CIMPA Research School on Combinatorial and Computational Algebraic Geometry, IBADAN 12-23 June 2017-Nigeria

Groebner Bases Lectures
Damian Maingi - University of Nairobi

1. Basic Notions

We shall denote a field by k i.e. any field say $\mathbb{Z}_{p} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.
The cartesian product of n copies of Natural numbers, $\mathbb{N} \times \cdots \times \mathbb{N}$.
We shall denote by $R=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$, the polynomial ring in n variables with coefficients in k.
Our usual ring will be $\mathbb{Q}[x, y, z]$ since software (macaulay II, Cocoa, SAGE, etc) works in this ring.

By an ideal I of R we mean a linear combination of polynomials say $\left\{f_{1}, f_{2}, \cdots, f_{t}\right\}$ with coefficients polynomials we denote this by $I=\left\{\lambda_{1} f_{1}+\lambda_{2} f_{2}+\cdots+\lambda_{t} f_{t}: \lambda_{i} \in R\right\}$. We can write $I=\left\langle f_{1}, f_{2}, \cdots, f_{t}\right\rangle$ and say that I is generated by $f_{1}, f_{2}, \cdots f_{t} \in R$.
We shall formalize what happens in the Gaussian Elimination Method in linear algebra and Division Algorithm in 1 variable.

We notice that in both Gaussian Method and Division Algorithm we follow order i.e. the key is in reducing the systems at hand identifying pivot elements.
Definition 1.1. Monomial Order:
A monomial order on $R=k[\bar{x}]$ is a relation " $>$ " on on natural numbers (nonnegative integers), \mathbb{N}^{n} satisfying;
(a) $>$ is a total (linear) ordering i.e. for any $\alpha, \beta \in \mathbb{N}^{n}$ either $\alpha>\beta$ or $\alpha=\beta$ or $\alpha<\beta$.
(b) if $\alpha>\beta$ then for $\gamma \in \mathbb{N}^{n}$ we have $\alpha+\gamma>\beta+\gamma$ which is equivalent to $x^{\alpha}>x^{\beta}$.
(c) > is a well ordering on \mathbb{N}^{n}.

Definition 1.2. LEXICOGRAPHIC Order(LEX)

Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ be in \mathbb{N}^{n}. Then $a>_{\text {lex }} b$ which is equivalent to $x^{a}>_{\text {lex }} x^{b}$ if the first nonzero element (pivot) in the vector $a-b$ is positive.
Definition 1.3. GRADED Lexicographic Order(GrLEX)
Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ be in \mathbb{N}^{n}. Then $a>_{\text {grlex }} b$ which is equivalent to $x^{a}>_{\text {grlex }} x^{b}$ if $|a|=\sum a_{i}>|b|=\sum b_{i}$ or $|a|=\sum a_{i}=|b|=\sum b_{i}$ and $a>_{\text {lex }} b$.
Definition 1.4. GRADED Reverse Lexicographic Order(GrevLEX)
Let $a=\left(a_{1}, \cdots, a_{n}\right)$ and $b=\left(b_{1}, \cdots, b_{n}\right)$ be in \mathbb{N}^{n}. Then $a>_{\text {grevlex }} b$ which is equivalent to $x^{a}>_{\text {grevlex }} x^{b}$ if $|a|=\sum a_{i}>|b|=\sum b_{i}$ or $|a|=\sum a_{i}=|b|=\sum b_{i}$ and the last nonzero entry in $a-b$ is negative.

Example 1.5.

(1) For the ring of polynomials in 1 variable, $k[x]$ monomial order is $x^{a}>x^{a-1} \cdots>x>1$.
(2) For polynomials in 2 variables, $k[x, y]$

LEX order: $x>y, x^{3}>x^{2} y>x y^{3}>x>y^{3}>y^{2}>y>1$
GrLEX: $x>y, x y^{3}>x^{3}>x^{2} y>y^{3}>y^{2}>x>y>1$ which is the same for GrevLEX.

Definition 1.6. Let $f=\sum_{a} \lambda_{a} x^{a}$ be polynomial in $R=k[\bar{x}]$ and $>$ a monomial order on R then
(a) the multidegree of f denoted by multideg (f) is given by multideg $\left.{ }_{>}(f)=\max \left(a \in \mathbb{N}^{n}\right)\right\}$ (the largest degree with respect to $>$)
(b) the leading monomial of f denoted by $L M(f)$ is $x^{\text {multideg }(f)}$
(c) the leading coefficient of the leading monomial denoted by $L C(f)$ and is given by $\lambda_{\text {multideg(f) }}$
(d) the leading term of $f, L T(f)=L C(f) \cdot L M(f)$.

Exercise 1.7.

(1) Order the following polynomials using LEX, GrLEX, GrevLEX and weighted order for given weights:
(a) $3 x-4 y+6 z+10 x^{3}-x z+y^{3}$
(b) $2 x^{3} y^{5} z^{2}-3 x^{4} y z^{5}+x y z^{3}-x y^{4}$
(c) $x y z^{4}-5 y z^{5}+x^{3} y^{3}+y^{2} z^{4}$
(d) $9 x^{3} y-7 x y^{2} z+x^{2} y z$
(2) Determine the monomial order used for each of the following:
(a) $7 x^{2} y^{4} z-2 x y^{6}+x^{2} y^{2}$
(b) $x y^{3} z+x y^{2} z^{2}+x^{2} z^{3}$
(c) $x^{4} y^{5} z+2 x^{3} y^{2} z-4 x y^{2} z^{4}$
(3) Determine if $f \in I$ given
(a) $f=x^{3}-1, I=\left\langle x^{6}-1, x^{5}+x^{3}-x^{2}-1\right\rangle$
(b) $f=x^{5}-4 x+1, I=\langle x\rangle$

Theorem 1. Division Algorithm in $R=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$
Fix monomial order on \mathbb{N}^{n}, and let $F=\left(f_{1}, f_{2}, \cdots, f_{t}\right)$ be an ordered tuple of n polynomials in R then for any $f \in R$ there exists $a_{1}, a_{2}, \cdots, a_{t}, r \in R$ such that f can be expressed as $f=a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{t} f_{t}+r$ where $r=0$ or a polynomial none of whose terms is divisible by the leading term of any f_{i} for all i and furthermore the multideg $(f) \geq \operatorname{multideg}\left(a_{i} f_{i}\right)$.
Proof. Cox et al - Ideals, Varieties and Algorithms.

2. Groebner bases properties

Definition 2.1. Initial Ideal
The set of initial terms denoted by $i_{>}(f)$ or $L T(f)$ is generates an ideal called the initial ideal of I which we denote by $\langle L T(I)\rangle=\{L T(f): \forall f \in I\}$.
Definition 2.2. Let $G=\left\{g_{1}, \cdots, g_{t}\right\} \subset I$ is called a Groebner basis(GB) of the ideal I with respect to some order if $\langle L T(I)\rangle=\left\langle L T\left(g_{1}\right), \cdots, L T\left(g_{t}\right)\right\rangle$.
Remark 2.3. If $I=\left\langle g_{1}, \cdots, g_{t}\right\rangle$ then $\left\langle L T\left(g_{1}\right), \cdots, L T\left(g_{t}\right)\right\rangle \subseteq\langle L T(I)\rangle$.

Example 2.4.

Let $I=\left\langle x^{2}, x y-y^{2}\right\rangle, f=x^{2} y$, setting $F=\left(x^{2}, x y-y^{2}\right)$ ordered (lex) we divide f by F. In once case $f=y\left(x^{2}\right)+0\left(x y-y^{2}\right)+0$ i.e. zero remainder. In the other case we will get $x\left(x^{2}\right)+y\left(x y-y^{2}\right)-y^{3}$.
From we here we observe 2 things, one is that the remainder is not necessarily unique on division of f by F. Secondly we not that $y^{3} \in I$ since it is a linear combination of generators of I. Also $y^{3} \in L T(I)$ but $y^{3} \notin\left\langle x^{2}, x y\right\rangle=\left\langle L T\left(x^{2}\right), L T\left(x y-y^{2}\right)\right\rangle$ and so we conclude that F is not a GB for I.

Definition 2.5. Monomial Ideal
An ideal $I \triangleleft R$ is called a monomial ideal if there exists a subset A of \mathbb{N}^{n} such that $I=\left\langle x^{\alpha}\right.$: $\alpha \in A\rangle$.

Example 2.6.

$$
I=\left\langle x^{4} y^{2}, x^{3} y^{4}, x^{2} y^{5}\right\rangle \triangleleft k[x, y] .
$$

Lemma 2.7. Let $I=\left\langle x^{\alpha}: \alpha \in A\right\rangle$ then $x^{\beta} \in I \Longleftrightarrow x^{\alpha}$ divides x^{α}.
Lemma 2.8. Dickson's Lemma
Let $I=\left\langle x^{\alpha}: \alpha \in A \subset \mathbb{N}^{n}\right\rangle \triangleleft R$ be a monomial ideal then I can be writen in the form $I=\left\langle x^{\alpha_{1}}, \cdots, x^{a l p h a_{s}}\right\rangle$ where $\alpha_{i} \in A$ for all i. That is every monomial ideal I has a finite generating set.
Exercise 2.9. Draw the ideal $I=\left\langle x^{4} y^{2}, x^{3} y^{4}, x^{2} y^{5}\right\rangle \triangleleft k[x, y]$ on the graph of \mathbb{N}^{2} where (m, n) corresponds to the monomial $x^{m} y^{n}$ and determine a generating set for I.
Proposition 2.10. If $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \in I \triangleleft R$ is groebner basis then it generates I i.e. $\langle G\rangle=I$.
Proof. Since $\left\{g_{1}, g_{2}, \cdots, g_{t}\right\} \in I$ then $\left\langle g_{1}, g_{2}, \cdots, g_{t}\right\rangle \subseteq I$.
Now suppose $f \in I$ then by division algorithm in R we can express f as
$f=a_{1} g_{1}+a_{2} g_{2}+\cdots+a_{t} g_{t}+r$ where $r=0$ or is a polynomial none of whose terms is divisible by any $L T\left(g_{i}\right)$ for all i and $a_{i} \in R$.
Now if $r=0$ then $f=\sum a_{i} g_{i} \in\langle G\rangle$ and we are done. If $r \neq 0$ then we have $r=f-a_{1} g_{1}-$ $a_{2} g_{2}-\cdots-a_{t} g_{t}$ and so $L T(r) \in\langle L T(I)\rangle=\langle G\rangle$ i.e. $L T(r)$ is divisible by some $L T\left(g_{i}\right)$ which is a contradiction and so $r=0$. Hence $I=\langle G\rangle$.
Theorem 2. Every Ideal $I \triangleleft R=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ has a groebner basis.
Proof. The initial ideal $\langle I\rangle$ is a monomial ideal i.e. generated by monomial, $L T(f), f \in I$ and Dickson's lemma it is finitely generated i.e. there exists $g_{1}, g_{2}, \cdots, g_{t} \in I$ such that $\langle I\rangle=\left\langle L T\left(g_{1}\right), \cdots, L T\left(g_{t}\right)\right\rangle$ and this is the definition of a groebner basis and by the proposition above it generates I

Theorem 3. Hilbert Basis Theorem
Every Ideal $I \triangleleft R=k\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ is finitely generated.
Proof. Choose a monomial order on R and determine a groebner basis G for an ideal I then G finitely generates I.

Proposition 2.11. Let $G=\left\{g_{1}, g_{2}, \cdots, g_{t}\right\}$ be a groebner basis for an ideal I of R and let $f \in I$. Then there is a unique $r \in R$ satisfying
(a) No term of r is divisible by any $L T\left(g_{i}\right)$ for all i and
(b) there exists $g \in I$ such that $f=g+r$

Proof. Division algorithm gives $f=\sum a_{i} g_{i}+r$ so r is the remainder with $r=0$ or satifies (i) and now set $g=\sum a_{i} g_{i} \in I$.
Now for uniqueness of r, suppose $f=g+r$ and $f=g+r^{\prime}$ from which we have $r-r^{\prime}=g^{\prime}-g \in I$ if $r \neq r^{\prime}$ then $\left.L T\left(r-r^{\prime}\right) \in\langle L T(I)\rangle=\left\langle L T\left(g_{1}\right), \cdots, L T\left(g_{t}\right)\right)\right\rangle$
which implies that $L T\left(r-r^{\prime}\right)$ is divisible by some $L T\left(g_{i}\right)$ which is a contradiction.

3. How to determine a groebner basis

Given a set $F=\left\{f_{1}, \cdots, f_{s}\right\} \subset I \triangleleft R$ and $f \in R$ we shall denote by \bar{f}^{F} the remainder on division of f by F.
Definition 3.1. S-polynomials
Let $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right) \in \mathbb{N}^{n}$, and $\gamma=\left(\gamma_{1}, \cdots, \gamma_{n}\right)$ where $\gamma_{i}=\max \left(\alpha_{i}, \beta_{i}\right)$ and also $\left\{f_{1}, f_{2}, \cdots, f_{t}\right\} \in I$, an ideal then the S-polynomial of f_{i} and f_{j} denoted by $S\left(f_{i}, f_{j}\right)$ for all $i \neq j$ is defined as $S\left(f_{i}, f_{j}\right)=\frac{x^{\gamma}}{L T\left(f_{i}\right)} f_{i}-\frac{x^{\gamma}}{L T\left(f_{j}\right)} f_{j}$.
Theorem 4. BUCHBERGER'S CRITERION
A subset $G=\left\{g_{1}, \cdots, g_{t}\right\}$ of an ideal $I \triangleleft R$ is a groebner basis for $I \Longleftrightarrow$ the remainder on divison of $S\left(g_{i}, g_{j}\right.$ by G is zero for all $i \neq j$.
Proof. Cox.
Theorem 5. BUCHBERGER'S ALGORITHM
Let $I=\left\langle f_{1}, f_{2}, \cdots, f_{s}\right\rangle \neq 0 \triangleleft k[\bar{x}]$, then a groebner basis for I can be constructed in a finite number of stepsby the following algorithm:
ALGORITHM:
INPUT: $F=\left(f_{1}, \cdots, f_{s}\right)$
OUTPUT: groebner basis $G=\left(g_{1}, \cdots, g_{t}\right)$ for I
Let $G:=F$
Repeat
Let $G^{\prime}:=G$
For each pair $\{p, q\}, p \neq q$ in G^{\prime}
Do let $S:=S(p, q)^{G^{\prime}}$, the remainder of division of $S(p, q)$ by G^{\prime}
if $S \neq 0$
then $G:=G \cup\{S\}$
UNTIL $G=G^{\prime}$

Remark 3.2.

We basically compute the S-polynomials then check for each nonzero remainder, add it to the starting generating set and keep repeating the process until there are no more nonzero
remainders, the set obtained is a groebner basis which may be unnecessarily large. We can therefore apply the lemma below to reduce it.
Lemma 3.3. Let $G=\left\{g_{1}, \cdots, g_{s}\right\}$ be a groebner basis for an ideal I and $p \in G$ such that $L T(p) \in\langle L T(G-\{p\})\rangle$ then $G-\{p\}$ is a groebner basis.

Proof. left as an exercise.
Exercise 3.4. Groebner Basis construction
(1) Given the ideal $I=\left\langle x^{2}-y, x^{3}-z\right\rangle$ with lex order, determine a groebner basis for I.
(2) Given the ideal $I=\left\langle x^{3}-2 x y, x^{2} y-2 y^{2}+x\right\rangle$, w.r.t grlex order determine a groebner basis for I.
(3) Is the set $\left\{x y+1, y^{2}-1\right\}$ a groebner basis for $I=\left\langle x y+1, y^{2}-1\right\rangle \triangleleft k[x, y]$?

Lemma 3.5. A groebner basis $G=\left\{g_{1}, \cdots, g_{t}\right\}$ is said to be minimial if
(a) Each g_{i} is monic and
(b) There is no $p \in G$ such that $L T(p) \in\langle L T(G-\{p\})\rangle$

Remark 3.6.

(a) A minimial groebner basis is not unique.
(b) Two minimal groebner bases must have the same cardinality.
(c) Every ideal $I \triangleleft R=k\left[x_{1}, \cdots, x_{n}\right]$ has a unique reduce groebner basis. The next lemma aids us in that.

Lemma 3.7. A groebner basis $G=\left\{g_{1}, \cdots, g_{t}\right\}$ is said to be reduced if
(a) Each g_{i} is monic and
(b) There is no term of $p \in G$ is divisible by any $L T\left(g_{i}\right)$.

