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IRRATIONAL TORIC VARIETIES AND SECONDARY POLYTOPES

ATA FIRAT PIR AND FRANK SOTTILE

Abstract. The space of torus translations and degenerations of a projective toric variety
forms a toric variety associated to the secondary fan of the integer points in the polytope
corresponding to the toric variety. This is used to identify a moduli space of real degenerations
with the secondary polytope. A configuration A of real vectors gives an irrational projective
toric variety in a simplex. We identify a space of translations and degenerations of the
irrational projective toric variety with the secondary polytope of A. For this, we develop
a theory of irrational toric varieties associated to arbitrary fans. When the fan is rational,
the irrational toric variety is the nonnegative part of the corresponding classical toric variety.
When the fan is the normal fan of a polytope, the irrational toric variety is homeomorphic
to that polytope.

Introduction

Fulton observed that “Toric varieties have provided a remarkably fertile testing ground
for general theories” [14, Preface, ix]. One reason for this is their connection to geometric
combinatorics. Toric varieties in algebraic geometry arise in three guises [7, Chs. 1–3]: as
an affine variety XA parametrized by exponents A ⊂ Zn of monomials, as a variety XP

projectively embedded by a line bundle associated to an integer polytope P ⊂ Rn, and as a
normal variety XΣ functorially constructed from a rational fan Σ ⊂ Rn. These three guises
come together in a beautiful solution to a moduli problem. If we replace XA by its projective
closure, the torus of projective space acts on XA and the collection of torus translates of
XA and their limit schemes forms a torus-invariant subscheme of the Hilbert scheme. Its
normalization is the toric variety XΣ associated to the secondary fan Σ of A [1, 20, 21].
Embedding XΣ using the secondary polytope P of A identifies XΣ with XP , and this has a
moment map to P , which identifies its nonnegative part with P .

Toric varieties, or at least their nonnegative parts, occur naturally in applications of math-
ematics. In statistics, an exponential family (of probability distributions) is the nonnegative
part of the projective cloure of an affine toric variety XA, considered as a subset of the prob-
ability simplex. These arose in the 1930’s [9, 23, 34] and are now called toric models [32,
Sect. 1.2.2] or log-linear models [18]. A version of the moment map (sufficient statistics) is
important for toric models, and in 1963 [5] Birch proved that the toric model is homeomorphic
to the polytope conv(A) under this ‘algebraic moment map’. This predates the celebrated
(and more general) work of Atiyah [2, 19] on moment maps. Projective toric varieties YP
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are also understood as the source for Bézier patches in geometric modeling. This is a con-
sequence of Krasauskas’s introduction of toric Bézier patches [24], which generalize classical
Bézier patches. For these, the moment map (an independent proof is given in [24, Thm. 26])
underlies the important property of linear precision [15].

It is also natural to consider toric patches as arising from the nonnegative part of an affine
toric variety XA. In this guise, both applications allow the exponents A to be any real
vectors. This leads to irrational affine toric varieties YA [8], which are analytic subsets of the
nonnegative orthant of a real vector space. When A ⊂ Zn, YA is the nonegative part of the
affine toric variety XA. When A lies on an affine hyperplane, the intersection ZA of YA with
the standard (probability) simplex is both an irrational toric model and a source for toric
Bézier patches. By Birch’s Theorem, ZA is homeomorphic to the polytope conv(A).

Applications from geometric modeling [8, 16] lead to the irrational version of the moduli
problem involving the secondary fan and polytope. That is, there is a multiplicative action
of the positive torus on the probability simplex, and understanding the possible limits of
translates of ZA provides an explanation of control structures for patches. Here, these limits
are understood set-theoretically or rather metrically in terms of the Hausdorff topology on
closed subsets of the probability simplex. When A ⊂ Zn, the toric moduli spaces from [1,
20, 21] imply that the possible limits are all toric degenerations of ZA, and identifies the real
points of the moduli space with the secondary polytope of A. This is the main result in [16].

When A is irrational, we do not have the full power of algebraic geometry, and other means
are needed to study the space of real torus translates of ZA and their Hausdorff limits. In [35],
all Hausdorff limits are shown to be toric degenerations of ZA and the space of translates and
limits is understood set-theoretically in terms of the secondary fan of A. Our purpose is to
promote this set-theoretic understanding to one in terms of equivariant cell complexes and
show that the resulting moduli space (defined in Section 5) is homeomorphic to the secondary
polytope of A, this is the content of Theorem 5.2.

To accomplish this identification, we develop a theory of irrational toric varieties YΣ asso-
ciated to arbitrary fans Σ in real vector spaces. This theory is very satisfying, with many
parallels to the classical theory of toric varieties associated to rational fans. The irrational
toric variety YΣ is an equivariant cell complex (Theorem 3.11), the association from fans is
functorial (Theorem 3.15), and the fan Σ may be recovered from the irrational toric variety
YΣ (Corollary 4.4). Also, Yσ is compact if and only if the fan Σ is complete (Theorem 4.5).

An important property of classical toric varieties that we do not yet have for irrational
toric varieties is an equivalence of categories between fans and irrational toric varieties. We
believe this will require enriching irrational toric varieties and irrational fans with additional
structure, so that we obtain a sheaf of functions on an irrational toric variety possessing some
form of noetherianity. One possible source for these structures, at least locally, may be the
recent articles of Miller [28, 29, 30].

This theory of irrational toric varieties has a similar motivation to the development of small
covers [10] from toric topology [6], noncommutative toric varieties [22], and Ford’s toroidal
embedding from an irrational fan [13]—these all generalize some aspects of toric varieties to
more general polytopes and fans. We also understand LVM manifolds [25, 27] as another topic
in this theme. Some connections between these topics are covered in the survey [41]. Another
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related approach to generalizing classical toric varieties to irrational objects from the view of
symplectic geometry are tori quasifolds [3, 4, 36].

In Section 1, we sketch the classical construction of a toric variety from a rational fan, and
recall that a toric variety is a functor on commutative monoids. We recall some properties
of irrational affine toric varieties in Section 2. We construct irrational toric varieties from
arbitrary fans in Section 3, and establish their main properties. Section 4 develops global
properties of irrational toric varieties. While our results on irrational toric varieties parallel
some on classical toric varieties, their proofs require different methods, as fundamental facts
from algebraic geometry do not hold for irrational toric varieties. This is condensed from the
2018 Texas A&M Ph.D. thesis of Pir [33]. Having developed this theory, we use it in Section 5
to establish our main result, identifying the moduli space of Hausdorff limits of a projective
irrational toric variety with the secondary polytope.

1. Classical Toric Varieties

We review the construction of toric varieties in algebraic geometry from rational fans and
recall some of their properties. For additional treatment of toric varieties, see any of [7, 12, 14].
For more on geometric combinatorics, see [17, 40, 42].

Let NZ be a free abelian group of rank n (NZ ≃ Zn) and let MZ := Hom(NZ,Z) be its
dual group. Write u · v ∈ Z for the pairing, where u ∈ MZ and v ∈ NZ. Write TN for the
abelian group scheme specZ[MZ]. This is a torus (integral abelian group scheme) as Z[MZ]
is a domain. Its lattice of cocharacters is NZ and MZ is its lattice of characters.

Let R> be the positive real numbers and R≥ be the nonnegative real numbers. Let N be
the real vector space NZ⊗ZR (≃ Rn). A (polyhedral) cone σ ⊂ N is a submonoid of the form

(1) cone{v1, v2, . . . , vk} := R≥v1 + R≥v2 + · · · + R≥vk ,

where v1, . . . , vk ∈ N . (A monoid is a set endowed with an associative commutative operation
with identity.) The dual cone of a polyhedral cone σ ⊂ N lies in M := MZ ⊗Z R, and is

σ∨ := {u ∈ M | u · v ≥ 0 , ∀v ∈ σ} .
This is again a (polyhedral) cone in M and (σ∨)∨ = σ. A face of a cone σ is a subset of the
form {v ∈ σ | u · v = 0}, for some u ∈ σ∨. A face of a cone is another cone. The relative

interior σ◦ of a cone σ is the complement in σ of its proper faces.
The minimal face of a cone σ is a linear space L, called its lineality space. This is the

maximal linear subspace contained in σ. The dual cone to L is its annihilator, L⊥ = L∨ and
σ∨ ⊂ L⊥. The lineality space of the dual cone σ∨ is the annihilator σ⊥ of σ, and the dual to
σ⊥ is the linear span 〈σ〉 of σ, which is also the annihilator of σ⊥.

We record one technical fact about faces of cones and their duals. It is a consequence of
Equation (11) on page 13 in [14], and its proof is nearly the same as that of its discrete version,
which is Proposition 2 in loc. cit., also Proposition 1.3.16 in [7].

Proposition 1.1. Let σ, τ ⊂ N be cones with τ a face of σ. Then for any w ∈ τ∨, there are

u, ℓ ∈ σ∨ with ℓ ∈ τ⊥ such that w = u− ℓ.

A fan Σ ⊂ N is a finite collection of polyhedral cones in N with the property that every face
of every cone σ in Σ is again a cone in Σ, and if σ, τ are cones in Σ, then σ∩τ is a face common
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to both σ and τ . The cones in a fan have a common lineality space. A fan Σ is complete

if every point of N lies in some cone of Σ. If v1, . . . , vk ∈ NZ, then cone{v1, . . . , vk} ⊂ N is
rational. The dual of a rational cone is again rational as are all of its faces. A fan Σ ⊂ N is
rational when each of its cones is rational.

Given a rational cone σ ⊂ N , let Sσ := σ∨ ∩MZ be the set of characters of TN that lie in
σ∨. This is a finitely generated submonoid of MZ that is saturated (whenever u ∈ MZ with
mu ∈ Sσ for some m ∈ N, then u ∈ Sσ). We define Wσ := specZ[Sσ], which is a normal affine
scheme. (Normal as Sσ is saturated.) When τ ⊂ σ is a face of σ, we have σ∨ ⊂ τ∨. Then
Sσ ⊂ Sτ and the induced map Wτ →֒ Wσ is an open inclusion. Suppose that Σ is a rational
fan in N . The toric scheme XΣ is obtained by gluing the affine schemes Wσ for σ a cone in Σ
along common subschemes corresponding to smaller cones in Σ,

XΣ :=
⋃

σ∈Σ
Wσ .

The scheme XΣ is normal as each Wσ is normal and normality is a local property.
The map ∆: Sσ → MZ × Sσ given by ∆(u) = (u, u) induces a ring map ∆: Z[Sσ] →

Z[MZ]⊗Z[Sσ], so that Z[Sσ] is a Z[MZ]-comodule. This induces an action TN ×Wσ → Wσ of
the group scheme TN on Wσ. This action is compatible with the inclusions Wτ →֒ Wσ when
τ is a face of σ, and therefore gives an action of TN on the toric scheme XΣ.

If L is the lineality space of Σ, then SL = L⊥ ∩ MZ, which is a free abelian summand of
MZ. Then WL = specZ[SL] is the quotient TN/TL, where TL is the group subscheme of TN

generated by the cocharacters in L∩NZ. The action of TN on XΣ factors through the quotient
TN/TL = WL, so that WL is isomorphic to a dense orbit of this action. Thus XΣ is a normal
scheme equipped with an action of a torus TN having a dense orbit.

Given any field K, XΣ has a set XΣ(K) of K-rational points constructed by the same
gluing procedure from the points Wσ(K) of specK[Sσ] with residue field K. There is another
perspective that associates a set XΣ(M) to a commutative monoid (M, ∗, 1M). This is
functorial in that a map f : M → M′ of monoids induces a map f∗ : XΣ(M) → XΣ(M′).

The construction of XΣ(M) is similar to that of the scheme XΣ. For each cone σ of Σ, set
Wσ(M) := Hommon(Sσ,M), the set of monoid homomorphisms, which are maps ϕ : Sσ → M
with ϕ(0) = 1M and ϕ(a+ b) = ϕ(a) ∗ ϕ(b) for all a, b ∈ Sσ. Restriction gives inclusion maps
Wτ (M) →֒ Wσ(M), with XΣ(M) constructed by gluing as before.

Multiplication in a field K gives it the structure of a monoid with 0 an absorbing element
(0x = 0 for all x ∈ K). The restriction of any algebra homomorphism K[Sσ] → K to Sσ is a
monoid homomorphism, and every monoid homomorphism ϕ : Sσ → K extends by linearity
to an algebra homomorphism K[Sσ] → K. Thus the two definitions for Wσ(K) agree, and so
we may construct XΣ(K) by gluing sets of monoid homomorphisms.

This illuminates some structure of the set XΣ(K) of K-points. If t ∈ TN(K) and ϕ ∈
Hommon(Sσ, K), then t.ϕ is the monoid homomorphism such that for u ∈ Sσ,

(t.ϕ)(u) = tuϕ(u) ,

where tu is the value of the character u at t.
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The maps of monoids R≥ →֒ R →֒ C ։ R≥ with the last map z 7→ |z| has composition the
identity. For any rational fan Σ, this induces maps

XΣ(R≥) −֒→ XΣ(R) −֒→ XΣ(C) −։ XΣ(R≥) ,

whose composition is the identity. The set XΣ(R≥) is the nonnegative part of the toric variety
XΣ and the map XΣ(C) ։ XΣ(R≥) is a version of the moment map [39].

2. Irrational Affine Toric Varieties

Irrational affine toric varieties are treated in the papers [8, 35]. We update that treatment,
with an eye towards the classical development in [40, Ch. 4] and [7, Ch 1].

Let M and N be dual finite-dimensional real vector spaces, and write the pairing M×N →
R as (u, v) 7→ u ·v. The vector space N is the torus for our irrational toric varieties. We often
write N as TN and use multiplicative notation for its group operation. For v ∈ N , we define
the continuous homomorphism γv : M → R> by

(2) γv : M ∋ u 7−→ exp(−u · v) .
(The negative sign is for compatibility with certain limits.) This map v 7→ γv is a group

isomorphism TN
∼−→ Homc(M,R>), where Homc(M,R>) is the multiplicative group of contin-

uous homomorphisms from M to the multiplicative group R>. Then v 7→ γv identifies TN with
Homc(M,R>). When t = γv, we write t

u for γv(u). Elements of M are characters (continuous
multiplicative homomorphisms to R>) of TN and elements t ∈ TN are cocharacters. For a
linear subspace L ⊂ N , we will write TL for the corresponding subgroup of TN .

Let A be a finite subset of M and set σ := cone(A), a polyhedral cone in M . A subset
F ⊂ A is a face of A if it consists of the points of A lying on a face τ of σ. Necessarily,
cone(F) = τ . Let ϕA : TN → RA

≥ be the map given by

TN ∋ t 7−→ (ta | a ∈ A) ∈ RA
≥ .

We are using A as an index set, so that RA
≥ = R

|A|
≥ is the set of |A|-tuples of nonnegative real

numbers whose coordinates are indexed by elements of A. (This is the nonnegative orthant
of RA.) The map ϕA is a group homomorphism from TN to RA

>, which is the set of points
of RA

≥ with nonzero coordinates. Write Y ◦
A for the image of TN under ϕA, and let YA be the

closure of Y ◦
A in the usual topology on RA

≥. We call YA an irrational affine toric variety. It
inherits a continuous TN -action from the homomorphism ϕA.

Remark 2.1. Under the map γ : N
∼−→ TN and the coordinatewise map − log : RA

>
∼−→ RA,

the map ϕ becomes the linear map N → RA,

N ∋ v 7−→ (a · v | a ∈ A) ∈ RA .

This is why irrational toric varieties in algebraic statistics are called log-linear models. ⋄
The kernel of ϕA is TA⊥ , where A⊥ is the subspace of N that annihilates A,

A⊥ := {v ∈ N | a · v = 0 ∀a ∈ A} .
and thus Y ◦

A is homeomorphic to TN/TA⊥ (≃ N/A⊥). When A ⊂ MZ, the ideal of YA is
spanned by binomials determined by A [40, Lem. 4.1]. This remains true when A ⊂ M .
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Proposition 2.2. The irrational affine toric variety YA is the set of points z ∈ RA
≥ that satisfy

all binomial equations of the form

(3)
∏

a∈A
zλa

a =
∏

a∈A
zµa

a ,

where λ, µ ∈ RA
≥ satisfy

∑

a∈A λaa =
∑

a∈A µaa.

This is stated without proof as Equation (8) after Theorem 2.2 in [35]. If A lies on an affine
hyperplane in M , this was shown in [8, Prop. B.3] and that proof is easily modified for the
general case, see [33, Prop. 5.4] for details.

For each face F ⊂ A, there is an inclusion RF
≥ ⊂ RA

≥, where RF
≥ is the set of z ∈ RA

≥ whose

coordinates za are zero for a 6∈ F . Then Y ◦
F ⊂ RF

≥ is the image of TN under the map ϕF ,
which is also the composition of ϕA with the projection to the coordinate orthant RF

≥. The
proof of Proposition 2.2 shows that Y ◦

F ⊂ YA and also that

(4) YA =
⊔

Y ◦
F ,

the (disjoint) union over faces F of A. This is also the decomposition of YA into orbits of TN ,
where the orbit Y ◦

F is in bijection with TN/TF⊥ ≃ N/F⊥.
The affine toric variety YA is a subset of the nonnegative orthant RA

≥. The tautological map

πA parameterizing cone(A) has domain RA
≥:

πA : RA
≥ ∋ λ = (λa | a ∈ A) 7−→

∑

a∈A
λaa ∈ cone(A) .

Consequently, πA(YA) ⊂ cone(A). By Birch’s Theorem [5], this map is a homeomorphism
between YA and cone(A).

Proposition 2.3 (Birch). The restriction of the tautological map πA : RA
≥ → cone(A) to the

irrational affine toric variety YA is a homeomorphism,

πA : YA
∼−−→ cone(A) .

If A lies on an affine hyperplane in M , this was shown in [32, Thm. 1.10], and its proof
can be modified for the general case, see [33] for details. For another, independent proof,
see [24, Thm. 26]. By (4), each orbit Y ◦

F is mapped homeomorphically to the relative interior
of cone(F).

The results together show that YA is a TN -equivariant cell complex, with one cell for each
face F of cone(A), were the TN -action realizes that cell as TN/TF⊥ (≃ N/F⊥).

3. Irrational Toric Varieties From Fans

While irrational affine toric varieties were developed before, the construction we give here
of irrational toric varieties from irrational fans is novel. We construct a TN -equivariant cell
complex YΣ associated to a fan Σ ⊂ N , which we call an irrational toric variety. This follows
the construction of the nonnegative part XΣ(R≥) of a toric variety at the end of Section 1, and
it yields this nonnegative part when Σ is a rational fan. For each cone σ of Σ, we construct
a topological space Vσ with a TN -action that is equivariantly homeomorphic to an irrational
affine toric variety YA, but not canonically. Given a face τ ⊂ σ, there is a natural equivariant
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inclusion Vτ →֒ Vσ. The irrational toric variety YΣ is constructed by gluing the irrational
affine toric varieties Vσ for σ a cone in Σ along common subvarieties corresponding to smaller
cones in Σ.

3.1. Irrational affine toric varieties from cones. Let C ⊂ M be a polyhedral cone. Define
Homc(C,R≥) to be the set of all monoid homomorphisms ϕ : C → R≥ that are continuous on
the relative interior of each face of C. We endow this with the weakest topology such that every
evaluation at a point of C is continuous. That is, a sequence {ϕn | n ∈ N} ⊂ Homc(C,R≥)
converges to ϕ ∈ Homc(C,R≥) if and only if, for every u ∈ C, the sequence {ϕn(u) | n ∈ N}
of real numbers converges to ϕ(u).

Example 3.1. Suppose that M = R and C = [0,∞). Let ϕ ∈ Homc(C,R≥). Because ϕ is a
monoid homomorphism, ϕ(0) = 1. Set α := ϕ(1) ≥ 0. As ϕ is a monoid homomorphism, for
every n ∈ N with n ≥ 1, we have ϕ(n) = αn. For n ∈ N, we have ϕ(1/n) = α1/n, as

α = ϕ(1) = ϕ(n · 1
n
) = (ϕ(1/n))n .

Similarly, if r ∈ Q is positive, then ϕ(r) = αr. By the continuity of ϕ on the interior (0,∞)
of C, ϕ(s) = αs for s > 0. Here, if α = 0, then αs = 0 and if α > 0, then αs = exp(s logα).
If we further set α0 := 1 for any α ≥ 0 (that is, 00 = 1), then ϕ(s) = αs for s ≥ 0.

For α ∈ [0,∞) write ϕα for the monoid homomorphism such that ϕα(s) = αs. Figure 1
shows the graphs of ϕα for several values of α. For s > 0, we have limα→0 ϕα(s) = 0 while

1

1

α

C

R≥

Figure 1. Graphs of ϕα : [0,∞) → R≥ for several values of α ∈ [0,∞).

ϕα(0) = 1 for all α, so that limα→0 ϕα = ϕ0. Thus the evaluation map ϕ 7→ ϕ(1) induces a
homeomorphism between Homc(C,R≥) and [0,∞). Restricting a map ϕ ∈ Homc(C,R≥) to
N ⊂ C gives a homeomorphism between Homc(C,R≥) and Hommon(N,R≥). ⋄
Lemma 3.2. Let C ⊂ M be a polyhedral cone. For any ϕ ∈ Homc(C,R≥), the set {u ∈ C |
ϕ(u) > 0} is a face of C.

We will call this face the support of ϕ and write supp(ϕ) for this face.

Proof. As in Example 3.1, if s ∈ R≥ and u ∈ C, then ϕ(su) = (ϕ(u))s. Suppose that u lies in
the relative interior τ ◦ of a face τ of σ and ϕ(u) = 0. Then ϕ(su) = 0 for s > 0. For w ∈ τ ◦,
there is an s > 0 with w − su ∈ τ ◦, and so ϕ(w) = ϕ(w − su)ϕ(su) = 0.

Let S := {u ∈ C | ϕ(u) > 0}, which is closed under sum and multiplication by R≥, so it is
a convex cone. If S meets the relative interior τ ◦ of a face τ of C, then it contains τ ◦, by the
previous arguments. In fact, τ ⊂ S. Indeed, if u ∈ τ and w ∈ τ ◦, then w + u ∈ τ ◦ so that

0 6= ϕ(w + u) = ϕ(w)ϕ(u) ,
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so that ϕ(u) 6= 0 and thus u ∈ S. A convex union of faces of a polyhedral cone is a face of
that cone, which completes the proof. ¤

Example 3.3. If L is a linear subspace of M , then for any ϕ ∈ Homc(L,R≥) and x ∈ L, we
have that ϕ(x) > 0. Indeed, −x ∈ L so 1 = ϕ(0) = ϕ(x+ (−x)) = ϕ(x)ϕ(−x). In particular,
Homc(L,R≥) = Homc(L,R>), which is homeomorphic to TL∨ = TN/TL⊥ ≃ N/L⊥. ⋄

Applying Homc(−,R>) to the map C → M ⊕ C given by u 7→ (u, u) induces a map

(5) µ : Homc(M,R>) × Homc(C,R≥) 7−→ Homc(C,R≥) ,

written µ(t, ϕ) = t.ϕ, which is the map defined at u ∈ C by t.ϕ(u) = t(u)ϕ(u) = tuϕ(u). This
gives a continuous action of TN = Homc(M,R>) on Homc(C,R≥).

Lemma 3.4. Let A ⊂ M be finite and set C := cone(A). Then the map fA : Homc(C,R≥) 7→
RA

≥ given by

fA : ϕ 7−→ (ϕ(a) | a ∈ A) ,

is a TN -equivariant homeomorphism between Homc(C,R≥) and the irrational affine toric va-

riety YA. In particular, Homc(C,R≥) is homeomorphic to C under the map ϕ 7→ ∑

a∈A ϕ(a)a.

Observe that this homeomorphism depends on the choice of a generating set A for C.

Proof. Let ϕ ∈ Homc(C,R≥) and suppose that u ∈ C has two representations as a nonnegative
combination of elements of A, u =

∑

a λaa =
∑

a µaa for λ, µ ∈ RA
≥. Since

(6) ϕ(u) = ϕ
(

∑

λaa
)

=
∏

a∈A
(ϕ(a))λa ,

fA(ϕ) satisfies the equations (3), and therefore fA(ϕ) lies in YA, by Proposition 2.2.
Conversely, let z ∈ YA. Then by (6) and the equations (3) for YA, the function ϕz : A → R≥

defined by ϕz(a) = za extends to a monoid homomorphism C = coneA → R≥. By the
decomposition (4), there is a face F of A such that z ∈ Y ◦

F . Then ϕz is continuous and
nonvanishing on F := cone(F). We show that ϕz is identically zero on CrF , and thus it lies
in Homc(C,R≥).

Note that if b ∈ ArF , then zb = 0 and thus ϕz(b) = 0. If u ∈ CrF , then in any expression
u =

∑

a∈A λaa with λa ≥ 0, there is some b ∈ ArF with λb > 0. Thus

ϕz(u) =
(

ϕz(b)
)λb ϕz

(

∑

a∈Ar{b}
λaa

)

= 0 .

The maps ϕ 7→ fA(ϕ) and z 7→ ϕz are inverse bijections which are continuous and therefore
homeomorphisms. The given formulas show that they are TN -equivariant. The identification
between Homc(C,R≥) and C now follows by Birch’s Theorem (Proposition 2.3). ¤

Example 3.5. Let C := cone{a, b}, where a = (−
√
2, 1) and b = (1, 0). Elements of C have

unique expressions as nonnegative combinations of a and b, so that a map ϕ ∈ Homc(C,R≥)
is determined by its values ϕ(a) and ϕ(b), which may be any two nonnegative numbers. Thus
the map ψ : ϕ 7→ ϕ(a)a+ ϕ(b)b is a homeomorphism between Homc(C,R≥) and C.
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Adding a generator c = (1, 1) of C, if ϕ ∈ Homc(C,R≥), then ϕ(c) = ϕ(a)ϕ(b)1+
√
2, as

we have c = a + (1+
√
2)b. By Lemma 3.4, ϕ 7→ (ϕ(a), ϕ(b), ϕ(c)) is a homeomorphism

Homc(C,R≥)
∼−→ Y{a,b,c}. Composing with the tautological map π{a,b,c} gives

ϕ 7−→ ϕ(a)a+ ϕ(b)b+ ϕ(c)c = ϕ(a)a+ ϕ(b)b+ ϕ(a)ϕ(b)1+
√
2c ,

which is a homeomorphism between Homc(C,R≥) and C that is different from ψ. This

a

b

c

0

C = cone{a, b, c}

a
b

c Y{a,b,c}

Figure 2. Cone and irrational affine toric variety from Example 3.5.

illustrates that the homeomorphism depends upon the choice of generators. Figure 2 shows
the cone C and the irrational affine toric variety Y{a,b,c}. ⋄

In Lemma 3.2 and in the proof of Lemma 3.4, faces F of the cone C correspond to
monoid homomorphisms ϕ that vanish on CrF and are nonzero on F . For a face F of
C, let 〈F 〉 be its linear span. Recall that Homc(〈F 〉,R≥) = Homc(〈F 〉,R>), which is a
single TN -orbit isomorphic to TN/TF⊥ , where F⊥ ⊂ N is the annihilator of F . Write
εF ∈ Homc(〈F 〉,R>) for the constant homomorphism, εF (u) = 1 for all u ∈ 〈F 〉. Then
Homc(〈F 〉,R>) = TN .εF . Restriction to F followed by extension by 0 to the rest of C gives a
TN -equivariant map Homc(〈F 〉,R>) → Homc(C,R≥) which sends the constant map εF to the
element of Homc(C,R≥) (still written εF ) whose value at u ∈ C is

εF (u) =

{

1 u ∈ F
0 u ∈ C r F

.

Set OF := TN .εF ⊂ Homc(C,R≥), the orbit through εF , which is the image of Homc(〈F 〉,R>).

Corollary 3.6. For any face F of C, OF consists of those homomorphisms in Homc(C,R≥)
that vanish on CrF and are nonzero on F . The map Homc(〈F 〉,R>) → Homc(C,R≥) is an

inclusion with image OF , and we have the orbit decomposition

(7) Homc(C,R≥) =
⊔

F a face of C

OF .

Proof. By definition of the map Homc(〈F 〉,R>) → Homc(C,R≥), its image consists of ho-
momorphisms that vanish on CrF and are nonzero on F . Suppose that ϕ ∈ Homc(C,R≥)
vanishes on CrF and is nonzero on F . If we restrict ϕ to F , it is a monoid homomorphism
from F to the group R> and therefore has a unique extension to 〈F 〉. Thus ϕ lies in the
image of the map Homc(〈F 〉,R>) → Homc(C,R≥), proving the first assertion. The map is an
injection, as an element of Homc(〈F 〉,R>) is determined by its restriction to F .
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Finally, the decomposition (7) follows from (4) and Lemma 3.4. ¤

Let v be an element of C∨ ⊂ N that exposes the face F of C, that is, v⊥ ∩ C = F and for
u ∈ CrF , u · v > 0. Recall the multiplicative homomorphism γv for v ∈ N defined in (2)
and the resulting identification of TN with Homc(M,R>). For s ∈ R, we have the element
γsv ∈ TN whose value at u ∈ M is γsv(u) = exp(−su · v). The map R → TN defined by
s 7→ γsv is a one-parameter subgroup of TN . Recall that εC is the constant map on C, taking
the value 1 at every point u ∈ C.

Lemma 3.7. With these definitions, we have

(1) εF = lims→∞ γsv.εC.
(2) If F is a face of E and both are faces of C, then εF = lims→∞ γsv.εE.

Proof. If γsv.εC has a limit as s → ∞ in Homc(C,R≥), then its value at u ∈ C is

lim
s→∞

(γsv.εC)(u) = lim
s→∞

γsv(u)εC(u) = lim
s→∞

exp(−s u · v) =

{

0 u 6∈ F
1 u ∈ F

,

which is εF . (We are using that εC(u) = 1.) The last equality is because as v ∈ C∨, u · v is
nonnegative and the limit equals zero when u · v 6= 0 and it equals 1 when u · v = 0. This
proves (1). Nearly the same argument proves (2). ¤

By Lemma 3.7(1), εF ∈ OC . As OF = TN .εF , we deduce the following.

Corollary 3.8. If F ⊂ E are faces of the cone C, then OF ⊂ OE. In particular, OC is dense

in Homc(C,R≥), and if E is a face of C, then

OE =
⊔

F a face of E

OF .

3.2. Irrational toric varieties from fans. Let Σ ⊂ N be a fan. For a cone σ ∈ Σ, define
Vσ := Homc(σ

∨,R≥), the irrational affine toric variety as in § 3.1 associated to the dual cone
σ∨ of σ. Suppose that τ is a face of σ. Then the inclusion σ∨ ⊂ τ∨ induces a map Vτ → Vσ

by restricting a monoid homomorphism on τ∨ to σ∨.

Lemma 3.9. The map Vτ → Vσ is a TN -equivariant inclusion.

Proof. By the definition (5) of the TN -action on Homc(σ
∨,R≥), the restriction map is equi-

variant. It is injective because a monoid homomorphism ϕ ∈ Homc(τ
∨,R≥) is determined by

its restriction to σ∨. Indeed, let ϕ ∈ Homc(τ
∨,R≥) and w ∈ τ∨. By Proposition 1.1, there

are u, ℓ ∈ σ∨ with ℓ ∈ τ⊥ such that w = u− ℓ. Since τ⊥ ⊂ τ∨ is a linear space, ϕ(ℓ) 6= 0 and
ϕ(w) = ϕ(u)ϕ(ℓ)−1. ¤

Example 3.10. Let σ = cone{(1,
√
2), (0, 1)} ⊂ R2, and let τ be its face generated by (0, 1).

Then σ∨ is the cone C of Example 3.5 and τ∨ = {(x, y) ∈ R2 | y ≥ 0} = R × R≥. The

points a = (−
√
2, 1), b = (1, 0), and c = (1, 1) lie in both dual cones σ∨ and τ∨, and τ∨ has

an additional generator d := (−1, 0). Figure 3 displays the cones σ and τ , their duals, and
the associated irrational affine toric varieties Y{a,b,c} ≃ Vσ and Y{a,b,d} ≃ Vτ . The inclusion

Vτ →֒ Vσ is induced by projecting Y{a,b,d} to the quadrant R
{a,b}
≥ and then applying the inverse

of the projection from Y{a,b,c}. The image of Y{a,b,d} in Y{a,b,c} only omits the a-axis. ⋄
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τ
σ

0

a
σ∨

c

b

σ⊥ = 0
a

c

b
Y{a,b,c}

τ

0

a
τ∨

d b

c

τ⊥

0
a

d

b

Y{a,b,d}

Figure 3. Cones, their duals, and associated irrational affine toric varieties
from Example 3.10.

The irrational toric variety YΣ associated to a fan Σ ⊂ N is

(8) YΣ :=
⋃

σ∈Σ
Vσ =

⋃

σ∈Σ
Homc(σ

∨,R≥) ,

the union of the irrational affine toric varieties Vσ for σ ∈ Σ glued together along the inclusions
Vτ →֒ Vσ for τ a face of σ. For each cone σ ∈ Σ, let xσ ∈ Vσ be the distinguished point εσ⊥ ,
where σ⊥ ⊂ σ∨ is its lineality space. We also let Uσ be the TN -orbit through xσ, so that
Uσ = Oσ⊥ , in the notation of Subsection 3.1. Note also that Uσ ≃ N/〈σ〉.
Theorem 3.11. For any fan Σ ⊂ N , the irrational toric variety YΣ is a TN -equivariant cell

complex. Each cell is an orbit and corresponds to a unique cone σ ∈ Σ. The cell corresponding
to the cone σ is Uσ ≃ N/〈σ〉 and τ ⊂ σ if and only if Uσ ⊂ Uτ , so that the cell structure of

YΣ and its poset of containment-in-closure is dual to that of the fan Σ.

Proof. For each cone σ ∈ Σ, the set Vσ is a TN -equivariant cell complex whose cells are TN -
orbits that correspond to the faces τ of σ where the orbit Uτ corresponding to τ is identified
with N/〈τ〉. By Corollary 3.8, the cell Uσ lies in the closure of any cell Uτ for τ ⊂ σ. Because
YΣ is obtained by identifying the sets Vσ along common open subsets, these same facts hold
for YΣ. The last statement is a consequence of the previous statements. ¤

Corollary 3.12. The collection {Vσ | σ ∈ Σ} of irrational affine toric varieties forms a

TN -equivariant open cover of YΣ by irrational affine toric varieties.

Proof. Since YΣ is the union of the irrational affine toric varieties Vσ, which are TN -equivariant
as is the gluing, we only need to show that each Vσ is open in YΣ. By Theorem 3.11,

YΣ r Vσ =
⋃

τ 6⊂σ

Uτ =
⋃

τ 6⊂σ

Uτ ,

as τ ⊂ ρ with τ 6⊂ σ implies that ρ 6⊂ σ. Thus YΣ r Vσ is closed. ¤
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For a fan Σ ⊂ N and a cone σ ∈ Σ, the star of σ in Σ is the fan in N

star(σ) := {〈σ〉+ τ | τ ∈ Σ and σ is a face of τ} .
By Theorem 3.11, an orbit Uτ lies in the closure of an orbit Uσ if and only if σ is a face of τ .
The following corollary is a consequence of these facts and the definition of star.

Corollary 3.13. For any cone σ ∈ Σ, the closure of the orbit Uσ is the toric variety Ystar(σ).

Lastly, if Σ is rational, then YΣ is the nonnegative part of the classical toric variety XΣ.

Theorem 3.14. If Σ ⊂ N is a rational fan, then YΣ = XΣ(R≥).

Proof. Because both YΣ and XΣ(R≥) are constructed by the same gluing procedure from the
sets Vσ = Homc(σ

∨,R≥) and Hommon(Sσ,R≥) for the cones σ ∈ Σ, it suffices to show that
these two sets are equal. (Recall that Sσ = σ∨ ∩MZ.) Let σ ⊂ M be a rational cone. Then
σ∨ is generated as a cone by the monoid Sσ, so that restricting a map from σ∨ to Sσ is an
injection Vσ →֒ Hommon(Sσ,R≥). Let A ⊂ Sσ be a generating set for σ∨. The map fA of
Lemma 3.4 maps both Vσ and Hommon(Sσ,R≥) to YA, with both maps isomorphisms. Thus
the restriction map identifies Vσ with Hommon(Sσ,R≥), which completes the proof. ¤

3.3. Maps of fans. Let Σ ⊂ N and Σ′ ⊂ N ′ be fans in possibly different vector spaces N
and N ′. Let YΣ and YΣ′ be the associated irrational toric varieties. A map ψ : YΣ → YΣ′ of
irrational toric varieties is a continuous map ψ : YΣ → YΣ′ together with a homomorphism
Ψ: TN → TN ′ of topological groups such that the following diagram commutes.

(9)

TN × YΣ
✲µ

YΣ

Ψ× ψ

❄ ❄

ψ

TN ′ × YΣ′
✲µ

YΣ′

(The horizontal maps µ are the action, µ(t, y) = t.y.) A map of fans, Ψ: Σ → Σ′, is a linear
map Ψ: N → N ′ such that for each cone σ ∈ Σ, there is a cone σ′ ∈ Σ′ with Ψ(σ) ⊂ σ′.

Theorem 3.15. The association Σ 7→ YΣ is functorial for maps of fans. That is, if Ψ: Σ →
Σ′ is a map of fans with Σ ⊂ N and Σ′ ⊂ N ′, then there is a continuous map ψ : YΣ → YΣ′

such that the diagram (9) commutes, where the homomorphism Ψ: TN → TN ′ is induced by

the linear map Ψ: N → N ′.

Proof. Let Ψ: Σ → Σ′ be a map of fans, where Σ ⊂ N and Σ′ ⊂ N ′ are fans. The linear map
Ψ: N → N ′ induces a homomorphism Ψ: TN → TN ′ of topological groups. We construct a
map ψ : YΣ → YΣ′ so that the diagram (9) commutes, by defining ψ on each irrational affine
toric variety Vσ for σ a cone of Σ.

Let σ ∈ Σ be a cone. Since ψ : Σ → Σ′ is a map of fans, there is a cone σ′ ∈ Σ with
Ψ(σ) ⊂ σ′. Let Ψ∗ : M ′ → M be the map adjoint to Ψ, where M and M ′ are the vector
spaces dual to N and N ′ respectively. As Ψ(σ) ⊂ σ′, we have Ψ∗((σ′)∨) ⊂ σ∨. Since these
are polyhedral cones and Ψ∗ is linear, for any face F of σ∨, its inverse image F ′ in (σ′)∨ is a
face, and the same is true for the complement σ∨rF of a face F of σ∨.
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For ϕ ∈ Vσ = Homc(σ
∨,R≥), the composition ψ(ϕ) := ϕ ◦ Ψ∗ is a monoid homomorphism

(σ′)∨ → R≥. By the previous remark, the inverse image of the support supp(ϕ) of ϕ is the
support of ψ(ϕ), and ψ(ϕ) is continuous on its support.

Thus ψ maps Vσ to Vσ′ . This map is continuous as the topology is defined by point
evaluation. It is also equivariant in the sense of (9). Noting that it is compatible with the
gluing (8) completes the proof. ¤

4. Global Properties of Irrational Toric Varieties

We show that an irrational toric variety forms a monoid, that the fan Σ is determined
from limits in YΣ and thus that YΣ is a compact topological space if and only if the fan Σ is
complete. We also show that if Σ is the normal fan to a polytope, then YΣ has an equivariant
embedding into a simplex and is homeomorphic to that polytope.

4.1. Irrational toric varieties as monoids. A topological monoid is a monoid that is a
topological space whose operation •, called product, is continuous. The affine irrational toric
varieties YA and Homc(C,R≥) are topological monoids whose structures are compatible with
the isomorphism of Lemma 3.4. These monoids contain a dense torus which acts on them
with finitely many orbits, and are thus irrational analogs of linear algebraic monoids [37, 38].
If we adjoin an absorbing element 0 to an irrational toric variety YΣ, we obtain a commutative
topological monoid such that the inclusion of the irrational affine toric variety Vσ is a monoid
map, for each cone σ of the fan Σ.

Let C ⊂ M be a polyhedral cone. For x, y ∈ Homc(C,R≥), define x • y : C → R≥ by
(x • y)(u) = x(u)y(u), for u ∈ C. Let Φ(C) be the set of faces of C. For faces F,G ∈ Φ(C),
define F •G := F ∩G. Note that x 7→ supp(x) is map Homc(C,R≥) → Φ(C).

Proposition 4.1. Homc(C,R≥) is a topological monoid, Φ(C) is a monoid, and x 7→ supp(x)
is a homomorphism of monoids. The identity of Homc(C,R≥) is the constant map εC and if

the lineality space L of C is the origin, then Homc(C,R≥) has an absorbing element ε0. The

identity of Φ(C) is C itself, and L is its absorbing element.

For any u ∈ C, the evaluation map x 7→ x(u) is a homomorphism of topological monoids

Homc(C,R≥) → R≥. For any linear map f : M ′ → M and cone C ′ ⊂ M ′ with f(C ′) ⊂ C, the

pullback map f ∗ : Homc(C,R≥) → Homc(C
′,R≥) is a homomorphism of topological monoids.

Proof. Let x, y ∈ Homc(C,R≥). As x and y are monoid homomorphisms, x • y is a monoid
homomorphism. Also as supp(x • y) = supp(x) ∩ supp(y) is a face of C and elements of
Homc(C,R≥) are monoid homomorphisms that are continuous on their support, we conclude
that x • y ∈ Homc(C,R≥). This product is commutative. As it is defined pointwise, it is
continuous, and so Homc(C,R≥) is a commutative topological monoid. The other assertions
are straightforward. ¤

Let A ⊂ M be finite. The orthant RA
≥ is a monoid under the Hadamard product; for x, y ∈

RA
≥ and a ∈ A, set (x • y)a := xaya. Then the injective map fA : Homc(cone(A),R≥) → RA

≥
of Lemma 3.4 is a homomorphism of topological monoids whose image is YA.

Let Σ ⊂ N be a fan. For a cone σ ∈ Σ, the irrational affine toric variety Vσ is a monoid
under pointwise multiplication and when τ ⊂ σ is a face, the inclusion Vτ ⊂ Vσ is a monoid
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homomorphism. We define a product • on Y +
Σ := YΣ ⊔ {0}, where 0 is an isolated point that

acts as an absorbing element. Let x, y ∈ Y +
Σ ,

(1) If either x or y is 0, then x • y = 0.
(2) If there is a cone σ ∈ Σ with x, y ∈ Vσ, then x • y is their product in Vσ.
(3) If there is no cone σ ∈ Σ with x, y ∈ Vσ, then x • y = 0. (This includes case (1).)

Intersection of cones defines a monoid structure on Σ. More interesting is the product on
Σ+ := Σ ⊔ {0}, where 0 is a new point that acts as an absorbing element, in which σ • τ is
defined to be the smallest cone containing both σ and τ if such a cone exists, and 0 otherwise.

Theorem 4.2. For a fan Σ ⊂ N , Y +
Σ is a commutative topological monoid with the inclusion

Vσ →֒ YΣ ⊂ Y +
Σ a homomorphism of topological monoids, for every σ ∈ Σ. For a map Ψ: Σ →

Σ′ of fans the functorial map ψ : Y +
Σ → Y +

Σ′ of irrational toric varieties is a homomorphism of

topological monoids. Finally, the map Y +
Σ → Σ+ that sends an element x to the cone σ ∈ Σ

where x ∈ Uσ or to 0 when x = 0 is a homomorphism of monoids.

This may be proven using arguments similar to those of Proposition 4.1, which we omit.

4.2. Recovering the fan. Before establishing our results on compact and projective irra-
tional toric varieties, we study certain limits in an irrational toric variety YΣ and show that
the fan Σ may be recovered from these limits.

Let Σ ⊂ N be a fan. Let ε be the distinguished point in the dense orbit of TN on YΣ. In
every affine patch Vσ for σ ∈ Σ, this restricts to the constant homomorphism. If L is the
minimal cone of Σ (its lineality space), then ε = xL; our notation avoids L. We study limits
of ε in YΣ under one-parameter subgroups γsv of TN , giving a global version of Lemma 3.7.

Lemma 4.3. Let v ∈ N . Then the family of translates γsv.ε for s ∈ R has a limit in YΣ as

s → ∞ if and only if there is a cone σ ∈ Σ with v ∈ σ. When this limit exists, it equals xτ ,

where τ is the minimal cone of Σ that contains v, so that v ∈ τ ◦.

Proof. For u ∈ M and s ∈ R, we have (γsv.ε)(u) = exp(−su · v), as ε(u) = 1. Thus

(10) lim
s→∞

(γsv.ε)(u) =







0 if u · v > 0
1 if u · v = 0

∞ if u · v < 0
.

If there is a cone σ ∈ Σ with v ∈ σ, then by (10) (γsv.ε)(u) has a limit as s → ∞ for all
u ∈ σ∨, and so the family γsv.ε has a limit as s → ∞ in the affine toric variety Vσ. (This is
Lemma 3.7.) Conversely, if γsv.ε has a limit in YΣ as s → ∞, then there is an affine irrational
toric variety Vσ for some σ ∈ Σ in which it has a limit. Then for all u ∈ σ∨, the family of real
numbers (γsv.ε)(u) has a limit, which implies that v ∈ σ.

The assertion identifying the limit is a consequence of the definition of xτ and of (10). ¤

Let Σ ⊂ N be a fan. Let |Σ| ⊂ N be the set of v ∈ N such that γsv.ε has a limit in YΣ as
s → ∞. We define an equivalence relation on |Σ|. For v, w ∈ |Σ| we declare

v ∼ w if and only if lim
s→∞

γsv.ε = lim
s→∞

γsw.ε .

By Lemma 4.3, the set |Σ| is the support of the fan Σ and the equivalence classes are the
relative interiors of cones of Σ. In fact, a cone σ ∈ Σ is the closure of the set of u ∈ |Σ| such
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that lims→∞ γsv.ε = xσ. Since these limits commute with the action of the torus TN , we may
replace ε in the definition of ∼ by any point y in the dense orbit of YΣ. Similarly, we may
identify the cone σ as the closure of the set of u ∈ |Σ| such that for any y in the dense orbit
of YΣ, lims→∞ γsv.y ∈ Uσ. We summarize this discussion.

Corollary 4.4. The fan Σ ⊂ N may be recovered from the irrational toric variety YΣ using

limits under translation by one-parameter subgroups γsv of elements y in the dense orbit.

4.3. Compact irrational toric varieties. A classical toric variety XΣ is a proper scheme
over specZ if and only if the rational fan Σ is complete (every point of N lies in some cone
of Σ, so that N = |Σ|). The analogous result holds for an irrational toric variety YΣ.

Theorem 4.5. Let Σ ⊂ N be a fan. The irrational toric variety YΣ is a compact topological

space if and only if the fan Σ is complete.

Proof. Suppose that YΣ is compact. Recall the definitions and notation preceding Lemma 4.3.
As YΣ is compact, for every v ∈ N , the family γsv.ε has a limit in YΣ as s → ∞. By Lemma 4.3,
there is some cone σ of Σ with v ∈ σ, which implies that Σ is a complete fan.

Suppose now that the fan Σ is complete. We prove that YΣ is compact by showing that
every sequence {yn | n ∈ N} ⊂ YΣ has a subsequence that converges in YΣ. To that end,
we will replace {yn | n ∈ N} by a subsequence with desirable properties several times. By
Theorem 3.11, YΣ is a disjoint union of finitely many orbits of Rn

>, one orbit Uσ for each cone
σ of Σ. Thus there is some orbit Uσ whose intersection with {yn | n ∈ N} is infinite. Replacing
{yn | n ∈ N} by a subsequence, we may assume that {yn | n ∈ N} ⊂ Uσ. By Corollary 3.13,
Uσ = Ystar(σ). By its construction, if Σ is complete, then star(σ) is also complete. Replacing
YΣ by Ystar(σ), we may assume that {yn | n ∈ N} lies in the dense orbit of YΣ.

The dense orbit of YΣ is parameterized by N under the map v 7→ γv.ε. For each n ∈ N,
choose a point vn ∈ N such that yn = γvn .ε. This gives a sequence {vn | n ∈ N} ⊂ N . Since Σ
is complete, N is the finite disjoint union of the relative interiors σ◦ of cones σ of Σ. There is
some cone σ such that σ◦∩{vn | n ∈ N} is infinite. Replacing {vn | n ∈ N} by its intersection
with σ◦, we may assume that {vn | n ∈ N} ⊂ σ◦.

For a face τ of σ, we say that {vn | n ∈ N} is τ -bounded if its image in the quotient N/〈τ〉
has a bounded subsequence. By [35, Lem. 1.3], the set of faces τ of σ for which {vn | n ∈ N}
is τ -bounded forms an order ideal. Let τ be a minimal face of σ for which {vn | n ∈ N} is
τ -bounded. Replace {vn | n ∈ N} by a subsequence whose image in N/〈τ〉 is bounded. As
in [35, Ex. 4.1], there is a bounded set B ⊂ σ ⊂ N such that {vn | n ∈ N} ⊂ B + τ , and
thus there are sequences {bn | n ∈ N} ⊂ B and {cn | n ∈ N} ⊂ τ with vn = bn + cn. Since
{bn | n ∈ N} is bounded, we may further pass to a convergent subsequence with limit b ∈ σ.

Replacing all sequences by their corresponding subsequences, we claim that in Vτ ,

(11) lim
n→∞

yn = γb.xτ ∈ Uτ ,

which will complete the proof.
Consider the sequence {yn | n ∈ N} as a subset of Vτ = Homc(τ

∨,R≥). For u ∈ τ∨, the
proof of Lemma 4.3 shows that yn(u) = exp(−u · vn), as yn = γvn .ε. Since vn = bn + cn,

yn(u) = exp(−u · vn) = exp(−u · bn) · exp(−u · cn) .
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If u ∈ τ⊥, then u · cn = 0, so that

lim
n→∞

yn(u) = lim
n→∞

exp(−u · bn) = exp(−u · b) .

If u ∈ τ∨rτ⊥, then u exposes a proper face of τ , and the minimality of τ implies that u · vn
has no bounded subsequence. But then u · cn has no bounded subsequence. Since u · cn ≥ 0,
we conclude that u · cn has limit +∞ as n → ∞. Thus

lim
n→∞

yn(u) = lim
n→∞

exp(−u · vn) = 0 .

These calculations together establish (11), and complete the proof. ¤

4.4. Projective irrational toric varieties. The analog of projective space for irrational
toric varieties is the standard simplex

(12) n :=
{

(u0, u1, . . . , un) ∈ Rn+1
≥ | ∑ui = 1

}

.

As any ray in the orthant Rn+1
≥ meets n in a unique point, we may identify n with the

set of rays. This implies that n = (Rn+1
≥ r{0})/R>, the quotient under multiplication by

positive scalars. As in § 2, it is convenient to write A ⊂ RA
≥, where A ⊂ M is finite.

Example 4.6. The simplex has the structure of an irrational toric variety associated to a
fan. For this, let [n] := {0, 1, . . . , n} and e0, . . . , en be the standard basis for R[n] ≃ Rn+1.
Letting f0, . . . , fn ∈ R[n] be the dual basis, the standard simplex [n] ⊂ R[n] is their convex
hull, conv{f0, . . . , fn}, which equals the standard simplex n (12). Define a complete fan
Σ[n] ⊂ R[n] with one cone σI for each proper subset I ( [n] defined by

σI := cone{ei | i ∈ I} + R1 ,

where 1 := e0 + · · ·+ en. Note that σ∅ = R1. We have the irrational toric variety YΣ[n]
.

The hyperplane {u ∈ R[n] | u · 1 = 0} contains all dual cones σ∨
I and is spanned by the

differences fi−fj for i, j ∈ [n]. Set VI := Homc(σ
∨
I ,R≥). For I ( [n], j 6∈ I, and ϕ ∈ VI , set

ψI(ϕ) = R≥
(

∑

i∈[n]
ϕ(fi−fj)fi

)

∩ [n] ,

the intersection of the ray through
∑

i ϕ(fi−fj)fi with the simplex [n]. This injective map

does not depend on the choice of j 6∈ I and defines a map ψI : VI → [n]. These maps ψI

are compatible with the gluing in that if y ∈ YΣ[n]
lies in two affine patches VI and VJ , then

ψI(y) = ψJ(y). Thus these maps induce a homeomorphism Ψ: YΣ[n]

∼−→ [n]. (This will be

explained in greater generality in the proof of Theorem 4.7.)

The quotient map R
[n]
≥ r{0} ։

[n] may be understood in terms of Theorem 3.15. Let

Σ′
[n] ⊂ R[n] be the fan consisting of the boundary of the nonnegative orthant. Its cones are

σ′
I := cone{ei | i ∈ I} ,

for all proper subsets I ( [n]. The irrational toric variety YΣ′

[n]
is Rn+1

≥ r{0}, as the orbit

consisting of the origin in Rn+1
≥ corresponds to the omitted full-dimensional cone. As σ′

I ⊂ σI ,
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these inclusions induce a map of fans Ψ: Σ′
[n] → Σ[n], and thus a functorial map of toric

varieties YΣ′

[n]
→ YΣ[n]

, which is the quotient map R
[n]
≥ r{0} ։

[n]. ⋄

Suppose that A ⊂ M lies on an affine hyperplane in that there is some v ∈ N and 0 6= r ∈ R
with a · v = r for all a ∈ A. Thus for t ∈ TN and s ∈ R, we have

ϕA(γsv.t) = (γsv(a)t
a | a ∈ A) = exp(−sr)ϕA(t) ,

as γsv(a) = exp(−sa · v) = exp(−sr) for a ∈ A and s ∈ R. Consequently, the affine irrational
toric variety YA ⊂ RA

≥ is a union of rays. Define the projective irrational toric variety ZA to be

the intersection YA∩ A, equivalently, the quotient (YAr{0})/R> under scalar multiplication.
This has an action of TN with a dense orbit, as the action of TN on RA

≥ through ϕA gives an

action on rays and hence on A, which restricts to an action on ZA.
The restriction of the tautological map πA : RA

≥ → cone(A) to the simplex A is the
canonical parametrization of the convex hull of A,

A ∋ u 7−→
∑

a

uaa ∈ conv(A) .

By Birch’s Theorem (Proposition 2.3), restricting to the projective toric variety ZA gives a

homeomorphism πA : ZA
∼−→ conv(A), called the algebraic moment map [39]. This isomor-

phism is also essentially proven by Krasauskas [24, Thm. 26].
A polytope P ⊂ M is a set that is the convex hull, P = conv(A), of a finite subset A ⊂ M .

For any v ∈ N , the subset F of P where the linear function u 7→ u · v is minimized is the
face exposed by v, and every face of P is exposed by some element of N . For example, the
polytope P is exposed by the zero vector.

For a face F of P , the set of v ∈ N that expose a face containing F forms a polyhedral
cone σF in N , whose relative interior consists of those v which expose F . The faces of σF are
cones σE for E a face of P containing F . The collection of these cones σF for the faces F of
P forms the (inner) normal fan to ∆, which is a complete fan. For example, the fan Σ[n] of

Example 4.6 is the normal fan of the standard simplex [n]. Figure 4 shows two views of a
polytope and its normal fan. The yellow ray in the normal fan exposes the yellow facet, the

Figure 4. Two views of a polytope and its normal fan.

green cone exposes the green edge, and the cyan cone exposes the cyan edge.

Theorem 4.7. Suppose that P ⊂ M is a polytope lying on an affine hyperplane with normal

fan Σ. For any A ⊂ P with conv(A) = P , there is an injective map of irrational toric
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varieties ΨA : YΣ → A whose image is the projective irrational toric variety ZA. The map

ΨA composed with the algebraic moment map πA is a homeomorphism YΣ
∼−→ P .

When Σ is a rational fan, this is a standard result about the nonnegative part of projective
toric varieties, polytopes with integer vertices, and the classical moment map.

Proof. LetA ⊂ P be a subset with conv(A) = P . For a face F of P , we have conv(F∩A) = F .
An intersection F := F ∩ A for a face F of P a face of A. Cones of the normal fan Σ to P
correspond to faces F of A. For a face F of A, the corresponding cone in Σ is

σF = {v ∈ N | f · v ≤ a · v for all f ∈ F and a ∈ A} .
The lineality space of Σ is spanned by those v ∈ N such that a · v = b · v for any a, b ∈ A.

For a subset B ⊂ A and any u ∈ M , we define B−u := {b−u | b ∈ B}. Duals of cones σF
lie in the subspace L of M spanned by the differences {b−a | a, b ∈ A}, equivalently by A−a
for any a ∈ A. For a face F of A, the cone dual to σF is

σ∨
F = cone(A−f) + R(F−f) ,

for any f ∈ F . Choosing another f ′ ∈ F translates the points A−f along the lineality space
R(F−f). Figure 5 shows an example of σ∨

F . The affine toric variety VF corresponding to a

σ∨
F

A−f

✄
✄✄✗
✓✓✼
✘✘✘✿

0F−f
R(F−f)✛

Figure 5. A dual cone σ∨
F .

face F of A is Homc(σ
∨
F ,R≥).

Let f ∈ F and consider the map

ψf : VF ∋ ϕ 7−→ (ϕ(a−f) | a ∈ A) ∈ RA
≥ .

Since for f, f ′ ∈ F , a ∈ A, and ϕ ∈ VF , we have ϕ(a−f) = ϕ(f ′−f)ϕ(a−f ′), it follows that
ψf (ϕ) = ϕ(f ′−f)ψf ′(ϕ). That is, the two points ψf (ϕ) and ψf ′(ϕ) lie along the same ray in
RA

≥. Consequently, the map VF → A defined by

(13) VF ∋ ϕ 7−→ (R≥ψf (ϕ)) ∩ A ∈ A ,

is independent of the choice of f ∈ F . Write ψF for the map (13), which is a continuous
injection from VF into A.

Suppose that F ,G are faces of A with F a face of G. Then VG ⊂ VF , and for ϕ ∈ VG, we
have ψF(ϕ) = ψG(ϕ), as both maps are computed using ψf for f ∈ F ⊂ G. Thus the maps
ψF for F a face of A are compatible with the gluing of the VF to form YΣ, and so they induce
a continuous map ΨA : YΣ → A. This is an injection because if F ,G are faces of A that
are not faces of each other, then the support of ϕ ∈ VF r VG contains F and is disjoint from
GrF . Consequently, ΨA is injective on the union VF ∪ VG.
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We claim that ΨA(YΣ) = ZA. Since both are complete, it suffices to show that both contain
the same dense subset. Let t = γv ∈ TN with v ∈ N . Since, for u ∈ M , tu = exp(−u · v), we
have ϕA(t) = (exp(−a · v) | a ∈ A). This lies on a ray in RA

≥ that meets A in the point

(14)
(

R≥ · (exp(−a · v) | a ∈ A)
)

∩ A ∈ ZA .

The corresponding point γv.ε of YΣ lies in VA = Homc(L,R>), where L = R(A−b) for any
b ∈ A. Its image ΨA(γv.ε) is

(

R≥ · (γv.ε(a−b) | a ∈ A)
)

∩ A =
(

R≥ · (exp(−a · v) | a ∈ A)
)

∩ A ,

as ε(a−b) = 1 and γv(a−b) = exp(−a·v) exp(b ·v), so that the two rays are equal. Comparing
this to (14) completes the proof. ¤

The restriction that A lie in an affine hyperplane of M may be removed by enlarging N
and M by adding a summand of R to each and placing A ⊂ M ⊕ R in the copy of M at
height 1. That is, as the set of points {(a, 1) | a ∈ A} ⊂ M ⊕ {1} ⊂ M ⊕ R.

5. Hausdorff Limits and the Secondary Polytope

We use the theory developed in the previous sections to establish our main result about
the moduli space of limits of translations of an irrational projective toric variety. The set
closed(X) of closed subsets of a compact metric space X is itself a compact metric space. The
Hausdorff distance between Y, Z ∈ closed(X) is

dH(Y, Z) := max{max
y∈Y

min
z∈Z

d(y, z) , max
z∈Z

min
y∈Y

d(y, z)} ,

where d(•, •) is the metric on X [31, p. 279].
Suppose that A ⊂ M lies on an affine hyperplane so that the irrational affine toric variety

YA ⊂ RA
≥ is a union of rays with associated irrational projective toric variety ZA = YA ∩ A.

The positive torus RA
> acts linearly on the orthant RA

≥ by scaling each coordinate,

w.x = w.(xa | a ∈ A) = (waxa | a ∈ A) ,

for w ∈ RA
> and x ∈ RA

≥. This induces an action of RA
> on rays, and hence on A.

For w ∈ RA
>, the translate w.ZA is a closed subset of A defined by binomials similar to

those defining YA of Proposition 2.2 (the actual binomials are described in [16, Prop. A2]).
The association w 7→ w.ZA gives a continuous map RA

> → closed( A). Let ∆A be the closure
of that image. This is a compact Hausdorff space equipped with a continuous action of RA

>,
and it consists of all Hausdorff limits of translates of ZA. The main result of [35] was a set-
theoretic identification of the points of ∆A. We extend that to construct a homeomorphism
between ∆A and the irrational toric variety associated to the secondary fan of A. This fan
is normal to the secondary polytope of A, so Theorem 4.7 identifies ∆A with the secondary
polytope. This extends the observation of [16] which adapted the results of [20, 21] to prove
this statement when A ⊂ MZ is integral.

We define the secondary fan and secondary polytope of A, which were introduced in [17]
(see also [11]). For λ ∈ RA, let Qλ ⊂ M ⊕ R be the convex hull of the lifted points

Qλ := conv{(a, λa) ∈ M ⊕ R | a ∈ A} .
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A lower face of Qλ is a face with an (inner) normal vector whose last coordinate is positive.
We define a system S(λ) of subsets of A. A subset F ⊂ A is an element of S(λ) if there is a
lower face F of Qλ such that

F = {a ∈ A | (a, λa) ∈ F} .
A system S of subsets is a regular subdivision of A if S = S(λ) for some λ ∈ RA. Elements
F of a regular subdivision S are its faces. Figure 6 shows four regular subdivisions of a
set {a, b, c, d, e} of points in the plane, including the lower faces of the lifted polytope Qλ.

a

b

c

d

e
a

b

c

d

e
a

b

c

d

e
a

b

c

d

e

Figure 6. Regular subdivisions of a point set.

We list the facets (maximal elements) of each subdivision. The first on the left has two
facets, {a, b, c, d} and {b, c, d, e}, as the lift of the point c is collinear with the lifts of b and
d. The point c is lifted above the lower hull in the second and does not participate in this
regular subdivision, whose facets are {a, b, d} and {b, d, e}. The third has four facets, {a, b, c},
{a, c, d}, {b, c, e}, and {c, d, e}. The fourth has one facet {a, b, d, e}, as their lifts are coplanar
and the point c is again lifted above the lower hull.

Two elements λ, µ ∈ RA are equivalent if they induce the same regular subdivision of A,
S(λ) = S(µ). An equivalence class is defined by finitely many linear equations and linear
inequalities, and so the closure of each equivalence class is a polyhedral cone. These cones fit
together to form the secondary fan Σ(A) of the point configuration A.

A face F ∈ S(λ) corresponds to a lower face F of the lifted polytope Qλ, with F =
conv{(f, λf ) | f ∈ F}. The projections of the lower faces of Qλ toM form a regular polyhedral
subdivision of conv(A) whose polytopes are conv(F) for F ∈ S(λ). A regular subdivision
S(λ) is a triangulation if for each face F ∈ S(λ), its convex hull is a simplex with vertices F .
Triangulations correspond to full-dimensional cones of Σ(A). The middle two subdivisions in
Figure 6 are triangulations.

The secondary fan Σ(A) is the normal fan of the secondary polytope P (A) of A. It lies in
RA and its vertices correspond to regular triangulations T of A. The ath coordinate of the
vertex corresponding to T is the sum of the volumes of the convex hulls of faces F ∈ T that
contain a. When a does not participate in T , the vertex has ath coordinate 0.

A subset F ⊂ A corresponds to a face F ⊂ A; it is the set of points x ∈ A with
xa = 0 for a 6∈ F . As in Section 2, the irrational toric variety ZF lies in this face F . For a
regular subdivision S of A, we define a complex Z(S) of irrational toric varieties to be

(15) Z(S) :=
⋃

F∈S
ZF .
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This is a complex in that if F ,F ′ ∈ S with ∅ 6= G = F ∩F ′, so that G is also a face of S, then

ZG = ZF ∩ ZF ′ .

An element w ∈ RA
> acts on the projective toric variety ZF as before, with w.ZF ⊂ F .

Only the coordinates wf of w for f ∈ F act on F . For a regular subdivision S of A and
w ∈ RA

>, we have the translated complex of irrational toric varieties,

Z(S,w) :=
⋃

F∈S
w.ZF .

We recall one of the main results of [35].

Proposition 5.1 ([35, Thm. 3.3]). The points of ∆A ⊂ closed( A) are exactly the translated

complexes of irrational toric varieties Z(S,w) for w ∈ RA
> and S a regular subdivision of A.

Recall that ε ∈ YΣ(A) is the distinguished point of its dense RA
>-orbit. We give our main

theorem.

Theorem 5.2. For w ∈ RA
>, the association ψ : w.ZA 7→ w.ε is a well-defined continuous map

from the set of translates of ZA to the dense orbit of YΣ(A) that extends to an RA
>-equivariant

homeomorphism ∆A
∼−→ YΣ(A). Composing it with an algebraic moment map YΣ(A) → P (A)

gives a homeomorphism between ∆A and the secondary polytope P (A).

Proof. We first extend ψ to an RA
>-equivariant bijection between ∆A and YΣ(A), which shows

that it is well-defined and that it is a homeomorphism on orbits of RA
>. To show that ψ is

a homeomorphism between ∆A and YΣ(A), we will use the proof of Theorem 4.5 and Section
4.1 of [35]. The last statement is Theorem 4.7, as Σ(A) is the normal fan to P (A).

For the toric variety YΣ(A), we have N = RA as this is the ambient space for the fan Σ(A).
Its dual space M is naturally identified also with RA under the usual Euclidean dot product.
For v ∈ N , the element γv ∈ TN is defined (2) for u ∈ M by γv(u) = exp(−u · v). This
identifies N = RA with RA

> where (va | a ∈ A) 7→ (e−va | a ∈ A).
Let σ be a cone of Σ(A) with corresponding regular subdivision Sσ. The orbit Uσ in

YΣ(A) has distinguished point xσ. Under the map RA ∼−→ RA
> given by v 7→ γv, the orbit

Uσ = RA
>.xσ is identified with RA/〈σ〉, so that the stabilizer of xσ is the linear span 〈σ〉 of σ.

This identification is as a topological space, and as a RA
> or RA-orbit.

The complex Z(Sσ) = Z(Sσ, 1) for the regular subdivision Sσ is a distinguished point of ∆A
corresponding to σ. By Lemma 2.4 of [35], the stabilizer of Z(Sσ, 1) in RA is also 〈σ〉. Again,
the orbit of Z(Sσ, 1) is identified with RA/〈σ〉, as a topological space. Thus the association
ψ : Z(Sσ, γv) 7→ γv.xσ is a well-defined map. This induces an RA

>-equivariant homeomorphism
between the orbits in both spaces, because when both orbits are identified with RA/〈σ〉, ψ
becomes the identity map. When the subdivision Sσ has a single facet A, so that σ is the
minimal cone of Σ(A), this is the map ψ in the statement of the theorem.

Write ψ : ∆A → YΣ(A) for the bijection which is given by

ψ : Z(Sσ, w) 7−→ w.xσ ,
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for w ∈ RA
> and σ a cone of Σ(A). We show that if {wn | n ∈ N} ⊂ RA

>, w ∈ RA
>, and

σ ∈ Σ(A) are such that

(16) lim
n→∞

wn.ZA = Z(Sσ, w)

in the space ∆A of Hausdorff limits, then

(17) lim
n→∞

wn.ε = w.xσ

in the irrational toric variety YΣ(A), and vice versa. As both ∆A and YΣ(A) are R
A
>-equivariant

closures of their dense orbits, this will complete the proof. A more granular proof could work
on pairs of corresponding orbits in the two spaces, arguing on each component ZF and using
the recursive structure of both sets and of regular subdivisions and refinements.

Our argument that ψ preserves limits of sequences follows from the proofs of Theorem 3.3
in [35] and Theorem 4.5 (which are essentially the same). These proofs show that the sequences
of translates wn.ZA and wn.ε have convergent subsequences. In each, we replace wn ∈ RA

> by
vn ∈ RA, where wn = γvn , and then replace {vn | n ∈ N} by any subsequence {vn | n ∈ N}∩σ,
where σ is a cone of Σ(A) that meets {vn | n ∈ N} in an infinite set. Finally, τ is a minimal
face of σ such that {vn | n ∈ N} is bounded in RA/〈τ〉, and then v ∈ RA satisfies

v + 〈τ〉 is an accumulation point of {vn + 〈τ〉 | n ∈ N} in RA/〈τ〉 .
Restricting to subsequences, we have limn→∞ wn.ε = v.xτ and limn→∞ wn.ZA = Z(Sτ , v).

We assumed that the original limits ((16) or (17)) exist without restricting to subsequences.
Thus, for every cone σ with σ ∩ {vn | n ∈ N} infinite, τ is the unique minimal face of σ such
that {vn | n ∈ N} is bounded in RA/〈τ〉, and then v is a point such that

lim
n→∞

vn + 〈τ〉 = v + 〈τ〉 .

This completes the proof, as both ψ and ψ−1 preserve limits of sequences. ¤
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