*u(7)+x(5) *u (1) *u(2) *u(6) -x (5) *u (2) *u (6) *u(7)
_[71=-x(3) *x (4) +x(3) *x(6) +x (4) *x(5) -x (5) *x(6)

Recall that when I proved Theorem 4 I said that the d;’s corresponded to degenerate
configurations. Now that we have an example I will show why these configurations need
to be thrown away. Consider the triangular form for the hypotheses of Pappus’s
Theorem. The leading coefficient of f; is (uz — us). Thus the z-component of Ay and B,
would have to be equal. But then the z-component of (s is a free choice, so the three
points are not collinear for an infinite number of choices for u7;. The configurations that
do not satisfy my original hypotheses are not a concern so we disregard where they
vanish.

