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GALOIS GROUPS IN ENUMERATIVE GEOMETRY
AND APPLICATIONS

FRANK SOTTILE AND THOMAS YAHL

Abstract. As Jordan observed in 1870, just as univariate polynomials have Galois
groups, so do problems in enumerative geometry. Despite this pedigree, the study of
Galois groups in enumerative geometry was dormant for a century, with a systematic
study only occuring in the past 15 years. We discuss the current directions of this study,
including open problems and conjectures.

Introduction

We are all familiar with Galois groups: They play important roles in the structure of
field extensions and control the solvability of equations. Less known is that they have a
long history in enumerative geometry. In fact, the first comprehensive treatise on Galois
theory, Jordan’s “Traité des Substitutions et des Équations algébriques” [43, Ch. III],
also discusses Galois theory in the context of several classical problems in enumerative
geometry.

While Galois theory developed into a cornerstone of number theory and of arithmetic
geometry, its role in enumerative geometry lay dormant until Harris’s 1979 paper “Galois
groups of enumerative problems” [31]. Harris revisited Jordan’s treatment of classical
problems and gave a proof that, over C, the Galois and monodromy groups coincide. He
used this to introduce a geometric method to show that an enumerative Galois group
is the full symmetric group and showed that several enumerative Galois groups are full-
symmetric, including generalizations of the classical problems studied by Jordan.

We sketch the development of Galois groups in enumerative geometry since 1979. This
includes some new and newly applied methods to study or compute Galois groups in this
context, as well as recent results and open problems. A theme that Jordan initiated is
that intrinsic structure of the solutions to an enumerative problem constrains its Galois
group G giving an “upper bound” for G. The problem of identifying the Galois group
G becomes that of showing it is as “large as possible”. In all cases when G has been
determined, it is as large as possible given the intrinsic structure. Thus we may view G
as encoding the intrinsic structure of the enumerative problem.

Consider the problem of lines on a cubic surface. Cayley [14] and Salmon [70] showed
that a smooth cubic surface V(f) in P3 (f is a homogeneous cubic in four variables)
contains 27 lines. (See Figure 1.) This holds over any algebraically closed field. When f
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Figure 1. A cubic with 27 lines. (Image courtesy of Oliver Labs)

has rational coefficients, the field K of definition of the lines is a Galois extension of Q,
and its Galois group G has a faithful action on the 27 lines.

As the lines lie on a surface, we expect that some will meet, and Schläfli [71] showed that
for a general cubic, these lines form a remarkable incidence configuration whose symmetry
group is the reflection group E6. As Jordan observed, this implies that G is a subgroup
of E6, and it is now known that for most cubic surfaces G = E6.

A modern view begins with the incidence variety of this enumerative problem. The
space of homogeneous cubics on P3 forms a 19-dimensional projective space, as a cubic in
four variables has

(
3+(4−1)

3

)
= 20 coefficients. Writing G(1,P3) for the (four-dimensional)

Grassmannian of lines in P3, we have the incidence variety.

(1)

Γ := {(`, f) ∈ G(1,P3)× P19
cubics | f |` ≡ 0}.

?

π

P19
cubics

Write k for our ground field, which we assume for now to be algebraically closed. Both Γ
and P19 are irreducible; Let us consider their fields of rational functions, k(Γ) and k(P19).
As the typical fiber of π consists of 27 points and π is dominant, π∗(k(P19)) is a subfield
of k(Γ), and the extension has degree 27. The Galois group G of the normal closure of
this extension acts on the lines in the generic cubic surface over P19, and we have that
G = E6.

Suppose that k = C. If B ⊂ P19 is the set of singular cubics (a degree 32 hypersur-
face) then over P19rB, Γ is a covering space of degree 27. Lifting based loops gives the
monodromy action of the fundamental group of P19rB on the fiber above the base point.
Permutations of the fiber obtained in this way constitute the monodromy group of π. For
the same reasons as before, this is a subgroup of E6. In fact, it equals E6.

This situation, a dominant map π : X → Z of irreducible equidimensional varieties,
is called a branched cover. Branched covers are common in enumerative geometry and
applications of algebraic geometry. For the problem of 27 lines, that the algebraic Galois
group equals the geometric monodromy group is no accident; While Harris [31] gave a
modern proof, the equality of these two groups may be traced back to Hermite [39]. We
sketch a proof, valid over arbitrary fields, in Section 1.
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Harris’s article brought this topic into contemporary algebraic geometry. He also in-
troduced geometric methods to show that the Galois group of an enumerative problem is
fully symmetric in that it is the full symmetric group on the solutions. In the 25 years
following its publication, the Galois group was determined in only a handful of enumera-
tive problems. For example, D’Souza [18] showed that the problem of lines in P3 tangent
to a smooth octic surface at four points (everywhere tangent lines) had Galois group that
is fully symmetric. Interestingly, he did not determine the number of everywhere tangent
lines.

This changed in 2006 when Vakil introduced a method [89] to deduce that the Galois
group of a Schubert problem on a Grassmannian (a Schubert Galois group) contains the
alternating group on its solutions. Such a Galois group is at least alternating. He used that
to show that most Schubert problems on small Grassmannians were at least alternating,
and to discover an infinite family of Schubert problems whose Galois groups were not the
full symmetric group. As we saw in the problem of 27 lines on a cubic surface, such an
enumerative problem with a small Galois group typically possesses some internal structure.
Consequently, we use the adjective enriched to describe such a problem or Galois group.
Enriched Schubert problems were also found on more general flag manifolds [69]. These
discoveries inspired a more systematic study of Schubert Galois groups, which we discuss
in Section 6. Despite significant progress, the inverse Galois problem for Schubert calculus
remains open.

Galois groups of enumerative problems are usually transitive permutation groups. There
is a dichotomy between those transitive permutation groups that preserve no nontrivial
partition, called primitive groups, and the imprimitive groups that do preserve a nontrivial
partition. The Galois group of the 27 lines is primitive, but most known enriched Schubert
problems have imprimitive Galois groups.

Another well-understood class of enumerative problems comes from the Bernstein-
Kushnirenko Theorem [8, 49]. This gives the number of solutions to a system of polynomial
equations that are general given the monomials occurring in the equations. Esterov [24]
determined which of these problems have fully symmetric Galois group and showed that
all others have an imprimitive Galois group. Here, too, the inverse Galois problem remains
open. We discuss this in Section 4.

The problem of lines on a cubic surface is the first in the class of Fano problems, which
involve counting the number of linear subspaces that lie on a general complete intersection
in projective space. Recently, Hashimoto and Kadets [32] nearly determined the Galois
groups of all Fano problems. Most are at least alternating, except for the lines on a cubic
surface and the r-planes lying on the intersection of two quadrics in P2r+2. We explain
this in Section 3, and discuss computations which show that several small Fano problems
are full-symmetric.

Branched covers arise from families of polynomial systems, which are common in the
applications of mathematics. Oftentimes the application or the formulation as a system of
polynomials possesses some intrinsic structure, which is manifested in the corresponding
Galois group being enriched. In Section 7, we discuss two occurrences of enriched Galois
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groups in applications and a computational method that exploits structure in Galois
groups for computing solutions to systems of equations.

We begin in Section 1 with a general discussion of Galois groups in enumerative geom-
etry, and sketch some methods from numerical algebraic geometry in Section 2. Later,
in Section 5, we present methods, both numerical and symbolic, to compute and study
Galois groups in enumerative geometry.

1. Galois groups of branched covers

We will let k be a field with algebraic closure k. We adopt standard terminology
from algebraic geometry: An affine (projective) scheme V(F ) is defined in An (Pn) by
polynomials (homogeneous forms) F = (f1, . . . , fm) in n (n+1) variables with coefficients
in k. We will call the collection F a system (of equations) and say the isolated points
of V(F ) (over k) are the solutions to F . The affine scheme V(F ) is a variety when
every irreducible component of V(F ) is reduced. We may also use variety to refer to the
underlying variety. We write X(k) for the points of a variety X with coordinates in k.

Recall that the Galois group of a separable univariate polynomial f(x) ∈ k[x] is the
Galois group of the splitting field of f , which is generated over k by the roots of f . Given
a system F of multivariate polynomials over k, its splitting field is the field generated by
over k by the coordinates of all solutions to F , and its Galois group is the Galois group
of this field extension.

A separable map π : X → Z of irreducible varieties is a branched cover when X and Y
have the same dimension and π(X) is dense in Z (π is dominant). Branched covers are
ubiquitous in enumerative geometry and in applications of algebraic geometry. When the
varieties are complex, there is a proper subvariety B ⊂ Z (the branch locus) such that π is
a covering space over ZrB. We explain how to associate a Galois/monodromy group to a
branched cover and then give some background on permutation groups, and the relation
between imprimitivity of the Galois group and decomposability of the branched cover.

1.1. Galois and monodromy groups of branched covers. Let π : X → Z be a
branched cover. As π is dominant, the function field k(Z) of Z embeds as a subfield of
the function field k(X) of X. This realizes k(X) as a finite extension of k(Z) of degree
d, the degree of π. Let K be the normal closure of this extension. The Galois group of
the branched cover π, denoted Galπ, is the Galois group of K/k(Z). This is a transitive
subgroup of the symmetric group Sd that is well-defined up to conjugation.

There is also a geometric construction of Galπ. For 1 ≤ s ≤ d, let Xs
Z be the s-th fold

iterated fiber product of π : X → Z,

Xs
Z := X ×Z X ×Z · · · ×Z X︸ ︷︷ ︸

s

.

The fiber of πs : Xs
Z → Z over a point z ∈ Z is the s-fold Cartesian product (π−1(z))s of

the fiber of π over z.
The fiber product has many irreducible components when s > 1, possibly of different

dimensions. Let U ⊂ Z be the maximal dense open subset over which π is étale—fibers
π−1(z) for z ∈ U are zero-dimensional reduced schemes of degree d. Its complement is
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the branch locus B of π. The big diagonal of Xs
Z is the closed subscheme consisting of

s-tuples with a repeated coordinate. Let X
(s)
Z be the closure in Xs

Z of the complement of

the big diagonal in (πs)−1(U). The fiber of X
(s)
Z over a point z ∈ U(k) consists of s-tuples

of distinct points of the fiber π−1(z).

When s = d, the symmetric group Sd acts on X
(d)
Z , permuting each d-tuple. It permutes

the irreducible components and acts simply transitively on the fiber above a point z ∈
U(k). Let X ′ ⊂ X

(d)
Z be an irreducible component (they are all isomorphic when s = d).

We compare this to the construction of the splitting field of a univariate polynomial.
Replacing X and Z by appropriate affine open subsets, we may embed X as a hypersurface
in Z × A1

t with X → Z the projection. Writing k[X] and k[Z] for their coordinate
rings, there is a monic irreducible polynomial f ∈ k[Z][t] of degree d such that k[X] =
k[Z][t]/〈f〉. Thus k(X) = k(Z)[t]/〈f〉 = k(Z)(α), where α is the image of t in k[X]. If X ′

is an irreducible component of X
(d)
Z , then k(X ′) = k(Z)(α1, . . . , αd) where αi ∈ k[X ′] is

given by the composition of inclusion X ′ ⊂ X
(d)
Z , the ith coordinate projection X

(d)
Z → X,

and the function α. As i 6= j ⇒ αi 6= αj (X ′ does not lie in the big diagonal), we see that
α1, . . . , αd are the roots of f in k(X ′). Thus k(X ′) is the splitting field of f and Galois
over k(Z).

The monodromy group Monπ of the branched cover is the subgroup of Sd that preserves
X ′. Elements of Monπ are automorphisms of the extension k(X ′)/k(Z) so that Monπ ⊂
Gal(k(X ′)/k(Z)), the Galois group of k(X ′)/k(Z). Since Monπ acts simply transitively
on fibers of X ′ → Z above points in U(k), its order is the degree of the map X ′ → Z,
which is the order of the field extension k(X ′)/k(Z). Hence we arrive at the result
Monπ = Gal(k(X ′)/k(Z)).

Theorem 1 (Galois equals monodromy). For a branched cover π : X → Z defined over
a field k, the Galois group is equal to the monodromy group,

Galπ = Monπ .

The enumerative problem of 27 lines on a cubic surface has a corresponding incidence
variety (1) which is a branched cover, and its Galois/monodromy group is a special case
of the results of this section. Incidence varieties of enumerative problems typically are
branched covers and therefore have Galois groups as we will see throughout this survey.

We make an important observation. While the Galois group of a branched cover π : X →
Z is defined via a geometric construction, it does depend upon the field of definition. For
example, consider the branched cover π : A1 → A1 given by x 7→ x3. Assume that k does
not have characteristic 3, for otherwise π is inseparable. Over the rational numbers, that
is π : A1(Q)→ A1(Q), it has Galois group S3, but over any field containing

√
−3 (e.g. −3

is a square in k) its Galois group is A3 = Z/3Z. This is because the discriminant of the
cubic x3 − t defining π is −27t2, which is a square only in fields containing

√
−3. When

necessary, we write Galπ(k) to indicate that the branched cover is defined over k.
If π : X → Z is a branched cover defined over k and F/k is any field extension, Galπ(F)

is isomorphic to the subgroup of Galπ(k) corresponding to the extension K/E, where K
is the normal closure of k(X)/k(Z) and E = K ∩ F(Z).
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1.2. Complex branched covers. Suppose that π : X → Z is a branched cover of com-
plex varieties. Then the étale locus U ⊂ Z is the open subset that is maximal with respect
to inclusion such that the restriction π : π−1(U) → U is a covering space. We will also
call U the set of regular values of π.

The monodromy group Monπ as defined in Section 1.1 agrees with the usual notion of
the monodromy group of the covering space

π : π−1(U) −→ U .

This is the group of permutations of a fiber π−1(z) obtained by lifting loops in U that are
based at z to paths in π−1(U) that connect points in the fiber. If d is the degree of π,

lifting based loops in U to paths in a component X ′ of X
(d)
Z gives this equality. For more

on covering spaces and monodromy groups, see [33, 64].
The complement of any (Zariski) open subset V of Z has real codimension at least 2.

The loops in U that generate the monodromy group can be chosen to lie in V (by a change
of base point if necessary). A consequence is that the monodromy group Monπ is equal
to the monodromy group of any restriction π : π−1(V )→ V to a Zariski open set V such
that this map is a covering space.

1.3. Enriched Galois groups. As Harris showed [31], many enumerative problems have
Galois groups that are the full symmetric group Sd on their solutions. We call such a Ga-
lois group/enumerative problem fully symmetric. It is a standard part of the Algebra
curriculum that any finite group may arise as the Galois group of a branched cover. Nev-
ertheless, determining the possible Galois groups of a given class of enumerative problems
(the inverse Galois problem for that class), as well as the Galois group of any particular
enumerative problem is an interesting problem that is largely open.

Many techniques to study Galois groups in enumerative geometry are able to show that
the Galois group Galπ is either Sd or contains its subgroup Ad of alternating permutations.
We call such an enumerative problem/Galois group at least alternating. While many
enumerative Galois groups are at least alternating, we know of no natural enumerative
problem whose Galois group is the alternating group (besides those similar to x 7→ x3).

As we saw in the problem of 27 lines, when a Galois group fails to be fully symmetric,
we expect there is a geometric reason for this failure. That is, the set of solutions is
enriched with extra structure that prevents the Galois group from being fully symmetric.
Consequently, we will call a Galois group or enumerative problem enriched if its Galois
group is not fully symmetric.

Let us recall some aspects of permutation groups. A permutation group of degree d is a
subgroup G of Sd. Thus G has a natural action on the set [d] := {1, . . . , d}, as well as on
the subsets of [d]. The group is transitive if for any i, j ∈ [d], there is an element g ∈ G
with g(i) = j. More generally, for any 1 ≤ s ≤ d, G is s-transitive if for any distinct
i1, . . . , is ∈ [d] and distinct j1, . . . , js ∈ [d], there is an element g ∈ G with g(im) = jm
for m = 1, . . . , s. That is, G is s-transitive when it acts transitively on the set of distinct
s-tuples of elements of [d]. This has the following consequence.

Proposition 2. The monodromy group Monπ of a branched cover π : X → Z is s-

transitive if and only if the variety X
(s)
Z is irreducible.
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Let G be a transitive permutation group of degree d. A block of G is a subset B ⊂ [d]
such that for every g ∈ G, either gB = B or gB ∩ B = ∅. The subsets ∅, [d], and every
singleton are blocks of every permutation group. If these trivial blocks are the only blocks,
then G is primitive and otherwise it is imprimitive.

The Galois group E6 for the problem of 27 lines is primitive, but it is not 2-transitive.
For the latter, observe that some pairs of lines on a cubic surface meet, while other pairs
are disjoint. These incidences provide an obstruction to 2-transitivity.

When G is imprimitive, we have a factorization d = ab with 1 < a, b < d and there is
a bijection [a] × [b] ↔ [d] such that G preserves the projection [a] × [b] → [b]. That is,
the fibers {[a] × {i} | i ∈ [b]} are blocks of G and its action on this set of blocks gives a
homomorphism G→ Sb with transitive image. In particular, G is a subgroup of the group
of permutations of [d] = [a]× [b] which preserve the fibers of the projection [a]× [b]→ [b].
This group is the wreath product Sa o Sb, which is the semi-direct product (Sa)

b o Sb,
where Sb acts on (Sa)

b by permuting factors.
Imprimitivity has a geometric manifestation. A branched cover π : X → Z is decom-

posable if there is a nonempty Zariski open subset V ⊂ Z and a variety Y such that π
factors over V ,

(2) π−1(V )
ϕ−→ Y

ψ−→ V ,

with ϕ and ψ both nontrivial branched covers. The fibers of ϕ over points of ψ−1(v) are
blocks of the action of Galπ on π−1(v), which implies that Galπ is imprimitive. Pirola and
Schlesinger [66] observed that decomposability of π is equivalent to imprimitivity of Galπ.

Proposition 3. A branched cover is decomposable if and only if its Galois group is im-
primitive.

Harris’s geometric method to show that a Galois group of an enumerative problem over

C is fully-symmetric involves two steps. First, show that X
(2)
Z is irreducible, so that Monπ

is 2-transitive. Next, identify an instance of the enumerative problem (a point z ∈ Z) with
d−1 solutions, where exactly one solution has multiplicity 2. This implies that a small
loop in Z around z induces a simple transposition in Monπ. This implies that Monπ = Sd,
as Sd is its only 2-transitive subgroup containing a simple transposition. Jordan [43] gave
a useful generalization of this last fact about Sd, which we use in Section 5.

Proposition 4. Suppose that G ⊂ Sd is a permutation group. If G is primitive and
contains a p-cycle for some prime number p < d−2, then G is at least alternating.

If G contains a d-cycle, a d−1-cycle, and a p-cycle for some prime number p < d−2
then G = Sd.

2. Numerical Algebraic Geometry

Methods from numerical analysis underlie algorithms that readily solve systems of poly-
nomial equations. Numerical algebraic geometry uses this to represent and study algebraic
varieties on a computer. We sketch some of its fundamental algorithms, which will later
be used for studying Galois groups.
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2.1. Homotopy continuation. When k = C, solutions to enumerative problems, fibers
of branched covers, and monodromy are all effectively computed using algorithms based
on numerical homotopy continuation. This begins with a homotopy, which is a family
H(x; t) of systems of polynomials that interpolate between the systems at t = 0 and t = 1
in a particular way: We require that the variety V(H(x; t)) ⊂ Cn

x × Ct contains a curve
C that is the union of the 1-dimensional irreducible components of V(H) which project
dominantly to Ct. We further require that 1 ∈ Ct is a regular value of the projection
π : C → Ct, that π is proper near 1, and that V(H(x; t)) is smooth at all points of
the fiber W := π−1(1). The start system is H(x; 1) and write W for its set of isolated
solutions, which we assume are known. The target system is H(x; 0) and we wish to use
H to compute the isolated solutions to the target system.

Given a homotopy H(x; t), we restrict C to the points above an arc γ ⊂ Ct with
endpoints {0, 1} such that γ avoids the critical values of π : C → Ct, except possibly
at t = 0. In what follows, we will take γ to be the interval [0, 1], for simplicity. This
restriction is a collection of arcs in C, one for each point of W , which start at points of
W at t = 1 and lie above (0, 1]. Some arcs may be unbounded near t = 0, while the
rest end in points of π−1(0), and all points of π−1(0) are reached. Beginning with the
(known) points of W , standard path-tracking algorithms [1] from numerical analysis may
follow these arcs and compute the points of π−1(0). When π : C → Ct is proper near
t = 0 and smooth above t = 0, there are |W | points in π−1(0) so that each path gives a
point of π−1(0). In this case, the homotopy is optimal. For more on numerical homotopy
continuation, see [58, 79].

The most straightforward optimal homotopy is a parameter homotopy [55, 59], in which
the structure and number of solutions of the start, target, and intermediate systems are
the same. A source for parameter homotopies is a branched cover X → Z, where Z is a
rational variety and X is a subvariety of Cn × Z. Suppose that f : Ct → Z is a rational
curve with f(0) and f(1) lying in the open set U of regular values of X → Z. Pulling
back X → Z along f gives a dominant map π : f ∗(X) → Ct with the same degree d as
X → Z. A generating set H(x; t) of the ideal of f ∗(X) ⊂ Cn ×Ct gives a homotopy that
is optimal as there are d solutions to both the start and target systems.

For example, suppose that X → Z = P19 is the branched cover (1) from the problem
of 27 lines. Given smooth cubics f1 and f0, the pencil f(t) := tf1 + (1 − t)f0 is a map
Ct → P19 as above. A general line ` in P3 is the span of points [x1, x2, 1, 0] and [x3, x4, 0, 1],
for (x1, x2, x3, x4) ∈ C4. A general point on ` has the form [ux1 + x3, xu2 + x4, u, 1], for
u ∈ C, and ` lies on the cubic V(f(t)) when f(t)(ux1+x3, xu2+x4, u, 1) is identically zero.
Thus, if we expand f(t)(ux1 + x3, xu2 + x4, u, 1) as a polynomial in u, the four coeffcients
of the resulting cubic are equations in x1, . . . , x4, t for the general line ` to lie on the cubic
V(f(t)). Let H(x; t) be these four coefficients. When V(f1) has 27 lines of the given form,
this is a homotopy, and if we knew the coordinates of those 27 lines, numerical homotopy
continuation using H(x; t) could be used to compute the lines on V(f0).

2.2. Witness sets. Numerical homotopy continuation enables the reliable computation
of solutions to systems of polynomial equations. Numerical algebraic geometry uses this
ability to solve as a basis for algorithms that study and manipulate varieties on a computer.
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Its starting point is a witness set, which is a data structure for varieties in Cn [77, 78].
Suppose that X ⊂ Cn is a union of irreducible components of the same dimension m of a
variety V(F ), where F is a system of polynomials. If L ⊂ Cn is a general linear subspace
of codimension m, then W := X ∩ L is a transverse intersection consisting of deg(X)
points, called a linear section of X. The triple (W,F,L) is a witness set for X (typically,
L is represented by m linear forms).

Given a witness set (W,F,L) for X and a general codimension m linear subspace L′, we
may compute the linear section W ′ = X ∩ L′ and obtain another witness set (W ′, F, L′)
for X as follows. Let L(t) := tL+ (1− t)L′ be the convex combination of (the equations
for) L and L′, and form the homotopy H(x; t) := (F,L(t)). Path-tracking using H(x; t)
starting from the points of W at t = 1 will compute the points of W ′ at t = 0. This
instance of the parameter homotopy is called “moving the witness set”.

Suppose that we have a third codimension m linear subspace L′′. We may then use W ′

to compute the linear section W ′′ = X ∩ L′′, and then use W ′′ to return to W . The arcs
connect every point w ∈ W to a point w′ ∈ W ′, then to a point w′′ ∈ W ′′, and finally to a
possibly different point σ(w) ∈ W . This defines a permutation σ of W . The four points, as
they are connected by smooth arcs, lie in the same irreducible component of X. Thus the
cycles in the permutation σ refine the partition of W given by the irreducible components
of X. Repeating this procedure with possible different linear subspaces L′, L′′, and then
applying the trace test [53, 76], leads to a numerical irreducible decomposition of X; that
is, it computes the partition W = W1tW2t· · ·tWr, where X1, . . . , Xr are the irreducible
components of X and Wi := Xi ∩ L. This algorithm was developed in [74, 75, 76].

Several freely available software packages have implementations of the basic algorithms
of Numerical Algebraic Geometry. These include Macaulay 2 [30] in its Numerical Alge-
braic Geometry package [52], in Bertini [5], and in HomotopyContinuation.jl [10].

3. Fano Problems

Debarre and Manivel determined the dimension and degree of the variety of r-planes
lying on general complete intersections in Pn. When this is zero-dimensional it is called a
Fano problem. For example, the problem of 27 lines is a Fano problem. Galois groups of
Fano problems were studied classically by Jordan and Harris and recently by Hashimoto
and Kadets, who nearly determined the Galois group for each Fano problem.

3.1. Combinatorics of Fano Problems. Let G(r,Pn) be the Grassmann variety defined
over the complex numbers of r-dimensional linear subspaces of Pn, which has dimension
(r+1)(n−r). Given a variety X ⊆ Pn, its Fano scheme is the subscheme of G(r,Pn) of
r-planes lying on X.

Fano schemes may be studied uniformly when X ⊂ Pn is a complete intersection. For
this, let d• := (d1, . . . , ds) be a weakly increasing list of integers greater than 1. Suppose
that F = (f1, . . . , fs) are homogeneous polynomials on Pn with fi of degree di. Let Vr(F )
be the Fano scheme of r-planes in V(F ).

Just as V(F ) has expected dimension n−s, there is an expected dimension for Vr(F ).
Let f be a form on Pn of degree d. Its restriction to H ∈ G(r,Pn) is a form of degree d
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on H; as the dimension of the vector space of such forms is
(
d+r
r

)
, we expect this to be

the codimension of Vr(f) in G(r,Pn). Thus the expected dimension of Vr(F ) is

δ = δ(r, n, d•) := (r+1)(n−r) −
s∑
i=1

(
di + r

r

)
.

Write C(r,n,d•) for the vector space of homogeneous polynomials F = (f1, . . . , fs) in n+1
variables with fi of degree di. Debarre and Manivel [16] showed that there is a dense
open subset U = U(r,n,d•) ⊂ C(r,n,d•) with the following property: For F ∈ U , if δ ≥ 0 and
n − s ≥ 2r, then Vr(F ) is a smooth variety of dimension δ, and if δ < 0 or n−s < 2r,
then Vr(F ) is empty. A Fano problem is the enumerative problem of determining Vr(F )
for F ∈ U(r,n,d•), when δ(r, n, d•) = 0 and n−s ≥ 2r.

Since the Grassmannian has Picard group generated by O(1) induced by its Plücker
embedding, when δ ≥ 0 and n−s ≥ 2r and F ∈ U , the Fano variety Vr(F ) has a
well-defined degree. Standard techniques in intersection theory allow this degree to be
computed, using that Vr(F ) is the vanishing of sections of appropriate vector bundles on
G(r,Pn). (These are Symdi

(T ), where T is the dual of the tautological (r+1)-subbundle
on the Grassmannian.)

This leads to a formula for this degree. For that, define the polynomials

Qr,d(x) =
∏

a0+···+ar=d

(a0x0 + · · ·+ arxr) ∈ Z[x0, . . . , xr] ai ∈ Z≥0

as well as Qr,d• = Qr,d1(x) · · ·Qr,ds(x) and the Vandermonde polynomial

Vr(x) =
∏

0≤i<j≤r

(xi − xj) .

When δ(r, n, d•) = 0, n− s ≥ 2r, and F ∈ U(r,n,d•), the degree deg(r, n, d•) of Vr(F ) is the
coefficient of xn0x

n−1
1 · · ·xn−rr in the product Qr,d•(x)Vr(x) [16, Thm. 4.3]. Table 1 gives

these degrees for all Fano problems with a small number of solutions.

Table 1. Small finite Fano problems

r n d• # of solutions Galois Group

1 4 (2, 2) 16 D5

1 3 (3) 27 E6

2 6 (2, 2) 64 D7

3 8 (2, 2) 256 D9

1 7 (2, 2, 2, 2) 512 S512

1 6 (2, 2, 3) 720 S720

2 8 (2, 2, 2) 1024 S1024

1 5 (3, 3) 1053 S1053
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3.2. Galois groups of Fano problems. Consider the incidence correspondence,

Γ := {(F,H) ∈ C(r,n,d•) ×G(r,Pn) | F |H = 0}.

?

π

C(r,n,d•)

The fiber over a general complete intersection F ∈ U(r,n,d•) is the Fano variety Vr(F ).
When we have a Fano problem, δ(r, n, d•) = 0 and n−s ≥ 2r, π is a branched cover of de-
gree deg(r, n, d•). We define the Galois group of the Fano problem to be Gal(r,n,d•) = Galπ.

The study of Galois groups of Fano problems began with Jordan [43] with the problem
of 27 lines on a smooth cubic surface, which has data (1, 3, (3)). By observing the incidence
structure of the lines on a smooth cubic, Jordan determined that the Galois group over
C is a subgroup of E6, Gal(1,3,(3)) ⊆ E6.

Harris [31] showed that Jordan’s inclusion is an equality, Gal(1,3,(3)) = E6, and then
generalized this, showing that Gal(1,n,(2n−3)) is fully symmetric for n ≥ 4. For this, he
used the interpretation of the Galois group as a monodromy group. Using arguments from
algebraic geometry, when n ≥ 4 he showed that the monodromy group is 2-transitive and
contains a simple transposition.

Hashimoto and Kadets [32] recently revisited this topic, determining these groups in
many cases. There are two special cases of finite Fano problems, that of lines on a cubic
surface and that of linear spaces on the intersection of two quadrics. Hashimoto and
Kadets showed that these problems are enriched and that

Gal(1,3,(3)) = E6 and Gal(r,2r+2,(2,2)) = W (D2r+3) .

The enriched Galois structure is reflected in that these are the only Fano problems where
the r-planes on V(F ) will intersect. As in the problem of 27 lines, the generic incidence
structure prevents the Galois group from being fully symmetric. In all other cases, they
showed that the Galois group is at least alternating. In Section 5.2, we describe a method
based on numerical homotopy continuation to compute monodromy permutations, when
k = C. We used this to show that some small Fano problems have full symetric Galois
groups.

Theorem 5. Each of the Fano problems

(1, 7, (2, 2, 2, 2)) , (1, 6, (2, 2, 3)) , (2, 8, (2, 2, 2, 2)) , and (1, 5, (3, 3)) ,

has full symmetric Galios group.

4. Galois groups of sparse polynomial equations

We work over the complex numbers. With modifications due to separability, much
of this holds over an arbitrary field. However, a key argument in Esterov’s proof for
Theorem 7 uses that the field is uncountable, together with topological properties of C.

The Bernstein-Kuchnirenko Theorem gives an upper bound on the number of solutions
in the algebraic torus (C×)n to a system of polynomials. This bound depends on the
monomials which appear in the equations (their support). When the equations are general
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given their support, this bound is attained. The family of all systems with a given support
forms a branched cover and therefore has a Galois group. Esterov identified two structures
in the support which imply that the Galois group is imprimitive, and showed that if they
are not present, then the Galois group is full symmetric. It remains an open problem to
determine the Galois group when it is imprimitive.

4.1. Systems of sparse polynomial equations. A (Laurent) monomial in n variables
x1, . . . , xn with exponent vector α = (α1, . . . , αn) ∈ Zn is

xα := xα1
1 x

α2
2 · · ·xαnn .

This is a character of the algebraic torus (C×)n. A (Laurent) polynomial f over C is a
linear combination of monomials,

f =
∑

cαx
α cα ∈ C .

For a nonempty finite set A ⊆ Zn, the space of polynomials supported on A is written
CA. This is the set of polynomials f such that cα 6= 0 implies α ∈ A.

Given a collection A• = (A1,A2, . . . ,An) of nonempty finite subsets of Zn, write

CA• := CA1 × · · · × CAn

for the vector space of n-tuples F = (f1, . . . , fn) of polynomials, where fi has support
Ai, for each i = 1, . . . , n. An element F ∈ CA• is a square system of polynomials whose
solutions are those x ∈ (C×)n such that

f1(x1, . . . , xn) = f2(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0 ,

written F (x) = 0. We call F a sparse polynomial system with support A•.
Given supports A• = (A1, . . . ,An), define the incidence variety

Γ = ΓA• :=
{

(F, x) ∈ CA• × (C×)n | F (x) = 0
}
.

It is equipped with projections π : Γ → CA• and p : Γ → (C×)n. The fiber p−1(x) for
x ∈ (C×)n is the set of all polynomials (f1, . . . , fn) with fi(x) = 0 for each i. Observing
that fi(x) = 0 is a non-zero linear equation on CAi , we see that p−1(x) ⊂ CA• is the
product of n hyperplanes and thus has codimension n. Consequently, Γ → (C×)n is a
vector bundle, and therefore irreducible, and it has dimension equal to dimCA• .

Thus the map π : Γ→ CA• is a branched cover when π is dominant, equivalently, when
a generic system F ∈ CA• has a positive, finite number of solutions in (C×)n. The number
of solutions to a generic system is determined by the polyhedral geometry of its support,
which we review. For convex bodies K1, . . . , Kn ⊂ Rn and nonnegative real numbers,
t1, . . . , tn ∈ R≥0, Minkowski proved that the volume of the Minkowski sum

t1K1 + · · ·+ tnKn := {t1x1 + · · ·+ tnxx | xi ∈ Ki}

is a homogeneous polynomial of degree n in t1, . . . , tn. Its coefficient of t1 · · · tn is the
mixed volume of K1, . . . , Kn. For supports A• = (A1, . . . ,An), let MV(A•) be the mixed
volume of their convex hulls, conv(A1), . . . , conv(An). This is described in detail in [26].
We state the Bernstein-Kushnirenko Theorem [8, 48].
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Theorem 6 (Bernstein-Kushnirenko). A system F ∈ CA• has at most MV(A•) isolated
solutions in (C×)n. This bound is sharp and attained for generic F ∈ CA•.

Thus π : XA• → CA• is a branched cover of degree MV(A•) if and only if MV(A•) > 0,
which Minkowski determined as follows. For a nonempty subset I ⊆ [n] := {1, . . . , n},
write AI := (Ai | i ∈ I) and let ZAI be the affine span of the supports in AI . This is the
free abelian group generated by all differences α−β for α, β ∈ Ai for some i ∈ I. Then
MV(A•) = 0 if and only if there exists a subset I ⊆ [n] such that |I| > rank(ZAI). One
direction is obvious. When |I| > rank(ZAI) = m, then there is a change of variables so
that the subsystem of polynomials with indices in I has more equations than variables.
In particular, MV(A•) 6= 0 implies that ZA• := ZA[n] has full rank n.

4.2. Galois groups of sparse polynomial systems. Suppose that A• is a collection
of supports with MV(A•) > 0. Write GalA• for the Galois group of the correspond-
ing branched cover π : ΓA• → CA• . Esterov [24] studied these groups, identifying two
structures which imply that GalA• is imprimitive.

We call A• lacunary if ZA• 6= Zn. If MV(A•) > [Zn : ZA•], then it is strictly lacunary.
Lacunary systems generalize the following example. Let n = 1 and suppose that we have a
univariate polynomial f(x) of the form g(x3), for g a univariate polynomial with g(0) 6= 0.
Observe that ZA• ⊂ 3Z. The zeroes of f ({x ∈ C | f(x) = 0}) are cube roots of the
zeroes of g, and the group of cubic roots of unity acts freely on the zeroes of f . These
orbits are blocks of the action of the Galois group of f . When g has two or more roots,
there is more than one orbit, and the action of the Galois group is imprimitive.

We call A• triangular if there exists a nonempty proper subset I ( [n] such that
rank(ZAI) = |I|. In this case there is a change of variables so that the equations indexed
by I involve only the first |I| variables. We write MV(AI) for the mixed volume of the
supports of the polynomials indexed by I as polynomials in the first |I| variables. We say
A• is strictly triangular if 1 < MV(AI) < MV(A•).

Strictly triangular systems generalize the following example. Let n = 2 and write our
variables as (y, z) and suppose that we have a system F of the form f(y) = g(y, z) = 0,
where deg(f), degz(g) are both at least 2. (Here, degz(g) is the degree of g as a polynomial
in z.) Since the first coordinate of a solution (y∗, z∗) of F is a solution of f , the action
of the Galois group of F has blocks given by the fibers of the projection to the first
coordinate. When f and g are general given their supports, there are deg(f) blocks, each
of size degz(g), and the action of the Galois group is imprimitive.

We provide more details in Section 7. This is explained fully in [24], and algorithmically
in [12, Sect. 2.3]. When A• is neither lacunary nor strictly triangular, Esterov showed
that GalA• is 2-transitive using that a countable union of subvarieties is nowhere dense.
Then, he showed that a small loop around the discriminant of these systems generates a
simple transposition, which shows that GalA• is full symmetric.

Theorem 7 (Esterov). Let A• be a set of supports with MV(A•) > 0. If A• is neither
strictly lacunary nor strictly triangular, then GalA• is the full symmetric group. If A• is
strictly lacunary or strictly triangular, then GalA• is imprimitive. If A• is lacunary but
not strictly lacunary, then GalA• is the group Hom(Zn/ZA•,C×) of roots of unity.
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When A• is either strictly lacunary or strictly triangular, Esterov’s theorem does not
determine the group GalA• explicitly. As it is imprimitive, the Galois group GalA• is a
subgroup of a certain wreath product. It may be a proper subgroup, as the following
example shows.

Example 8. Let n = 2 and suppose that A is consists of the vertices of the 2× 2 square
and its center point (1, 1), which we show below.

(2, 0) (2, 2)

(2, 0) (2, 0)

Let A• := (A,A). Its mixed volume is MV(A•) = 8, which is twice the area of the
square. Thus a general system of polynomials with support A• has eight solutions in
(C×)n. The lattice ZA• has index 2 in Z2, so solutions come in four pairs of symmetric
points, (x, y) and (−x,−y). These pairs are preserved by the Galois group, showing that
it is a subgroup of the wreath product S2 oS4. It can be shown that GalA• = (S2 oS4)∩A8

and is thus a proper subgroup of this wreath product. �

This example is due to Esterov and Lang [25], who gave conditions which imply that the
Galois group is the full wreath product, for certain lacunary systems. Despite this, there
is no known criteria for when that occurs, not even a conjecture about which groups can
occur as Galois groups of sparse polynomial systems. Also, it is not clear what can be said
about Galois groups of sparse polynomials over other fields than the complex numbers.

5. Computing Galois Groups

Understanding Galois groups of enumerative problems has both benefited from and
inspired the development of and use of computational tools. We discuss an adaptation
of the well-known symbolic method of computing cycle types of Frobenius elements and
then several methods based on numerical homotopy continuation. For a prime p ∈ Z,
write Fp = Z/pZ for the field with p elements.

5.1. Frobenius elements. Let f ∈ Z[x] be a monic irreducible univariate polynomial
and K its splitting field, a finite Galois extension of Q. Let O ⊂ K be those elements that
are integral over Z. For every prime p ∈ Z not dividing the discriminant of f , there is a
unique Frobenius element σp ∈ Gal(K/Q) in the Galois group of K over Q that restricts
to the Frobenius automorphism above p: For every prime $ of O with $ ∩Z = 〈p〉 ($ is
above p), and every z ∈ O, we have σp(z) ≡ zp mod $. If f is not monic, then we first
invert the primes dividing the leading coefficient of f . This is explained in [50, §§ VII.2].

The cycle type of σp (as a permutation of the roots of f) is given by the degrees of
the irreducible factors in Fp[x] of fp := f mod p, as these factors give primes $ above
p. Indeed, if g is an irreducible factor of degree r, then O/$ ' Fp[x]/〈g〉 is a finite field
with pr elements. The cycle type of σp records how p splits in O and is also called the
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splitting type of σp or of fp. The prime p does not divide the discriminant exactly when
fp is squarefree with the same degree as f . This gives a method to compute cycle types
of elements of Gal(K/Q): For a prime p with deg(fp) = deg(f), factor the reduction fp,
and if no factor is repeated, record the degrees of the factors.

This is particularly effective due to the Chebotarev Density Theorem [86, 87]: Let K/Q
be a Galois extension and λ a cycle type of an element in Gal(K/Q). Let nλ be the
fraction of elements in Gal(K/Q) with cycle type λ. Then the density of primes p ≤ N
such that the Frobenius element σp has splitting type λ tends to nλ as N →∞. Loosely,
for p sufficiently large, Frobenius elements are distributed uniformly in Gal(K/Q).

Table 2 illustrates this when f is x6− 503x5− 544x4− 69x3− 152x2− 49x− 763, which

Table 2. Frobenius elements for f

16 14, 2 12, 22 23 13, 3 1, 2, 3 32 12, 4 2, 4 1, 5 6

1 15 45 15 40 120 40 90 90 144 120

3 12 24 9 47 146 32 112 71 121 143
.989 15.02 44.97 14.99 40.07 120.03 39.95 89.87 89.97 144.24 119.9

has Galois group S6. The headers in the first row are the cycle types (conjugacy classes)
of permutations in S6, expressed using the frequency representation for cycles type in
which (23) indicates three 2-cycles. The second row contains the sizes of each conjugacy
class. The third row records how many of the first 720 = 6! primes p not dividing the
discriminant1 did fp have the corresponding splitting type. For the last row, we repeated
this calculation for the first 720 · 105 primes larger than 108. We display the observed
number that had a given splitting type, divided by 105 for comparison.

Determining the splitting type of Frobenius elements gives information about Galois
groups, including information about the distribution of cycle types in a Galois group. For
example, if the Galois group Gal is known to be a subgroup of a particular permutation
group G, knowing the cycle types of relatively few elements often suffices to show that
Gal = G, as Proposition 4 does for the symmetric group. If we do not have a candidate
for Gal, then computing many Frobenius elements may help to predict the Galois group
with a high degree of confidence, by the Chebotarev density theorem.

Frobenius elements are also a tool for studying Galois groups in enumerative geometry.
Let π : X → Z be a branched cover of irreducible varieties defined over Z with Z smooth
and rational. For any regular value z ∈ Z(Q) of π, let Kz be the field generated by the
coordinates of the points in the fiber π−1(z) (in X(Q)). This is a finite Galois extension
of Q whose Galois group is a subgroup of Galπ(Q). For all except finitely many primes
p, both z and π−1(z) have reductions zp and π−1(zp) modulo p, and there is a Frobenius
element σp,z ∈ Gal(Kz/Q). This is also a consequence of [50, §§ VII.2].

Given a prime p and a cycle type λ of an element in the Galois group Galπ(Q), we
may consider the density of points z ∈ Z(Fp) that are regular values of π such that the

118972006774677773002386748159696 = 24 · 312 · 7 · 29 · 2633 · 88805021 · 47006055979.
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corresponding Frobenius element has conjugacy class λ. Ekedahl [21] showed that in the
limit as p→∞, this density tends to nλ, the density of the conjugacy class in Galπ(Q).

This theoretical result may be used in an algorithm. Assume that π : X → Z is a
branched cover of irreducible varieties defined over Z with Z an open subset of an affine
space Am(Z). All enumerative problems we discuss have this form, as Z is typically a
variety of parameters (coefficients of polynomials or entries of matrices representing flags).
Replacing X by an open subset, we have that X ⊂ Am(Z) × An(Z) is an affine variety
with ideal I ⊂ Z[z, x]. Specializing I at an integer point z ∈ Z(Z) gives the ideal I(z)
of the fiber π−1(z). The splitting type of the fiber at p may determined by a primary
decomposition of the ideal I(z) modulo p.

Consider this for the branched cover π : Γ → P19 of lines on cubic surfaces (1). For
each of 69 primes p between 5 and 11579, we determined the splitting type of the 27
lines for many (70 to 220 million) randomly chosen smooth cubic surfaces in P19(Fp), and
compared that to the distribution of cycle types in the Galois group E6. More specifically,
let nλ be the density of elements in E6 with cycle type λ. For a prime p, let Ep,λ be
the empirical density, the observed fraction of surfaces whose lines had splitting type λ.
By Ekedahl’s Theorem, limp→∞Ep,λ = nλ. (This same limit holds if we replace smooth
cubics in P19(Fp) by isomorphism classes of smooth cubics over Fp [4].) Figure 2 presents
some data from our calculation. The full computation is archived on the web page2.

.2

.1

0

λ = (1, 2, 83)

2 4 6 8
log(p)

.5

.25

0

−.25

λ = (2, 53, 10)

2 4 6 8
log(p)

0

−.25

−.5

−.75

λ = (115, 25)

2 4 6 8
log(p)

Figure 2. Relative discrepancy,
Ep,λ
nλ
−1, against log(p) at 69 primes p, for

splitting types λ ∈ {(1, 2, 83), (2, 53, 10), (115, 25)}.

There are algorithms to compute this decomposition implemented in software such as
Macaulay2 [30] or Singular [17]. While these rely on Gröbner bases, they are unreason-
ably effective, as they also take advantage of fast Gröbner basis calculation in positive
characteristic, for example the F5 algorithm [27].

5.2. Computing Galois groups numerically. In Section 2.2, we discussed how moving
a witness set W to another one, W ′, to a third, W ′′, and then back to W computes a
permutation σ of W . This is readily adapted to computing a permutation of a fiber of a
branched cover, which is an element of its Galois group Galπ. While computing several
such monodromy permutations only gives a subgroup of Galπ, that may be sufficient to

2https://www.math.tamu.edu/~sottile/research/stories/27 Frobenius/
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determine it [54]. We explain a numerical method from [35] that computes a generating
set for the Galois group and another numerical method to study transitivity.

Given a branched cover π : X → Z of degree d over C with Z rational, let U ⊂ Z be the
regular locus so that π−1(U)→ U is a covering space. Suppose that we have computed all
points in a fiber π−1(z) for some point z ∈ U . Choosing other points z′, z′′ ∈ U , we may
construct three parameter homotopies that move the points of π−1(z) to those of π−1(z′),
to π−1(z′′), and then back to π−1(z). The tracked paths give a permutation σ of the fiber
π−1(z).

Writing the points of π−1(z) in some order (w1, . . . , wd) gives a point in the fiber of X
(d)
Z

over z. (Recall that X
(d)
Z was used in Section 1.1 to give a geometric construction of Galπ.)

The d-tuples of computed paths between the fibers π−1(z), π−1(z′), π−1(z′′), and back to

π−1(z) give a path in X
(d)
Z from the point (w1, . . . , wd) and the point (σ(w1), . . . , σ(wd))

in the same fiber. These paths all lie in the same irreducible component of X
(d)
Z , showing

that σ ∈ Galπ.
This may be used to compute many permutations in Galπ, giving an increasing sequence

of subgroups of Galπ. As with computing Frobenius elements, this may suffice to determine
Galπ. For example, if the computed subgroup of Galπ is Sd, then Galπ = Sd is full-
symmetric. This method was used in [54] to show that several Schubert Galois groups
(see Section 6) were full-symmetric, including one with d = 17589. In that computation,
every time a new permutation π was found, GAP [29] was called to test if the computed
set of permutations generated the symmetric group.

A drawback is that numerical path tracking may be inexact, which can lead to false
conclusions (this is known as path-crossing). A consequence of the calculation in [54]
was the implementation of an algorithm [36] for a posteriori certification of the computed
solutions to a system of polynomials, based on Smale’s α-theory [73]. Certification using
Krawczyk’s method from interval arithmetic [46] has also been implemented [9], providing
another approach. More substantially, algorithms were developed [6, 7] to certify path-
tracking and thereby certifiably compute monodromy.

This approach of computing monodromy may be improved to compute a generating set
of the Galois group [35]. Given a branched cover π : X → Z as above, restricting to an
open subset of Z and compactifying, we may assume that Z = PN . The branch locus of
π : X → PN is a hypersurface B ⊂ PN . Let z ∈ U := Pn rB. Lifting loops in U based at
z gives a surjective homomorphism from the fundamental group of U to the monodromy
group of the cover π−1(U)→ U [33, 64].

A witness set for B can be used to obtain a generating set for the fundamental group
of U . Suppose that ` ∩ B is a linear section of the hypersurface B, so that ` ' P1 is
a line. Zariski [93] showed that the inclusion ` ∩ U ↪→ U induces a surjection from the
fundamental group of `∩U to the fundamental group of U . As the fundamental group of
`∩U is generated by based loops around each of the (finitely many) points of `r (B ∩ `),
lifts of these loops generate the Galois group Galπ of the branched cover.

In [35], this method is demonstrated on the branched cover Γ → P19 (1) from the
problem of 27 lines. The branch locus B is the set of singular cubics, which forms a
hypersurface on P19 of degree 32, so that a general line ` in P19 meets B transversally
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in 32 points. The computed permutations for a particular choice of ` (given in Figure 5
in [35]) generate E6. Each permutation is a product of six disjoint 2-cycles in S27. Here
is one,

(1, 6)(4, 13)(8, 25)(10, 19)(11, 16)(20, 27) .

That a loop around a point of `∩B gives a permutation that is the product of six disjoint
2-cycles is a manifestation of the enriched structure of this enumerative problem; Above a
general point of B, there are six solutions of multiplicity 2. Contrast this with the result
of Esterov [24] from Section 4 where a single loop around B gave a simple transposition.

Similar ideas were used to establish Theorem 5, except that rather than compute a full
witness set for the branch locus, a single point z ∈ `∩B in a linear section of the branch
locus was computed. Lifting one loop around z gave a simple transposition, which was
sufficient to show that those Fano problems wre full symmetric.

We mention another method from [35] involving transitivity. Let π : X → Z be a
branched cover of degree d. By Proposition 2, for any 1 ≤ s ≤ d, s-transitivity of

the Galois group Galπ is equivalent to the irreducibility of the variety X
(s)
Z . Numerical

irreducible decomposition may be used to determine the (ir)reducibility of X
(s)
Z and therby

determine whether or not Galπ is s-transitive. Details and an example involving the
problem of 27 lines are given in [35, Sect. 4].

6. Galois groups in Schubert calculus

In his seminal book, “Kalkul der abzählenden Geometrie” [72] Schubert presented meth-
ods for computing the number of solutions to problems in enumerative geometry. Jus-
tifying these methods was Hilbert’s 15th problem [40], and they collectively came to be
known as “Schubert’s Calculus”. A central role was played by the Grassmannian and
its Schubert cycles/varieties. Schubert and others studied these objects further, and now
Schubert varieties and the interplay of their geometry, combinatorics, and algebra make
them central objects in combinatorial algebraic geometry [28] and other areas of mathe-
matics. This study is also called Schubert calculus. We are concerned with the overlap
of these versions of Schubert calculus—problems in enumerative geometry that involve
intersections of Schubert varieties in Grassmannians and flag manifolds.

These Schubert problems form a rich and well-understood class of examples that has
long served as a laboratory for investigating new phenomena in enumerative geometry [45].
Thousands to millions of Schubert problems are computable and therefore may be studied
on a computer. Recently, this has also included reality in enumerative geometry [81],
and the resulting experimentation generated conjectures [37, 69, 80] and examples [38]
concerning reality in Schubert calculus. These in turn helped to inspire proofs of some
conjectures [22, 23, 51, 62, 63, 61, 67].

Vakil’s geometric Littlewood-Richardson rule [88] gave a new tool [89] for investigating
Galois groups of Schubert problems (Schubert Galois groups) on Grassmannians. He used
it to discover an infinite family of Schubert problems on Grassmannians with enriched
Galois groups. The study of reality in flag manifolds uncovered another infinite family
of enriched Schubert problems in manifolds of partial flags [69, Thm. 2.18]. Subsequent
results and constructions have led to the expectation that a Schubert Galois group should
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be an iterated wreath product of symmetric groups, together with an understanding of
the structure of enriched Schubert problems. Despite this, we are far from a classification,
and the study has been limited to Grassmannians and type A flag manifolds.

After describing Schubert problems in Grassmannians, in Section 6.2 we construct Schu-
bert problems whose Galois groups are symmetric groups Sb acting on flags of subsets of
[b] := {1, . . . , b}; This gives many enriched Schubert problems on flag manifolds in type
A. We also present a conjectural solution to the inverse Galois problem for Schubert
calculus. In Section 6.3 we describe a general construction of Schubert problems whose
Galois groups are expected to be wreath products of two Schubert Galois groups. Our
last section discusses results on Schubert Galois groups that are leading to an emerging
picture of a possible classification of Schubert problems by their Galois groups.

6.1. Schubert problems. Consider the classical Schubert problem: “Which lines in P3

meet each of four general lines?” Three mutually skew lines `1, `2, and `3 lie on a unique
hyperboloid (Fig. 3). This hyperboloid has two rulings. One contains `1, `2, and `3,

`2

`1

`3

`4

h1

h2

�
�
�
�

�
�
�
�3

p

Figure 3. Problem of four lines

and the second consists of the lines meeting them. A general fourth line, `4, meets the
hyperboloid in two points, and through each of these points there is a unique line in the
second ruling. These two lines, h1 and h2, are the solutions to this instance of the problem
of four lines. Its Galois group is the symmetric group S2: Indeed, the solutions move as
`4 moves and rotating `4 180◦ about the point p will interchange the two lines.

More generally, a Schubert problem involves determining the linear subspaces of a
vector space that have specified positions with respect to certain fixed, but general linear
subspaces. For the problem of four lines, if we replace projective space P3 by C4, the lines
become 2-dimensional linear subspaces. Thus the problem of four lines is to determine
the 2-planes in C4 that meet four given 2-planes nontrivially.

We introduce some terminology. First, fix integers 1 ≤ m < n. The collection of all
m-dimensional subspaces of Cn is the Grassmannian Gr(m,n) (also written Gr(m,Cn)),
which is an algebraic manifold of dimension m(n−m). In Section 3, this space was written
G(m−1,Pn−1).

The Grassmannian has distinguished Schubert varieties. These depend upon the choice
of a (complete) flag, which is a collection F : F1 ⊂ F2 ⊂ · · · ⊂ Fn = Cn of linear subspaces
with dimFi = i. Given a flag F , a Schubert variety is the collection of all m-planes having
a given position with respect to F . A position is encoded by a partition, which is a weakly
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decreasing sequence of nonnegative integers λ : λ1 ≥ · · · ≥ λm ≥ 0 with λ1 ≤ n−m. For a
flag F and partition λ, the corresponding Schubert variety is

(3) ΩλF := {H ∈ Gr(m,n) | dimH ∩ Fn−m+i−λi ≥ i for i = 1, . . . ,m}.
Setting |λ| := λ1 + · · ·+ λm, the Schubert variety ΩλF has codimension |λ| in Gr(m,n).

Only m of the n subspaces Fi in F appear in the definition (3) of the Schubert variety
ΩλF . If i < m and λi = λi+1, then the condition on H in (3) from λi+1 implies the
condition on H for λi. Those i with λi > λi+1 (or i = m with λm > 0) are essential.
When (m,n) = (2, 4) and λ = (1, 0), the essential condition is when i = 1. Indeed,
Ω(1,0)F = {H ∈ Gr(2, 4) | dimH ∩ F2 ≥ 1}. In P3, this is the set of lines PH that meet
the fixed line PF2.

A Schubert problem is a list λ• = λ1, . . . , λs of partitions with
∑

j |λj| = m(n−m), the

dimension of the Grassmannian. An instance of λ• is given by a choice F • = (F 1, . . . , F s)
of flags. The solutions to this instance form the set of m-planes H that have position λj

with respect to the flag F j, for each j. This set is the intersection

(4) Ωλ1F
1
⋂

Ωλ2F
2
⋂
· · ·
⋂

ΩλsF
s .

Kleiman [44] showed that this intersection is transverse when the flags are general. When
the flags are general, this implies that for each solution (point H in (4)), the inequalities
in (3) for each pair λj, F j hold with equality. Also, the number of solutions does not
depend upon the (general) flags. Write d(λ•) for this number, which may be computed
using algorithms in Schubert’s calculus.

Let F`(n) be the space of complete flags in Cn and consider the incidence variety:

(5)

Γλ• := {(H,F 1, . . . , F s) ∈ Gr(m,n)× F`(n)s |
H ∈ ΩλiF

i for i = 1, . . . , s}
?

πλ•

F`(n)s

The total space Γλ• of this Schubert problem is irreducible, as it is a fiber bundle over
the Grassmannian Gr(m,n) with irreducible fibers (this is explained in [82, Sect. 2.2]).
The fiber of πλ• over (F 1, . . . , F s) ∈ F`(n)s is the intersection (4). Since this is transverse
and consists of d(λ•) points for general flags, πλ• is a branched cover of degree d(λ•). We
write Galλ• for its Galois group, which we call a Schubert Galois group.

6.2. Some enriched Schubert problems. We present a construction of many enriched
Schubert problems on Grassmannians and flag manifolds. These are based on the following
generalization of the problem of four lines: Let 1 < b be an integer and consider the
2-planes h ⊂ C2b that meet each of four general b-planes K1, . . . , K4 in at least a one-
dimensional subspace. Since 2b − 2 + 1 − (b − 1) = b, this Schubert problem is given by
four partitions, each equal to (b−1, 0).

This has b solutions, which we now describe. As the Ki are general, we have Ki⊕Kj =
C2b for i 6= j. Then K3, K4 are graphs of isomorphisms f3, f4 : K1 → K2, and ϕ := f−14 ◦f3
is a linear isomorphism of K1. If ` = ϕ(`) ⊂ K1 is a ϕ-stable line (one-dimensional
subspace) in K1, then f3(`) = f4(`) and H := `⊕ f3(`) is a solution to this enumerative
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problem. Furthermore, all solutions have this form, as H ∩ Ki for i = 1, . . . , 4 are four
lines in the same 2-plane H. As the subspaces Ki are general, the linear transformation
ϕ is semi-simple and therefore has b = dim(K1) distinct stable lines (generated by its
eigenvectors). Thus this Schubert problem has b solutions.

Note that the monodromy group for the eigenvectors of semi-simple linear transforma-
tions ϕ is the full symmetric group Sb acting on the set of 1-dimensional ϕ-stable linear
subspaces of K1. Thus the Galois group of this Schubert problem is the full symmetric
group Sb acting naturally as permutations on the set [b] := {1, . . . , b}.

Example 9. Vakil [89, § 3.14] used these problems in Gr(2, 2b) to construct an infinite
family of Schubert problems with enriched Galois groups. Let 1 ≤ a < b and consider
the Schubert problem in Gr(2a, 2b) of 2a-planes that meet each of four general b-planes
K1, . . . , K4 in at least an a-dimensional linear subspace. The previous argument gener-
alizes: Let f3, f4 : K1 → K2 and ϕ := f−14 ◦ f3 : K1 → K1 be the linear isomorphisms
determined by K1, . . . , K4. Every solution has the form L ⊕ f3(L) for L = ϕ(L) ⊂ K1

a ϕ-stable a-dimensional linear subspace. Consequently, L is spanned by a linearly inde-
pendent eigenvectors of ϕ. Thus this Schubert problem has

(
b
a

)
solutions.

The symmetric group Sb acts naturally on the set
(
[b]
a

)
of subsets of [b] of cardinality a,

and this argument shows that this permutation group (written S
(
[b]
a

)
) is the Galois group

of this Schubert problem. This action is not 2-transitive when 1 < a < b−1. It preserves
the dimension of the intersection of a pair of solutions, and thus has at least min{a, b−a}
distinct orbits on pairs of solutions. �

We generalize Vakil’s examples, while also generalizing [69, Thm. 2.18].

Example 10. Suppose that 1 ≤ a1 < · · · < ar < b are integers and write a• for the
sequence a1 < · · · < ar. Let F`(2a•, 2b) be the space of partial flags of the form

F : F2a1 ⊂ F2a2 ⊂ · · · ⊂ F2ar ⊂ C2b ,

where dimF2ai = 2ai. Fix four general b-planes K1, K2, K3, K4 in C2b. Consider the
Schubert problem that seeks the partial flags F ∈ F`(2a•, 2b) such that for i = 1, . . . , r,

(6) dimF2ai

⋂
Kj ≥ ai for all j = 1, . . . , 4 .

As before, K1, . . . , K4 give isomorphisms f3, f4 : K1 → K2 and ϕ = f−14 ◦ f3 : K1 → K1.
For each 1 ≤ i ≤ r, the solutions to (6) are given by Lai ⊕ f3(Lai) where Lai ⊂ K1 is a
ϕ-stable linear subspace of dimension ai.

Consequently, the solutions to (6) for all i are in bijection with ϕ-stable flags

La1 ⊂ La2 ⊂ · · · ⊂ Lar ⊂ K1 ,

where dimLai = ai. Since Lai is necessarily spanned by ai independent eigenvectors of ϕ,
these are in bijection with flags of subsets of [b]:(

[b]

a•

)
:= {T1 ⊂ T2 ⊂ · · · ⊂ Tr ⊂ [b] | |Ti| = ai} .
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Thus
(
[b]
a•

)
counts solutions to this Schubert problem and its Galois group is the symmetric

group Sb, with its natural action on the set
(
[b]
a•

)
of flags of subsets. Write S

(
[b]
a•

)
for this

permutation group. �

This completes the following existence proof concerning Schubert Galois groups.

Theorem 11. For any positive integers 1 ≤ a1 < · · · < ar < b, there is a Schubert
problem on the flag manifold F`(2a•, 2b) with Galois group S

(
[b]
a•

)
.

These Schubert Galois groups form the basis for a conjectured solution to the Inverse
Galois Problem in Schubert calculus.

Conjecture 12. A Galois group for a Schubert problem on a type A flag manifold is an
iterated wreath product of permutation groups S

(
[b]
a•

)
, and all such wreath products occur.

Schubert Galois groups for Grassmannians are iterated wreath products of permutation
groups S

(
[b]
a

)
, and all such wreath products occur.

Conjecture 12 describes all known Schubert Galois groups—we discuss that and more in
Section 6.4. Additionally, all Schubert problems we know of with enriched Galois groups
are either among those described in Examples 9 or 10 or they are fibrations of Schubert
problems, a structure we discuss in Section 6.3 which is conjectured to give such wreath
products.

6.3. Compositions of Schubert problems. By Proposition 3, when a branched cover
is decomposable, its Galois group is a subgroup of the wreath product of the Galois
groups of its factors. We explain how to construct a Schubert problem on a Grassman-
nian Gr(2a+m, 2b+n) with decomposable branched cover. This is built from one of the
Schubert problems of Example 9 on Gr(2a, 2b) and any Schubert problem µ• on Gr(m,n)

with d(µ•) > 1. Conjecturally, its Galois group is the wreath product (Galµ•)(
b
a) o S

(
[b]
a

)
.

This conjecture would establish existence in the Inverse Galois Problem for Schubert
problems on Grassmannians.

It is convenient to represent a partition µ by its (Young) diagram, which is a left-justified
array of boxes with µi boxes in row i. Thus

(1) ←→ , (2, 2) ←→ , and (3, 2, 1, 1) ←→ .

We omit any trailing 0s in a partition µ. Observe that the essential conditions in µ cor-
respond to the boxes that form south east corners. Consequently, a rectangular partition
imposes a single incidence condition.

As the number d(µ•) of solutions to a Schubert problem µ• may be computed in the
cohomology ring of the corresponding Grassmannian [28], we often write a Schubert prob-
lem multiplicatively. Thus ( , , , ), which is the problem of four lines, is also written
· · · or as 4. The construction of a composition of Schubert problems is a bit

technical, we will illustrate it first on the simplest example, when λ• = µ• are both the
problem of four lines.
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Example 13. Consider the Schubert problem κ• in Gr(4, 8) given by the partitions

(7) κ• = · · · · · · · .

An instance of this Schubert problem is given by two 2-planes `12, `
2
2, two 6-planes L3

6, L
4
6,

and four 4-planes K1
4 , . . . , K

4
4 , and its solutions are

(8) {H ∈ Gr(4, 8) | dimH ∩ `i2 ≥ 1 for i = 1, 2

dimH ∩ Lj6 ≥ 3 for j = 3, 4
dimH ∩Kt

4 ≥ 1 for t = 1, . . . , 4} .

Assume that these linear subspaces `i2, L
j
6, K

t
4 are in general position, which implies the

dimension assertions that follow. Let Λ := `12 ⊕ `22 ' C4 and M := L3
6 ∩ L4

6 ' C4.
If H is a solution to (8), then dimH ∩ Λ ≥ 2 and dimH ∩M ≥ 2. As Λ ∩M = {0}

and dimH = 4, these inequalities are equalities. Set h := H ∩ Λ ∈ G(2,Λ). For j = 3, 4,
the intersection H ∩ Lj6 has codimension 1 in H and therefore dimh ∩ Lj6 = 1. Setting
`j2 := Λ∩Lj6, we see that h is a solution to the instance of the problem of four lines given
by `12, . . . , `

4
2.

Similarly, for each i = 1, . . . , 4, H ∩M meets the 2-plane ki2(h) := (h⊕Ki
4)∩M . Thus

H ∩M is a solution to the problem of four lines given by k12(h), . . . , k42(h). Conversely,
given a solution h ⊂ Λ to the problem of four lines given by `12, . . . , `

4
2 and a solution

h′ ⊂ M to the problem of four lines given by k12(h), . . . , k42(h), their sum h ⊕ h′ is a
solution to the Schubert problem (8). �

Thus the branched cover π : Γκ• → F`(8)8 of this Schubert problem (5) is decomposable.
Indeed, let U ⊂ F`(8)8 be the subset of flags in the general position used in Example 13.
If we let X := π−1(U) be the restriction of Γκ• to this set of general instances, then
Example 13 shows that we have a factorization X → Y → U . Here, the fiber of Y → U
over an instance in U is the instance of 4 in Gr(2,Λ) given by `12, . . . , `

4
2, and given a

solution h to this instance, the fiber of X → Y over h is the instance of 4 in Gr(2,M)
given by k12(h), . . . , k42(h).

We make a definition inspired by this structure.

Definition 14. A Schubert problem κ• is fibered over a Schubert problem λ• with fiber
µ• if the branched cover Γκ• → F`(n)s is decomposable, and it admits a decomposition

X −→ Y −→ U (U ⊂ F`(n)s is open and dense)

such that

(1) fibers of Y → U are instances of λ•,
(2) fibers of X → Y are instances of µ•, and
(3) general instances of λ• and µ• occur as fibers in this way.

We will call κ• a fibration. This notion is developed in [57] and [84], where the following
is proven, which is a special case of [57, Lemma 15].

Proposition 15. If a Schubert problem κ• is fibered over λ• with fiber µ•, then d(κ•) =
d(λ•) · d(µ•), and its Galois group is a subgroup of the wreath product

Galκ• ⊂ (Galµ•)d(λ
•) o Galλ• .
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Consequently, the Schubert Galois group from Example 13 is a subgroup of the wreath
product (S2)

2 o S2. In fact, its Galois group equals this wreath product [56, Sect. 5.5.2].
The construction of Example 13 was generalized in [84]. Given two Schubert problems

λ• and µ• on possibly different Grassmannians, that paper describes how to use them to
build a new Schubert problem λ• ◦µ• on another Grassmannian, called their composition.
It uses combinatorics to prove that d(λ• ◦µ•) = d(λ•) · d(µ•), and it is expected—but not
proven—that λ• ◦ µ• is fibered over λ• with fiber µ•.

Next, it identifies a family of Schubert problems and shows that for any Schubert
problem λ• in that family, any composition λ• ◦ µ• is fibered over λ• with fiber µ•. This
family includes all the Schubert problems of Example 9. We explain this construction
when λ is a Schubert problem of Example 9, which is a motivation for Conjecture 12.

Write �a,b for the rectangular partition with a rows, each of length b−a. For example,

�1,2 = , �1,6 = , �2,4 = , and �3,7 = .

Every Schubert problem in Example 9 has the form � 4
a,b.

Fix integers 1 ≤ a < b and 1 ≤ m < n, and let µ• = (µ1, . . . , µs) be any Schubert
problem on Gr(m,n). Set r := n−m. The composition, � 4

a,b ◦ µ•, of � 4
a,b and µ• is the

Schubert problem on Gr(2a+m, 2b+ n) given by the following partitions

�a,b+r , �a,b+r , �a+m,b+m , �a+m,b+m , µ1, . . . , µs .

Suppose that a = 1, b = 2, and µ• = 4. Then m = r = 2 and n = 4, so that these
partitions are

�1,4 , �1,4 , �3,4 , �3,4 , , , , ,

which is the Schubert problem κ• (7) of Example 13.

Proposition 16 (Theorem 3.8 of [84]). The Schubert problem � 4
a,b ◦µ• is fibered over the

Schubert problem � 4
a,b on Gr(2a, 2b) with fiber the Schubert problem µ• on Gr(m,n). We

have
Gal� 4

a,b◦µ• ⊂ (Galµ•)(
b
a) o S

(
[b]
a

)
.

We conjecture this inclusion is an equality—that would prove the existence statement
in Conjecture 12, for Grassmannians.

Sketch of proof. We explain how to decompose a general instance of the Schubert problem
� 4
a,b ◦µ•. This is similar to Example 13. This involves constructing an instance of � 4

a,b as
an auxiliary problem, and for each of its solutions, constructing an instance of µ•.

An instance of the Schubert problem � 4
a,b ◦ µ• is given by two b-planes K1

b , K
2
b , two

codimension b-planes L3
b+n, L

4
b+n, and flags F 1, . . . , F s in C2b+n. The Schubert problem

seeks the (2a+m)-planes H such that for every i = 1, 2, j = 3, 4, and t = 1, . . . , s, we
have

dimH ∩Ki
b ≥ a , dimH ∩ Ljb+n ≥ a+m, and H ∈ ΩµtF

t .

Suppose that the linear subspaces Ki
b, L

j
b+n, and the flags F t are in general position.

Let H be a solution to this instance of � 4
a,b ◦ µ•. If we set Λ := K1

b ⊕ K2
b ' C2b and

M := L3
b+n ∩ L4

b+n ' Cn, then dimH ∩ Λ = 2a and H ∩M = m. Setting Kj
b := Λ ∩ Ljb+n
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for j = 3, 4, we have that h := H ∩ Λ is a solution to the Schubert problem � 4
a,b in

Gr(2a,Λ) given by K1
b , . . . , K

4
b . Let 1 ≤ t ≤ s. Since the flag F t is in general position,

dim(h+F t
r) = dim(h)+dim(F t

r) = 2a+r. As M has codimension 2b and also meets h+F t
r

properly, (h+ F t
r) ∩M has dimension 2a+r−2b. Thus for 1 ≤ r ≤ n, (h+ F t

r+2b−2a) ∩M
defines a flag F t(h) in M . A further exercise in dimension-counting and the definition of
Schubert variety (3) shows that H ∩M ∈ ΩµtF

t(h).
Furthermore, for every solution h to the auxiliary problem � 4

a,b in Gr(2a,Λ), if we define

flags F i(h) in M as above, then, for every solution h′ to the instance of the Schubert
problem µ• in Gr(m,M) given by the flags F •(h), the direct sum h ⊕ h′ is a solution to
the original Schubert problem. �

6.4. An emerging landscape of Schubert Galois groups. The constructions and
results described in Sections 6.2 and 6.3 arose from a sustained investigation of Schubert
Galois groups in which computer experimentation informed theoretical advances. This be-
gan with Vakil’s seminal paper [89]. There, he used his geometric Littlewood-Richardson
rule [88] in a method used to show a Schubert Galois group is at least alternating. He
applied this method to study Schubert Galois groups in small Grassmannians. Subsequent
experimentation and results this inspired is leading to an understanding what to expect
for Schubert Galois groups, and an outline of a potential classification is emerging from
this study.

Without delving into its (considerable) details, we sketch salient features of Vakil’s geo-
metric Littlewood-Richardson rule [89]. Given a Schubert problem µ• on a Grassmannian
G(m,n), it constructs a tree Tµ• with d(µ•) leaves that encodes a sequence of deformations
of intersections of Schubert varieties as the flags move into special position. Each node
•• of Tµ• determines an enumerative problem which involves intersecting a subset of the
Schubert varieties in µ• with a checkerboard variety Y••(E,M). Here E,M are two flags
in a special position (determined by ••) and Y••(E,M) is the set of m-planes in G(m,n)
having a particular position with respect to E,M (again specified by ••). Let d(••) be
the number of solutions to this enumerative problem and Gal(••) be its Galois group.

The root of the tree Tµ• is labeled by µ•. For a leaf node ••, d(••) = 1. Every node ••
of Tµ• that is not a leaf has either one child ••′ or two children ••′ and ••′′, and we have
d(••) = d(••′), respectively d(••) = d(••′) + d(••′′), when there is one child, respectively
two children. The children of a node are in bijection with the irreducible components of
the checkerboard variety Y••(E,M) as the flags E,M become more degenerate.

Theorem 17 (Thms 3.2 and 3.10 of [89]). Let •• be a node in Tµ•. Suppose that the Galois
group of each child of •• is at least alternating. Then Gal(••) is at least alternating if
one of the following conditions (1), (2a), or (2b) hold.

(1) •• has a unique child.
(2) •• has two children ••′ and ••′′, and

(a) d(••′) 6= d(••′′) or both are equal to 1, or
(b) Gal(••) is 2-transitive, and we do not have d(••′) = d(••′′) = 6.

When •• is a leaf, d(••) = 1 so that Gal(••) = S1 is at least alternating. Theorem 17
leads to Vakil’s recursive method that may conclude Gal(µ•) is at least alternating. Given
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a Schubert problem µ•, this method first constructs Tµ• , which it then investigates. If, for
every non-leaf node ••, either (1) or (2a) hold at ••, then it declares that Galµ• is at least
alternating. Otherwise, the method is inconclusive. It is not a decision procedure, but it
is a useful filter to identify Schubert problems that may have enriched Galois groups and
thus are worthy of further study.

Vakil wrote a Maple script3 that runs his method on all Schubert problems on a given
Grassmannian. He ran this on all small Grassmannians. Every Schubert Galois group
on Gr(2, n) for n ≤ 16 and on Gr(3, n) for n ≤ 9 was found to be at least alternating
(for Gr(3, n), Condition (2b) in Theorem 17 was needed). As Gr(4, 6) ' Gr(2, 6) and
Gr(4, 7) ' Gr(3, 7), the next Grassmannian was Gr(4, 8). His algorithm was inconclusive
for 14 (out of 3501) Schubert problems on Gr(4, 8). These 14 include the problem �4

2,4

from Example 9 and the problem of Example 13. The Galois groups of these 14 problems
are known and none are 2-transitive [56, Sect. 5.5].

A Schubert problem µ• on Gr(m,n) is simple if at most two of the conditions in µ•

are not = (1, 0, . . . , 0). Using the Pieri homotopy algorithm [41] to compute solutions
to simple Schubert problems and monodromy, Galois groups of many simple Schubert
problems (including one with 17,589 solutions) were shown to have full-symmetric Galois
groups [54].

The first general result concerning Schubert Galois groups was given in [11]. Using
Vakil’s algorithm and combinatorial reasoning, it was shown that every Schubert problem
on Gr(2, n) for all n has at least alternating Galois group. With an eye towards Condition
(2b) in Theorem 17, another general result showed that Galois groups of Schubert prob-
lems on Gr(3, n), for every n are 2-transitive [82]. Yet another general result is that all
simple Schubert problems are at least alternating [83]. These results and computations
described below suggest the following dichotomy for Schubert Galois groups.

Conjecture 18. A Schubert Galois group is either the full symmetric group or it is not
2-transitive.

Robert Williams used the method of computing Frobenius elements to show that many
Schubert problems have full symmetric Galois groups over Q [92]. These include all
Schubert problems on a Grassmannian Gr(2, n) with up to 500 solutions, as well as all
simple Schubert problems on any Grassmannian with up to 500 solutions [83], and all
Schubert problems on Gr(4, 9) with at most 300 solutions [57]. The numbers here, 300 and
500, are approximate and they represent the limit of the software used—Singular [17]—to
solve a Schubert problem over a prime field (typically F1009) in a few hours.

We close with a sketch of the results from [57], which determined all enriched problems
on Gr(4, 9). This began by using Vakil’s method, both his maple implementation and a
perl implementation by C. Brooks, to identify many Schubert problems on Gr(4, 9) that
were at least alternating. For only 233 of the 38,760 Schubert problems was the method
inconclusive, and further study found exactly 149 Schubert problems on Gr(4, 9) that had
enriched Galois groups. We remark that this (and earlier computations on Gr(4, 8)) only

3http://math.stanford.edu/~vakil/programs/galois
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tested Schubert problems that could not be reduced to a Schubert problem on a smaller
Grassmannian.

Each of these 149 enriched Schubert problems was shown to be a fibration as in Defi-
nition 14, where the constituent Schubert problems were on a Gr(2, 4) or a Gr(2, 5), and
had full symmetric Galois groups, either S2 or S3 or S5. By Proposition 15, the Schubert
Galois group of each was a subgroup of a wreath product of symmetric groups. Comput-
ing sufficiently many Frobenius elements showed that in each case, the Galois group was
the expected wreath product. This computation is explained and archived on the web
page4. Of these, 120 are compositions of Schubert problems as in Proposition 16, while
the remaining 29 had a different structure.

While these results on Schubert Galois groups have not resulted in a classification,
there is an emerging landscape of what to expect, which we summarize for Grassmannians
Gr(m,n).

• If min{m,n−m} = 1, then Gr(m,n) ' Pn−1, and Schubert calculus becomes linear
algebra; all Schubert problems have one solution. There are no non-trivial Galois
groups.
• If min{m,n−m} = 2, then Gr(m,n) ' Gr(2, n) and all Schubert Galois groups

are at least alternating [11] and conjectured to be fully symmetric.
• If min{m,n−m} = 3, then Gr(m,n) ' Gr(3, n) and all Schubert Galois groups

are 2-transitive [82] and conjectured to be fully symmetric.
• If min{m,n−m} ≥ 4, then Gr(m,n) has enriched Schubert problems. An enriched

Schubert problem is either equivalent to one of Vakil’s problems from Example 9,
or it is a fibration of Schubert problems.

We also remark that we do not know whether or not Schubert Galois groups depend
upon the base field. In particular, are they the same for Q and for C, or different?

7. Galois groups in applications

Structures in polynomial systems or in enumerative geometry give information about
the associated Galois groups. In a growing number of applications of algebraic geometry,
information about associated Galois groups may be used to detect these structures and
then exploit them for solving or for understanding the application. We sketch this in
three application realms. Esterov’s partial determination of Galois groups for sparse
polynomial systems leads to a surprisingly efficient algorithm to recursively decompose
and solve sparse systems. Work in vision reconstruction problems uses Galois groups to
detect decompositions, which are then used in efficient solvers. The classical problem of
Alt, to determine four-bar mechanisms whose coupler curve passes through nine given
points, has a hidden symmetry of order six coming from the structure of the problem and
its formulation as a system of equations.

7.1. Solving decomposable sparse polynomial systems. By Proposition 3, when a
branched cover π : X → Z is decomposable in that there is a Zariski open subset V ⊂ Z

4https://www.math.tamu.edu/~sottile/research/stories/GIVIX/
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over which π factors,

π−1(V )
ϕ−→ Y

ψ−→ V , (2)

then its Galois group Galπ is imprimitive (and vice-versa). Améndola, Lindberg, and
Rodriguez [3] proposed methods to exploit this structure in numerical algebraic geometry.
For example, when the decomposition (2) is known explicitly, fibers of π : X → Z may be
recovered from the partial data consisting of one fiber of ϕ : π−1(V )→ Y and one fiber of
ψ : Y → V . They illustrated this on examples where V = Z and the first map ϕ : X → Y
comes from the invariants of a group acting on the fibers of π. Interestingly, their methods
do not require knowledge of the full Galois group, only of the decomposition (2).

This approach is particularly fruitful for the sparse polynomial systems of Section 4,
whose notation and definitions we use. Let A• be a collection of supports for a sparse
polynomial system. By Esterov’s Theorem 7, if A• is either strictly lacunary or strictly
triangular, then GalA• is imprimitive, and GalA• is completely determined (either a group
of units or full symmetric) in all other cases. Not only does this characterize when the
branched cover π : ΓA• → CA• is decomposable, but it leads to an algorithmic procedure
for an explicit description of the decomposition. We sketch that; As complete description
is given in [12].

When A• is lacunary, Zn/ZA• is a nontrivial finite group. Let ϕ : (C×)n � (C×)n be

the map induced by the inclusion Zn ∼−→ ZA• ⊂ Zn and the functor Hom( ,C×). This has
kernel Hom(Zn/ZA•,C×), a group of units in (C×)n. If B• is the preimage of A• under

the identification Zn ∼−→ ZA•, then a system F (x) with support A• has the form G(ϕ(x)),
where the system G has support B•. Thus Hom(Zn/ZA•,C×) acts on the solutions of
any system F ∈ CA• , and in fact on the branched cover π : ΓA• → CA• . This action
is free, and the quotient variety is the branched cover ψ : ΓB• → CB•(= CA•). We have
MV(A•) = |Zn/ZA•| · MV(B•) and when MV(A•) > |Zn/ZA•|, the decomposition of
π : ΓA• → CA• through the intermediate variety ΓB• is nontrivial.

The first of the maps in this decomposition is induced from the inclusions ΓA• ⊂
CA• × (C×)n and ΓB• ⊂ CB• × (C×)n by the identification CA• = CB• and the monomial
map ϕ : (C×)n → (C×)n, from which fibers may be explicitly computed. The map ϕ
is computed from the Smith normal form of a matrix whose columns are generators of
ZA•. Similarly, the second map is simply the branched cover associated to the family of
sparse systems of support B•. If B• is lacunary or triangular, then this may be further
decomposed. If not, then its fibers are readily computed by numerical software such as
PHCpack [90] or HomotopyContinuation.jl [10], using the polyhedral homotopy [42].

Suppose now thatA• is strictly triangular with witness ∅ 6= I ( [n], so that rank(ZAI) =
|I| and 1 < MV(AI) < MV(A•). Then there is a monomial change of coordinates on (C×)n

and a reindexing of the supports so that I = [m] and A1, . . . ,Am ⊂ Zm, which is the first
m coordinates of Zn. Writing (C×)n = (C×)m × (C×)n−m for the corresponding splitting,
points x ∈ (C×)n are ordered pairs x = (y, z) with y ∈ (C×)m and z ∈ (C×)n−m. Then
a system F with support A• has the form F (x) = (G(y), H(y, z)), where G has support
AI and H has support AIc , where Ic := {m+1, . . . , n}. Any solution to F = 0 is a pair
(y∗, z∗), where y∗ is a solution to G(y) = 0, and z∗ is a solution to the system H(y∗, z) = 0
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on (C×)n−m. This structure is apparent in the decomposition

(9) ΓA• −→ ΓAI × CAIc −→ CAI × CAIc = CA• ,

where the first map is induced by the projection (C×)n → (C×)m onto the first m coordi-
nates applied to solutions (y∗, z∗).

Let p : Zn → Zn−m be the projection to the last n−m coordinates and observe that for
any solution y∗ to G(y) = 0, H(y∗, z) has support p(AIc). We have the following product
formula (see [85, Lem. 6] or [24, Thm. 1.10]),

MV(A•) = MV(AI) ·MV(p(AIc)) .

Since 1 < MV(AI) and 1 < MV(A•)/MV(AI) = MV(p(AIc)), the decomposition (9) is
nontrivial. When either AI or p(AIc) is lacunary or triangular, these maps may be further
decomposed. If one is neither lacunary or triangular, then its fibers are readily computed
by numerical software as above.

This leads to an algorithm to recursively decompose the branched cover π : ΓA• → CA• .
In each decomposition, the decomposability of each factor is determined by examining
another sparse family. Given a blackbox solver (e.g. HomotopyContinuation.jl [10]
or PHCpack [90]) to compute fibers of indecomposable branched covers, combined with
the methods of Améndola, et. al [3], results in an efficient algorithm for solving sparse
polynomial systems, which was developed in [12]. These methods have been implemented
in the Macaulay2 [30] package DecomposableSparseSystems.m2 [13]. In [12] this package
was used in an experiment in which thousands of decomposable systems were solved, both
using the black box solver PHCpack and that package (called Algorithm 9 in [12]). Figure 4
shows a box plot of the timings.

Figure 4. Box plot of timings comparing PHCpack and Algorithm 9.
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7.2. Vision Problems. A camera takes a 2-dimensional image of a 3-dimensional scene.
The fundamental problem of image reconstruction is to recover the scene from images
taken by cameras at different unknown locations. For this, some features (e.g. points,
lines, and incidences) are matched between images. This matching is used to infer the
camera positions, which are then used for the full reconstruction. There are many versions
of this nonlinear problem of determining camera positions—different types of cameras and
different configurations of matched features.

A calibrated perspective camera consists of a focal point t ∈ R3 and a direction vector
v. The image is the projection of R3r{t} from the point t onto a plane with normal
vector v lying a distance 1 from t in the direction of v. The image of a point x ∈ R3 is
the intersection of the line between t and x with this plane. The considered features are
some points, lines, and their incidences, which are assumed to be present in each image.

An image reconstruction problem is specified by the number of cameras (images) and
the matched features. For example, we may have two cameras and five points in each
image. Such a problem is minimal if, for general data, there is a positive, finite number of
solutions (camera positions). The degree of the minimal problem is this number of (com-
plex) solutions for general data, which is a measure of the algebraic complexity of solving
the minimal problem. Highly optimized solvers have been developed for some minimal
problems [47, 65]. The minimal reconstruction problems were recently classified [20], find-
ing many new minimal problems. Among these new minimal reconstruction problems are
some which have imprimitive Galois groups, whose corresponding decomposable structure
may be exploited for solving [3].

We present some of the formulation of reconstruction problems. Fix a reference frame,
choosing one camera to be at the origin and to face upwards. Any other camera is the
translation of the first by an element of the special Euclidean group, SER(3). A element of
SER(3) is a pair [R | t], where R ∈ SO(3) is a rotation matrix and t ∈ R3 is a translation
vector. Then [R | t] represents a camera with focal point t and direction vector Rk, where
k is the upward-pointing unit vector. In this way, elements of SER(3) give coordinates for
cameras. The fixed camera has coordinate [I | 0] where I is the identity matrix and 0 is
the zero vector.

The image plane Π of a camera [R | t] consists of the points p ∈ R3 satisfying the
equation (Rk) · (p− t) = 1. For x ∈ R3 r {t}, its image in Π is the point

t +
x− t

(Rk) · (x− t)
.

Translating by −t and applying R−1 sends the image plane Π to the standard reference
plane Π0 := {(x, y, 1) | x, y ∈ R} for the camera [I | 0]. We use the coordinates from Π0

to represent images of points for all camera. Thus a point y ∈ Π0 is the image of a point
x ∈ R3 under the camera [R | t] if

(10) x = Rαy + t ,

where α = (Rk) · (x− t) is the focal depth of the point x relative to [R | t]. Figure 5 is
a schematic showing the correspondence between five points x ∈ R3 and their images in
the planes Π, for two cameras.
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C1 C2
[R | t]

Figure 5. Minimal problem of two cameras with five points.

Given matched configurations of points, lines, and incidences in Π0 for each of several,
say n, cameras, equations based on (10) formulate the image reconstruction problem as
a system of equations on (SER(3))n−1. Complexifying gives a system of polynomials that
depends upon the input configuration. When the problem is minimal, this gives a branched
cover over the parameter space of all input configurations. The degree of the branched
cover is the degree of the minimal problem. As we have seen before, there is a Galois
group for each minimal problem. When the Galois group is imprimitive, Proposition 3
implies that the branched cover is decomposable. If a decomposition (2) is known, then
that may be exploited for solving.

One such problem with imprimitive Galois group is that of reconstructing five points
given images from two cameras, which is illustrated in Figure 5. The branched cover cor-
responding to this minimal problem has degree 20. The imprimitivity may be understood
by observing that the solutions come in pairs: Given one solution ([I | 0], [R | t]), a second
is given by rotating the camera [R | t] 180◦ around the line between the two cameras.
(This also changes the inferred positions of the unknown points x ∈ R3.) This is called
a twisted pair in the literature, and we see that the Galois group preserves the resulting
partition of the 20 solutions into ten twisted pairs, and is hence a subgroup of S2 o S10.
In fact, the Galois group is even smaller, it is (S2 o S10) ∩ A20 [19], which is the Weyl
group D10. This imprimitivity implies the associated branch cover is decomposable and
the system can be solved in stages. A decomposition for this problem is implicit in [65].

In [19], the minimal problems of degree at most 1000 with imprimitive Galois group
were classified. Those were further studied using numerical algebraic geometry, which led
to an understanding of their structure, and for each an explicit decomposition was found.

7.3. Alt’s Problem. Polynomial systems arise in engineering when designing mecha-
nisms with a desired range of motion. Robotic arm movements, for instance, may need
to be able to reach several positions to perform specific tasks. These movements can be
modeled by polynomial systems, from which they can be studied with the methods dis-
cussed. One such problem due to Alt [2] is the nine-point synthesis problem for four-bar
linkages.
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A four-bar linkage is a planar mechanism built from a quadrilateral (which may self-
intersect) with rotating joints and fixed side lengths. One side of the quadrilateral is the
base which is fixed in place, while the other sides move as allowed by freely rotating the
joints. The side opposite the base is the coupler bar, and a triangle is erected on the
coupler bar. In an actual mechanism, a tool is placed at the apex of the triangle and the
mechanism is maneuvered to position the tool.

To understand this motion, consider the quadrilateral. Removing the coupler bar, the
two bars that were incident to it may each rotate freely around their fixed points. The
coupler bar imposes a distance constraint on the rotating bars, and there remains one
degree of freedom. (The abstract curve of this motion has genus one.) In the resulting
motion, the apex of the triangle traces the coupler curve.

Figure 6. A four-bar mechanism and coupler curve.

The space of all mechanisms is nine-dimensional. Indeed, the two fixed points may be
any points in R2, giving four dimensions (degrees of freedom). The lengths of each of
the remaining five segments in the mechanism give five more, for a total of nine. That
the coupler curve contains a given point in R2 is a single, simple condition on the space
of four-bar mechanisms. Thus we expect there are only finitely many mechanisms whose
coupler curve contains nine given general points. Alt [2] recognized this, and his nine-
point synthesis problem asks for the mechanisms whose coupler curve contains a given
nine points.

Identifying R2 with C, we represent the bars as complex numbers. Complexifying
gives a useful formulation of Alt’s problem in isotropic coordinates—this is described
in [60]. Solutions to these equations for nine general points were computed using homotopy
continuation in [60], finding 8652 solutions.

In [36], this computation was repeated and a soft certificate was computed to certify
that the 8652 computed solutions. While 8652 is almost surely the number of solutions,
these computations only show that it is a lower bound, and a proof of the number 8652
remains elusive. Further evidence for the number 8652 was found in [34], but that result
also only implies that 8652 is a lower bound.

In this formulation, solutions come in pairs due to relabeling—swapping labels of the
bars incident to the base and to the apex of the triangle results in another solution and
gives the same four-bar mechanism. Classically Roberts [68] and Chebyshev [15] (see [91]
for a discussion) show that there are three mechanisms—called Robert’s Cognates—with
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the same coupler curve. Consequently, the Galois group of this formulation of Alt’s
problem is imprimitive as it preserves the six solutions which give the same coupler curve.
We also see that, assuming the number 8652 is correct, that there are 4326 four-bar
mechanisms whose coupler curve contains nine given points, and 1442 distinct coupler
curves.

Since label swapping may be done independently on each cognate, the Galois group G
of the six solutions with given coupler curve is a subgroup of Z/2Z o S3 = (Z/2Z)3 o S3—
this assumes that the cognates have symmetry S3. Consequently, the Galois group of this
formulation is a subgroup of G o S1432. To the best of our knowledge, the Galois group of
this problem has not been determined.
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3. C. Améndola, J. Lindberg, and J. I. Rodriguez, Solving parameterized polynomial systems with
decomposable projections, 2021, arXiv:1612.08807.
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