
FRONTIERS OF REALITY IN SCHUBERT CALCULUS

FRANK SOTTILE

Abstract. The theorem of Mukhin, Tarasov, and Varchenko (formerly the Sha-
piro conjecture for Grassmannians) asserts that all (a priori complex) solutions
to certain geometric problems from the Schubert calculus are actually real. Their
proof is quite remarkable, using ideas from integrable systems, Fuchsian differ-
ential equations, and representation theory. Despite this advance, the original
Shapiro conjecture is not yet settled. While it is false as stated, it has several
interesting and not quite understood modifications and generalizations that are
likely true.

These notes will introduce the Shapiro conjecture for Grassmannians, give some
idea of its proofs and consequences, its links to other subjects, and sketch its
extensions.

Introduction

While it is not unusual for a univariate polynomial f with real coefficients to have
some real roots—under reasonable assumptions we expect

√
deg f real roots [20]—it

is rare for a polynomial to have all of its roots be real. In fact, the primary example
from nature that comes to mind is when f is the characteristic polynomial of a
symmetric matrix, as all eigenvalues of a symmetric matrix are real.

Similarly, when a system of real polynomial equations has finitely many (a priori
complex) solutions, we expect some, but likely not all, solutions to be real. In fact,
upper bounds on the number of real solutions [1, 18] sometimes ensure that not
all solutions can be real. As before, the primary example that comes to mind of a
system with only real solutions is the system of equations for the eigenvectors and
eigenvalues of a real symmetric matrix.

Here is another system of polynomial equations which also turns out to have only
real solutions. The Wronskian of univariate polynomials f0, . . . , fn ∈ C[t] is the
determinant

det











f0(t) f1(t) · · · fn(t)
f ′

0(t) f ′
1(t) · · · f ′

n(t)
...

...
. . .

...

f
(n)
0 (t) f

(n)
1 (t) · · · f

(n)
n (t)











.

Up to a scalar multiple, the Wronskian depends only upon the linear span P of
the polynomials f0, . . . , fn in the vector space C[t] of all polynomials. This scaling
retains only the information of the roots of the Wronskian and their multiplici-
ties. Recently, Mukhin, Tarasov, and Varchenko [22] proved the remarkable (but
seemingly innocuous) result.
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Theorem 1. If the Wronskian of a space P of polynomials has only real roots, then
P has a basis of real polynomials.

While not immediately apparent, those (n+1)-dimensional subspaces P of C[t]
with a given Wronskian W are the solutions to a system of polynomial equations
which depend on the roots of W . In Section 1, we explain how the Shapiro conjecture
for Grassmannians is equivalent to Theorem 1.

The proof of Theorem 1 uses the Bethe ansatz for the Gaudin model on certain
modules (representations) of the Lie algebra sln+1C. This is a method to decompose
a module of sln+1C into irreducible submodules that is compatible with a family of
commuting operators called the Gaudin Hamiltonians. It includes a set-theoretic
map from the spaces of polynomials with a given Wronskian to certain Bethe eigen-
vectors for the Gaudin Hamiltonians. A coincidence of numbers, from the Schubert
calculus on one hand and from representation theory on the other, implies that this
map is a bijection. As the Gaudin Hamiltonians are symmetric with respect to
the positive definite Shapovalov form, their eigenvectors and eigenvalues are real.
Theorem 1 follows as eigenvectors with real eigenvalues must come from real spaces
of polynomials. We describe this in Sections 2, 3, and 4.

The geometry behind the statement of Theorem 1 appears in many other guises,
some of which we describe in Section 5. These include linear series on the projective
line [5] and rational curves with prescribed flexes [17]. A special case of the Shapiro
conjecture concerns a remarkable statement about rational functions with prescribed
critical points, and was proved in this form by Eremenko and Gabrielov [8]. They
showed that a rational function whose critical points lie on a circle in the Riemann
sphere maps that circle to another circle.

A generalization of Theorem 1 by Mukhin, Tarasov, and Varchenko [24] implies
the following particularly attractive statement from matrix theory. Let β1, . . . , βn

be distinct real numbers, α1, . . . , αn be complex numbers, and consider the matrix

Z :=









α1 (β1 − β2)
−1 · · · (β1 − βn)−1

(β2 − β1)
−1 α2 · · · (β2 − βn)−1

...
...

. . .
...

(βn − β1)
−1 (βn − β2)

−1 · · · αn









.

Theorem 2. If Z has only real eigenvalues, then α1, . . . , αn are real.

Unlike its proof, the statement of Theorem 2 has nothing to do with Schubert cal-
culus or representations of sln+1C or integrable systems, and it remains a challenge
to prove it directly.

The statement and proof of Theorem 1 is only part of this story. Theorem 1
settles (for Grassmannians) a conjecture about Schubert calculus originally made
by Boris Shapiro and Michael Shapiro in 1993/4. While this Shapiro conjecture is
false for most other flag manifolds, there are appealing corrections and generaliza-
tions supported by theoretical evidence and also by overwhelming computational
evidence. We sketch this in Section 6.

There are now three proofs [14, 22, 25] of the Shapiro conjecture for Grassmanni-
ans, all passing through integrable systems and representation theory. In the second
proof [14], the solutions are identified with certain representations of a real rational
Cherednik algebra [11], and reality follows as these representations are necessarily
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real. The third proof [25] provides a surprising and deep connection between the
Schubert calculus and the representation theory of sln+1C. We will only treat the
first proof in these notes. During 2009, these notes will be expanded into a more
complete treatment of this remarkable conjecture and its proofs.

First steps: the problem of four lines. We close this Introduction by illustrating
the Schubert calculus and the Shapiro conjecture with some beautiful geometry.
Consider the set of all lines in three-dimensional space. This set (a Grassmannian)
is four-dimensional, which we may see by counting degrees of freedom for a line ℓ
as follows. Fix planes H and H ′ that meet ℓ in points p and p′.

ℓ

p

p′

H

H ′

Since each point p and p′ has two degrees of freedom to move within its plane, we
see that the line ℓ enjoys four degrees of freedom.

Similarly, the set of lines that meet a fixed line is three-dimensional. More pa-
rameter counting tells us that if we fix four lines, then the set of lines that meet
each of our fixed lines will be zero-dimensional. That is, it consists of finitely many
lines. The Schubert calculus gives algorithms to determine this number of lines. We
instead use elementary geometry to show that this number is 2.

The Shapiro conjecture asserts that if the four fixed lines are chosen in a particular
way, then both solution lines will be real. This special choice begins by specifying
a twisted cubic curve, γ. While any twisted cubic will do, we’ll take the one with
parameterization

(1) γ : t 7−→ (6t2 − 1, 7
2
t3 + 3

2
t, 3

2
t − 1

2
t3) .

Our fixed lines will be four lines tangent to γ.
We understand the lines that meet our four tangent lines by first considering lines

that meet three tangent lines. We are free to fix the first three tangent points to
be any of our choosing, for instance, γ(−1), γ(0), and γ(1). Then the three lines
ℓ(−1), ℓ(0), and ℓ(1) tangent at these points have parameterizations

(−5 + s, 5 − s,−1) , (−1, s, s) , and (5 + s, 5 + s, 1) for s ∈ R.

These lines all lie on the hyperboloid H of one sheet defined by

(2) x2 − y2 + z2 = 1 ,

which has two rulings by families of lines. The lines ℓ(−1), ℓ(0), and ℓ(1) lie in one
family, and the other family consists of the lines meeting ℓ(−1), ℓ(0), and ℓ(1). This
family is drawn on the hyperboloid H in Figure 1.

The lines that meet ℓ(−1), ℓ(0), ℓ(1), and a fourth line ℓ(s) will be those in this
second family that also meet ℓ(s). In general, there will be two such lines, one
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for each point of intersection of line ℓ(s) with H, as H is defined by the quadratic
polynomial (2). The remarkable geometric fact is that every such tangent line, ℓ(s)
for s 6∈ {−1, 0, 1}, will meet the hyperboloid in two real points. We illustrate this
when s = 0.31 in Figure 1, highlighting the two solution lines.

ℓ(s)
ℓ(1)

ℓ(−1)

ℓ(0)

γ(s)
¡

¡
¡

¡
¡

¡
¡

¡
¡¡µ

γ

H

Figure 1. The problem of four lines.

The Shapiro conjecture and its extensions claim that this reality always happens:
If the conditions for a Schubert problem are chosen relative to a rational normal
curve (here, the twisted cubic curve γ of (1)), then all solutions will be real. When
the Schubert problem comes from a Grassmannian (like this problem of four lines),
the Shapiro conjecture is true—this is the theorem of Mukhin, Tarasov, and Var-
chenko. For most other flag manifolds, it is known to fail, but in very interesting
ways.

Our plan is to explain this conjecture more precisely for Grassmannians, outline
the first proof of Mukhin, Tarasov, and Varchenko, and then give some of its conse-
quences. Along the way we will discuss some special cases of the conjecture which at
first glance do not seem to have any relation to Schubert calculus or representation
theory. We conclude with a sketch of the emerging landscape of conjectures for
other flag manifolds which generalize and correct the Shapiro conjecture.

Acknowledgments. We thank the many people who have helped us to better learn
this story and to improve this exposition. In particular, we thank Eugene Mukhin,
Alexander Varchenko, Aaron Lauve, Zach Teitler, and Nickolas Hein.

1. The Shapiro conjecture for Grassmannians

Let Cd[t] be the set of complex polynomials of degree at most d in the inde-
terminate t, a vector space of dimension d+1. Fix a positive integer n < d, and
let Grassn,d be the set of all (n+1)-dimensional linear subspaces P of Cd[t]. This
Grassmannian is a complex manifold of dimension (n+1)(d−n) [15, Ch. 1.5].
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The main character in our story is the Wronski map, which associates a point
P ∈ Grassn,d to the Wronskian of a basis for P . If {f0(t), . . . , fn(t)} is a basis for
P , its Wronskian is the determinant of the derivatives of the basis,

(1.1) Wr(f0, . . . , fn) := det











f0 f1 · · · fn

f ′
0 f ′

1 · · · f ′
n

...
...

. . .
...

f
(n)
0 f

(n)
1 · · · f

(n)
n











,

which is a nonzero polynomial of degree of at most (n+1)(d−n). This does not quite
define a map Grassn,d → C(n+1)(d−n)[t], as choosing a different basis for P multiplies
the Wronskian by a nonzero constant. If we consider the Wronskian up to a nonzero
constant, we obtain the Wronski map

(1.2) Wr : Grassn,d −→ P(C(n+1)(d−n)[t]) ≃ P
(n+1)(d−n) ,

where P(V ) denotes the projective space consisting of all 1-dimensional linear sub-
spaces of a vector space V .

We restate Theorem 1, the simplest version of the Theorem of Mukhin, Tarasov,
and Varchenko [22].

Theorem 1. If the Wronskian of a space P of polynomials has only real roots, then
P has a basis of real polynomials.

The problem of four lines is a special case of Theorem 1 when d = 3 and n = 1.
To see this, note that if we apply an affine function a + bx + cy + dz to the curve
γ(t) of (1), we obtain a cubic polynomial in C3[t], and every cubic polynomial
comes from a unique affine function. A line ℓ in C

3 (actually in P
3) is cut out by a

two-dimensional space of affine functions, which gives a 2-dimensional space Pℓ of
polynomials in C3[t], and hence a point Pℓ ∈ Grassn,d.

It turns out that the Wronskian of a point Pℓ ∈ Grassn,d is a quartic polynomial
with a root at s ∈ C if and only if the line ℓ corresponding to Pℓ meets the line ℓ(s)
tangent to the curve γ at γ(s). Thus a line ℓ meets four lines tangent to γ at real
points if and only if the corresponding point Pℓ ∈ Grassn,d has a Wronskian whose
roots are these four points. Since these points are real, Theorem 1 implies that Pℓ

has a basis of real polynomials. Thus ℓ is cut out by real affine functions, and hence
is real.

1.1. Geometric form of the Shapiro Conjecture. Let P ∈ Grassn,d be a sub-
space. We consider the order of vanishing at a point s ∈ C of polynomials in a basis
for P . There will be a minimal order a0 of vanishing for these polynomials. Suppose
that f0 vanishes to this order. Subtracting an appropriate multiple of f0 from each
of the other polynomials, we may assume that they vanish to order greater than a0

at s. Let a1 be the minimal order of vanishing at s of these remaining polynomials.
Continuing in this fashion, we obtain a basis f0, . . . , fn of P and a sequence

0 ≤ a0 < a1 < · · · < an ≤ d ,

where fi vanishes to order ai at s. We call this sequence aP (s) the ramification of
P at s. For a sequence a : 0 ≤ a0 < a1 < · · · < an ≤ d, write Ω◦

a
(s) for the set of
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points P ∈ Grassn,d with ramification a at s, which is a Schubert cell of Grassn,d.
It has codimension

|a| := a0 + a1−1 + · · · + an−n ,

as may be seen by expanding the basis f0, . . . , fn of P in the basis {(t − s)i | i =

0, . . . , d} of Cd[t]. Since f
(i)
j vanishes to order at least aj − i at s and f

(i)
i vanishes

to order exactly ai − i at s, we see that the Wronskian of a subspace P ∈ Ω◦
a
(s)

vanishes to order exactly |a| at s.
Let Grass◦n,d consist of subspaces P ∈ Grassn,d that have a basis f0, . . . , fn where

fi has degree d−n+1. This is an open subset of Grassn,d. When P ∈ Grass◦n,d,
we obtain the Plücker formula for the total ramification of a general subspace P of
Cd[t],

(1.3) dim Grassn,d =
∑

s∈C

|aP (s)| .

In general, the total ramification of P is bounded by the dimension of Grassn,d. (One
may also define ramification at infinity for subspaces P 6∈ Grass◦n,d, to obtain the
Plücker formula in full generality.) If aP (s) = 0 < 1 < · · · < n, so that |aP (s)| = 0,
then we say that P is unramified at s. In this language, Theorem 1 states that if a
subspace P ∈ Grassn,d is ramified only at real points, then P is real in that it has
a basis of real polynomials.

Let us introduce some more geometry. Let W be the Wronskian of P . Then

P ∈
⋂

s : W (s)=0

Ω◦
aP (s)(s) ,

and this intersection consists of all subspaces with Wronskian W . In particular, P
lies in the intersection of the closures of these Schubert cells, which we now describe.
For each s ∈ C, Cd[t] has a complete flag of subspaces

F•(s) : C · (t−s)d ⊂ C1[t] · (t−s)d−1 ⊂ · · · ⊂ Cd−1[t] · (t−s) ⊂ Cd[t] .

More generally, a flag F• is a sequence of subspaces

F• : F1 ⊂ F2 ⊂ · · · ⊂ Fd ⊂ Cd[t] ,

where Fi has dimension i. For a sequence a and a flag F•, the Schubert variety

(1.4) {P ∈ Grassn,d | dim
(

P ∩ Fd+1−aj

)

≥ n+1 − j, for j = 0, 1, . . . , n} ,

is a subvariety of Grassn,d, written ΩaF•. It consists of linear subspaces P having
special position (encoded by a) with respect to the flag F•. Since dim(P ∩Fd+1−i(s))
counts the number of linearly independent polynomials in P that vanish to order at
least i at s, we see that Ω◦

a
(s) ⊂ ΩaF•(s). More precisely, ΩaF•(s) is the closure of

the Schubert cell Ω◦
a
(s) and it is the disjoint union of Ω◦

b
(s) for b ≥ a, where ≥ is

componentwise comparison.

Given ramification sequences a(1), . . . , a(m) and flags F
(1)
• , . . . , F

(m)
• , the intersec-

tion

(1.5) Ωa(1)F (1)
•

⋂

Ωa(2)F (2)
•

⋂

· · ·
⋂

Ωa(m)F (m)
•
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consists of those linear subspaces P ∈ G having specified position a(i) with respect

to the flag F
(i)
• , for each i = 1, . . . ,m. Kleiman [19] showed that if the flags F

(i)
• are

general, then the intersection (1.5) is (generically) transverse.
A Schubert problem is a list A := (a(1), . . . , a(m)) of sequences satisfying

(n+1)(d−n) ( = dim Grassn,d ) = |a(1)| + · · · + |a(m)| .
Given a Schubert problem, Kleiman’s Theorem implies that a general intersec-
tion (1.5) will be zero-dimensional and thus consist of finitely many points. By
transversality, the number δ(A) of these points is independent of choice of general
flags. The Schubert calculus, through the Littlewood-Richardson rule [12], gives
algorithms to determine δ(A).

We mention an important special case. Let ι := 0 < 1 < · · · < n−1 < n+1 be the
unique ramification sequence with |ι| = 1, and suppose that (ι, . . . , ι) is a Schubert
problem, so that (n+1)(d−n) is the number of occurrences of ι. Write ιn,d for this
sequence. Schubert [30] gave the following formula

(1.6) δ(ιn,d) = [(n+1)(d−n)]!
1!2! · · ·n!

(d−n)!(d−n+1)! · · · d!
.

By (1.3), the total ramification (aP (s) | |aP (s)| > 0) of a subspace P ∈ Grass◦n,d is
a Schubert problem. Let W be the Wronskian of P . We would like the intersection
containing P

(1.7)
⋂

s : W (s)=0

ΩaP (s)F•(s)

to be transverse and zero-dimensional. However, Kleiman’s Theorem does not apply,
as the flags F•(s) for s a root of W are not generic. For example, in the problem
of four lines, if the Wronskian is t4 − t, then the corresponding intersection (1.7) of
Schubert varieties is not transverse. (This worked out in detail in [5, §9].)

We can see that this intersection (1.7) is however always zero-dimensional. Note
that any positive-dimensional subvariety meets ΩιF•, for any flag F•. (This is be-
cause, for example, ΩιF• is a hyperplane section of Grassn,d in its Plücker embedding
into projective space.) In particular, if the intersection (1.7) is not zero-dimensional,
then given a point s ∈ P

1 with W (s) 6= 0, there will be a point P ′ in (1.7) which also
lies in ΩιF•(s). But then the total ramification of P ′ does not satisfy the Plücker
formula (1.3), as its ramification strictly contains the total ramification of P .

A consequence of this argument is that the Wronski map (1.2) is a finite map. In
particular, all of its fibers are finite. The intersection number δ(ιn,d) in (1.6) is an
upper bound for the cardinality of a fiber. By Sard’s Theorem, this upper bound is
obtained for generic Wronskians.

Theorem 1.8. There are finitely many spaces of polynomials P ∈ Grassn,d with a
given Wronskian. For a general polynomial W (t) of degree (n+1)(d−n), there are
exactly δ(ιn,d) spaces of polynomials with Wronskian W (t).

When W has distinct roots, these spaces of polynomials are exactly the points in
the intersection (1.7), where aP (s) = ι at each root s of W . A limiting argument, in
which the roots of the Wronskian are allowed to collide one-by-one, proves a local
form of Theorem 1.
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Theorem 1.9 ([32]). If the roots of a polynomial W (t) of degree (n+1)(d−n) are
real, distinct, and sufficiently clustered together, then there are δ(ιn,d) spaces of
polynomials with Wronskian W (t), so that the intersection (1.7) is transverse, and
each such space of polynomials is real.

We noted that the intersection (1.7) is not transverse when d = 3, n = 1, and
W (t) = t4 − t. It turns out that it is always transverse when the roots of the
Wronskian are distinct and real. This is the stronger form of the Theorem of Mukhin,
Tarasov, and Varchenko.

Theorem 1.10 ([25]). For any Schubert problem (a(1), . . . , a(m)) and any distinct
real numbers s1, . . . , sm, the intersection

(1.11) Ωa(1)F•(s1)
⋂

Ωa(2)F•(s2)
⋂

· · ·
⋂

Ωa(m)F•(sm)

is transverse and consists solely of real points.

This theorem (without the transversality) is the original statement of the con-
jecture of Shapiro and Shapiro for Grassmannians, which was posed in exactly this
form to the author in May 1995. The Shapiro conjecture was first discussed and
studied in detail in [33], where significant computational evidence was presented
(see also [35] and [28]). The results and computations in [33], as well as the result
of Theorem 1.9, highlighted the key role that transversality seemed to play in the
conjecture. This conjecture also appeared in [31].

We will not discuss the proof of Theorem 1.10, except to remark that its main
ingredient is an isomorphism between algebraic objects associated to the intersec-
tion (1.11) and to certain representation-theoretic data. This isomorphism provides
a very deep link between Schubert calculus for the Grassmannian and the represen-
tation theory of sln+1C.

We will however sketch the proof of Theorem 1 in the next three sections.

2. Spaces of polynomials with given Wronskian

Theorem 1.8 enables the reduction of Theorem 1 to a special case. Since the
Wronski map is finite, a standard limiting argument (given for example in Section
1.3 of [22] or Remark 3.4 of [33]) shows that it suffices to prove Theorem 1 when
the Wronskian has distinct real roots that are sufficiently general. Since δ(ιn,d) is
the upper bound for the number of spaces of polynomials with given Wronskian, it
suffices to construct this number of distinct spaces of real polynomials with a given
Wronskian, when the Wronskian has distinct real roots that are sufficiently general.
In fact, this is exactly what Mukhin, Tarasov, and Varchenko do.

Theorem 1′. If s1, . . . , s(n+1)(d−n) are generic real numbers, there exist exactly
δ(ιn,d) distinct real vector spaces of polynomials P with Wronskian

∏

i(t − si).

The proof proceeds by first constructing δ(ιn,d) distinct spaces of polynomials
with a given Wronskian having generic complex roots, which we describe in Sec-
tion 2.1. This uses a Fuchsian differential equation given by the critical points of
a remarkable symmetric function, called the master function. Critical points of the
master function are also used in the Bethe ansatz for the Gaudin model, which
is a method for decomposing a representation V of sln+1C into irreducibles that
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is compatible with the action of certain commuting operators, called the Gaudin
Hamiltonians. In particular, a critical point of the master function gives a Bethe
eigenvector of the Gaudin Hamiltonians which is also a highest weight vector for an
irreducible submodule of V . This is described in Section 3, where the eigenvalues
of the Gaudin Hamiltonians on a Bethe vector are shown to be the coefficients of
the Fuchsian differential equation giving the corresponding spaces of polynomials.
Finally, the reality of the space of polynomials follows as the Gaudin Hamiltonians
are real symmetric operators when the Wronskian has only real roots. This implies
that the eigenvalues are real, and thus the Fuchsian differential equation and the
corresponding space of polynomials is also real. In all, this is an extraordinary proof.

2.1. Critical points of master functions. The construction of δ(ιn,d) spaces of
polynomials with a given Wronskian begins with the critical points of a symmet-
ric rational function that arose in the study of hypergeometric solutions to the
Knizhnik-Zamolodchikov equations [29], as well as the Bethe ansatz method for the
Gaudin model. (See §3.)

The master function Φ(x; s) depends upon a point s := (s1, . . . , s(n+1)(d−n)) ∈
C

(n+1)(d−n), whose coordinates will be the roots of our Wronskian W , and an addi-
tional

(

n+1
2

)

(d−n) complex variables

x := (x
(0)
1 , . . . , x

(0)
d−n, x

(1)
1 , . . . , x

(1)
2(d−n), . . . , x

(n−1)
1 , . . . , x

(n−1)
n(d−n)) .

Each set of variables x(i) := (x
(i)
1 , . . . , x

(i)
(i+1)(d−n)) will be the roots of certain inter-

mediate Wronskians.
Define the master function Φ(x; s) by the (rather formidable) formula

(2.1)

n−1
∏

i=0

∏

1≤j<k≤(i+1)(d−n)

(x
(i)
j − x

(i)
k )2

n(d−n)
∏

j=1

(n+1)(d−n)
∏

k=1

(x
(n−1)
j − sk)

n−2
∏

i=0

(i+1)(d−n)
∏

j=1

(i+2)(d−n)
∏

k=1

(x
(i)
j − x

(i+1)
k )

.

This is separately symmetric in each set of variables x(i). This master function has
a much simpler formulation which we give below (2.4).

The critical points of the master function are solutions to the system of equations

(2.2)
1

Φ

∂

∂x
(i)
j

Φ(x; s) = 0 for i = 0, . . . , n−1, j = 1, . . . , (i+1)(d−n) .

When the parameters s are generic, these Bethe ansatz equations turn out to have
finitely many solutions. The master function is invariant under the group

S := Sd−n × S2(d−n) × · · · × Sn(d−n) ,

where Sm for the group of permutations of 1, . . . , n, and the factor S(i+1)(d−n) per-

mutes the variables in x(i). Thus S acts on the critical points. The invariants of
this action are polynomials whose roots are the coordinates of the critical points.
Given a critical point x, define monic polynomials px := (p0, . . . , pn−1) where the
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components x(i) of x are the roots of pi,

(2.3) pi :=

(i+1)(d−n)
∏

j=1

(t − x
(i)
j ) for i = 0, . . . , n−1 .

Also write pn for the Wronskian, the monic polynomial with roots s. The master
function is greatly simplified by this notation. Recall that the discriminant Discr(f)
of a polynomial f is the square of the product of differences of its roots and the
resultant Res(f, g) is the product of all differences of the roots of f and g [4]. Then
the formula for the master function (2.1) is

(2.4) Φ(x; s) =
n

∏

i=0

Discr(pi)

/

n−1
∏

i=0

Res(pi, pi+1) .

The connection between the critical points of the master function and spaces
of polynomials is through a Fuchsian differential equation of order n+1 that has
only polynomial solutions. Given (an orbit of) a critical point x represented by the
list of polynomials px and write pn for the Wronskian W , define the fundamental
differential operator Dx of the critical point x by

(2.5)
( d

dt
− ln′

( pn

pn−1

))

· · ·
( d

dt
− ln′

(p1

p0

))( d

dt
− ln′(p0)

)

,

where ln′(f) := d
dt

ln f . Write Vx for the kernel of Dx, which we call the fundamental
space of the critical point x.

Example 2.6. Since
( d

dt
− ln′(p)

)

p =
( d

dt
− p′

p

)

p = p′ − p′

p
p = 0 ,

we see that p0 is a solution of Dx. It is instructive to look at Dx and Vx when n = 1.
Suppose that f a solution to Dx that is linearly independent from p0. Then

0 =
( d

dt
− ln′

(W

p0

))( d

dt
− ln′(p0)

)

f =
( d

dt
− ln′

(W

p0

))

(

f ′ − p′0
p0

f
)

.

This implies that
W

p0

= f ′ − p′0
p0

f ,

or rather that W = f ′p0 − p′0f = Wr(f, p0), so that the kernel of Dx is a space of
functions with Wronskian W .

Mukhin and Varchenko showed that what we just saw is always the case, and
much more.

Theorem 2.7 ([26], Section 5). Suppose that Vx is the fundamental space of the
critical point x of the master function Φ whose parameters s are roots of a polynomial
W .

(1) The critical point x is recovered from Vx as follows. Suppose that f0, . . . , fn

are monic polynomials in Vx with deg fi = d−n + i. Then, up to scalar
multiples, the polynomials p0, . . . , pn−1 in the sequence px are

f0 , Wr(f0, f1) , Wr(f0, f1, f2) , . . . , Wr(f0, . . . , fn−1) .
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(2) Vx is a space of polynomials of degree d and dimension n+1 lying in G◦ with
Wronskian W .

Statement (1) is quite general; it generalizes Example 2.6 and gives a recipe for
writing the differential operator with kernel generated by sufficiently differentiable
functions f0(t), f2(t), . . . , fn(t). It follows from some interesting identities among
Wronskians shown in the Appendix of [26]. Statement 2 is the deeper of the two.
Together these imply that the kernel V of an operator of the form (2.5) is a space
of polynomials with Wronskian W if and only if the the polynomials p0, . . . , pn−1

come from the critical points of the master function (2.1) corresponding to W .
Thus there is an injection from S-orbits of critical points of the master function Φ

with parameters s to spaces of polynomials in Grass◦n,d whose Wronskian has roots s.
Mukhin and Varchenko also showed that when s is generic, this is in fact a bijection.

Theorem 2.8 (Theorem 6.1 in [27]). For generic complex numbers s, the master
function Φ has δ(ιn,d) distinct orbits of critical points and all critical points are
nondegenerate.

The structure (but not of course the details) of their proof is remarkably similar to
the structure of the proof of Theorem 1.9 (given in [32]); they allow the parameters
to collide one-by-one, and show how the orbits of critical points behave. Ultimately,
they obtain the same recursion as in [32], which mimics the Pieri formula for the
branching rule for tensor products of representations of sln+1 with its fundamental
representation Vωn

. This same structure is also found in the main argument in [7].
In fact, this is the same recursion in a that Schubert established for intersection
numbers δ(a, ι, . . . , ι), and then solved to obtain the formula (1.6).

3. The Bethe ansatz for the Gaudin model

The Bethe ansatz is intended to give an explicit decomposition of a representa-
tion V of sln+1C into irreducible submodules that is also compatible with the action
of a family of commuting operators on V , called the Gaudin Hamiltonians. These
commuting operators constitute an integrable system. Its development, justifica-
tion, and refinements are the subject of a large body of work, a small part of which
we mention. One unintended consequence (besides the proof of the Shapiro conjec-
ture) is a deeper link between Schubert calculus on the Grassmannian Grassn,d and
representation theory of sln+1C than had been known previously.

3.1. Representations of sln+1C. The Lie algebra sln+1C (or simply sln+1) is the
space of (n+1) × (n+1)-matrices with zero trace. It has a decomposition

sln+1 = n− ⊕ h ⊕ n+ ,

where n+ (n−) are the strictly upper (lower) triangular matrices, and h consists of
the diagonal matrices with zero trace.

As h is commutative, any representation V of sln+1 decomposes into joint eigen-
spaces of h, called weight spaces,

V =
⊕

µ∈h∗

V [µ] ,
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where, for v ∈ V [µ] and h ∈ h, we have h.v = µ(h)v. The possible weights µ of
representations lie in the integral weight lattice. Positive weights are those that are
integral linear combinations of weights of the representation n+. The weight lattice
has a distinguished basis of fundamental weights ω1, . . . , ωn that generate the cone
of dominant weights (a subcone of the positive weights).

The irreducible representations of sln+1 enjoy the following classification. An
irreducible representation V has a unique highest weight µ. That is, if π is another
weight of V , then µ − π is positive. Furthermore, µ is dominant. This highest
weight space V [µ] is 1-dimensional and it generates V , and any two irreducible
modules with the same highest weight are isomorphic. Write Vµ for the highest
weight module with highest weight µ. Lastly, there is one highest weight module
for each dominant weight.

The highest weight space Vµ[µ] of Vµ is also distinguished as the set of vectors
in Vµ that are annihilated by the nilpotent subalgebra n+ of sln+1. More generally,
if V is any representation of sln+1 and µ is a weight, then the singular vectors in
V of weight µ, written sing(V [µ]), are the vectors in V [µ] annihilated by n+. If
v ∈ sing(V [µ]) is nonzero, then the submodule sln+1.v it generates is isomorphic to
the highest weight module Vµ. Thus V decomposes as a direct sum of submodules
generated by the singular vectors,

(3.1) V =
⊕

µ

sln+1.sing(V [µ]) ,

so that the multiplicity of the highest weight module Vµ in V is simply the dimension
of this space of singular vectors of weight µ.

When V is a tensor product of highest weight modules, the Littlewood-Richard-
son rule [12] gives formulas for the dimensions of the spaces of singular vectors.
Since this is formally the same rule as used to determine the number of points in
an intersection (1.5) of Schubert varieties coming from a Schubert problem, these
geometric intersection numbers are equal to the dimensions of spaces of singular
vectors. In particular, if Vω1 ≃ C

n+1 is the defining representation of sln+1 and
Vωn

= ∧nVω1 = V ∗
ω1

(these are the first and last fundamental representations of
sln+1), then

(3.2) dim sing(V ⊗(n+1)(d−n)
ωn

[0]) = δ(ιn,d) .

3.2. The Gaudin model. The Bethe ansatz is a conjectural method to obtain
this decomposition (3.1) by giving an explicit basis for sing(V [µ]), which is also an
eigenbasis for a family of commuting operators on V . For us, V is the tensor product
V ⊗m

ωn
, and the family of commuting operators are the Gaudin Hamiltonians. These

depend upon m distinct complex numbers s1, . . . , sm and a complex variable t.
For each i, j = 1, . . . , n+1, let Ei,j ∈ sln+1 be the matrix that has all entries 0,

except a 1 in row i and column j. For each such pair (i, j) consider the differential
operator Xi,j(t) acting on V ⊗m

ωn
-valued functions of t,

Xi,j(t) := δi,j

d

dt
−

m
∑

k=1

E
(k)
j,i

t − sk

,
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where E
(k)
j,i acts on tensors in V ⊗m

ωn
by Ej,i in the kth factor and by the identity in

other factors. Define a differential operator acting on V ⊗m
ωn

-valued functions of t,

M :=
∑

σ∈S

|σ| X1,σ(1)(t) X2,σ(2)(t) · · · Xn+1,σ(n+1)(t) ,

where S is the group of permutations of {1, . . . , n+1} and |σ| = ± is the sign of a
permutation σ ∈ S. Write M in standard form

M =
dn+1

dtn+1
+ M1(t)

dn

dtn
+ · · · + Mn+1(t) .

These coefficients M1(t), . . . ,Mn+1(t) are called the Gaudin Hamiltonians. They are
linear operators that depend rationally on t and act on V ⊗m

ωn
. We collect together

some of their properties.

Theorem 3.3. Suppose that s1, . . . , sm are distinct complex numbers. Then

(1) The Gaudin Hamiltonians commute, that is, [Mi(u),Mj(v)] = 0 for all i, j =
1, . . . , n+1 and u, v ∈ C.

(2) The Gaudin Hamiltonians centralize the action of sln+1 on V ⊗m
ωn

.

Proofs of these statements may be found in [21], as well as Propositions 7.2 and
8.3 in [23]. A consequence of the second assertion is that the Gaudin Hamiltonians
preserve the weight space decomposition of the singular vectors of V ⊗m

ωn
. Since they

commute with each other, the singular vectors of V ⊗m
ωn

have a basis of common
eigenvalues. The Bethe ansatz is a method to write down these joint eigenvectors
and their eigenvalues.

3.3. The Bethe ansatz for the Gaudin model. The Bethe ansatz for the Gaudin
model begins with a rational function, called a universal weight function, that takes
values in a weight space V ⊗m

ωn
[µ],

v : C
l × C

m 7−→ V ⊗m
ωn

[µ] .

This universal weight function was introduced in [29] to solve the Knizhnik-Zamolod-
chikov equations with values in V ⊗m

ωn
[µ]. When the arguments (x, s) are the critical

points of a master function, the vector v(x, s) is both singular and an eigenvector
of the Gaudin Hamiltonians. (This master function is a generalization of the one
defined by (2.1).) The Bethe ansatz conjecture asserts that the vectors v(x, s) form
a basis for the space of singular vectors.

For us, m = (n+1)(d−n), l =
(

n+1
2

)

(d−n), and µ = 0. Then the universal weight
function is a map

v : C(n+1
2 )(d−n) 7−→ V ⊗(n+1)(d−n)

ωn
[0] .

For these notes, we omit the definition of v(x, s).
While v(x, s) is a rational function of x and hence not globally defined, it turns

out (Lemma 2.1 of [27]) that if the coordinates of s are distinct and x is a critical

point of the master function (2.1), then the vector v(x, s) ∈ V
⊗(n+1)(d−n)
ωn [0] is well-

defined and it is in fact a singular vector. Such a vector v(x, s) when x is a critical
point of the master function a Bethe vector. Mukhin and Varchenko also prove the
following, which is the second part of Theorem 6.1 in [27].
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Theorem 3.4. When s ∈ C
(n+1)(d−n) is general, the Bethe vectors form a basis of

the space sing(V
⊗(n+1)(d−n)
ωn [0]).

The reason to introduce these Bethe vectors is that they are the joint eigenvectors
of the Gaudin Hamiltonians.

Theorem 3.5 (Theorem 9.2 in [23]). For any critical point x of the master func-
tion (2.1), the Bethe vector v(x, s) is a joint eigenvector of the Gaudin Hamiltonians
M1(t), . . . ,Mn+1(t). The corresponding eigenvalues µ1(t), . . . , µn+1(t) are given by
the formula

(3.6)
dn+1

dtn+1
+ µ1(t)

dn

dtn
+ · · · + µn(t)

d

dt
+ µn+1(t) =

( d

dt
+ ln′(p0)

)( d

dt
+ ln′

(p1

p0

))

· · ·
( d

dt
+ ln′

( pn

pn−1

))( d

dt
+ ln′

(W

pn

))

,

where (p0(t), . . . , pn(t)) are the polynomials (2.3) associated to the critical point x

and W (t) is the polynomial with roots s.

Observe that (3.6) is similar to the formula (2.5) for the differential operator Dx

of the critical point x. This similarity is made more precise if we replace the Gaudin
Hamiltonians by a different set of operators. Consider the differential operator
formally conjugate to (−1)n+1M ,

K =
dn+1

dtn+1
− dn

dtn
M1(t) + · · · + (−1)n d

dt
Mn(t) + (−1)n+1Mn+1(t)

=
dn+1

dtn+1
+ K1(t)

dn

dtn
+ · · · + Kn(t)

d

dt
+ Kn+1(t) .

These coefficients Ki(t) are operators on V
⊗(n+1)(d−n)
ωn that depend rationally on t,

and are also called the Gaudin Hamiltonians. Here are the first three,

K1(t) = −M1(t) , K2(t) = M2(t) − nM ′
1(t) ,

K3(t) = −M3(t) + (n−1)M ′′
2 (t) −

(

n

2

)

M ′′′
1 (t) ,

and in general Ki(t) is a differential polynomial in M1(t), . . . ,Mn+1(t).
These operators also commute, [Ki(u), Kj(v)] = 0 for all i, j, u, v, and they also

commute with the sln+1-action on V
⊗(n+1)(d−n)
ωn , and the Bethe vector v(x, s) is also

a joint eigenvector of these new Gaudin Hamiltonians Ki(t). The corresponding
eigenvalues λ1(t), . . . , λn+1(t) are given by the formula

(3.7)
dn+1

dtn+1
+ λ1(t)

dn

dtn
+ · · · + λn(t)

d

dt
+ λn+1(t) =

( d

dt
− ln′

( W

pn−1

))( d

dt
− ln′

(pn−1

pn

))

· · ·
( d

dt
− ln′

(p1

p0

))( d

dt
− ln′(p0)

)

,

which is just the fundamental differential operator Dx of the critical point x.

Corollary 3.8. Suppose that s ∈ C
(n+1)(d−n) is generic.

(1) The set of Bethe vectors form an eigenbasis of sing(V
⊗(n+1)(d−n)
ωn [0]) for the

Gaudin Hamiltonians K1(t), . . . , Kn+1(t).



FRONTIERS OF REALITY IN SCHUBERT CALCULUS 15

(2) The Gaudin Hamiltonians K1(t), . . . , Kn+1(t) have simple spectrum in that
eigenvalues of the Gaudin Hamiltonians separate the basis of eigenvectors.

Statement (1) follows from Theorems 3.4 and 3.5. For Statement (2), suppose
that two Bethe vectors v(x, s) and v(x′, s) have the same eigenvalues. By (3.7), the
corresponding fundamental differential operators would be equal, Dx = Dx′ . But
this implies that the fundamental spaces coincide, Vx = Vx′ . By Theorem 2.7 the
fundamental space determines the orbit of critical points, so the critical points x

and x′ lie in the same orbit, which implies that v(x, s) = v(x′, s).
All that remains is to show that the space Vx is real.

4. Shapovalov form and the proof of the Shapiro conjecture

The last step in the proof of Theorem 1 is to show that if s ∈ R
(n+1)(d−n) is generic

and x a critical point of the master function (2.1), then the fundamental space Vx of
the critical point x has a basis of real polynomials. As promised in the introduction,
the reason for this reality is that the eigenvectors and eigenvalues of a symmetric
matrix are real.

We begin with the Shapovalov form. The map τ : Eij 7→ Eji induces an antiau-
tomorphism on sln+1. Given a highest weight module Vµ and a nonzero vector v in
Vµ[µ], the Shapovalov form 〈·, ·〉 on Vµ is defined recursively by

〈v, v〉 = 1 and 〈g.u, v〉 = 〈u, τ(g).v〉 ,

for g ∈ sln+1 and u, v ∈ V .
For example, if Vω1 = C

n+1 is the defining representation of sln+1 with basis
e0, . . . , en, and we set v := en, then 〈ei, ej〉 = δij. Thus the Shapovalov form is
the standard Euclidean inner product on Vω1 . As Vωn

is the linear dual of Vω1 , the
Shapovalov form on Vωn

is also the standard Euclidean inner product. In general,
this Shapovalov form is nondegenerate on Vµ and positive definite on the real part
of Vµ.

The Shapovalov form on Vωn
induces a symmetric bilinear form, also called the

Shapovalov form, on the tensor product V
⊗(n+1)(d−n)
ωn . This tensor Shapovalov form

is also positive definite on the real part of V
⊗(n+1)(d−n)
ωn .

Theorem 4.1 (Proposition 9.1 in [23]). The Gaudin Hamiltonians are symmetric
with respect to the tensor Shapovalov form,

〈Ki(t).u, v〉 = 〈u, Ki(t).v〉 ,

for all i = 1, . . . , n+1, t ∈ C, and u, v ∈ V
⊗(n+1)(d−n)
ωn .

We give the most important consequence of this result for our story.

Corollary 4.2. When the parameters s and variable t are real, the Gaudin Hamil-
tonians K1(t), . . . , Kn+1(t) are real linear operators which are simultaneously diag-
onalizable with real spectrum.

Proof. From the definition of the Gaudin Hamiltonians M1(t), . . . ,Mn+1(t), we see

that they are real linear operators which act on the real part of V
⊗(n+1)(d−n)
ωn . The

same is then also true of the Gaudin Hamiltonians K1(t), . . . , Kn+1(t). But these
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are symmetric with respect to the positive definite Shapovalov form. Consequently,
the are simultaneously diagonalizable with real spectrum.

Proof of Theorem 1. Suppose that s ∈ R
(n+1)(d−n) is general. By Corollary 4.2,

the Gaudin Hamiltonians for t ∈ R acting on sing(V
(n+1)(d−n)
ωn [0]) are symmetric

operators on a Euclidean space, and so have real eigenvectors and eigenvalues. The
Bethe vectors v(x, s) for critical points x of the master function with parameters s

form an eigenbasis for the Gaudin Hamiltonians. As s is general, the eigenvalues
are distinct by Corollary 3.8 (2), and so the Bethe vectors must be real.

Given a critical point x, the eigenvalues λ1(t), . . . , λn+1(t) of the Bethe vectors
are then real rational functions, and so the fundamental differential operator Dx

has real coefficients. But then the fundamental space Vx of polynomials is real.
In this way, we see that each of the δ(ιn,d) spaces of polynomials Vx whose Wron-

skian has roots s that were constructed in Section 2 is in fact real. This proves
Theorem 1.

5. Applications of the Shapiro conjecture

Theorem 1 and its stronger version, Theorem 1.10, have a number of other ap-
plications in mathematics. Some are straightforward, such as linear series on P

1

with real ramification. Others are much less so, such as Schützenberger evacuation
in algebraic combinatorics. Here, we discuss two applications which are in the first
class, namely maximally inflected curves and rational functions with real critical
points.

5.1. Maximally inflected curves. One of the earliest occurrences of the central
mathematical object of these notes, spaces of polynomials with prescribed ramifica-
tion, was in algebraic geometry, as these are linear series P ⊂ H0(P1,O(d)) on P

1

with prescribed ramification. Their connection to Schubert calculus originated in
work of Castelnuovo in 1889 [3] on g-nodal rational curves, and this was important
in Brill-Noether theory (see Ch. 5 of [16]) and the Eisenbud-Harris theory of limit
linear series [5, 6].

A linear series P on P
1 of degree d and dimension n+1 (subspace in Grassn,d)

gives rise to a degree d map

(5.1) ϕ : P
1 −→ P

n = P(P ∗)

of P
1 to projective space. We will call this map a curve. The linear series if ramified

at points s ∈ P
1 where the curve ϕ is not convex (the jets ϕ(s), ϕ′(s), . . . , ϕ(n)(s) do

not span P
n). Call such a point s a flex of the curve (5.1).

A curve is real when P is real. It is maximally inflected if all of its flexes are real.
The study of these curves was initiated in [17], where restrictions on the topology
of plane maximally inflected curves were established. Specifically, there is a lower
bound on the number of isolated singularities (and hence an upper bound on the
number of nodes) of a maximally inflected plane curve.

For example, there are two types of cubic curves, which are distinguished by their
singular points. The singular point of the curve on the left is a node and connected
to the rest of the curve, while the singular point on the other curve is isolated from
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the rest of the curve.

y2 = x3 + x2 y2 = x3 − x2

While both curves have one of their three flexes at infinity, only the curve on the
right has its other two flexes real (the dots) and is therefore maximally inflected. A
nodal cubic cannot be maximally inflected.

Similarly, a maximally inflected quartic has either 1 or 0 of its (necessarily 3)
singular points a node, and necessarily 2 or 3 solitary points. We draw the two types
of maximally inflected quartics having six flexes, without their solitary points.

While many constructions of maximally inflected curves were known, Theorem 1,
and in particular Theorem 1.10, show that there are many maximally inflected
curves: Any curve ϕ : P

1 → P
n whose ramification lies in RP

1 must be real and is
therefore maximally inflected.

5.2. Rational functions with real critical points. A special case of Theorem 1,
proved earlier by Eremenko and Gabrielov, serves to illustrate the breadth of math-
ematical areas touched by this Shapiro conjecture. When n = 1, we may associate
a rational function ϕP := f1(t)/f2(t) to a basis {f1(t), f2(t)} of a vector space
P ∈ Grassn,d of polynomials. Different bases give different rational functions, but
they all differ from ϕP by a fractional linear transformation of the image P

1. We
say that such rational functions are equivalent.

The critical points of any such rational function are the points of the domain P
1

where the derivative of ϕP ,

dϕP :=
f ′

1f2 − f1f
′
2

f 2
2

=
1

f 2
2

· det

(

f1 f2

f ′
1 f ′

2

)

,

vanishes. That is, at the roots of the Wronskian. Eremenko and Gabrielov [8] prove
the following result about the critical points of rational functions.

Theorem 5.2. A rational function ϕ whose critical points lie on a circle in P
1 maps

that circle to a circle.

To see that this is equivalent to Theorem 1 when n = 1, note that we may apply
a change of variables to ϕ so that its critical points lie on the circle RP

1 ⊂ P
1.

Similarly, the image circle may be assumed to be RP
1. Reversing these coordinate

changes establishes the equivalence.
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The proof used methods specific to rational functions. Goldberg showed [13] that
there are at most cd := 1

d

(

2d−2
d−1

)

rational functions of degree d with a given collection
of 2d − 2 simple critical points. If the critical points of a rational function ϕ of
degree d lie on a circle C ⊂ CP

1 and if ϕ maps C to C, then ϕ−1(C) forms a
graph on the Riemann sphere with nodes the 2d−2 critical points, each of degree
4, and each having two edges along C and one edge on each side of C. It turns
out that there are also cd such abstract graphs. (In fact, cd is Catalan number,
which counts many objects in combinatorics.) Eremenko and Gabrielov essentially
constructed such a rational function ϕ for each such graph and choice of critical
points on C. Since cd is the upper bound for the number of such rational functions,
this construction gives all rational functions with given set of critical points and
thus proves Theorem 5.2. More recently, Eremenko and Gabrielov have found an
elementary proof of this result, which uses an induction similar to that described
after Theorem 2.8, but that has unfortunately never been published [9].

6. Extensions of the Shapiro conjecture

The proofs of different Bethe ansätze for other models (other integrable systems)
and other Lie algebras, which is ongoing work of Mukhin, Tarasov, and Varchenko,
and others, leads to generalizations of Theorem 1. One such is given in an appendix
of [22], where it is conjectured that orbits of critical points of generalized master
functions are real. This is the analog of the consequence of Theorem 1 and Theo-
rem 2.7 (1) that the polynomials pi are real, which is that new conjecture for the Lie
algebra sln+1. In that appendix, it is noted that this generalization of the Shapiro
conjecture is true for sp2n and so2n+1, by the results in Section 7 of [26].

In [24], the Bethe ansatz for the XXX model is used to prove an analog of Theo-
rem 1 for spaces of quasipolynomials (functions of the form eλixfi(x) with λi ∈ R)
whose discrete Wronskian has only simple real roots separated by at least the step
size used in the discrete Wronskian. There surely is more to come.

Likewise the Shapiro conjecture, that an intersection of Schubert varieties in the
Grassmannian given by the special flags F•(s) consists only of real points, makes
sense for other flag manifolds. In this more general setting, it is known to fail,
but in a very interesting way. When it fails, we can modify it to give a conjecture
that holds under scrutiny, and the Shapiro conjecture also admits some appealing
generalizations. We briefly describe some of this story.

6.1. Lagrangian and Orthogonal Grassmannians. Lagrangian and orthogonal
Grassmannians are two varieties closely related to the classical Grassmannian. For
each of these, the Shapiro conjecture is particularly easy to state.

The (odd) orthogonal Grassmannian, begins with a non-degenerate symmetric
bilinear form 〈·, ·〉 on C

2n+1. This vector space has a basis e1, . . . , e2n+1 such that

〈ei, e2n+2−j〉 = δi,j .

The (odd) orthogonal Grassmannian OG(n) is the set of all n-dimensional subspaces
V of C

2n+1 that are isotropic in that 〈V, V 〉 = 0. These subspaces have maximal
dimension among all isotropic vector spaces. This variety has dimension

(

n+1
2

)

.
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The Shapiro conjecture for OG(n) begins with a particular rational normal curve
γ having parametrization

t 7−→ e1 + te2 +
t2

2
e3 + · · · +

tn

n!
en+1 − tn+1

(n + 1)!
en+2

+
tn+2

(n + 2)!
en+3 − · · · + (−1)n t2n

(2n)!
e2n+1 .

This has special properties with respect to the form 〈·, ·〉. For t ∈ C, define the flag
F•(t) in C

2n+1 by

Fi(t) := Span{γ(t), γ′(t) , . . . , γ(i−1)(t)} .

Then F•(t) is isotropic in that

〈Fi(t), F2n+1−i(t)〉 = 0 .

More generally, an isotropic flag F• of C
2n+1 is a flag such that 〈Fi, F2n+1−i〉 = 0. The

Schubert variety XλF• of OG(n) is defined by a Schubert index λ and an isotropic
flag F•. Write |λ| for its codimension. A Schubert problem is a list (λ1, . . . ,λm) of
Schubert indices such that

|λ1| + |λ2| + · · · + |λm| = dim OG(n) =

(

n + 1

2

)

.

We state the Shapiro conjecture for OG(n).

Conjecture 6.1. If (λ1, . . . ,λm) is a Schubert problem for OG(n) and s1, . . . , sm

are distinct real numbers, then the intersection

Xλ1
F•(s1)

⋂

Xλ2
F•(s2)

⋂

· · ·
⋂

Xλm
F•(sm)

is transverse with all points real.

Besides optimism based upon the validity of the Shapiro conjecture for Grass-
mannians, the evidence for Conjecture 6.1 comes in two forms. A local version,
analogous to Theorem 1.9, is true [34], and several tens of thousands of instances
have been checked with a computer.

There is a similar story but with a different outcome for the Lagrangian Grass-
mannian. Let 〈·, ·〉 be a nondegenerate skew symmetric bilinear form on C

2n. This
vector space has a basis e1, . . . , e2n such that

〈ei, e2n+1−j〉 =

{

δi,j if i ≤ 2n
−δi,j if i > 2n

.

The Lagrangian Grassmannian LG(n) is the set of all isotropic n-dimensional sub-
spaces V of C

2n. These subspaces have maximal dimension among all isotropic
vector spaces, and are typically called Lagrangian subspaces. This variety has di-
mension

(

n+1
2

)

.
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For the Shapiro conjecture for LG(n), we have the rational normal curve γ with
parametrization

t 7−→ e1 + te2 +
t2

2
e3 + · · · +

tn

n!
en+1 − tn+1

(n + 1)!
en+2

+
tn+2

(n + 2)!
en+3 − · · · + (−1)n−1 t2n−1

(2n − 1)!
e2n .

For t ∈ C, define the flag F•(t) in C
2n+1 by

Fi(t) := Span{γ(t), γ′(t) , . . . , γ(i−1)(t)} .

Then F•(t) is isotropic in that

〈Fi(t), F2n−i(t)〉 = 0 .

More generally, an isotropic flag F• of C
2n is a flag such that 〈Fi, F2n−i〉 = 0. The

Schubert variety XλF• of LG(n) is defined by a Schubert index λ and an isotropic
flag F•. It has codimension |λ|. A Schubert problem is a list (λ1, . . . ,λm) such that

|λ1| + |λ2| + · · · + |λm| = dim LG(n) =

(

n + 1

2

)

.

Belkale and Kumar [2] define a notion of Levi movability for Schubert conditions,
which has the following geometric interpretation. Each Schubert variety XλF• of
LG(n) is the intersection of LG(n) with a Schubert variety Ωa(λ)F• of the Grass-
mannian of n planes in C

2n. The index λ is Levi movable when these two Schubert
varieties have the same codimension in their respective Grassmannians. A Levi
movable Schubert problem is one made up of Levi movable Schubert indices.

The obvious generalization of Theorem 1 and Conjecture 6.1 to LG(n) turns out
to be false. We offer a modification that we believe is true.

Conjecture 6.2. If (λ1, . . . ,λm) is a Schubert problem for LG(n) and s1, . . . , sm

are distinct real numbers, then the intersection

Xλ1
F•(s1)

⋂

Xλ2
F•(s2)

⋂

· · ·
⋂

Xλm
F•(sm)

is transverse. If (λ1, . . . ,λm) is Levi movable, then all points of intersection are
real, but if it is not Levi movable, then no point in the intersection is real.

The strongest evidence in favor of Conjecture 6.2 is that it is true when the
Schubert problem (λ1, . . . ,λm) is Levi movable. This follows from the definition of
Levi movable and the Shapiro conjecture for Grassmannians. Further evidence is
that if each λi is simple in that |λ| = 1, then a local version, similar to Theorem 1.9
but without transversality, is true. That is, if the si are sufficiently clustered, then
no point in the intersection is real [34]. Lastly, several tens of thousands of instances
have been checked with a computer.

6.2. Monotone conjecture for flag manifolds. The original Shapiro conjecture
was for Schubert varieties in the classical (type-A) flag manifold. This conjecture
fails for the first non-trivial Schubert problem on a flag variety that is not a Grass-
mannian. Consider the geometric problem of partial flags ℓ ⊂ Λ in 3-dimensional
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space where ℓ is required to meet three fixed lines and Λ is required to contain two
fixed points.

This is just the problem of four lines in disguise. Suppose that p and q are the
two fixed points that Λ is required to contain. Then Λ contains the secant line p, q
spanned by these two points. Since ℓ ⊂ Λ, we see that ℓ must meet p, q. As ℓ must
also meet three lines, this problem reduces to the problem of four lines. In this way,
there are two solutions to this Schubert problem.

Now let us investigate the original Shapiro conjecture for this Schubert problem,
which posits that both flags ℓ ⊂ Λ will be real, if we require that ℓ meets three fixed
tangent lines to a rational curve and Λ contains two fixed points of the rational
curve. Let γ be the rational normal curve (1) from the Introduction and suppose
that the three fixed lines of our problem are its tangent lines ℓ(−1), ℓ(0), and ℓ(1).
These line lie on the hyperboloid H with equation (2). Here is another view of these
lines, the curve γ, and the hyperboloid.

ℓ(−1) ℓ(0)

ℓ(1)

γ

H

If we require ℓ to meet the three tangent lines ℓ(−1), ℓ(0), and ℓ(1) and Λ to contain
the two points γ(v) and γ(w) of γ, then ℓ also meets the line λ(v, w) spanned by
these two points. As in the Introduction, the lines ℓ that we seek will come from
points where the secant line λ(v, w) meets H.

Figure 2 shows an expanded view down the throat of the hyperboloid, with a
secant line λ(v, w) that meets the hyperboloid in two points. For these points γ(v)

ℓ(1)

ℓ(−1)

ℓ(0)

γ

λ(v, w)

γ(v)

6

γ(w)

6

Figure 2. A secant line meeting H
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and γ(w) there will be two real flags ℓ ⊂ Λ satisfying our conditions. This is
consistent with the Shapiro conjecture.

In contrast, Figure 3 shows a secant lines λ(v, w) that does not meet the hy-
perboloid in any real points. For these points γ(v) and γ(w), neither flag ℓ ⊂ Λ

ℓ(1) ℓ(0)

ℓ(−1)

γ

λ(v, w)
γ(v)
¤
¤
¤
¤
¤
¤
¤¤²

γ(w)
­

­
­

­
­

­
­Á

Figure 3. A secant line not meeting H

satisfying our conditions is real. This is not consistent with the Shapiro conjecture,
so we see that Shapiro conjecture does not hold for this Schubert problem, and so
it is false.

This failure is however quite interesting. If we label the points −1, 0, 1 with 1
(conditions on the line) and v, w by 2 (conditions on the plane), then along γ they
occur in order

11122 in Figure 2 and 11212 in Figure 3.

The sequence for Figure 2 is monotone and in this case both solutions are always
real. This example suggests a way to correct the Shapiro conjecture, which we call
the monotone conjecture.

Specifically, let n : 0 < n1 < · · · < nm < d be a sequence of integers. The manifold
Fℓn,d of flags of type n is the set of all sequences of subspaces

E• : En1 ⊂ En2 ⊂ · · · ⊂ Enm
⊂ Cd[t]

with dim Eni
= ni. The forgetful map E• 7→ Eni

induces a projection

πi : Fℓn,d 7−→ Grassni,d

to a Grassmannian. A Grassmannian Schubert variety is a subvariety of Fℓn,d of
the form π−1

i ΩaF•. Write X(a,ni)F• for this Grassmannian Schubert variety and call
(a, ni) a Grassmannian Schubert condition.

A Grassmannian Schubert problem is a list

(6.3) (a(1), n(1)), (a(2), n(2)), . . . , (a(m), n(m)),

of Grassmannian Schubert conditions satisfying |a(1)|+ · · ·+ |a(m)| = dim Fℓn,d. We
assume that the conditions (6.3) of a Grassmannian Schubert problem are sorted in
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that

n(1) ≤ n(2) ≤ · · · ≤ n(m) .

We state the monotone conjecture.

Conjecture 6.4. Let
(

(a(1), n(1)), . . . , (a(m), n(m))
)

be a Grassmannian Schubert
problem for the flag variety Fℓn,d. Whenever s1 < s2 < · · · < sm are real num-
bers, the intersection

X(a(1),n(1))F•(s1)
⋂

X(a(2),n(2))F•(s2)
⋂

· · ·
⋂

X(a(m),n(m))F•(sm) ,

is transverse with all points of intersection real (when it is nonempty).

There is a lot of evidence in support of this monotone conjecture. First, the
Shapiro conjecture for Grassmannians is the special case of the monotone conjecture
when m = 1, for then Fℓn,d = Grassn1,d, and the monotonicity condition s1 < · · · <
sm is empty as any reordering of the list of Schubert conditions remains sorted.

But there is more. This conjecture was formulated in [28], where the failure of
reality in our example was noted. That project utilized some serious computer
investigation of the monotone conjecture. This computer experimentation used
over 15 gigaHertz-years of computing, solving over 500 million polynomial systems
representing intersections of Schubert varieties in over 1100 different enumerative
problems on 27 different flag manifolds. Some of this computation studied inter-
sections of Schubert varieties that were not necessarily monotone and that did not
always involve Grassmannian Schubert conditions. This experimentation discovered
that such an intersection is not necessarily transverse if the monotone condition is
violated. More interesting, the intersection may not be zero-dimensional (for any
s1, . . . , sm ∈ C) if the Schubert problem does not involve Grassmannian Schubert
conditions.

A third piece of evidence for the monotone conjecture was provided by Eremenko,
et. al [10], who showed that it is true for two-step flag manifolds, when n = d−1 < d.
This result is a special case of their main theorem, which asserts the reality of a ra-
tional function ϕ with prescribed critical points on RP

1 and prescribed coincidences
ϕ(v) = ϕ(w), when v, w are real. Their proof was based on the results of [8].

Phrasing their result in terms of Grassd−1,d shows that it is a generalization of
the Shapiro conjecture, where we replace the flags F•(s) by more general secant
flags. Geometrically, the flag F•(s) is the flag of subspaces osculating the rational
normal curve γ. A secant flag F• is one where every subspace Fi of F• is spanned
by its points of intersection with γ. Secant flags F 1

• , . . . , Fm
• are disjoint if there

exist disjoint intervals I1, . . . , Im of γ such that the subspaces in flag F i
• meet γ at

points of Ii. The main result of [8] is that an intersection of Schubert varieties in
Grassd−1,d given by disjoint secant flags is transverse with all points real.

This result motivates the following secant conjecture.

Conjecture 6.5. If (a1, . . . , am) is a Schubert problem for Grassn,d and F 1
• , . . . , Fm

•

are disjoint secant flags, then the intersection

Ωa1F
1
•

⋂

Ωa2F
2
•

⋂

· · ·
⋂

Ωam
Fm
•

is transverse with all points real.
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