
Report on the MSRI semester on Topological Aspects

of Real Algebraic Goemetry, Spring 2004.
Organizers: Selman Akbulut, Grigory Mikhalkin, Victoria Powers, Boris Shapiro, Frank
Sottile, and Oleg Viro.

Real algebraic geometry—the geometry of varieties defined by systems of real polynomial
equations—is a classical subject presently encompassing many distinct lines of inquiry. The
MSRI program on Topological Aspects of Real Algebraic Geometry covered modern devel-
opments in real algebraic geometry emphasizing its topological aspects and its relations to
other fields of mathematics. These relations arise as real algebraic varieties appear naturally
in various mathematical contexts, in particular in applied mathematics, and there continue
to be important interactions with these subjects.

Besides the traditional directions of topological classification of real algebraic varieties, the
program focussed on enumerative problems and interactions with convex geometry via the
theory of amoebas and tropical geometry. The main body of this report illustrates one story
of an interpolation problem, its relation to real algebraic geometry and to tropical algebraic
geometry, and how this story interacted with the MSRI program. It is adapted from an
article written for the MSRI Autumn 2004 newsletter.

A visual demonstration of the interaction between real algebraic geometry and convex
geometry is provided by these two pictures which come from constructions of real algebraic
plane curves with controlled topology, and invlove convex triangulations of polytopes.

The picture on the left (due to MSRI member Ilya Itenberg) is the construction, through
Viro’s method of combinatorial patchworking (Viro was a program organizer) of a counterex-
ample to a 90-year old conjecture by Ragsdale. The picture on the right (due to organizer
Sottile and MSRI research professor Kharlamov) uses a modified version of the Viro con-
struction (due to MSRI member Shustin) to construct a rational sextic with maximally many
flexes and no real nodes. Both constructions predate the MSRI program.
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1. Organization of the program

(1) Introductory Workshop on Topological Aspects of Real Algebraic Geom-

etry

(2) Topology and Geometry of Real Algebraic Varieties

(3) Real Algebraic Geometry and Geometric Modeling

(4) Algorithmic, Combinatorial and Applicable Real Algebraic Geometry

The first, second and fourth workshops were traditional MSRI program workshops. (1)
Introduced the topics of the semester to the members and to the mathematical public, and
then (2) and (4) were devoted to particular aspects of the broad themes of the semester.
The third was of a different character—it was devoted to an emerging application of toric
varieties to geometric modelling, and in particular to the role that real geometry plays in
these applications. It was the first workshop devoted to these applications held in North
America, and has served to strengthen ties between computer scientists and mathematicians
interested in these interactions.

The program also featured a weekly seminar, working seminars on tropical geometry and
real algebraic algorithms, as well as a graduate course at UC Berkeley taught by Oleg Viro
on the Topology of Real Algebraic Varieties.

2. Tropical Interpolation

Everyone knows that two points determine a line, and many people who have studied
geometry know that five points on the plane determine a conic. In general, if you have m

random points in the plane and you want to pass a rational curve of degree d through all of
them, there may be no solution to this interpolation problem (if m is too big), or an infinite
number of solutions (if m is too small), or a finite number of solutions (if m is just right).
It turns out that “m just right” means m = 3d−1 (m = 2 for lines and m = 5 for conics).

A harder question is, if m = 3d−1, how many rational curves of degree d interpolate the
points? Let’s call this number Nd, so that N1 = 1 and N2 = 1 because the line and conic
of the previous paragraph are unique. It has long been known that N3 = 12, and in 1873
Zeuthen [10] showed that N4 = 620. That was where matters stood until 1989, when Ran [6]
gave a recursion for these numbers. About ten years ago, Kontsevich and Manin [4] used
associativity in quantum cohomology of P

2 to give the elegant recursion
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The research themes in the MSRI Winter 2004 semester on Topological Aspects of Real
Algebraic Geometry included enumerative real algebraic geometry, tropical geometry, real
plane curves, and applications of real algebraic geometry. All are woven together in the
unfolding story of this interpolation problem, a prototypical problem of enumerative geome-
try, which is the art of counting geometric figures determined by given incidence conditions.
Here is another problem: how many lines in space meet four given lines? To answer this,
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note that three lines lie on a unique doubly-ruled hyperboloid.

The three lines lie in one ruling, and the second ruling consists of the lines meeting the given
three lines. Since the hyperboloid is defined by a quadratic equation, a fourth line will meet
it in two points. Through each of these two points there is a line in the second ruling, and
these are the two lines meeting our four given lines.

Enumerative geometry works best over the complex numbers, as the number of real figures
depends rather subtly on the configuration of the figures giving the incidence conditions.
For example, the fourth line may meet the hyperboloid in two real points, or in two complex
conjugate points, and so there are either two or no real lines meeting all four. Based on
many examples, we have come to expect that any enumerative problem may have all of its
solutions be real [8].

Another such problem is the 12 rational curves interpolating 8 points in the plane. Most
mathematicians are familiar with the nodal (rational) cubic shown on the left below. There
is another type of real rational cubic, shown on the right.

In the second curve, two complex conjugate branches meet at the isolated point. If we let
N(τ) be the number of real curves of type τ interpolating 8 given points, then Kharlamov
and Degtyarev [1] showed that

N( ) − N( ) = 8 .

Their elementary topological methods are described on the web†.
Since there are at most 12 such curves, N( ) + N( ) ≤ 12, and so there are 8, 10, or

12 real rational cubics interpolating 8 real points in the plane, depending upon the number
(0, 1, or 2) of cubics with an isolated point. Thus there will be 12 real rational cubics

† http://www.math.tamu.edu/~sottile/stories/real cubics.html
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interpolating any 8 of the 9 points of intersection of the two cubics below.

Welschinger [9], who was an MSRI postdoc in the program, developed this example into
a theory. In general, the singularities of a real rational plane curve C are nodes or isolated
points. The parity of the number of nodes is its sign σ(C) ∈ {±1}. Given 3d−1 real points
in the plane, Welschinger considered the quantity

∣

∣

∣

∑

σ(C)
∣

∣

∣
,

the sum over all real rational curves C of degree d that interpolate the points. He showed that
this weighted sum does not depend upon the choice of points. Write Wd for this invariant
of Welschinger. For example, we just saw that W3 = 8.

This was a breakthrough, as Wd was (almost) the first truly non-trivial invariant in enu-
merative real algebraic geometry. Note that Wd is a lower bound for the number of real
rational curves through 3d−1 real points in the plane, and Wd ≤ Nd.

Mikhalkin, who was an organizer of the semester, provided the key to computing Wd

using tropical algebraic geometry [5]. This is the geometry of the tropical semiring, where
the operations of max and + on real numbers replace the usual operations of + and ·. A
tropical polynomial is a piecewise linear function of the form

T (x, y) = max
(i,j)∈∆

{x · i + y · j + ci,j} ,

where ∆ ⊂ Z
2 is the finite set of exponents of T and ci,j ∈ R are its coefficients. When

∆ is the set of all nonnegative (i, j) with i + j ≤ d, then the tropical polynomial T defines
a tropical (plane) curve of degree d, which is the set of points (x, y) where T (x, y) is not
differentiable. Here are some tropical curves.

@I
node

line conic cubic rational cubic

The degree of a tropical curve is the number of rays tending to infinity in either of the three
directions West, South, or North East. A tropical curve is rational if it is a piecewise-linear
immersion of a tree. Nodes have valence 4.

Mikhalkin showed that there are only finitely many rational tropical curves of degree d

interpolating 3d−1 generic points. While the number of such curves does depend upon the
choice of points, Mikhalkin attached positive multiplicities to each tropical curve so that the
weighted sum does not, and is in fact equal to Nd. He also reduced these multiplicities and
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the enumeration of tropical curves to the combinatorics of lattice paths within a triangle of
side length d.

Mikhalkin used a correspondence involving the map Log: (C∗)2 → R
2 defined by (x, y) 7→

(log |x|, log |y|), and a certain ‘large complex limit’ of the complex structure on (C∗)2. Under
this large complex limit, rational curves of degree d interpolating 3d−1 points in (C∗)2

deform to ‘complex tropical curves’, whose images under Log are ordinary tropical curves
interpolating the images of the points. The multiplicity of a tropical curve T is the number
of complex tropical curves which project to T .

What about real curves? Following this correspondence, Mikhalkin attached a real mul-
tiplicity to each tropical curve and showed that if the tropical curves interpolating a given
3d−1 points have total real multiplicity N , then there are 3d−1 real points which are inter-
polated by N real rational curves of degree d. This real multiplicity is again expressed in
terms of lattice paths.

What about Welschinger’s invariant? In the same way, Mikhalkin attached a signed
weight to each tropical curve (a tropical version of Welschinger’s sign) and showed that
the corresponding weighted sum equals Welschinger’s invariant. As before, this tropical
signed weight may be expressed in terms of lattice paths.

During the semester at MSRI, Itenberg, Kharlamov, and Shustin [3] used Mikhalkin’s
results to estimate Welschinger’s invariant. They showed that Wd ≥

1
3
d!, and also

logWd = logNd + O(d), and logNd = 3d log d + O(d) .

Thus at least logarithmically, most rational curves of degree d interpolating 3d−1 real points
in the plane are real.

There are two other instances of this phenomenon of lower bounds, the first of which
predates Welschinger’s work. Suppose that d is even and let W (s) be a real polynomial of
degree k(d − k + 1). Then MSRI program members Eremenko and Gabrielov [2] showed
that there exist real polynomials f1(s), . . . , fk(s) of degree d whose Wronski determinant is
W (s). In fact, they proved a lower bound on the number of k-tuples of polynomials, up
to an equivalence. Similarly, while at MSRI, Soprunova and organizer Sottile [7] studied
sparse polynomial systems associated to posets, showing that the number of real solutions
is bounded below by the sign-imbalance of the poset. Such lower bounds to enumerative
problems, which imply the existence of real solutions, are important for applications.

For example, this story was recounted at dinner one evening at the MSRI Workshop on
Geometric Modeling and Real Algebraic Geometry in April 2004. A participant, Schicho,
realized that the result W3 = 8 for cubics explained why a method he had developed always
seemed to work. This was an algorithm to compute an approximate parametrization of an
arc of a curve, via a real rational cubic interpolating 8 points on the arc. It remained to find
conditions that guaranteed the existence of a solution which is close to the arc. This was
just solved by Fiedler-Le Touzé, an MSRI postdoc who had studied cubics (not necessarily
rational) interpolating 8 points to help classify real plane curves of degree 9.
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3. Participation

There were 83 members in residence at MSRI for two weeks or more during the program.
Of these, 72 received some form of support: 17 senior researchers, 8 postdoctoral fellows and
44 general members. 39 participants were in residence for 2 months or more, with all postdocs
and 6 senior members (including 3 organizers) in residence for the entire semester. 35 of the
funded participants came from US institutions, and of those 6 are from Group I institutions
(defined by the AMS classification). There were 12 funded women in the program. Of the
eight postdocs, 2 were women, 1 Latino, 4 non-US, and 2 from Group 1 institutions. All
postdocs went from MSRI to academic positions, 2 at Group 1 US universities, 2 at other
US institutions, and 4 at foreign institutions.

4. Partial list of publications resulting from the semester

Another perspective on the semester is provided by the following partial list of publica-
tions that resulted or benefited from visits to MSRI during the semester. The semester on
Topological Aspects of Real Algebraic Geometry enjoyed scientific links with the other two
programs running at MSRI in the year 2003-2004, Discrete and Computational Geometry
and Symplectic Geometry. In particular, any works on moduli spaces or tropical geometry
(11, 19, 25, 27, 28, 33–36, 40, 44, 48-50), were of interest to or also involved members from
the other two programs, and the publications 5, 9, 16, 20, 24, 32, 42, and 43 involved either
participants or topics from one of the other programs.
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(3) S. Akbulut and S. Durusoy, An involution acting nontrivially on Heegard-Floer ho-
mology, Fields Institute Proceedings, to appear.

(4) S. Akbulut and H. King, Transcendental submanifolds of RP
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Helv., to appear.
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