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IBADAN LECTURES ON TORIC VARIETIES

FRANK SOTTILE

Abstract. These notes are based on, and significantly extend, Frank Sottile’s short course
of four lectures at the CIMPA school on Combinatorial and Computational Algebraic Ge-
ometry in Ibadan, Nigeria that took place 12–23 June 2017.

Contents

Notation and a note about our field 2
1. Affine Toric Varieties 2
1.1. Affine Toric Varieties 3
1.2. Toric Ideals 4
Exercises 7
2. Toric Projective Varieties and Solving Equations 8
2.1. Toric Varieties in Projective Space 8
2.2. Kushnirenko’s Theorem 12
Exercises 18
3. Toric Varieties From Fans 19
3.1. Cones and Fans 20
3.2. Toric Varieties From Fans 24
3.3. The Double Pillow 28
Exercises 30
4. Bernstein’s Theorem and Mixed Volumes 31
4.1. Mixed Volumes 31
4.2. Bernstein’s Theorem 35
Exercises 39
References 41

Toric varieties are perhaps the most accessible class of algebraic varieties. They often arise
as varieties parameterized by monomials, and their structure may be completely understood
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through objects from geometric combinatorics. While accessible and understandable, the
class of toric varieties is also rich enough to illustrate many properties of algebraic varieties.
Toric varieties are also ubiquitous in applications of mathematics, from tensors to statistical
models to geometric modeling to solving systems of equations, and they are important to
other branches of mathematics such as geometric combinatorics and tropical geometry.
For additional reference, see [5, 9, 10, 13] (the last is freely accessible and covers some ma-

terial from the perspective of real toric varieties). For an accessible background on algebraic
geometry and Gröbner bases, we recommend [4], which is a classic and won the American
Mathematical Society’s Leroy P. Steele Prize for Exposition in 2016 [1].

Notation and a note about our field. We write C for the complex numbers, R for
the real numbers, Q for the rational numbers, Z for the integers, and N for the natural
numbers (nonnegative integers). While we describe complex toric varieties, the description
holds verbatim for any field as toric varieties are naturally schemes over spec(Z). When the
ambient field k is not algebraically closed, there is an attractive theory of arithmetic toric
varieties [8].

1. Affine Toric Varieties

Recall that every finitely generated free abelian group G is isomorphic to Zm for some
positive integer m called the rank of G, and the isomorphism is equivalent to choosing a
basis for G.
Write C∗ for the group of nonzero complex numbers and (C∗)n for the complex torus

of invertible diagonal n × n complex matrices, equivalently, of ordered n-tuples of nonzero
complex numbers. The free abelian group Zn of rank n is associated to (C∗)n in two distinct
ways. It is isomorphic to the lattice of one-parameter subgroups Homg(C

∗, (C∗)n) of group
homomorphisms from C∗ to (C∗)n. These are also called cocharacters. An integer vector
w = (w1, . . . , wn) ∈ Zn gives the map which sends t ∈ C∗ to the diagonal matrix tw :=
diag(tw1 , . . . , twn) ∈ (C∗)n. The group of characters, Homg((C

∗)n,C∗), equivalently of Laurent
monomials, is also isomorphic to Zn. Here, an integer vector a = (a1, . . . , an)

T ∈ Zn gives
the Laurent monomial xa := xa1

1 · · · xan
n , which is also a group homomorphism (C∗)n ∋ x 7→

xa ∈ C∗, where x = diag(x1, . . . , xn).
This ambiguity in the two roles for Zn is resolved by writing N for the cocharacters and

M for the characters. When expressed as integer vectors, elements of N will be row vectors
and those of M column vectors. Applying a character a ∈ M to a cocharacter w ∈ N gives
a character of C∗, which is an integer, well-defined up to sign. A standard choice gives the
standard Euclidean pairing N ⊗M → Z, which we may see by computing

(tw)a = (tw1)a1 · · · (twn)an = tw1a1+···+wnan = tw·a .

The coordinate ring of (C∗)n is the ring C[x1, x
−1
1 , . . . , xn, x

−1
n ] of Laurent polynomials. This

is also the group algebra C[M ] and we write C[x±] for this Laurent ring.
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1.1. Affine Toric Varieties. Let A ⊂ M ≃ Zn be a finite subset of monomials/characters.
It is convenient to represent A as the set of column vectors of an integer matrix with n rows.
We will also write A for this matrix. We will use this set A to index coordinates, variables,
etc. For example (C∗)A is the set of functions from A to C∗. It is the algebraic torus (C∗)|A|

whose coordinates are indexed by the elements of A. Likewise CA is the vector space of
functions from A to C. It has coordinates (za | a ∈ A). If A is represented by the matrix
( 0 0 1 1
0 1 0 1 ), then CA ≃ C4 has coordinates z( 0

0
), z( 0

1
), z( 1

0
), z( 1

1
).

This set A may be used to define a map ϕA : (C∗)n → CA, where

(1.1) ϕA(x) := (xa | a ∈ A) .

In the example where A is represented by the matrix ( 0 1 0 1
0 0 1 1 ), for (x, y) ∈ (C∗)2, ϕA(x, y) =

(1, x, y, xy) ∈ CA. Notice that the map ϕA (1.1) is a group homomorphism ϕA : (C∗)n →
(C∗)A followed by the inclusion (C∗)A →֒ CA. The Zariski closure of the image ϕA((C

∗)n) in
CA is the affine toric varietyXA. We deduce two characterizations of affine toric varieties from
this definition. Affine toric varieties are varieties that arise as the closure in Cm of a subtorus
of (C∗)m, and affine toric varieties are varieties that are parameterized by monomials. Note
that the torus (C∗)n acts on XA with a dense orbit and this action extends to the ambient
affine space CA.
If the subgroup ZA of M generated by A is a proper subgroup, then the homomorphism

ϕA has a nontrivial kernel T := kerϕA. In this case, ϕA (1.1) induces an injective map on
(C∗)n/T → CA. In Exercise 1, you are asked to verify these claims and identify the kernel. We
have that ZA is the lattice of characters of (C∗)n/T and so dimXA = dim(C∗)n/T = rankZA.

Example 1.1. Suppose that n = 1 and A = {2, 3} ⊂ Z. For s ∈ C∗, ϕA(s) = (s2, s3) ∈ C2.
The closure of ϕA((C

∗)n) is the cuspidal cubic, V(y2 − x3), where C2 has coordinates (x, y):

y

x

Since ZA = Z, ϕA is injective. This may also be seen as if (x, y) = ϕA(s), then s = y/x.
Suppose that k,m ≥ 1 are integers. Let e1, . . . , ek and f1, . . . , fm be the standard unit

basis vectors for Zk and Zm, respectively, and set

A := {ei + fj | i = 1, . . . , k and j = 1, . . . ,m} ⊂ Zk × Zm ,

which has mn elements. The map ϕA : Ck × Cm → Ckm is

(x1, . . . , xk , y1, . . . , ym) 7−→ (xiyj | i = 1, . . . , k and j = 1, . . . ,m) .

If Ckm is identified with the space of k×m matrices, this map is (x, y) 7→ xyT , and thus XA

is the space of k ×m matrices of rank at most 1.
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Finally, suppose that d ≥ 1 is an integer. The dth Veronese map ϕA : Cn → C(
d+n

n
), is

when A is the set of all exponent vectors in Nn of degree at most d. When n = 1 and d = 3,
we have A = {0, 1, 2, 3} ⊂ Z and ϕA(x) = (1, x, x2, x3). Ignoring the first coordinate which
is constant, XA is the moment (rational normal) curve in C3.

1.2. Toric Ideals. The ideal IA of XA is a toric ideal. It is an ideal of the coordinate
ring C[za | a ∈ A] of the affine space CA. To understand IA, consider the pullback map
corresponding to ϕA on coordinate rings,

ϕ∗
A : C[za | a ∈ A] −→ C[x1, x

−1
1 , . . . , xn, x

−1
n ]

za 7−→ xa .

The toric ideal IA is the kernel of ϕ∗
A. The exponent of a monomial zu in C[za | a ∈ A] is

the vector u = (ua | a ∈ A) ∈ NA, and the image of zu under ϕ∗
A is

ϕ∗
A(z

u) =
∏

a∈A

(xa)ua = x
∑

aua .

Let us write the sum
∑

a∈A aua in this exponent as Au. When A is represented by an integer
matrix A, this is the usual matrix-vector product. Observe that the kernel IA of ϕ∗

A contains
the following set of binomials

(1.2) {zu − zv | Au = Av} .
Suppose that A is represented by the matrix ( 0 1 2 3 4

4 3 2 1 0 ). If u = (0, 1, 1, 1, 0)T and v =
(1, 0, 1, 0, 1)T , then Au = Av, which gives the binomial in IA,

z( 1
3
)z( 2

2
)z( 3

1
) − z( 0

4
)z( 2

2
)z( 4

0
) .

Theorem 1.2. The toric ideal IA is a prime ideal. As a complex vector space, it is spanned
by the binomials (1.2).

Proof. The image of ϕ∗
A is the subalgebra of C[x±] generated by the monomials {xa | a ∈ A}.

Since C[x±] is a domain, the kernel IA is a prime ideal. An equivalent way to see this is to
note that XA is irreducible (hence its coordinate ring is a domain and its defining ideal is
prime) as XA is the closure of the image of the irreducible variety (C∗)n under the map ϕA.
For the second statement, let ≺ be any term order on C[za | a ∈ A]. Let f ∈ IA. We may

write f as

f = cuz
u +

∑

v≺u

cvz
v cu 6= 0 ,

so that in≺(f) = cuz
u is the initial term of f . Then

0 = ϕ∗
A(f) = cux

Au +
∑

v≺u

cvx
Av .

There is some v ≺ u with Av = Au, for otherwise the term cux
Au is not canceled in ϕ∗

A(f)
and ϕ∗

A(f) 6= 0. Set f := f − cu(z
u − zv). Then ϕ∗

A(f) = 0 and in≺(f) ≺ in≺(f).
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If the leading term of f were ≺-minimal in the initial ideal in≺(IA), then f would be zero,
and so f is a scalar multiple of a binomial of the form (1.2). Suppose now that in≺f is not
minimal in in≺(IA) and that every polynomial in IA all of whose terms are ≺-less than the
initial term of f is a linear combination of binomials of the form (1.2). Then f is a linear
combination of binomials of the form (1.2), which implies that f is as well, by our induction
hypothesis. This completes the proof.

A monoid has an associative binary operation and an identity element, but it does not
necessarily have inverses. (A semigroup only has an associative binary operation, and not
necessarily an identity.) While many authors use the adjective semigroup when working
with toric varieties, the identification below of maximal ideals with monoid homomorphisms
shows the inadequacy of that language. Note that the complex numbers under multiplication
forms a monoid and any group is also a monoid. Define NA to be the submonoid of M
generated by A. It consists of all linear combinations of elements of A whose coefficients are
natural numbers. Write C[NA] for the monoid algebra, which is the set of complex-linear
combinations of elements of NA. It is also the set of Laurent polynomials whose exponents
are from NA.

Corollary 1.3. The coordinate ring of the affine toric variety XA is C[NA].

Proof. The map
∑

a∈A ana 7→ ∏

a∈A(x
a)na is a bijection between the submonoid NA and

the monoid of monomials (xa | a ∈ A) generated by A. In the proof of Theorem 1.2,
we identified the coordinate ring C[XA] of XA with the subring of C[x±] generated by the
monomials {xa | a ∈ A}, which is the monoid algebra C[NA] by the identification of NA
with the monomials in C[XA].

Theorem 1.2 gives an infinite generating set for IA. We seek more economical generating
sets. Suppose that Au = Av with u, v ∈ NA. We define vectors r, w±. For a ∈ A, set

ra := min(ua, va) ,

w+
a := max(ua − va, 0) , and

w−
a := max(va − ua, 0) .

Then w+, w− ∈ NA and we have u− v = w+ − w− with u = r + w+ and v = r + w−, and so

(1.3) zr(zw
+ − zw

−
) = zu − zv ∈ IA ,

with zr = gcd{zu, zv}. Note also that Aw+ = Aw− as 0 = A(u − v) = A(w+ − w−), so
that zw

+ − zw
− ∈ IA. In our example where A = ( 0 1 2 3 4

4 3 2 1 0 ), we have r = (0, 0, 1, 0, 0)T ,
w+ = (0, 1, 0, 1, 0)T and w− = (1, 0, 0, 0, 1)T , and

z( 1
3
)z( 2

2
)z( 3

1
) − z( 0

4
)z( 2

2
)z( 4

0
) = z( 2

2
)

(

z( 1
3
)z( 3

1
) − z( 0

4
)z( 4

0
)

)

∈ IA .

For u ∈ ZA, let u+ be the coordinatewise maximum of u and the 0-vector, and let u− be the
coordinatewise maximum of −u and the 0-vector.

Corollary 1.4. IA = 〈zu+ − zu
− | Au = 0〉.
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Thus IA is generated by binomials coming from the integer kernel of the matrix A.

Theorem 1.5. Any reduced Gröbner basis of IA consists of binomials.

The point of this theorem is that Buchberger’s algorithm is binomial-friendly. That is, if
f and g are binomials, then their S-polynomial is again a binomial, and the reduction of one
binomial by another is again a binomial. You are asked to prove Theorem 1.5 in Exercise 7.
It is an important problem to compute or to find relatively small Gröbner bases for toric

ideals. By Corollary 1.4, these are given by special subsets of the integer kernel {u ∈ ZA |
Au = 0} of A. For example, a reduced Gröbner basis for the ideal of k×m matrices of rank
1 is given by

{za,bzc,d − za,dzc,b | 1 ≤ a < c ≤ k and 1 ≤ b < d ≤ m} ,
where the term order is the degree reverse lexicographic order with the variables ordered by
za,b ≺ zc,d if a < c or a = c and b > d (the leading term is underlined). This is the set of all

2× 2 minors of the k ×m matrix (zij)
j=1,...,m
i=1,...,k of indeterminates.

By Corollary 1.3, the coordinate ring of the toric variety XA is the algebra C[NA] ≃ C[xa |
a ∈ A]. This subalgebra of the ring C[x±] = C[M ] of Laurent polynomials is spanned by
monomials. Let us generalize this. Given a finitely generated submonoid S of M (this is
a subset of M that contains 0 and is closed under addition), write C[S] ⊂ C[x±] for the
monoid algebra of S. This is the set of all complex-linear combinations of elements of S,
where the multiplication is distributive and induced by the monoid operation of S. Choosing
a generating set A of S, so that S = NA, realizes C[S] as the coordinate ring of the affine
toric variety XA ⊂ CA. Then the usual algebraic-geometry dictionary implies that

XA = spec(C[NA]) .

Thus spec(C[S]) is an affine toric variety without a preferred embedding into affine space.
Under the algebraic-geometry dictionary, the closed points XA(C) of XA correspond to the
maximal ideals of C[NA].
There is a second perspective on these points, via monoid homomorphisms. By Exercise 9,

maximal ideals correspond to monoid homomorphisms Homm(S,C), from S to C (additive
on S and multiplicative on C). An element m of Homm(S,C) is a function m : S → C such
that m(0) = 1 and for a, b ∈ S, m(a+ b) = m(a) ·m(b).
The map ϕA (1.1) restricts to the real torus (R∗)n ⊂ (C∗)n and gives a map ϕA : (R∗)n →

RA. The closure of the image is the real affine toric variety XA(R). If we write R> for the
positive real numbers and R≥ for the nonnegative real numbers, then we may also restrict
ϕA to Rn

>. Note that ϕA(R
n
>) ⊂ RA

≥, the positive orthant in RA. The nonnegative affine toric
variety XA,≥ is the closure of the image. We have the following maps

(1.4) XA,≥ −֒−→ XA(R) −֒−→ XA(C) −։ XA,≥ .

These are induced by the maps

(1.5) R≥ −֒−→ R −֒−→ C −։ R≥ ,
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with the last map z 7→ |z|. The maps (1.4) also come from the identification of affine toric
varieties with monoid homomorphisms and the sequence of maps of monoids (1.5). As the
composition of these monoid maps is the identity, the composition (1.4) is also the identity.

Exercises.

1. Show that the monomial map ϕA : (C∗)n → (C∗)A (1.1) is injective if and only if A
generates M . When A does not generate M , identify the kernel of ϕA.

2. Let n ∈ N be a natural number. Describe generators of the toric ideal IA for the point set
A =

(

0 1 2 3 · · · n
)

. Do the same for the point set A = ( 0 1 2 ··· n
n ··· 2 1 0 ).

3. Breakfast Problem. Suppose that A ⊂ Z4 is represented by the 4× 8 matrix








1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0









.

Find a set of nine linearly independent generators of the toric ideal IA.
4. Let A ⊂ Z6 = (Z2)3 be represented by the 6× 8 matrix















1 1 1 1 0 0 0 0
0 0 0 0 1 1 1 1
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1















.

Find linearly independent generators of the toric ideal IA. Hint: The even (respectively
odd) numbered rows give the vertices of the 3-cube. What is XA? For this, consider the
map ϕA where the rows correspond to the variables x0, x1, y0, y1, z0, z1 and the columns to
the variables p000, p100, . . . , p111.

5. Show that the collection of 2×2 minors of the k×m matrix (zij)
j=1,...,m
i=1,...,k of indeterminates

forms a reduced Gröbner basis for the toric ideal of the variety XA of matrices of rank
1, where the term order is degree reverse lexicographic with the variables ordered by
za,b ≺ zc,d if a < c or a = c and b > d. What about other term orders?

6. Identify a generating set and a reduced Gröbner basis for the toric ideal IA given by as
many of the following six subsets of Z2 as you can. The origin is at the lower left of each
figure. You may find computer software useful.
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7. Work out the details of the suggested proof of Theorem 1.5. Explain why ‘reduced’ is
necessary for the conclusion.

8. A submonoid S ⊂ M is saturated if for any a ∈ M and k ∈ N with k 6= 0, if ka ∈ S, then
a ∈ S. Show that if C[S] is normal, then S is saturated. Can you prove the converse of
this statement?

9. Let S be a finitely generated submonoid of M . Show that every maximal ideal m of C[S]
restricts to a monoid homomorphism from S to C, and vice-versa. Hint: use that maximal
ideals correspond to algebra maps C[S] → C.

10. For A ⊂ M finite, show that XA(R) = Homm(NA,R) and XA,≥ = Homm(NA,R≥).
11. Use the embedding x 7→ (x, x−1) of the torus C∗ into C2, or any other method, to identify

the coordinate ring of the torus C∗ with C[x, x−1]. Deduce that the coordinate ring of
(C∗)n may be identified with C[x1, x

−1
1 , . . . , xn, x

−1
n ]. Show that this is the complex group

ring C[M ] of the free abelian group M of characters of the torus (C∗)n. Harder: Can you
relate algebraic structures of C[M ] to the group structure on (C∗)n? That is, what do the
product, inverse, and identity element of (C∗)n correspond to on C[M ] and M .

2. Toric Projective Varieties and Solving Equations

Some affine toric varieties may be considered to be projective varieties—this is when they
are stable under the multiplication by scalars on their ambient vector space. In this case,
they have particularly attractive properties. Such projective toric varieties also provide a
means to prove one of the signature results related to toric varieties; Kushnirenko’s Theorem
about the number of solutions to a system of sparse polynomial equations.

2.1. Toric Varieties in Projective Space. Projective space Pm = P(Cm+1) is the set
of one-dimensional linear subspaces of Cm+1. Since a one-dimensional linear subspace ℓ is
generated by any nonzero point of ℓ, and scalar multiplication by elements of C∗ acts simply
transitively on these nonzero points of ℓ, and freely on Cm+1r {0}, we may identify Pm with
the quotient (Cm+1 r {0})/C∗. Projective space is equipped with homogeneous coordinates
[z0 : · · · : zm], were we identify [z0 : z1 : · · · : zm] with [tz0 : tz1 : · · · : tzm] for any
nonzero scalar t ∈ C∗. An affine variety X ⊂ Cm+1 corresponds to a projective variety
in P(Cm+1) = Pm when X is homogeneous under the C∗-action on Cm+1 given by scalar
multiplication. We will call such an affine toric variety X ⊂ Cm+1 the affine cone over the
corresponding projective toric variety X ⊂ Pm.
We claim that an affine toric variety XA ⊂ CA is homogeneous when the set A lies on an

affine hyperplane. By this, we mean that there is some w ∈ N = Zn with

w · a = w · b for all a, b ∈ A ,

and this common value c is nonzero. (Here, an affine hyperplane does not contain the origin.)
Then, under the composition of the cocharacter, t 7→ tw and the map ϕA, t ∈ C∗ acts as
multiplication by the scalar tc on CA as ϕA(t

w) = (tw·a = tc | a ∈ A), and thus XA ⊂ CA is
homogeneous under scalar multiplication. For another way to see this, suppose that u, v ∈ NA
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are integer vectors with Au = Av. Then w · Au = w · Av, which implies that

c
∑

a∈A

ua = c
∑

a∈A

va ,

and thus zu − zv ∈ IA is homogeneous. By Theorem 1.2, we obtain the following.

Corollary 2.1. If A lies on an affine hyperplane, then IA is a homogeneous ideal and XA

is a projective subvariety of PA := P(CA).

Example 2.2. Suppose that A is represented by the matrix ( 3 2 1 0
0 1 2 3 ), which are the points a

of N2 where (1, 1) · a = 3. Then ϕA(x, y) = (x3, x2y, xy2, y3) ∈ CA ≃ C4, and the closure XA

A✛
✟✟✙ ✁
✁☛

❄
z( 2

1
) z( 1

2
)

z( 0
3
)

Figure 1. Exponents A and the twisted cubic.

of its image in PA = P3 is the twisted cubic. If [z( 3
0
) : z( 2

1
) : z( 1

2
) : z( 0

3
)] are the coordinates of

PA, then the homogeneous toric ideal IA is generated by

(2.1) z( 3
0
)z( 1

2
) − z2( 2

1
) , z( 3

0
)z( 0

3
) − z( 2

1
)z( 1

2
) , and z( 2

1
)z( 0

3
) − z2( 1

2
) ,

which correspond to the vectors (1,−2, 1, 0)T , (1,−1,−1, 1)T , and (0, 1,−2, 1)T in kerA,
which are also the primitive relations among the elements of A,
(

3
0

)

+

(

1
2

)

= 2

(

2
1

)

,

(

3
0

)

+

(

0
3

)

=

(

2
1

)

+

(

1
2

)

, and

(

2
1

)

+

(

0
3

)

= 2

(

1
2

)

.

Here, ZA is a full rank sublattice of index 3 in Z2, which you are asked to show in Exercise 1.

Also, the kernel of ϕA is {( 1
1 ), (

ζ
ζ ), (

ζ2

ζ2
)}, where ζ := e

2π
√
−1

3 is a cube root of 1, and thus

we have that kerϕA ≃ Homg(Z
2/ZA,C∗). Choosing ( 3

0 ) and ( −1
1 ) = ( 2

1 ) − ( 3
0 ) as a basis

for ZA (and identifying it with Z2), the set A becomes the columns of the matrix ( 1 1 1 1
0 1 2 3 ),

which we draw with the first coordinate vertical.

A ✲

This is the set A for the affine rational normal curve of Example 1.1 lifted to an affine
hyperplane in Z2 by prepending a new first coordinate of 1 to each element of A.
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Let A ⊂ Zn be a finite set. Its lift, A+ ⊂ Z1+n, is the set

A+ := {(1, a) | a ∈ A} ,
which lies on an affine hyperplane in Z1+n. The map ϕA+ : C∗ × (C∗)n → PA is given by

(2.2) ϕA+(t, x) = [txa | a ∈ A] .

Observe that the set of differences {a − b | a, b ∈ A} spans Zn if and only if the set A+ of
vectors spans Z1+n.

Example 2.3. Suppose that A is represented by the matrix ( 0 1 1 0 −1 −1 0
0 0 1 1 0 −1 −1 ). Then A consists

of the integer points of the hexagon in Figure 2. Figure 2 also shows the lift of this hexagon,
where the first coordinate is vertical in the lift.

Figure 2. The hexagon and its lift.

In Exercise 3, you are asked to show that any finite set A ⊂ Z1+n lying on an affine
hyperplane has the form B+ in appropriate coordinates for ZA. Exercise 4 gives another
(equivalent) characterization of a set A lying on an affine hyperplane.
We turn to a geometric description of the generators of a homogeneous toric ideal IA. A

sum
∑

a∈A aλa where
∑

a∈A λa = 1 and 0 ≤ λa is a convex combination of the points of A.
The convex hull of A ⊂ Zn is the set of all convex combinations of the points of A,

conv(A) :=
{

∑

a∈A

aλa

∣

∣

∣

∑

a∈A

λa = 1 and 0 ≤ λa for all a ∈ A
}

.

This convex hull is a polytope with integer vertices (a lattice polytope), and its vertices are
a subset of A. Lattice polygons were depicted in Exercise 6 of Section 1 and in Figure 2.
Below are a lattice simplex (A corresponds to the matrix

(

0 1 0 0
0 0 1 0
0 0 0 1

)

), a lattice cube (A corre-

sponds to the matrix
(

0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 0 1 1

)

), and a lattice octahedron (A corresponds to the matrix
(

0 1 −1 0 0 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 1 −1

)

).

(2.3)
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Let A ⊂ Z1+n lie on an affine hyperplane. Suppose that u, v ∈ NA are nonzero vectors
with u 6= v and Au = Av so that zu − zv is a binomial in IA. By our assumption on A,
the toric ideal IA is homogeneous, so that deg zu = deg zv. Let d :=

∑

a ua =
∑

a va be this
degree. Writing λa :=

1
d
ua and µa :=

1
d
va for a ∈ A, we have

∑

a∈A

aλa =
∑

a∈A

aµa .

As λa, µa ≥ 0 are rational numbers and
∑

a λa =
∑

a µa = 1, this is a point in conv(A)
having two distinct representations as a rational convex combination of the points of A.
Suppose that Aw = 0. Then zw

+ − zw
−
is a generator for IA, by Corollary 1.4. Note that

supp(w+) is disjoint from supp(w−). (Here, the support supp(v) of a vector v is the set of
indices of nonzero coordinates.) Then the above construction (applied to w+ and w−) gives

∑

a∈supp(w+)

aλa =
∑

a∈supp(w−)

aµa ,

which is a rational point common to the convex hulls of two disjoint subsets of A.

Example 2.4. Suppose that A is represented by the matrix ( 0 1 1 2 2
1 0 2 0 1 ). The point (3

2
, 1
2
)T lies

in the convex hull of two disjoint subsets of A, ( 1 2
0 1 ) and ( 0 1 2

1 2 0 ), respectively.

✘✘✘✘✾
( 3/2
1/2 ) =

1
2
( 1
0 ) +

1
2
( 2
1 )

( 3/2
1/2 ) =

1
6
( 0
1 ) +

1
6
( 1
2 ) +

2
3
( 2
0 )

These coincident convex combinations give the binomial z3
( 1
0
)
z3
( 2
1
)
− z( 0

1
)z( 1

2
)z

4
( 2
0
)
in IA+ .

We summarize this discussion.

Proposition 2.5. Suppose that A lies on an affine hyperplane. Homogeneous generators
zw

+ − zw
−
of IA of Corollary 1.4 correspond to rational points of conv(A) lying in the inter-

section of convex hulls of two disjoint subsets of A.

For a finite subset A ⊂ M ≃ Zn, a cocharacter w ∈ N (or any vector in NR := N ⊗Z R)
gives a function on A, where a 7→ w · a. Write hA(w) for the maximum value this function
takes on points of A. The function w 7→ hA(w) is the support function of A. The subset of
A where the function a 7→ w · a attains its maximum,

(2.4) Aw := {a ∈ A | w · a = hA(w)} ,
is the face of A exposed by w. When A is the set of column vectors of

(

0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 0 1 1

)

, which

are the vertices of the lattice cube, the face exposed by the vector (1, 2, 3) is the vertex
(

1
1
1

)

,

the face exposed by the vector (1,−2, 0) is the subset {
(

1
0
1

)

,
(

1
0
0

)

} that spans an edge of the
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cube, and the face exposed by the vector (0, 0,−1) is the subset {
(

0
0
0

)

,
(

0
1
0

)

,
(

1
0
0

)

,
(

1
1
0

)

}, which
spans the downward-pointing facet.

(

1
0
0

)

(

1
0
1

)

(

1
1
0

)

(

1
1
1

)

(

0
1
0

)

(

0
1
1

)

(

0
0
0

)

(

0
0
1

)

A face of A is any subset of this form. These same notions of support function hP (w),
face F of P , and face Pw of P exposed by w, also hold for any polytope P . Each face F of
A is the intersection of A with a face F of its convex hull conv(A), and F = conv(F). The
inclusion F ⊂ A of subsets induces an inclusion of projective spaces PF ⊂ PA, where PF is
identified with the coordinate subspace {z ∈ PA | za = 0 if a 6∈ F} of PA. We state a relation
between faces of A and toric subvarieties of XA without proof.

Lemma 2.6. Let XA ⊂ PA be the projective toric variety given by finite set A ⊂ Z1+n lying
on an affine hyperplane. For any point z ∈ XA, its support supp(z) = {a ∈ A | za 6= 0} is a
face of A. For every face F of A, the intersection XA ∩ PF is naturally identified with XF .

There is much more relating the structure of the polytope conv(A) and the toric variety.
We state another such result without proof. Consider the map µA : PA → conv(A) given by

PA ∋ z = [za | a ∈ A] 7−→
∑

a∈A a|za|
∑

a∈A |za|
∈ conv(A) .

Lemma 2.7. The map µA : XA+ → conv(A) is surjective. The inverse image of a face F
of conv(A) is XF , where F = F ∩ A. The map µA remains surjective when restricted to
XA+(R) = XA+ ∩ PA(R), where PA(R) = P(RA), and also to

XA+(R≥) := {x = [xa | a ∈ A] ∈ XA+ | xa ≥ 0 for all a ∈ A} ,
on which it is a homeomorphism. This map identifies XA+(R) with 2n copies of conv(A)
glued along facets.

2.2. Kushnirenko’s Theorem. We turn to one of the most celebrated applications of toric
varieties, understanding the number of solutions to a system of polynomial equations. A
Laurent polynomial f ∈ C[x±] is a finite linear combination of monomials. That is, there are
coefficients ca ∈ C for a ∈ Zn such that

f =
∑

a

cax
a ,

with at most finitely many coefficients ca nonzero. The set A of indices of nonzero coefficients
is called the support of f and its convex hull conv(A) is the Newton polytope of f , which is
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a lattice polytope. We consider the number of solutions in (C∗)n to a system

(2.5) f1(x) = f2(x) = · · · = fn(x) = 0

of (Laurent) polynomial equations, where each polynomial has the same support A. The
coefficients of a polynomial identify CA with the set of polynomials whose support is a
subset of A, and (CA)n is identified with set of polynomial systems (2.5) with support A.
Kushnirenko [12] proved the following count for the number of solutions to a system of
polynomial equations (2.5) with support A.

Theorem 2.8 (Kushnirenko). A system (2.5) of n polynomials in n variables with sup-
port A has at most n!Vol(conv(A)) isolated solutions in (C∗)n, counted with multiplicity.
There is a dense open subset of (CA)n consisting of systems with support A having exactly
n!Vol(conv(A)) solutions in (C∗)n, each isolated and occurring with multiplicity one.

Lemma 4.10 of Section 4 establishes the claim that there is an open set in (CA)n of systems
with support A all of which have the same number of isolated solutions and where each
solution occurs with multiplicity one. Theorem 4.11 describes the discriminant conditions
that imply all solutions are isolated. Namely, that for each w ∈ Rn, the facial system

(2.6) f1,w(x) = f2,w(x) = · · · = fn,w(x) = 0

has no solutions in (C×)n, where, for a Laurent polynomial f with support A, fw is the
restriction of f to the monomials in Aw. This is also the initial form inwf of f with respect
to the weighted partial term order ≺w. This partial term order is defined in Exercise 12,
where you are asked to prove the previous claim.
We use the projective toric variety XA+ to prove Kushnirenko’s Theorem. The map ϕA

parameterizes XA+ , and we first understand when this parametrization is injective. The
affine span of a set A is

(2.7) AffA :=
{

∑

a∈A

aλa |
∑

a∈A

λa = 1
}

.

This differs from the convex hull in that the coefficients λa may be negative. When λa ∈ Z,
this is the integral affine span AffZ A. For any a ∈ A, the affine span is the coset

(2.8) AffA = a + R{b− a | b ∈ A} ,
and the same (replacing Z for R) gives the integral affine span.
The map ϕA : (C∗)n → PA is the restriction of ϕA+ (2.2) to the subtorus {1}× (C∗)n of the

torus C∗× (C∗)n where t = 1. In Exercise 6 you are asked to show that ϕA is injective if and
only if AffZ A = Zn. Notice that if 0 ∈ A, then AffZ A = ZA. Since multiplying a Laurent
polynomial by a monomial xa does not change its set of zeros, it is no loss of generality to
assume that 0 ∈ A, in which case ϕA is injective if and only if ZA = Zn. As 0 ∈ A, one of
the coordinates of ϕA is 1, so its image lies in a standard affine patch of PA.
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We relate the projective toric variety XA+ to systems of polynomials with support A.
Given a (homogeneous) linear form Λ on PA,

Λ =
∑

a∈A

caza ,

its pullback ϕ∗
A(Λ) along ϕA is a polynomial with support A,

ϕ∗
A(Λ) =

∑

a∈A

cax
a .

Consequently, a system of n polynomials (2.5) with support A is the pullback along ϕA of
a system of n linear forms on PA. Note that a linear form Λ on PA defines a hyperplane
H ⊂ PA and n general linear forms define a linear subspace L of codimension n.

Lemma 2.9. The solution set of a system of polynomials (2.5) with support A is the pullback
ϕ−1
A (L) = ϕ−1

A (L ∩ ϕA(C
∗n)) of a linear section of ϕA(C

∗n), where L has codimension equal
to the dimension of the linear span of the polynomials fi.

Example 2.10. Consider the polynomial system

(2.9) f := x2y + 2xy2 − 1 + xy = 0 and g := x2y − xy2 + 2− xy = 0 .

These polynomials define two plane curves which have one real point of intersection at
(1.53277,−0.90655) and are displayed in Figure 3. The exponent vectors A are the columns

−1 1

−1

1
f

f fg g

g

✛ (1.53,−0.907)

y

x

Figure 3. Curves of polynomial system (2.9).

of the matrix ( 2 1 0 1
1 2 0 1 ). The map ϕA is

(x, y) 7−→ [x2y : xy2 : 1 : xy] ∈ PA ≃ P3 .

Its image consists of those points [z( 2
1
) : z( 1

2
) : z( 0

0
) : z( 1

1
)] with z( 2

1
)z( 1

2
)z( 0

0
) = z3

( 1
1
)
6= 0, which

is part of a cubic surface. The polynomial system (2.9) corresponds to the two linear forms

z( 2
1
) + 2z( 1

2
) − z( 0

0
) + z( 1

1
) = z( 2

1
) − z( 1

2
) + 2z( 0

0
) − z( 1

1
) = 0 .
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These define a line ℓ in P3. Figure 4 shows ℓ and (part of) the cubic surface. This is in the
affine part of PA where z( 1

1
) 6= 0 near the origin. The best view is from the + − +-orthant.

From this, we see that there is one real solution to the system (2.9).

ℓ

z( 2
1
)

z( 1
2
)

z( 0
0
)

solution ✲

Figure 4. Linear section of cubic surface.

Lemma 2.9 gives an interpretation for the number d(A) of solutions to a general sys-
tem (2.5) with support A. The degree, deg(X), of a subvariety X of Pm of dimension n is
the number of points in a linear section L ∩ X of X, where L is a general linear subspace
in PA of codimension n. Since a general linear subspace of codimension n meets the toric
variety XA+ only at points in the image ϕA((C

∗)n), and by Exercise 6, ϕA is injective if and
only if AffZ A = Zn, we deduce the following.

Lemma 2.11. When the affine span of A is Zn, d(A) = deg(XA+).

We prove Kushnirenko’s Theorem in the case when AffZ A = Zn by showing that

n! · Vol(conv(A)) = deg(XA+)

This proof is due to Khovanskii [11] and the presentation is adapted from Chapter 3 of [14],
where the general case of AffZ A ( Zn is deduced from the case when AffZ A = Zn.
The homogeneous coordinate ring C[X] of a projective variety X ⊂ PA is the quotient

of the homogeneous coordinate ring C[za | a ∈ A] of PA by the ideal IX of homogeneous
polynomials vanishing on X. These rings and ideals are graded by the total degree of the
polynomials. Writing Cd[X] for the dth graded piece of C[X], the Hilbert function HFX(d)
is the function d 7→ dimCCd[X].
Hilbert proved that the Hilbert function for d ≫ 0 is equal to a polynomial, which is now

called the Hilbert polynomial HPX(d) of X. This encodes many numerical invariants of X.
For example, the degree of the Hilbert polynomial is the dimension n of X and its leading
coefficient is 1

n!
deg(X). For a discussion of Hilbert polynomials, see Section 9.3 of [4].

We determine the Hilbert polynomial of the toric variety XA+ . Its homogeneous coordinate
ring is the coordinate ring of XA+ ⊂ CA. By Corollary 1.3, this is C[NA+]. As the first
coordinate 1 of points of A+ corresponds to the homogenizing parameter t in (2.2), C[NA+] is
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graded by the first component of elements of NA+. Thus Cd[NA+] has a basis {(d, a) ∈ NA+}.
This is NA+ ∩ d conv(A+), which is equal to dA+, the set of d-fold sums of vectors in A+.

Example 2.12. Consider this for the projectivizationXA+ of the cuspidal cubic of Example 1.1.
Here, A = {0, 2, 3} and ϕA(s) = [1, s2, s3] ∈ PA. Figure 5 shows its lift A+ = ( 1 1 1

0 2 3 ) and the
submonoid NA+. The open circles are points that do not lie in NA+. The Hilbert function

NA+

A+ ✲

Figure 5. Monoid generated by the lift of {0, 2, 3}.

of XA+ has values (1, 3, 6, 9, 12, . . . ), so its Hilbert polynomial is 3d.

Projecting the set dA+ to the last n coordinates is a bijection with the set dA of d-fold
sums of vectors in A. These arguments show that

HFXA(d) = |dA| .
Thus an upper bound on HFXA(d) is given by |d conv(A) ∩ Zn|, as dA ⊂ d conv(A) ∩ Zn.
Ehrhart [7] (see also [2]) showed that for an integer polytope P , the counting function

EP : N ∋ d 7−→ |dP ∩ Zn|
for the integer points contained in positive integer multiples of P is a polynomial in d, now
called the Ehrhart polynomial of P . The degree of EP is the dimension of the affine span of
P . When P has dimension n, its leading coefficient is the volume of P . For example, the
Ehrhart polynomial of the interval [0, 3] = conv{0, 2, 3} of length 3 is 3d+ 1.
Now suppose that P = conv(A), the convex hull of A. Since dA ⊂ d conv(A) ∩ Zn, we

have the upper bound for HFXA(d),

(2.10) HFXA(d) ≤ Econv(A)(d) .

Note that we have this inequality for the cubic of Example 2.12.
A lower bound for HFXA(d) is best expressed in terms of an inclusion. Let SA :=

R≥A+ ∩ Z1+n be the monoid of all integer points that are in the nonnegative span of A+.
The inequality (2.10) arises from the inclusion NA+ ⊂ SA by considering points with first
coordinate d. We will produce a vector v ∈ NA+ and show that v + SA ⊂ NA+, which we
will use to show our lower bound.
Let B ⊂ SA be the set of points b ∈ Zn which may be written as

b =
∑

a∈A

λa(1, a) ,
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where λa is a rational number in [0, 1). For the set A = {0, 2, 3} of Example 2.12, B is origin,
together with the four points in the interior of the hexagonal shaded region (a zonotope).
These are the columns of the matrix ( 0 1 1 2 2

0 1 2 3 4 ).
For each b ∈ B, fix an expression

(2.11) b =
∑

a∈A

βa(b)(1, a) (βa(b) ∈ Z)

as an integer linear combination of elements of A+. Let −ν with ν ≥ 0 be an integer lower
bound for the coefficients βa(b) in these expressions for the finitely many elements b ∈ B. For
the set A = {0, 2, 3}, we may take these expressions to be ( 1

1 ) = ( 1
0 )− ( 1

2 ) + ( 1
3 ), (

1
2 ) = ( 1

2 ),
( 2
3 ) = ( 1

0 ) + ( 1
3 ), and ( 2

4 ) = 2( 1
2 ), so that ν = 1. Finally, define

v := ν ·
∑

a∈A

(1, a) .

Its first coordinate is ν|A|. For the set A = {0, 2, 3}, this vector is ( 3
5 ) = ( 1

0 ) + ( 1
2 ) + ( 1

3 ).
We claim that we have the inclusion of sets

(2.12) v + SA ⊂ NA+ ⊂ SA .

Comparing these sets at any level d ≥ ν|A| gives the inequality

Econv(A)(d− ν|A|) ≤ HFXA(d) ≤ Econv(A)(d) ,

Since both the lower bound and the upper bound are polynomials in d of the same degree
and leading term, we deduce that the Hilbert polynomial HPXA(d) has the same degree and
leading term as the Ehrhart polynomial Econv(A).
Thus the Hilbert polynomial has degree n and its leading coefficient is the volume of

conv(A). Since the degree of XA+ is n! times this leading coefficient, we conclude that the
degree of XA+ is

n! Vol(conv(A)) ,

which proves Kushnirenko’s Theorem when AffZ A = Zn, given the inclusions (2.12).
We establish the first inclusion in (2.12). (The second was already discussed.) Let u ∈

v + SA. Then u− v ∈ SA and so it has an expression

u− v =
∑

a∈A

αa(1, a) with αa ∈ Q≥ .

Writing each coefficient αa in terms of its fractional and integral parts gives αa = λa + γa
where λa ∈ [0, 1) ∩Q and γa ∈ N. Then

u− v =
∑

a∈A

λa(1, a) +
∑

a∈A

γa(1, a) = b + c ,

where b ∈ B and c ∈ NA+. Using the fixed expression (2.11) for b, we have

w = v +
∑

a

βa(b)(1, a) + c =
∑

s

(βa(b) + ν)(1, a) + c ,
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which lies in NA+ as −ν ≤ βa. This establishes the inclusion of sets (2.12) and completes
the proof of Kushnirenko’s Theorem when AffZ A = Zn.

The vector v used to establish the inclusion (2.12) may be replaced by a more economical
vector. For each a ∈ A, set νa := max{0,−βa(b) | b ∈ B}. If we set v′ := ∑

a∈A νa(1, a), then
the same argument shows that we still have an inclusion v′ + SA ⊂ NA+. For A = {0, 2, 3}
with A+ = ( 1 1 1

0 2 3 ) the new vector v′ is ( 1
2 ). Figure 6 shows the monoid SA (all the circles,

NA+

A+ ✲

Figure 6. Inclusions of cones for A = {0, 2, 3}.

filled and unfilled), the monoid NA+ (the filled circles), the translate ( 1
2 )+SA (larger shaded

region), and finally the translate ( 3
5 ) + SA (smaller shaded region). Observe that ( 1

2 ) is the
shortest vector such that the translate ( 1

2 ) + SA lies in NA+.
The expression n! Vol(conv(A)) in Kushnirenko’s Theorem is often called the normalized

volume of conv(A).

Exercises.

1. Verify that the subgroup ZA for the set A = ( 3 2 1 0
0 1 2 3 ) of Example 2.2 is a full rank (rank

2) subgroup of index 3 in Z2. You may find the map Z2 → Z given by (p, q) 7→ p + q
useful; consider its kernel, image, and cokernel, and the restrictions to ZA.

2. Let A ⊂ Zn be a finite set of points. Show that its lift A+ ⊂ Z1+n spans Z1+n if and only
if the set of differences {a− b | ∀a, b ∈ A} spans Zn.

3. Prove that if a finite set A ⊂ Zn lies on an affine hyperplane and rank(ZA) = 1+m, then
there is a basis for ZA identifying it with Z1+m and a subset B ⊂ Zm such that A = B+.

4. Suppose that A ⊂ Zn is represented by an integer matrix, A. Show that A lies on an affine
hyperplane if and only if the row space of A in RA has a vector with every coordinate 1.

5. Prove the equivalence of the two definitions, (2.7) and (2.8), of affine span.
6. Let A ⊂ Zn be finite. Show that the map ϕA : (C∗)n → PA is injective if and only if the

integral affine span ZA of A is Zn.
7. Give a spanning set of degree two generators for IA, where A is the lifted hexagon of

Figure 2. Interpret each generator as a point common to the convex hulls of two disjoint
subsets of A.
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8. Repeat Exercise 7 for (a) the lift of the cube and (b) the lift of the octahedron.

9. Do the homogeneous version of Exercise 6 from Section 1. For a polygon P , let AP :=
P ∩ Z2 be the set of integer points in P , and A+

P the lift of these points to Z3. For each
polygon P below, identify homogeneous binomials that generate the homogeneous toric
ideal IA+

P

. For each generator, give the coincident convex combination of Proposition 2.5,

and the point of P to which it corresponds.

Are homogeneous toric ideals always generated by quadratic binomials?
10. Show that the Euclidean volume of the simplex conv{0, e1, . . . , en} is 1

n!
, where ei is the

standard coordinate unit vector in Rn. Harder: Prove that this is the minimum volume
of any lattice simplex, and that all others have volume an integer multiple of 1

n!
.

11. Determine the volume of the Newton polytope of the Laurent polynomial

1 + x+ 2y + 3z − 4xyz + 5x2y + 7yz2 + 11x2z2 + 13xy3z + 17y3z2 − 8x2y2z2 .

Hint: use a computer algebra system to determine the number of solutions to a general
sparse system with this support and apply Kushnirenko’s Theorem. Challenge: Can you
use this method to prove the volume is what you computed?

12. Let f ∈ C[x±] and let A := supp(f). For any w ∈ Rn, we have a partial term order on
C[x±] given by

xa ≺w xb if w · a < w · b .
Show that supp(inwf) = Aw, where Aw is defined in (2.4).

13. For a challenging exercise, provide a proof of Lemma 2.6.
14. For an even more challenging exercise, provide a proof of Lemma 2.7.

3. Toric Varieties From Fans

Affine toric varieties XA are given by a finite collection A of integer vectors. The ideal of
an affine toric variety is generated by binomials coming from elements of the integer kernel of
a linear map determined by the set A. When the set A lies on an affine hyperplane, the toric
variety XA is homogeneous and gives a projective toric variety with structure corresponding
to the polytope conv(A). We give an abstract (not embedded) construction of a toric variety
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obtained by gluing affine toric varieties, where the affine varieties and the gluing are encoded
in an object from geometric combinatorics called a rational fan.

Example 3.1. The projective line P1 is the projective toric variety given by columns A of the
matrix ( 1 0

0 1 ). The corresponding integer polytope is the convex hull of the two points of A,
which in an appropriate coordinate system is just the interval [0, 1].
In its homogeneous coordinates [x : y], P1 has two standard affine patches C0 := [x : 1] for

x ∈ C and C∞ := [1 : y] for y ∈ C. Their intersection C0 ∩C∞ may be identified with C∗; it
is the points of either patch where the parameter (x for C0 and y for C∞) does not vanish.
The point [x : 1] ∈ C∗

0 is identified with the point [1 : x−1] ∈ C∗
∞. Consequently, P1 is the

union of two copies of C, C0 ⊔ C∞, glued along this common set.
We organize this using subalgebras of C[x, x−1]. First, C0 = specC[x], which is identified

with Homm(N,C), where a point [x : 1] ∈ C0 is the monoid homomorphism fx that sends
the generator 1 ∈ N to x ∈ C and fx(0) = 1 as it is a homomorphism of monoids. Similarly,
C∞ = specC[x−1] = Homm(−N,C). Here, a point [1 : y] is the monoid homomorphism gy
that sends the generator −1 to y ∈ C. Also, C∗ = specC[x, x−1], which is Homm(Z,C),
where a point z ∈ C∗ is the monoid homomorphism hz that sends 0 7→ 1 and 1 7→ z. The
restriction of hz to N gives the map fz and its restriction to −N is the map gz−1 .

3.1. Cones and Fans. We develop more geometric combinatorics needed for the remaining
material on toric varieties, in the context of objects in Rn. For additional reference, we
recommend the books of Ewald [9] and Ziegler [15].
Let A ⊂ Rn be a finite set. As explained in Section 2, its convex hull

conv(A) :=
{

∑

a∈A

aλa |
∑

a∈A

λa = 1 and 0 ≤ λa for all a ∈ A
}

is a polytope, P . This polytope is a closed and bounded set, so for w ∈ Rn, the linear function
on Rn given by x 7→ w ·x is bounded on P , and thus has a maximum value, hP (w), on P . This
function w 7→ hP (w) is the support function of P . The subset Pw := {x ∈ P | w ·x = hP (w)}
of P where this maximum is attained is the face of P exposed by w, and is again a polytope,
typically of smaller dimension. It is the convex hull of Aw, which is the set of points a ∈ A
where w · a = hP (w). (These notions were treated in Subsection 2.1.) The dimension of a
polytope is the dimension of its affine span. A face F of P of dimension zero is a point and
it is called a vertex of P . A face of dimension one is a line segment, and it is called an edge.
A facet of P is a face F with codimension one, dimF = dimP−1.

Example 3.2. A useful construction of one polytope from another is a pyramid. Suppose
that P is a polytope of dimension n−1, which we assume lies on a hyperplane H defined by
w · x = b in Rn for some 0 6= w ∈ Rn (H = {x ∈ Rn | w · x = b}). For any point o ∈ Rn rH,
the pyramid with base P and apex o ∈ Rn is the convex hull of the polytope P and the point
o. This pyramid has height h := 1

‖w‖
|b − w · o| = |w · (o − x)|/‖w‖ for any x ∈ H, and its
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volume is 1
n
hVoln−1(P ).

o

P✛

By the definition of the support function hP (w) of P , for any w ∈ Rn, we have

P ⊂ {x ∈ Rn | w · x ≤ hP (w)} .
This set is a half space and its boundary {x | w · x = hP (w)} is a supporting hyperplane of
P . Note that Pw is the intersection of P with the supporting hyperplane corresponding to
w. As a closed, convex body, P is the intersection of all half-spaces that contain it,

(3.1) P =
⋂

w∈Rn

{x ∈ Rn | w · x ≤ hP (w)} .

For example, the lattice octahedron (2.3) {(x, y, z) ∈ R3 | |x|+|y|+|z| ≤ 1} is the intersection
of the eight half spaces, {(x, y, z) ∈ R3 | ±x ± y ± z ≤ 1}, one for each choice of the three
signs ±. The lattice pentagon is the intersection of five half spaces,

=
⋂ ⋂ ⋂ ⋂

.

In these examples, the polytope P is the intersection of finitely many half spaces, one for
each facet of P . This is true for all polytopes.

Proposition 3.3. A polytope P is the intersection of finitely many half spaces, one for each
facet of P .

A polyhedron is the intersection of finitely many half spaces, and a bounded polyhedron
is a polytope. Here are four unbounded polyhedra in R, R2, R2, and R3, respectively.

A polyhedron P has a support function hP (w) that takes values in R ∪ {∞}. When P is
unbounded in the direction of w, then hP (w) = ∞. With this definition, the description (3.1)
holds for P .
A (convex) cone is a polyhedron for which each supporting hyperplane contains the origin,

and is therefore a linear subspace. Equivalently, a cone σ is a polyhedron whose support
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function only takes values 0 and ∞. The half spaces that define a cone all have the form

{x ∈ Rn | w · x ≤ 0} .
Such a half space forms an additive monoid under addition and its boundary hyperplane is
a linear space consisting of the invertible elements in this monoid.
Consequently, a cone σ is a monoid under addition and the intersection of its boundary

hyperplanes is a linear subspace ℓ of Rn, called the lineality space of σ. The lineality space is
the set of invertible elements in σ. When the lineality space is the origin, the cone is pointed
(also called strictly convex or strongly convex). A face τ of a cone σ is again a cone and
the lineality space of σ is its minimal face. Figure 7 shows four cones, two in R2 and two in
R3. The first and the third are pointed, while the second and fourth have a one-dimensional

0

0
ℓ

0
0

ℓ

Figure 7. Four cones.

lineality space. The second is a half space.
The origin is the minimal face of a pointed cone σ. The rays of a pointed cone σ are its

one-dimensional faces. Each ray ρ has the form R≥x for any nonzero element x of ρ. While a
polytope is the convex hull of its vertices, a pointed cone is the sum of its rays. For example,
the third cone in Figure 7 is R≥

(

0
1
2

)

+R≥

(

0
−1
2

)

+R≥

(

1
0
2

)

+R≥

(−1
0
2

)

. More generally, any cone

is a sum of rays. The fourth cone in Figure 7 is R≥

(

0
1
2

)

+ R≥

(

0
−1
2

)

+ R≥

(

1
0
0

)

+ R≥

(−1
0
0

)

.
Another important object is a polyhedral complex. This is a collection P of polyhedra

in Rd such that every face of every polyhedron in P is another polyhedron in P and the
intersection of any two polyhedra P, P ′ in P is a common face of each. For example, of the
four collections of vertices, line segments, and polyhedra below, the first three are polyhedral
complexes, while the last is not; the large triangle does not meet either of the smaller triangles
in one of its faces.

A polytope together with all of its faces forms a polyhedral complex. The boundary of a
polytope (all of its proper faces) forms a polyhedral complex. For a less simple example,
suppose that o ∈ P is any point of a polytope P . For every face F of P that does not contain
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o we may consider the pyramid with base F and apex o. This collection of pyramids, their
bases, and the apex o forms a polyhedral subdivision of P .
The support of a polyhedral complex P is the union of the polyhedra in P . When the

support of a polyhedral complex is a polyhedron P , the complex is a subdivision of P . When
the support is a polytope P , we have the following formula for the volume of P ,

Voln(P ) =
∑

Q∈P

Voln(Q) .

When every polytope in a polyhedral complex P is a simplex, we say that P is a triangula-
tion of its support. Of the four polyhedral subdivisions below, the last two are triangulations.

Our last object in this tour of geometric combinatorics is a fan, which is a polyhedral
complex, all of whose polyhedra are cones. If the support of a fan is the ambient space,
then the fan is said to be complete. Figure 8 shows some fans in R2 and R3. The second is

Figure 8. Three fans.

complete, and the third is complete, if we include the eight implied open cones.
Given a polytope P in Rn, define an equivalence relation on the dual Rn by v ∼ w if and

only if Pv = Pw, so that v and w expose the same face of P . The closure of each equivalence
class is a cone in Rn, and these cones together form the (outer) normal fan to the polytope
P , which is a complete fan. The rays of the normal fan expose facets of P .

Example 3.4. The third fan in Figure 8 is the outer normal fan to the lattice cube (2.3).
Indeed, the standard unit vectors

(

1
0
0

)

,
(

0
1
0

)

, and
(

0
0
1

)

, together with their negatives,
(−1

0
0

)

,
(

0
−1
0

)

, and
(

0
0
−1

)

, expose the six facets of the cube. An edge between two facets exposed by
vectors v and w is exposed by any vector λv + µw where λ, µ > 0, and all vectors in the
interior of each orthant expose the same vertex.
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For more examples, we display a regular heptagon and a lattice hexagon, together with
their normal fans.

Here are two views of the same polytope in R3, together with its normal fan having the same
orientation.

The magenta ray in the normal fan is normal to the magenta facet, the green ray exposes
the green edge, and the cyan ray exposes the cyan edge.

3.2. Toric Varieties From Fans. We give a construction of a toric variety by gluing
affine toric varieties together along common open subsets. This is the original construc-
tion/definition of a toric variety from [6]. As in Sections 1 and 2, we work with the torus (C∗)n,
its group N = Hom(C∗, (C∗)n) ≃ Zn of cocharacters, and its group M = Hom((C∗)n,C∗) ≃
Zn of characters. Let NR := R ⊗Z N ≃ Rn be the real vector space spanned by the cochar-
acters and MR := R ⊗Z M ≃ Rn be the real vector space spanned by the characters. Note
that N ⊂ NR and M ⊂ MR in the same way as Zn ⊂ Rn. We write 〈•, •〉 : NR ×MR → R
for the pairing between NR and MR, extending that between N and M .
A (rational) fan Σ ⊂ NR is a fan in NR in which every cone is defined by inequalities

coming from elements a of M . The half spaces defining the cones all have the form

{w ∈ NR | 〈w, a〉 ≥ 0} for some a ∈ M .

The linear span of a cone σ in a rational fan Σ is a rational linear space in that it is spanned
by its intersection with N . The notions of rational fan and rational linear subspace also make
sense in MR. We will assume that all cones in Σ are pointed, as this simplifies the exposition.
In general, all cones in a rational fan have the same lineality space, LR, which contains a full
rank sublattice L = N ∩ LR. Replacing N by N/L, M by L⊥, and every cone σ of Σ by its
image in NR/LR, we obtain a rational fan Σ/LR that is pointed. The price we pay for this is
that the torus for the resulting toric varieties is identified with its dense orbit, which leads
to a loss of flexibility in our notion of toric variety: E.g. the closure of a torus orbit in such
a toric variety is a subvariety that is a toric variety—but for a different torus.
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Given a rational cone σ ⊂ NR, its dual cone is

σ∨ := {x ∈ MR | 〈w, x〉 ≥ 0 for w ∈ σ} .
This rational cone has full dimension in MR. Its lineality space is σ⊥, the annihilator of σ,
which has dimension n− dim σ. This is the set of x ∈ MR such that 〈w, x〉 = 0 for all w ∈ σ.

Example 3.5. The cone R≥( 1
0
)+R≥( 0

1
) (the first quadrant in R2) has dual cone R≥( 1

0
)+R≥( 0

1
),

the first quadrant in the dual R2. More interesting is the cone σ = R≥( 1
2
) + R≥( 2

1
), whose

dual cone is σ∨ = R≥( 2
−1 ) + R≥(−1

2
). We display all three cones below.

(3.2)

self-dual σ σ∨

We give an example in R3. The two-dimensional cone σ = R≥

(

1
0
0

)

+ R≥

(

0
1
0

)

has dual cone

σ∨ = R≥

(

1
0
0

)

+ R≥

(

0
1
0

)

+ R
(

0
0
1

)

, whose lineality space is the vertical axis.

σ σ∨

Given a pointed rational cone σ ⊂ NR, set

Sσ := σ∨ ∩M = {a ∈ M | 〈w, a〉 ≥ 0 for w ∈ σ} ,
which is a submonoid of M . Its group of invertible elements is the free abelian group σ⊥∩M
which has rank n − dim σ, the dimension of the lineality space σ⊥ of σ∨. Finally, let Vσ :=
Homm(Sσ,C), the set of monoid homomorphisms from Sσ to C. As we saw in Section 1, this
is equal to the spectrum of the monoid algebra C[Sσ] and so Vσ is an affine toric variety.
(This requires a theorem of Hilbert that such a monoid is finitely generated.) However, it is
not naturally embedded in an affine space CA. For this, we need to choose a set A ⊂ Sσ that
generates Sσ as a monoid, so that Sσ = NA. This is this is equivalent to the surjectivity of
the map NA → Sσ given by (na | a ∈ A) 7→ ∑

a ana.

Example 3.6. For the cone σ = R≥( 1
2
) + R≥( 2

1
), a generating set for Sσ is A = ( 2 1 0 −1

−1 0 1 2
),

which is highlighted in (3.2). The map

Homm(Sσ,C) ∋ f 7−→
(

f( 2
−1 ), f( 1

0
), f( 0

1
), f(−1

2
)
)

∈ CA
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is an embedding of Vσ into CA. The image satisfies the equations

z( 2
−1 )

z( 0
1
) − z2( 1

0
) , z( 2

−1 )
z(−1

2
) − z( 1

0
)z( 0

1
) , and z( 1

0
)z(−1

2
) − z2( 0

1
) ,

which are given by the relations in Sσ satisfied by elements ofA. These are the same equations
as (2.1), and so this affine toric variety is the affine cone over the rational normal curve.

Suppose that τ is a face of a rational cone σ ⊂ NR. Then σ∨ ⊂ τ∨, as τ∨ involves fewer
inequalities. This gives an inclusion Sσ ⊂ Sτ of monoids, and that in turn gives an inclusion
of affine toric varieties associated to these cones,

Vτ = Homm(Sτ ,C) ⊂ Homm(Sσ,C) = Vσ .

Here, the inclusion is given by restricting a monoid homomorphism g : Sτ → C to the sub-
monoid Sσ.

Definition 3.7. Let Σ ⊂ NR be a rational fan. The toric variety XΣ associated to Σ is
obtained from the collection {Vσ | σ ∈ Σ} of affine toric varieties associated to cones in the
fan Σ by gluing along the natural inclusions Vτ ⊂ Vσ whenever τ, σ are cones in Σ with τ a
face of σ. As the minimal cone in Σ is the origin 0 and 0⊥ = MR so that S0 = M . Thus V0

is the torus Homm(M,C) = Homg(M,C∗). This lies in every affine toric patch Vσ and the
gluing is torus-equivariant. Thus the toric variety XΣ has an action of this torus.

Example 3.8. Example 3.1 constructs the projective line P1 from the fan Σ ⊂ R whose cones
are σ = R≥, the nonnegative real numbers, ρ = R≤, the nonpositive real numbers, and
τ = {0}, the origin.

ρ τ σ

0

Then Vσ = Homm(N,C), Vρ = Homm(−N,C), and Vτ = Homm(Z,C), which are the sets C0,
C∞, and C∗ of Example 3.1, and the gluing is the same as in Example 3.1.

We give a detailed construction of a less trivial toric variety XΣ in Section 3.3.

We connect abstract toric varieties to the projective toric varieties of Section 2. For this,
let P ⊂ MR be a polytope with vertices in M and set A := P ∩ M . Write XP for the
projective toric variety XA+ . Let ΣP ⊂ NR be the outer normal fan of P . Each cone σ ∈ ΣP

corresponds to a unique face Pσ of P . (Recall that each cone σ ∈ ΣP is the closure of the
set of points of NR that expose a given face of P .) More specifically, let σ◦ be the relative
interior of σ, the set-theoretic difference of σ with the union of its proper faces. Then Pσ is
the face of P exposed by any point w ∈ σ◦. Also, the linear span of differences b−a of points
a, b ∈ Pσ is the lineality space of σ∨.
For a cone σ ∈ ΣP , we define a map ϕσ : Vσ → PA whose image lies in the projective

toric variety XP . Choose any point b ∈ Pσ ∩ M . By the definition of Pσ, if w ∈ σ and
a ∈ A(= P ∩M), then 〈w, b〉 ≥ 〈w, a〉, so that 〈w, b− a〉 ≥ 0. Since this inequality holds for
all w ∈ σ, we have that b− a ∈ σ∨ ∩M = Sσ. For an element f ∈ Vσ = Homm(Sσ,C), define
ϕb,σ(f) ∈ PA to be the point [f(b− a) | a ∈ A]. We note that the sign here, b− a for a ∈ A,
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is to conform with our use of the outer normal fan. For the inner normal fan, use a − b for
a ∈ A.

Lemma 3.9. For any two elements b, b′ ∈ Pσ∩M and f ∈ Vσ, we have that ϕb,σ(f) = ϕb′,σ(f)
as points in PA. For any f ∈ Vσ, ϕb,σ(f) ∈ XP . For any point x ∈ XP with xc 6= 0 for
c ∈ Pσ ∩M , there is a point f ∈ Vσ with x = ϕb,σ(f).

Proof. For b, b′ ∈ Pσ ∩M , b − b′ ∈ σ⊥ so that if f ∈ Vσ, then f(b − b′) is a nonzero scalar.
For any a ∈ A, we have

f(b′ − a) = f(b′ − b+ b− a) = f(b′ − b) · f(b− a) ,

as f ∈ Homm(Sσ,C). Thus as points of C
A, ϕb′,σ(f) = f(b′− b)ϕb,σ(f), so they give the same

point in PA.
To see that ϕb,σ(f) ∈ XP = XA+ , we show that ϕb,σ(f) ∈ V(IA+). By Theorem 1.2, it

suffices to check that each binomial zu−zv in IA+ vanishes at ϕb,σ(f). Suppose that u, v ∈ NA

satisfies A+u = A+v. Then Au = Av and |u| = |v|. We compute

(

ϕb,σ(f)
)u

= f
(

∑

a∈A

ua(b− a)
)

= f(|u|b−Au)

= f(|v|b−Av) = f
(

∑

a∈A

va(b− a)
)

=
(

ϕb,σ(f)
)v

,

and so zu − zv vanishes at ϕb,σ(f). Thus ϕb,σ(f) ∈ V(IA+). But this equals XA+ as IA+ is
prime and hence radical, by Theorem 1.2.
Finally, suppose that x = [xa | a ∈ A] ∈ XA+ is a point with xc 6= 0 for some c ∈ Pσ ∩M .

Choose any b ∈ Pσ ∩ M and define the monoid homomorphism f : N{b − a | a ∈ A} → C

by f(b − a) = xax
−1
b , and extend linearly. This is well-defined as x ∈ XA+ and so xu = xv

and whenever A+u = A+v. If Sσ = N{b− a | a ∈ A}, this completes the proof. Otherwise,
as Sσ = M ∩Q{b− a | a ∈ A} and C is algebraically closed, we may extend f to a monoid
homomorphism of Sσ. The ambiguity in this extension correspond to roots of unity that
populate the kernel of the action of the torus on XA+ .

Thus we obtain a well-defined map ϕσ : Vσ → XP ⊂ PA whose image is the set of points
of XP whose coordinates indexed by elements of Pσ ∩M are nonzero.

Lemma 3.10. Let σ, τ ∈ Σ be cones with τ ⊂ σ. For any element f ∈ Vτ , we have
ϕτ (f) = ϕσ(f), where we apply ϕσ to the image of f under the natural inclusion Vτ ⊂ Vσ.

Proof. This is tautological. If f ∈ Vτ , then its image in Vσ is obtained by restricting f from Sτ

to the points of Sσ. Choosing b ∈ Pτ ∩M ⊂ Pσ∩M , we have that {b−a | a ∈ A} ⊂ Sσ ⊂ Sτ ,
so that ϕb,τ (f) = ϕb,σ(f), which completes the proof.

By Lemma 3.10, the map from the disjoint union of the Vσ for σ ∈ Σ to XP given by the
collection of maps {ϕσ | σ ∈ Σ} agrees on the inclusions Vτ ⊂ Vσ given by inclusions τ ⊂ σ
of cones in Σ. Thus it induces a (surjective) map ϕP : XΣ → XP . This map is in fact an
isomorphism of algebraic varieties.
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Remark 3.11. A map similar to the map ϕP : XΣ → XP may also be defined for any set
A ⊂ P ∩M such that conv(A) = P . Its image will be the projective toric variety XA+ .

3.3. The Double Pillow. We illustrate the construction of toric varieties for the normal
fan Σ ⊂ R2 of the diamond, , which is the convex hull of the column vectors of the matrix
( 0 −1 0 1 0
−1 0 0 0 1 ). We display this lattice polygon and its normal fan Σ.

(3.3)

τ
❅
❅❘

σ✛

The fan Σ has four rays R≥(
±1
±1 ) one for each of four choices of signs, and four two-dimensional

cones spanned by adjacent rays.
Each two-dimensional cone σ is self-dual and all are isomorphic. Thus XΣ is obtained by

gluing together four isomorphic affine toric varieties Vσ, as σ ranges over the two-dimensional
cones in Σ. A complete picture of the gluing involves the affine varieties Vτ , where τ a ray
of Σ. We next describe these two toric varieties Vσ and Vτ , for σ a two-dimensional cone of
Σ and τ a ray of Σ.
Let σ be the shaded cone in (3.3). Since σ = σ∨, we see that σ∨∩Z2 is minimally generated

by the column vectors A of the matrix ( 1 1 1
−1 1 0 ) highlighted in (3.3) and so Vσ is isomorphic

to the affine toric variety XA, which is the closure in C3 of the image of the map

ϕ : (s, t) 7−→ (st−1, st, s) ,

and is defined by the equation z( 1
−1 )

z( 1
1
) = z2

( 1
0
)
. This is a cone in C3. We display its real

points (a right circular cone) in R3 below at left.

(3.4)

z( 1
1
)

z( 1
0
)

z( 1
−1 )

Vσ

z(−1
1
)

z( 1
0
)

z( 1
−1 )Vτ

Let τ be the ray generated by ( 1
1
), which is a face of σ. Then τ∨ is the half-space {(u, v) ∈

R2 | u + v ≥ 0}, which is the union of both two-dimensional cones in Σ containing τ . Since
τ∨ ∩ Z2 has generators the column vectors B of the matrix ( 1 −1 1

−1 1 0
), Vτ is isomorphic to the

affine toric variety XB, which is the closure in C3 of the image of the map

ϕ : (s, t) 7−→ (st−1, s−1t, s) ,
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and has equation z( 1
−1 )

z(−1
1
) = 1. This is the cylinder with base the hyperbola z( 1

−1 )
z(−1

1
) = 1

in the z( 1
−1 )

, z(−1
1
)-plane, which is shown in (3.4) (in R3) at right.

We describe the gluing. We have that Vτ ⊂ Vσ and they both contain the torus (C∗)2. In
each, this common torus is its intersection with the complement of the coordinate planes in
the given embedding, and the boundary of the torus is its intersection with the coordinate
planes. The boundary of (C∗)2 in the cylinder Vτ is the curve z( 1

0
) = 0 and z( 1

−1 )
z(−1

1
) = 1,

which is displayed in (3.4) on the picture of Vτ . Also, t 6= 0 on this cylinder. The boundary
of (C∗)2 in the cone is the union of the z( 1

−1 )
- and z( 1

1
)-axes. Since t = z( 1

1
)/z( 1

0
) on the cone,

the locus where t = 0 is the z( 1
1
)-axis. Thus Vτ is naturally identified with the complement

of the z( 1
1
)-axis in Vσ while the curve z( 1

0
) = 0 and z( 1

−1 )
z(−1

1
) = 1 in Vτ is identified with the

z( 1
−1 )

-axis in Vσ.

If τ ′ is the other ray of σ, then Vτ ′ (≃ Vτ ) is identified with the complement of the z( 1
−1 )

-axis

in Vσ. A convincing understanding of this gluing procedure may be obtained by considering
an image of the real points of the toric variety X in a projection to P3. (Recall that XΣ

has a map to the projective toric variety X ⊂ PA = P4 which is an isomorphism.) The map
PA → P3 is given by the points [1 : ±1 : 0 : 0] and [1 : 0 : ±1 : 0] associated to the vertices
(±1, 0) and (0,±1) of , and the vertical point at infinity [0 : 0 : 0 : 1] associated to its
center. (Here, the plane at infinity is [0 : x : y : z].) The image of the toric variety X under
this projection map PA → P3 is a rational surface in P3. An affine part of the real points of
this surface is shown in Figure 9.

Figure 9. The double pillow.

In the coordinates [w : x : y : z] for P3 this surface has the implicit equation

(x2 − y2)2 − 2x2w2 − 2y2w2 − 16z2w2 + w4 = 0 .

and its dense torus has parametrization

[w : x : y : z] = [s+ t+ 1
s
+ 1

t
: s− 1

s
: t− 1

t
: 1] .
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It has curves of self-intersection along the lines x = ±y in the plane at infinity (w = 0). As
the self-intersection is at infinity, this affine surface is a good illustration of the real points
of the toric variety X , and so we refer to this picture to describe X .
This surface contains four lines x ± y = ±1 and their complement is the dense torus in

X . The complement of any three lines is the piece Vτ corresponding to a ray τ . Each of the
four singular points is a singular point of one cone Vσ, which is obtained by removing the two
lines not meeting that singular point. Finally, the action of the group {(±1,±1)} ⊂ (C∗)2

on the real points X (R) may also be seen from this picture. Each singular point is fixed by
this group. The element (−1,−1) sends z 7→ −z, interchanging the top and bottom halves
of each piece, while the elements (1,−1) and (−1, 1) interchange the central ‘pillow’ with the
rest of X (R). In this way, we see that X (R) is a ‘double pillow’.

The nonnegative part X (R≥) of X (R) is also seen in Figure 9. The upper part of
the middle pillow is the part of X (R) parameterized by R2

>, and so its closure is just a
square, but with singular corners obtained by cutting a cone into two pieces along a plane
of symmetry. This is X (R≥). In fact, the orthogonal projection to the x, y-plane identifies
X (R≥) with the polygon . This is also a consequence of Lemma 2.7. The composition of
the projection PA → P3 → P2, where the last is the orthogonal projection to the x, y-plane,
is the projection map µA, at least on X (R≥). From the symmetry of this surface, we see
that X (R) is obtained by gluing four copies of the polygon together along their edges to
form two pillows attached at their corners. (The four ‘antennae’ are actually the truncated
corners of the second pillow—projective geometry can play tricks on our affine intuition.)

Exercises.

1. Show that the lattice octahedron (2.3) is the intersection of the eight half spaces, {(x, y, z) ∈
R3 | ±x± y ± z ≤ 1}, one for each choice of the three signs ±.

2. Let A ⊂ Rn be a finite set, and let P = conv(A) be its convex hull, a polytope. For
w ∈ Rn, recall that

Aw = {a ∈ A | w · a = hp(w)} .
Let Pw be the face of P exposed by w. Show that

Aw = A ∩ Pw, .

3. Using the notation from the previous exercise, prove that Pw = conv(Aw).
4. Prove that a vertex (face of dimension zero) in a polyhedron P is extreme in that it does

not lie in the convex hull of other points of P . Deduce that a polytope is the convex hull
of its vertices.

5. Show that every face of a cone is a cone, and that the minimal face is its lineality space.
6. Let P ⊂ Rn be a polytope. Show that for v, w ∈ Rn, the relation

v ∼ w ⇐⇒ Pv = Pw

is an equivalence relation. Show that the closure of an equivalence class is a cone, and if
P is in integer polytope, the cone is rational. (Hint: express an equivalence class in terms
of the vertices of P .)
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7. Determine the cones of the normal fan to the lattice cube, which you may take to be the
convex hull of the vectors

(±1
±1
±1

)

, for all eight choices of ±.

8. Prove that the linear span of a cone σ in a rational fan Σ ⊂ NR is spanned by its intersection
with N .

9. The final paragraph in the proof of Lemma 3.9 is a bit dense. Fill in the details.
10. For each rational fan in R2 below, carry out the construction of the toric variety associated

to the fan.

Do you recognize either of these varieties?

4. Bernstein’s Theorem and Mixed Volumes

Bernstein [3] gave a formula for the number of solutions to a system of polynomials
where different polynomials may have different supports, generalizing Kushnirenko’s The-
orem. Bernstein’s formula is in terms of Minkowski’s mixed volume. We first review mixed
volume, and then give a proof of Bernstein’s theorem, adapted from his paper, but using
some elementary notions from tropical geometry. The discussion of mixed volumes is based
on the pages 116–118 in [9].

4.1. Mixed Volumes. Recall that for a polytope P ⊂ Rn, Vol(P ) is its volume with respect
to the standard Euclidean metric on Rn. Write Voln(P ) if we need to emphasize the ambient
space of P . In particular, if dimP < n, then Voln(P ) = 0. If dimP = m, then Volm(P )
is taken to be its volume in its m-dimensional affine span. (This is used in the proof of
Theorem 4.3.)
We consider two constructions involving polytopes. Let P,Q ⊂ Rn be polytopes and λ ≥ 0

a real number. Then we may scale P to obtain another polytope,

λP := {λx | x ∈ P} .
The Minkowski sum of P and Q is

P +Q := {x+ y | x ∈ P, y ∈ Q} .
Note that P + P = 2P .

Example 4.1. Suppose that A is represented by the matrix ( 0 1 1 2 2
1 0 2 0 1 ) and B is represented by

the matrix ( 0 1 1 2
0 1 2 1 ), and set P := conv(A) and Q := conv(B). Then P +Q = conv(A+B) =

conv(C), where C is represented by the matrix ( 0 1 1 2 2 4 4
1 0 3 0 4 1 2 ). We display these polytopes and

their Minkowski sum in Figure 10.
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P = Q = P +Q =

Figure 10. Minkowski sum of two polygons.

Given polytopes P1, . . . , Pr ⊂ Rn and nonnegative real numbers λ1, . . . , λr, define

(4.1) P (λ) := λ1P1 + · · ·+ λrPr .

The following lemma is left for you to prove in Exercise 2.

Lemma 4.2. For any vector w ∈ Rn, the support function hP (λ)(w) is the linear function
λ1hP1

(w) + · · ·+ λrhPr
(w), and

P (λ)w = λ1P1,w + · · ·+ λrPr,w .

If P (λ)w is a facet of P (λ) for one choice of λ1, . . . , λr with all λi > 0, then P (λ)w is a facet
of P (λ) for any λ1, . . . , λr with all λi > 0.

We prove the main result about the volume of the scaled Minkowski sum (4.1).

Theorem 4.3 (Minkowski). Let P1, . . . , Pr ⊂ Rn be polytopes. For nonnegative λ1, . . . , λr,
Voln(P (λ)) is a homogeneous polynomial of degree n in λ1, . . . , λr.

Proof. Suppose first that n = 1. Then each Pi is an interval [ai, bi] with ai ≤ bi so that
P (λ) = [λ1a1 + · · ·+ λrar, λ1b1 + · · ·+ λrbr], and we have

Vol1(P (λ)) =
r

∑

i=1

λibi −
r

∑

i=1

λiai =
r

∑

i=1

λi(bi − ai) =
r

∑

i=1

λiVol1(Pi) ,

which is homogeneous of degree 1 in λ1, . . . , λr.
Now suppose that n > 1. As volume is invariant under translation, we will make some

assumptions for the purpose of computation. For a given w ∈ Rn and all i, we may assume
that 0 lies in the face Pi,w of Pi exposed by w. Then each Pi,w as well as P (λ)w lies in the
hyperplane annihilated by w, which is isomorphic to Rn−1. By induction on dimension, we
may assume that Voln−1(P (λ)w) = Voln−1(λ1P1,w+· · ·+λrPr,w) is a homogeneous polynomial
of degree n−1 in λ1, . . . , λr. This conclusion about Voln−1(P (λ)w) remains true even if 0 does
not lie in any face Pi,w.
Again translating P (λ) if necessary, we may assume that hP (λ)(w) > 0. Then the pyramid

Cw with apex 0 ∈ Rn over the facet P (λ)w of P (λ) has height hP (λ)(w) and therefore has
volume

1

n
· 1

‖w‖hP (λ)(w) · Voln−1(P (λ)w)
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which is a homogeneous polynomial of degree n in λ1, . . . , λr, as hP (λ)(w) is linear in λ1, . . . , λr.
Again using that volume is invariant under translation, now suppose that 0 ∈ P (λ), and thus
the support function of P (λ) is nonnegative for all w ∈ Rn. Then the pyramids over facets
of P (λ) form a polyhedral subdivision of P (λ), so that Vol(P (λ)) is the sum of the volumes
of these pyramids. This completes the proof.

Let us write the polynomial Vol(P (λ)) as a tensor (nonsymmetric in λ1, . . . , λr),

(4.2) Vol(P (λ)) =
r

∑

a1,...,an=1

MV(Pa1 , Pa2 , . . . , Pan)λa1λa2 · · ·λan ,

where the coefficients are chosen to be symmetric—for any permutation π ∈ Sn, we have

MV(Pa1 , Pa2 , . . . , Pan) = MV(Pπ(a1), Pπ(a2), . . . , Pπ(an)) .

The coefficient MV(Pa1 . . . , Pan) is the mixed volume of the polytopes Pa1 , . . . , Pan .

Lemma 4.4. Mixed volumes satisfy the following properties. Let P,Q, P1, . . . , Pn ⊂ Rn be
polytopes.

(1) Symmetry. MV(Pa1 , . . . , Pan) = MV(Pπ(a1), . . . , Pπ(an)) for any permutation π ∈ Sn.
(2) Multilinearity. For any nonnegative λ, µ, we have

MV(λP + µQ, P2, . . . , Pn) = λMV(P, P2, . . . , Pn) + µMV(Q,P2, . . . , Pn) .

(3) Normalization. MV(P, . . . , P ) = Voln(P ).

The notion of (multi-)linearity in statement (2) is weaker than the usual notion. Usually,
a function f(x) is linear in an argument x if f(λx + µy) = λf(x) + µf(y) for arguments x
and y and any numbers λ and µ. For mixed volume, the coefficients λ and µ are nonnegative
real numbers.

Proof. Symmetry follows from the definition of mixed volume. For multilinearity, equate the
coefficient of λ1 · · ·λn in the nonsymmetric expansions (4.2) of

Vol(λ1(λP + µQ) + P2 + · · ·+ Pn) = Vol(λ1λP + λ1µQ+ P2 + · · ·+ Pn) .

(For the first, r = n and for the second, r = n+1 in (4.2).) Finally, for normalization, note
that for λ ≥ 0, λnVol(P ) = Vol(λP ) = λnMV(P, . . . , P ), with the first equality coming from
the definition of volume and the second from the expansion (4.2) defining mixed volume.

These three properties characterize mixed volumes.

Corollary 4.5. Mixed volume is the unique function of n-tuples of polytopes in Rn that
satisfies the three properties of symmetry, multilinearity, and normalization of Lemma 4.4.

Proof. Let L be a function of n-tuples of polytopes in Rn that satisfies the three properties of
symmetry, multilinearity, and normalization of Lemma 4.4. For any polytopes P1, . . . , Pn ⊂
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Rn and nonnegative λ1, . . . , λn, we have Vol(P (λ)) = L(P (λ), . . . , P (λ)) by normalization.
Expanding this using (4.1) and the multilinearity of L, we obtain

L(P (λ), . . . , P (λ)) =
n

∑

a1,...,an=1

L(Pa1 , Pa2 , . . . , Pan)λa1λa2 · · ·λan .

The equality of this sum with the sum (4.2) and the symmetry of both L and MV in their
arguments completes the proof.

We give another formula for mixed volume and prove a stronger version of Corollary 4.5.
This involves a weaker condition than multilinearity, that of multiadditivity in which the
nonnegative coefficients λ and µ are both taken to be 1. Given polytopes P1, . . . , Pn and
∅ 6= A ⊂ [n] write P (A) for the Minkowski sum

∑

i∈A Pi.

Theorem 4.6. Let P be a collection of polytopes in Rn that is closed under Minkowski
sum. Suppose that L is a function of n-tuples of polytopes in P that is symmetric in its
arguments and normalized (as in Lemma 4.4), and that L is multiadditive under Minkowski
sum (λ = µ = 1 in Lemma 4.4). Then for any polytopes P1, . . . , Pn ∈ P, we have

(4.3) n!L(P1, . . . , Pn) =
∑

∅6=A⊂[n]

(−1)n−|A| Vol(P (A)) .

In particular, L equals mixed volume, L(P1, . . . , Pn) = MV(P1, . . . , Pn).

Example 4.7. If P,Q,R are polytopes in R3, then 6MV(P,Q,R) equals

Vol(P +Q+R)− Vol(P +Q)− Vol(P +R)− Vol(Q+R) + Vol(P ) + Vol(Q) + Vol(R) .

For polygons P,Q, we have 2MV(P,Q) = Vol(P +Q)− Vol(P )− Vol(Q). For the polygons
in Figure 10, if we subdivide P +Q as shown,

then 2MV(P,Q) equals the combined areas of the four parallelograms, which is six.

Proof of Theorem 4.6. Let ∅ 6= A ⊂ [n]. Since L is normalized, L(P (A), . . . , P (A)) equals
Vol(P (A)). Expand L(P (A), . . . , P (A)) using the multiadditivity of L to obtain

(4.4) Vol(P (A)) =
∑

a1,...,an∈A

L(Pa1 , . . . , Pan) .

Let b1, . . . , bn be any sequence with bi ∈ [n] and set B := {b1, . . . , bn}. Then L(Pb1 , . . . , Pbn)
occurs in the sum (4.4) if and only if B ⊂ A, and in that case, it appears with coefficient 1.
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Expand the right hand side of (4.3) in terms of the function L using (4.4). Then for
b1, . . . , bn ∈ [n] the term L(Pb1 , . . . , Pbn) occurs with coefficient

∑

B⊂A⊂[n]

(−1)n−|A| = (1− 1)n−|B| =

{

0 if B 6= [n]

1 if B = [n]
.

Thus the right hand side of (4.3) reduces to the sum of L(Pb1 , . . . , Pbn) for b1, . . . , bn distinct.
Each of these n! terms are equal by symmetry, which completes the proof.

4.2. Bernstein’s Theorem. We begin with an example.

Example 4.8. The system f = g = 0 of cubic sparse polynomials on (C∗)2, where

(4.5) f := x+ 2y + 3xy + 5x2y + 7y2 + 11xy2 and g := 1 + 3xy + 9x2y + 27xy2 ,

has six solutions

(−0.21013,−0.44087) , (0.94037,−0.13693) , (−0.62796, 0.29688) , (−1.1747, 0.36649) ,

(0.85566∓ 0.55260
√
−1,−0.36620± 0.25941

√
−1) ,

and not 9 = 3 · 3, which is the number predicted by Bézout’s Theorem. Figure 11 shows the
curves defined by f and g in R2. The Newton polytopes for f and g are the lattice polygons

1

1

−1

f

f

f

f

g

g

g

Figure 11. Curves of the polynomial system (4.5).

P and Q in Figure 10, respectively. Observe that the number of solutions is 2MV(P,Q).
Exercise 4 asks you to compute the number of solutions for different pairs of polynomials
with the same support as f and g (4.5).

Bernstein’s Theorem generalizes this observation. As in Subsection 2.2, for a finite set
A ⊂ M , we identify the set of polynomials whose support is a subset of A with the vector
space CA of the possible coefficients of such polynomials. We identify CA1 × · · · × CAn with
the set of systems of polynomials with support (A1, . . . ,An), and CP1 × · · · ×CPn the set of
systems of polynomials with Newton polytopes P1, . . . , Pn.
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Theorem 4.9 (Bernstein). The number of isolated solutions in (C∗)n, counted with multi-
plicity, of a system

f1(x) = f2(x) = · · · = fn(x) = 0

of n polynomials is at most n!MV(P1, . . . , Pn), where Pi is the Newton polytope of fi. There is
a dense open subset of CP1×· · ·×CPn consisting of systems with Newton polytopes P1, . . . , Pn

having exactly n!MV(P1, . . . , Pn) solutions in (C∗)n, each isolated and occurring with multi-
plicity one.

Given the results in Subsection 4.1, particularly Theorem 4.6, our strategy for proving
Bernstein’s Theorem will be to show that the number of solutions to a generic system with
given supports depends only on the convex hull of the supports, is symmetric, is multiadditive
under Minkowski sum, and is normalized. We first prove a lemma about this number for a
generic system.

Lemma 4.10. Let A1, . . . ,An be finite subsets of Zn. Then there is a nonnegative integer
d and a nonempty open subset U of CA1 × · · · × CAn consisting of polynomial systems such
that if (f1, . . . , fn) ∈ U then V(f1, . . . , fn) has exactly d points and all are reduced.
When d = 0, if V(f1, . . . , fn) 6= ∅, then it has dimension at least one.

Write d(A1, . . . ,An) for the number d from the lemma. Lemma 4.10 applies also to the
unmixed systems of Kushnirenko’s Theorem 2.8.

Proof. Consider the incidence variety of solutions to systems of polynomials with supports
A1, . . . ,An,

Γ := {(x, f1, . . . , fn) ∈ (C∗)n × CA1 × · · · × CAn | f1(x) = · · · = fn(x)} .
For x ∈ (C∗)n, the set {fi ∈ CAi | fi(x) = 0} is a hyperplane in CAi , as fi(x) = 0 is a nonzero
linear form on the coefficients of fi. Thus the fiber of the map Γ → (C∗)n is the product of
these n hyperplanes and is thus a linear space of dimension

∑n
i=1 |Ai| −n. This implies that

Γ is irreducible of dimension
∑n

i=1 |Ai|.
The projection of Γ to the other factor CA1 × · · · ×CAn has fiber over a point (f1, . . . , fn)

equal to the set of solutions V(f1, . . . , fn). If this projection is surjective, then there is
a positive integer d and an open subset U of the image consisting of points with exactly
d preimages—these are regular values of the projection. (This is a consequence of Sard’s
Theorem and algebricity.) These are sparse systems with exactly d solutions in (C∗)n, and
each is reduced as the projection is regular over U .
If the map fails to be surjective, then the complement of its image contains an open subset

U . Polynomial systems (f1, . . . , fn) ∈ U have no solutions, V(f1, . . . , fn) = ∅, and so d = 0.
This completes the proof of the first statement. Since the image of Γ has dimension less than
that of Γ, every fiber has positive dimension, proving the second statement.

Consider an unmixed system, where each polynomial fi has the same support, A. Then
Kushnirenko’s Theorem 2.8 implies that d(A, . . . ,A) = n!Voln(conv(A)). Note also that
the function d is symmetric in its arguments. To prove Bernstein’s Theorem, we show that
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d(A1, . . . ,An) depends only upon the convex hulls conv(A1), . . . , conv(An) and that it is
multiadditive under Minkowski sum.
To understand multiadditivity, for a system (f1, . . . , fn) of polynomials, write d(f1, . . . , fn)

for the number of isolated points in V(f1, . . . , fn) in the torus (C∗)n, counted with multiplicity.
It is clear that

(4.6) d(f · g, f2, . . . , fn) ≤ d(f, f2, . . . , fn) + d(g, f2, . . . , fn) ,

with equality when the system (f · g, f2, . . . , fn) has only isolated points. More precisely, the
inequality is strict when an isolated solution to one of the systems on the right hand side
lies on a positive-dimensional component defined by the other system. Multiadditivity of
d(A1, . . . ,An) would follow from this observation (4.6), if we could show that

d(f, f2, . . . , fn) = d(A,A2, . . . ,An) and d(g, f2, . . . , fn) = d(B,A2, . . . ,An) ,

where f has support A and g has support B, together imply that

(4.7) d(f · g, f2, . . . , fn) = d(A+ B,A2, . . . ,An) .

This will follow by our next theorem, which characterizes the discriminant condition when
d(f1, f2, . . . , fn) < d(A1,A2, . . . ,An), where Ai = supp(fi) for i = 1, . . . , n.
For a cocharacter w ∈ N ≃ Zn and a Laurent polynomial f , write fw for the initial form

inw(f) of f in the partial term order ≺w. Given a system (f1, . . . , fn) of Laurent polynomials,
consider the system of initial forms, (f1,w, . . . , fn,w). Since (twx)a = tw·axa, we have that
fi,w(t

wx) = thAi
(w)fi,w(x) for each i = 1, . . . , n. Thus the variety V(f1,w, . . . , fn,w) consists

of orbits of C∗ under its action on (C∗)n given by the cocharacter tw and is therefore either
empty or of dimension at least one, by Lemma 4.10. In particular, translating each fi,w by
an appropriate monomial, (f1,w, . . . , fn,w) becomes a system of n polynomials on the quotient
(C∗)n/C∗

w ≃ (C∗)n−1, where C∗
w ⊂ (C∗)n is the image of the cocharacter tw. We therefore

expect that for general polynomials f1, . . . , fn (given their support), V(f1,w, . . . , fn,w) = ∅,
by Lemma 4.10.

Theorem 4.11. Let (f1, . . . , fn) be a system of Laurent polynomials and set Ai := supp(fi).

(1) If V(f1,w, . . . , fn,w) = ∅ for all w ∈ Zn r {0}, then all points of V(F ) are isolated and
we have d(f1, . . . , fn) = d(A1, . . . ,An).

(2) If for some w ∈ Zn r {0}, V(f1,w, . . . , fn,w) 6= ∅, then d(f1, . . . , fn) < d(A1, . . . ,An)
when we have d(A1, . . . ,An) 6= 0 and d(f1, . . . , fn) = 0 when d(A1, . . . ,An) = 0.

A facial form fw of a polynomial corresponds to the subset Aw of its support A. As A is
finite, it has only finitely many subsets, so f has only finitely many facial forms. Consequently,
there are only finitely many facial systems (f1,w, . . . , fn,w) for a given system (f1, . . . , fn).
Thus among a priori infinite set of conditions that V(f1,w, . . . , fn,w) = ∅ for all w ∈ Znr{0},
there are only finitely many irredundant conditions (one for each facial system). Each of
these is an algebraic condition on the coefficients of the system. Thus general systems have
d(A1, . . . ,An) solutions, counted with multiplicity.



38 FRANK SOTTILE

In fact, facial forms fw of a polynomial f correspond to faces of the Newton polytope
conv(A) of f and thus to cones in its normal fan. More precisely, any two weights w and w′

lying in the relative interior of the same cone σ in the normal fan to conv(A) give the same
facial system, fw = fw′ . It follows that a facial system (f1,w, . . . , fn,w) depends on which cone
in the common refinement of the normal fans of the polytopes conv(Ai) contains w in its
relative interior.
These observation imply the following.

Corollary 4.12. We have that d(A1, . . . ,An) is equal to d(A1, . . . ,An), and so the number
d(A1, . . . ,An) depends only upon the convex hulls of the supports.

Theorem 4.11 also implies the multiadditivity of d(A1, . . . ,An), and thus Bernstein’s The-
orem: Let us call a system of polynomials (f1, . . . , fn) Bernstein-general if d(f1, . . . , fn) =
d(A1, . . . ,An), whereAi = supp(fi), for each i = 1, .., n. By our discussion, Bernstein-general
systems are dense in CA1 × · · · × CAn . Projecting to the last n− 1 factors shows that there
exist an open subset U of CA2 ×· · ·×CAn such that for (f2, . . . , fn) ∈ U , there exist f1 ∈ CA1

such that (f1, . . . , fn) is Bernstein-general.
Thus given supports A,B,A2, . . . ,An, there exist polynomials f ∈ CA, g ∈ CB, and

fi ∈ CAi for i = 2, . . . , n such that both (f, f2, . . . , fn) and (g, f2, . . . , fn) are Bernstein-
general. By Theorem 4.11, no the facial system of either system has solutions. As (f · g)w =
fw · gw, the inequality (4.6) implies that (f · g, f2, . . . , fn) is Bernstein-general, which then
implies multiadditivity (4.7). Thus the function d(A1, . . . ,An), which only depends upon the
convex hulls Pi of the Ai, by Corollary 4.12, satisfies the same properties as mixed volume of
these convex hulls. By Corollary 4.5, d(A1, . . . ,An) = MV(P1, . . . , Pn), which is Bernstein’s
Theorem.

Proof of Theorem 4.11. Suppose first that dim(V(f1, . . . , fn)) > 0, so that V(f1, . . . , fn) has
nonisolated solutions and thus dimV(f1, . . . , fn) ≥ 1. It follows that the tropical variety
Trop(V(f1, . . . , fn)) of V(f1, . . . , fn) has dimension at least one. As Trop(V(f1, . . . , fn)) is a
rational cone, this implies that it contains a nonzero integer point w ∈ Trop(V(f1, . . . , fn))∩
Zn with w 6= 0. But then the initial scheme inw(V(f1, . . . , fn)) is nonempty, and therefore
V(f1,w, . . . , fn,w) 6= ∅. Thus if V(f1,w, . . . , fn,w) = ∅ for all w ∈ Zn r {0}, then all points of
V(f1, . . . , fn) are isolated.
Now suppose that all points of V(f1, . . . , fn) are isolated. First suppose that d(A1, . . . ,An)

is nonzero and let (g1, . . . , gn) be a system with support A1, . . . ,An that has d(A1, . . . ,An)
isolated solutions (and in fact exactly this number of solutions). Consider the family of
systems

Ft := (f1, . . . , fn) + t(g1, . . . , gn) ,

for t ∈ C∗. For all t with |t| sufficiently large, this has d(A1, . . . ,An) distinct solutions, and
so V(Ft) defines a curve C ⊂ C∗ × (C∗)n whose fiber over a general point t ∈ C∗ consists of
d(A1, . . . ,An) points, and the difference V(Ft) r C is contained in finitely many fibers over
points of C∗.
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Let us consider the tropical variety Trop(C) ⊂ R×Rn of C, which differs from Trop(V(Ft))
only in some components with finite image in R = Trop(C∗).

Trop(C)
d(A1, . . . ,An)d(f1, . . . , fn)

0

Trop(C∗) = R

= Rn
Trop(C∗)n

As in(1,0)Ft = t(g1, . . . , gn), and in(−1,0)Ft = (f1, . . . , fn), we see that Trop(C) has a ray of
weight d(A1, . . . ,An) in the direction (1,0) and a ray of weight d(f1, . . . , fn) in the direction
(−1,0). Furthermore, the only ray with positive first coordinate is the ray with direction
(1,0) as the fiber of C over t ≫ 0 consists of d(A1, . . . ,An) points. By the balancing condi-
tion, d(A1, . . . ,An) equals the sum of the weights of all rays with negative first coordinate.
Thus d(A1, . . . ,An) = d(f1, . . . , fn) if and only if there are no other rays (−1, w) with neg-
ative first coordinate, which is equivalent to V(f1,w, . . . , fn,w) = ∅ for all nonzero w ∈ Zn.
This completes the proof in the case that d(A1, . . . ,An) 6= 0
To complete the proof, suppose that d(A1, . . . ,An) = 0. By Lemma 4.10, V(f1, . . . , fn) is

either empty or it has no isolated solutions, so that d(f1, . . . , fn) = 0.

The invocation of tropical geometry in the proof may be avoided by appealing to asymptotic
Puiseaux expansion of algebraic curves as in Bernstein’s original paper [3].

Exercises.

1. Show that for any sets A,B ⊂ Rn, we have conv(A) + conv(B) = conv(A+ B).
2. Give a proof of Lemma 4.2, including that the support function of P (λ) is linear, as well

as that its faces are Minkowski sums of faces of its constituent polytopes.
3. Let f and g be sparse polynomials. Prove that New(f · g) = New(f)+New(g). Note that

if f and g have support A and B, respectively, then we only have supp(f · g) ⊂ A + B,
as there may be cancellation. (Suppose that f = 1 + x and g = 1 − x.) However, there
is no cancellation in the extreme points of A and B, and this equality can be shown by
considering the support functions.

4. Generate other pairs of polynomials with the same support as the polynomials in (4.5).
For each pair, compute the degree of the ideal they generate. Can you prove this degree
is six for generic coefficients?

5. Determine the Newton polytope of each polynomial, and the mixed volume of the Newton
polytopes of each polynomial system. Check the conclusion of Bernstein’s Theorem using
a computer algebra system such as Macaulay2 or Singular.
(a) 1 + 2x+ 3y + 4xy = 1− 2xy + 3x2y − 5xy2 = 0.
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(b)
1 + 2x+ 3y − 5xy + 7x2y2 = 0

1− 2xy + 4x2y + 8xy2 − 16x3y + 32xy3 − 64x2y2 = 0
.

(c)
2 + 5xy − x2y − 6xy2 + 4xy3 = 0

2x− y − 2y2 − xy2 + 2x2y + x2 − 5xy = 0
.

(d)
1 + x+ y + z + xy + xz + yz + xyz = 0

xy + 2xyz + 3xyz2 + 5xz + 7xy2z + 11yz + 13x2yz = 0
4− x2y + 2x2z − xz2 + 2yz2 − y2z + 2y2x− 8xyz = 0

.

6. Compute the mixed volume of the following pairs of lattice polygons.

(a) (b) (c)

7. Compute the mixed volume in R3 for the following three lattice polygons in the xy-, yz-,
and xz-planes, respectively.

8. Compute the mixed volume in R3 of the following three lattice polytopes.

9. Use Lemma 4.2 to prove that the facial system (f1,w, . . . , fn,w) depends on the cone con-
taining w in the common refinement of the normal fans of the polytopes conv(Ai).

10. Work out the details in the proof of Lemma 4.4 that were omitted in the proof sketch
given.

11. Use Bernstein’s Theorem to deduce Bézout’s Theorem: if f1, . . . , fn are general polyno-
mials of degree n with deg(fi) = di for i = 1, . . . , n, then d(f1, . . . , fn) = d1d2 . . . dn.
Hint: Determine Pi = conv(supp(fi)) for each i and use the properties of mixed volume
to compute MV (P1, . . . , Pn).
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