CIMPA Research School on Combinatorial and Computational Algebraic Geometry, IBADAN 12 - 23 June 2017 - Nigeria

Groebner Bases Lectures

Damian Maingi - University of Nairobi

1. Basic Notions

We shall denote a field by k i.e. any field say $\mathbb{Z}_p \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

The cartesian product of *n* copies of Natural numbers, $\mathbb{N} \times \cdots \times \mathbb{N}$.

We shall denote by $R = k[x_1, x_2, \dots, x_n]$, the polynomial ring in *n* variables with coefficients in *k*.

Our usual ring will be $\mathbb{Q}[x, y, z]$ since software (macaulay II, Cocoa, SAGE, etc) works in this ring.

By an ideal I of R we mean a linear combination of polynomials say $\{f_1, f_2, \dots, f_t\}$ with coefficients polynomials we denote this by $I = \{\lambda_1 f_1 + \lambda_2 f_2 + \dots + \lambda_t f_t : \lambda_i \in R\}$. We can write $I = \langle f_1, f_2, \dots, f_t \rangle$ and say that I is generated by $f_1, f_2, \dots, f_t \in R$.

We shall formalize what happens in the Gaussian Elimination Method in linear algebra and Division Algorithm in 1 variable.

We notice that in both Gaussian Method and Division Algorithm we follow order i.e. the key is in reducing the systems at hand identifying pivot elements.

Definition 1.1. Monomial Order:

A monomial order on $R = k[\bar{x}]$ is a relation ">" on on natural numbers (nonnegative integers), \mathbb{N}^n satisfying;

- (a) > is a total (linear) ordering i.e. for any $\alpha, \beta \in \mathbb{N}^n$ either $\alpha > \beta$ or $\alpha = \beta$ or $\alpha < \beta$.
- (b) if $\alpha > \beta$ then for $\gamma \in \mathbb{N}^n$ we have $\alpha + \gamma > \beta + \gamma$ which is equivalent to $x^{\alpha} > x^{\beta}$.
- (c) > is a well ordering on \mathbb{N}^n .

Definition 1.2. LEXICOGRAPHIC Order(LEX)

Let $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ be in \mathbb{N}^n . Then $a >_{lex} b$ which is equivalent to $x^a >_{lex} x^b$ if the first nonzero element (pivot) in the vector a - b is positive.

Definition 1.3. GRADED Lexicographic Order(GrLEX)

Let $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ be in \mathbb{N}^n . Then $a >_{grlex} b$ which is equivalent to $x^a >_{grlex} x^b$ if $|a| = \sum a_i > |b| = \sum b_i$ or $|a| = \sum a_i = |b| = \sum b_i$ and $a >_{lex} b$.

Definition 1.4. GRADED Reverse Lexicographic Order(GrevLEX)

Let $a = (a_1, \dots, a_n)$ and $b = (b_1, \dots, b_n)$ be in \mathbb{N}^n . Then $a >_{grevlex} b$ which is equivalent to $x^a >_{grevlex} x^b$ if $|a| = \sum a_i > |b| = \sum b_i$ or $|a| = \sum a_i = |b| = \sum b_i$ and the last nonzero entry in a - b is negative.

Example 1.5.

- (1) For the ring of polynomials in 1 variable, k[x] monomial order is $x^a > x^{a-1} \dots > x > 1$.
- (2) For polynomials in 2 variables, k[x, y]LEX order: x > y, $x^3 > x^2y > xy^3 > x > y^3 > y^2 > y > 1$ GrLEX: x > y, $xy^3 > x^3 > x^2y > y^3 > y^2 > x > y > 1$ which is the same for GrevLEX.

Definition 1.6. Let $f = \sum_{a} \lambda_a x^a$ be polynomial in $R = k[\bar{x}]$ and > a monomial order on R then

- (a) the multidegree of f denoted by multideg(f) is given by multideg>(f) = max($a \in \mathbb{N}^n$)} (the largest degree with respect to >)
- (b) the leading monomial of f denoted by LM(f) is $x^{multideg(f)}$
- (c) the leading coefficient of the leading monomial denoted by LC(f) and is given by $\lambda_{multideg(f)}$
- (d) the leading term of f, LT(f) = LC(f).LM(f).

Exercise 1.7.

- (1) Order the following polynomials using LEX, GrLEX, GrevLEX and weighted order for given weights:
 - (a) $3x 4y + 6z + 10x^3 xz + y^3$
 - (b) $2x^3y^5z^2 3x^4yz^5 + xyz^3 xy^4$
 - (c) $xyz^4 5yz^5 + x^3y^3 + y^2z^4$
 - (d) $9x^3y 7xy^2z + x^2yz$
- (2) Determine the monomial order used for each of the following: (a) $7x^2y^4z - 2xy^6 + x^2y^2$
 - (b) $xy^3z + xy^2z^2 + x^2z^3$
 - (c) $x^4 y^5 z + 2x^3 y^2 z 4x y^2 z^4$
 - (c) w g x + 2w g x + w g x
- (3) Determine if $f \in I$ given (a) $f = x^3 - 1, I = \langle x^6 - 1, x^5 + x^3 - x^2 - 1 \rangle$ (b) $f = x^5 - 4x + 1, I = \langle x \rangle$

Theorem 1. Division Algorithm in $R = k[x_1, x_2, \dots, x_n]$ Fix monomial order on \mathbb{N}^n , and let $F = (f_1, f_2, \dots, f_t)$ be an ordered tuple of n polynomials in R then for any $f \in R$ there exists $a_1, a_2, \dots, a_t, r \in R$ such that f can be expressed as $f = a_1f_1 + a_2f_2 + \dots + a_tf_t + r$ where r = 0 or a polynomial none of whose terms is divisible by the leading term of any f_i for all i and furthermore the multideg $(f) \geq multideg(a_if_i)$.

Proof. Cox et al - Ideals, Varieties and Algorithms.

2. GROEBNER BASES PROPERTIES

Definition 2.1. Initial Ideal

The set of initial terms denoted by $in_>(f)$ or LT(f) is generates an ideal called the initial ideal of I which we denote by $\langle LT(I) \rangle = \{LT(f) : \forall f \in I\}.$

Definition 2.2. Let $G = \{g_1, \dots, g_t\} \subset I$ is called a Groebner basis(GB) of the ideal I with respect to some order if $\langle LT(I) \rangle = \langle LT(g_1), \dots, LT(g_t) \rangle$.

Remark 2.3. If $I = \langle g_1, \dots, g_t \rangle$ then $\langle LT(g_1), \dots, LT(g_t) \rangle \subseteq \langle LT(I) \rangle$.

Example 2.4.

Let $I = \langle x^2, xy - y^2 \rangle$, $f = x^2y$, setting $F = (x^2, xy - y^2)$ ordered (lex) we divide f by F. In once case $f = y(x^2) + 0(xy - y^2) + 0$ i.e. zero remainder. In the other case we will get $x(x^2) + y(xy - y^2) - y^3$.

From we here we observe 2 things, one is that the remainder is not necessarily unique on division of f by F. Secondly we not that $y^3 \in I$ since it is a linear combination of generators of I. Also $y^3 \in LT(I)$ but $y^3 \notin \langle x^2, xy \rangle = \langle LT(x^2), LT(xy - y^2) \rangle$ and so we conclude that F is not a GB for I.

Definition 2.5. Monomial Ideal

An ideal $I \triangleleft R$ is called a monomial ideal if there exists a subset A of \mathbb{N}^n such that $I = \langle x^{\alpha} : \alpha \in A \rangle$.

Example 2.6.

 $I = \langle x^4y^2, x^3y^4, x^2y^5\rangle \lhd k[x,y].$

Lemma 2.7. Let $I = \langle x^{\alpha} : \alpha \in A \rangle$ then $x^{\beta} \in I \iff x^{\alpha}$ divides x^{α} .

Lemma 2.8. Dickson's Lemma

Let $I = \langle x^{\alpha} : \alpha \in A \subset \mathbb{N}^n \rangle \triangleleft R$ be a monomial ideal then I can be written in the form $I = \langle x^{\alpha_1}, \cdots, x^{alpha_s} \rangle$ where $\alpha_i \in A$ for all i. That is every monomial ideal I has a finite generating set.

Exercise 2.9. Draw the ideal $I = \langle x^4y^2, x^3y^4, x^2y^5 \rangle \triangleleft k[x, y]$ on the graph of \mathbb{N}^2 where (m, n) corresponds to the monomial x^my^n and determine a generating set for I.

Proposition 2.10. If $G = \{g_1, g_2, \dots, g_t\} \in I \triangleleft R$ is groebner basis then it generates I i.e. $\langle G \rangle = I$.

Proof. Since $\{g_1, g_2, \cdots, g_t\} \in I$ then $\langle g_1, g_2, \cdots, g_t \rangle \subseteq I$.

Now suppose $f \in I$ then by division algorithm in R we can express f as

 $f = a_1g_1 + a_2g_2 + \cdots + a_tg_t + r$ where r = 0 or is a polynomial none of whose terms is divisible by any $LT(g_i)$ for all i and $a_i \in R$.

Now if r = 0 then $f = \sum a_i g_i \in \langle G \rangle$ and we are done. If $r \neq 0$ then we have $r = f - a_1 g_1 - a_2 g_2 - \cdots - a_t g_t$ and so $LT(r) \in \langle LT(I) \rangle = \langle G \rangle$ i.e. LT(r) is divisible by some $LT(g_i)$ which is a contradiction and so r = 0. Hence $I = \langle G \rangle$.

Theorem 2. Every Ideal $I \triangleleft R = k[x_1, x_2, \cdots, x_n]$ has a groebner basis.

Proof. The initial ideal $\langle I \rangle$ is a monomial ideal i.e. generated by monomial, LT(f), $f \in I$ and Dickson's lemma it is finitely generated i.e. there exists $g_1, g_2, \dots, g_t \in I$ such that $\langle I \rangle = \langle LT(g_1), \dots, LT(g_t) \rangle$ and this is the definition of a groebner basis and by the proposition above it generates I

Theorem 3. Hilbert Basis Theorem

Every Ideal $I \triangleleft R = k[x_1, x_2, \cdots, x_n]$ is finitely generated.

Proof. Choose a monomial order on R and determine a groebner basis G for an ideal I then G finitely generates I. \square

Proposition 2.11. Let $G = \{g_1, g_2, \dots, g_t\}$ be a groebner basis for an ideal I of R and let $f \in I$. Then there is a unique $r \in R$ satisfying

- (a) No term of r is divisible by any $LT(g_i)$ for all i and
- (b) there exists $q \in I$ such that f = q + r

Proof. Division algorithm gives $f = \sum a_i g_i + r$ so r is the remainder with r = 0 or satisfies (i) and now set $q = \sum a_i q_i \in I$.

Now for uniqueness of r, suppose f = g + r and f = g + r' from which we have $r - r' = g' - g \in I$ if $r \neq r'$ then $LT(r-r') \in \langle LT(I) \rangle = \langle LT(g_1), \cdots, LT(g_t) \rangle$

which implies that LT(r-r') is divisible by some $LT(q_i)$ which is a contradiction.

3. How to determine a groebner basis

Given a set $F = \{f_1, \dots, f_s\} \subset I \triangleleft R$ and $f \in R$ we shall denote by \overline{f}^F the remainder on division of f by F.

Definition 3.1. S-polynomials

Let $\alpha = (\alpha_1, \dots, \alpha_n)$ and $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$, and $\gamma = (\gamma_1, \dots, \gamma_n)$ where $\gamma_i = \max(\alpha_i, \beta_i)$ and also $\{f_1, f_2, \dots, f_t\} \in I$, an ideal then the S-polynomial of f_i and f_j denoted by $S(f_i, f_j)$ for all $i \neq j$ is defined as $S(f_i, f_j) = \frac{x^{\gamma}}{LT(f_i)} f_i - \frac{x^{\gamma}}{LT(f_i)} f_j$.

Theorem 4. BUCHBERGER'S CRITERION

A subset $G = \{g_1, \dots, g_t\}$ of an ideal $I \triangleleft R$ is a groebner basis for $I \iff$ the remainder on divison of $S(g_i, g_j)$ by G is zero for all $i \neq j$.

Proof. Cox.

Theorem 5. BUCHBERGER'S ALGORITHM

Let $I = \langle f_1, f_2, \cdots, f_s \rangle \neq 0 \triangleleft k[\bar{x}]$, then a groebner basis for I can be constructed in a finite number of stepsby the following algorithm:

ALGORITHM: INPUT: $F = (f_1, \cdots, f_s)$ OUTPUT: groebner basis $G = (q_1, \cdots, q_t)$ for I Let G := FRepeat Let G' := GFor each pair $\{p,q\}, p \neq q$ in G'Do let $S := S(p,q)^{G'}$, the remainder of division of S(p,q) by G'if $S \neq 0$ then $G := G \cup \{S\}$ UNTIL G = G'

Remark 3.2.

We basically compute the S-polynomials then check for each nonzero remainder, add it to the starting generating set and keep repeating the process until there are no more nonzero remainders, the set obtained is a groebner basis which may be unnecessarily large. We can therefore apply the lemma below to reduce it.

Lemma 3.3. Let $G = \{g_1, \dots, g_s\}$ be a groebner basis for an ideal I and $p \in G$ such that $LT(p) \in \langle LT(G - \{p\}) \rangle$ then $G - \{p\}$ is a groebner basis.

Proof. left as an exercise.

Exercise 3.4. Groebner Basis construction

(1) Given the ideal $I = \langle x^2 - y, x^3 - z \rangle$ with lex order, determine a groebner basis for I.

- (2) Given the ideal $I = \langle x^3 2xy, x^2y 2y^2 + x \rangle$, w.r.t grlex order determine a groebner basis for I.
- (3) Is the set $\{xy+1, y^2-1\}$ a groebner basis for $I = \langle xy+1, y^2-1 \rangle \triangleleft k[x, y]$?
- **Lemma 3.5.** A groebner basis $G = \{g_1, \dots, g_t\}$ is said to be minimial if
 - (a) Each g_i is monic and
 - (b) There is no $p \in G$ such that $LT(p) \in \langle LT(G \{p\}) \rangle$

Remark 3.6.

- (a) A minimial groebner basis is not unique.
- (b) Two minimal groebner bases must have the same cardinality.
- (c) Every ideal $I \triangleleft R = k[x_1, \cdots, x_n]$ has a unique reduce groebner basis. The next lemma aids us in that.

Lemma 3.7. A groebner basis $G = \{g_1, \dots, g_t\}$ is said to be reduced if

- (a) Each g_i is monic and
- (b) There is no term of $p \in G$ is divisible by any $LT(g_i)$.