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Injectivity of Generalized Wronski Maps

Yanhe Huang, Frank Sottile, and Igor Zelenko

Abstract. 'We study linear projections on Pliicker space whose restriction to the Grassmannian is a
non-trivial branched cover. When an automorphism of the Grassmannian preserves the fibers, we
show that the Grassmannian is necessarily of m-dimensional linear subspaces in a symplectic vector
space of dimension 2m, and the linear map is the Lagrangian involution. The Wronski map for a
self-adjoint linear differential operator and the pole placement map for symmetric linear systems
are natural examples.

Introduction

Some applications of geometry involve maps on Grassmannians that are projections
on the ambient Pliicker space; these generalized Wronski maps include the classical
Wronskian in differential equations and the pole placement map in feedback control
oflinear systems [5]. When the center of projection is disjoint from the Grassmannian
and has maximal dimension, the image is a projective space of the same dimension as
the Grassmannian and the map is a branched cover of degree equal to the degree of
the Grassmannian. When the center of projection does not have maximal dimension,
the image of the Grassmannian is a proper subset of projective space. If in addition
the center is general, there is an open subset of the Grassmannian on which the map
is injective. We consider generalized Wronski maps when the center does not have
maximal dimension, and yet the map is a non-trivial branched cover. This occurs
when an automorphism of the Grassmannian preserves each fiber and thus induces
the identity on the image.

Chow [4] classified automorphisms of the Grassmannian of m-planes in a complex
vector space V. When 2m # dim V, they are induced by automorphisms of P(V'), and
when 2m = dim V there are additional automorphisms induced by isomorphisms
between P(V) and its dual projective space P(V*). Given a projection with center Z
that does not meet the Grassmannian where the automorphism ¢ preserves the fibers
of the projection, we show that V is a symplectic vector space of dimension 2m with
¢ the Lagrangian involution £, and that Z contains the (-1)-eigenspace of £. We also
show that any generalized Wronski map of degree 2 has this form.

Such maps arise in nature. One source is the Wronski map on m-dimensional
spaces of functions that satisfy a self-adjoint linear differential equation Ly = 0 of
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order 2m. Another is the pole placement map for a symmetric linear system. In both
cases, the center Z strictly contains the (-1)-eigenspace of £ and, in fact, contains
all irreducible summands under the action of the symplectic group, except the one
meeting the Grassmannian. We call such a generalized Wronski map self-adjoint. This
structure (Lagrangian involution preserving the fiber) of the classical Wronski map
(when Ly = ™)) implies a congruence modulo four on the number of real solutions
to certain problems in the real Schubert Calculus [17,18], which was our motivation.

While this classification of projections that induce a non-trivial branched cover on
the Grassmannian is complete when the fibers are preserved by an automorphism of
the Grassmannian, we do not know if there are other such projections not coming
from an automorphism of the Grassmannian. More specifically, we ask the following
questions: Are there any generalized Wronski maps with degree exceeding 2 not aris-
ing from an automorphism of the Grassmannian and whose image is not a projective
space? What is the case when the center of the projection meets the Grassmannian,
but the projection still has finite fibers over an open subset of its image?

In Section 1 we prove our main results, Corollary 1.5 and Theorem 1.6, about pro-
jections on Grassmannians and automorphisms. Section 2 shows how self-adjoint
linear differential operators are a source of such maps. In Section 3, we explain how
symmetric linear control systems are another source.

In Sections 2 and 3, the projection comes from a curve in a Grassmannian. For a
linear control system this is the Hermann-Martin curve [21]. For a linear differen-
tial operator this is a curve of osculating spaces associated with the operator [27,30].
These osculating curves are important in other mathematical topics, such as Sturmian
theory of self-adjoint linear differential equations [2, 24], general linear differential
equations [28], differential geometry of nonlinear differential equations [6], varia-
tional problems [8], rank 2 distributions [7], and single-input nonlinear control sys-
tems [9].

Projections and Grassmannians
We use elementary algebraic geometry, as may be found in Harris’ vivid book [16].
Projections

Let V be a finite-dimensional complex vector space and write P(V') for the projective
space of one-dimensional linear subspaces of V. For any proper linear subspace Z of
V the projection mz with center P(Z),

nP(V)NP(Z2) — P(V/Z),

is induced by the quotient map V — V/Z. This projection is only a rational map on
P(V) as it is not defined for points of P(Z).

If X ¢ P(V) is an algebraic variety that is disjoint from the center P(Z), then
we can restrict 7z to X and obtain a map nz: X — P(V/Z). Note that dim X <
dimP(V/Z). When the dimensions are equal, so that P(Z) has the maximal dimen-
sion of a linear subspace disjoint from X, then the projection is surjective, realizing
X as a branched cover of P(V/Z) of degree equal to the degree of X. Indeed, a point
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p € P(V/Z) corresponds to a linear subspace M containing Z as a hyperplane in that
dim M =1+ dim Z. Then the inverse image of p under 7z in X consists of the points
MnX, which is necessarily zero-dimensional as ZnX = @ and Z isa hyperplane in M.
The number of points in M N X, counted with multiplicity, is the degree of X in P(Z).
As the projection map is proper and has finite fibers, it is a finite morphism [15, Part 4,
Corollaire 18.12.4].

The automorphism group of P(V) is the projective linear group T(V). This is
the quotient of the group GL(V') of invertible linear transformations of V by scalars
(which act trivially on P(V')). Thus, any automorphism ¢ of P(V) is induced by a
linear map y € GL(V'). This lift y is well defined up to multiplication by a scalar. If
Z c V is a linear subspace such that P(Z) is preserved by ¢, then v preserves Z and
acts on V/Z. This induces an automorphism ¢ on P(V/Z) and the projection map
myz is ¢p-equivariant,

o(nz(v)) = nz(e(v)) forve P(V)\P(2).

Lemma 1.1  Suppose that ¢ € T(V) has finite order and that it preserves the fibers
of a projection nz:P(V) NP(Z) - P(V/Z). If y is any lift of ¢, then Z contains all
eigenspaces of y except one.

Proof As ¢ preserves the fibers of 7z, it acts as the identity on P(V/Z), so that y
acts as scalar multiplication on V/Z. Since ¢ has finite order, y is semisimple, and
so V is the direct sum of its eigenspaces. Since y acts as multiplication by a scalar
A on V/Z, the kernel Z must contain all eigenspaces of y with eigenvalue different
from A. ]

In Lemma 1.1 we can choose a lift y that acts trivially on the quotient V/Z.
Automorphisms of Grassmannians

Let1 < m < n =dim V be a positive integer. The Grassmannian Gr,, V of m-dimen-
sional linear subspaces of V is a smooth projective algebraic variety of dimension
m(n—m). We have Gr; V = P(V). The Grassmannian has a natural Pliicker embed-
ding induced by m-th exterior powers

Gr,, V3sHv+—> A"HeP(A™V).

(Since dim H = m, the m-th exterior power A" H of H is a 1-dimensional subspace of
A™V.) We will always consider Gr,, V as a subvariety of this Pliicker space, P(A™ V).

A linear isomorphism y € GL(V) acts as an automorphism of both Gr,, V and
P(A™V), and the Pliicker embedding is y-equivariant. Since scalars act trivially on
both Gr,, V and P(A™V), elements of the projective linear group I'(V) act as au-
tomorphisms of Gr,, V, and every such automorphism is the restriction of one on
Pliicker space.

Chow [4] (for a modern exposition, see [25]) showed that if 2m # dim V, these are
the only automorphisms of Gr,,, V and when 2m = dim V, T (V) has index two in the
automorphism group, forming its identity component. Elements of the non-identity
component are induced by linear isomorphisms y: V* — V. We explain this.
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Fix a linear isomorphism y: V* — V and let m be between 1 and #n — 1, where
n =dimV. For H € Gr,, V, its annihilator H* is an element of Gr,,_,,,(V*), and we
define HY to be y(H*) € Gry_p, (V). This map H — HY is an isomorphism that is
induced by an isomorphism of Pliicker space as follows.

Fix a volume form Q:A"V = C. Then there is a pairing A™V x A" ™V —
C given by («,8) ~ Q(a A B). This is nondegenerate, and the identification
(A"TMV)* = A"TMV* gives the Hodge star operator +q: A™V —> A""MV* which
satisfies *o (A" H) = A""™H*. Composing with the map induced by y gives the iso-
morphism

(L)) a— aV: A"V S ATy

with the property that (A" H)¥ = A""™HY. The Hodge star operator depends upon
the choice of ), with any two choices differing by a nonzero scalar. This ambiguity is
removed by viewing (1.1) as an isomorphism of Pliicker space

(V:P(A™V) S P(A"™V)

that extends the map H — HY on the Grassmannian. When 2m = dim V this map
(- )Y is an automorphism of the Grassmannian Gr,, V and of Pliicker space P(A™ V).

Proposition 1.2 (Chow [4, Thm.1]) If2m # dim V, then ['(V) is the automorphism
group of the Grassmannian Gr,, V. When 2m = dim V, T(V) has index two in the
automorphism group of the Grassmannian Gr,, V, where the elements not from T(V')
have the form ()Y for some isomorphism y: V* = V.

We show explicitly how the square of the map H — HY for y: V* % Vis induced
by an element of GL(V). For v € V, let y(v) € V* be the linear map V 5 u +~
v(y(u)). Writing elements of V as linear maps on V*, thisis u(x(v)) = v(y~*(u)).
Then y: V — V* is an isomorphism as v is an isomorphism. Set A := y o y € GL(V).

Lemma 1.3 Forany H e Gr, V, (HY)¥ = A(H).

Proof Since v(y™'(u)) = u(x(v)), we have that y(H) annihilates HY = y(H").
Then we see that (HY)Y = y((HY)") = yo y(H) = A(H). [ |

Symplectic vector spaces

A reference for this material is [14, pp. 236-237]. An isomorphism y: V* — V is
alternating if for any u,v € V* we have that v(y(u)) = —u(y(v)). Equivalently, if
the bilinear form (u,v) := v(y (1)) on V is nondegenerate and alternating. Then
in Lemma 1.3 the map y = —y ' and A = -1, V has even dimension 2m, and the form
is represented by an element w € A*V* that is non-degenerate in that 0 # A" w €
A*™V*, Write 8 € A2V for the 2-form y(w). An even-dimensional vector space
with these structures is a symplectic vector space, and w is the symplectic form on V.
The symplectic group Sp (V') is the subgroup of GL(V') preserving the symplectic
form w.
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For H € Gry V, HY € Gr,,,,—x V is its annihilator under the symplectic form
HY={veV|(v,w)=0forallwe H}.

Observe that (HY)Y = H as A = —I. For k < m, a subspace H € Gry V is isotropic if
H c HY. Lagrangian subspaces are isotropic subspaces with maximal dimension m.
The symplectic group acts on isotropic subspaces in Gry V, which form an orbit.

Let k < m. A tensor v € AFV is isotropic if it lies in a one-dimensional subspace
ARH where H € Gry, V is isotropic. Let 3 (A*¥V, @) be the subspace of AV spanned
by isotropic tensors. This is an irreducible representation of Sp (V'), and the collec-
tion of these for 1 < k < m are its fundamental representations. The exterior product
ARV decomposes as a sum of fundamental representations:

Lk/2]
1.2) Aky = &) AP OAH(AFPV, ).
p=max{0,[(k-m)/2]}

Define £: AFV — A2k to be the linear map (-)¥ of Subsection 1.2, using the
volume form Q := (~1)(3) LA™ w. This satisfies £(AFH) = A2 FHY. As £: A"V —
A™V and commutes with the action of Sp,(V), itacts by a scalar on each irreducible
summand in (1.2) when m = k.

Proposition 1.4  The map £ is an involution on ™V, and it acts as multiplication by
(-1) on the summand AP0 A H(A™ 2PV, w) in (1.2).

Call £ the Lagrangian involution.

Proof We compute £(v) for v lying in one of the summands of (1.2). A Darboux
basis for V provides a normal form for w. Darboux bases always exist; let us fix one
for V. Thisisabasis ey, f2, ..., em, fm withadual basis ], £, ..., e,,,, f,, for V* such
that

w=e ANff+renfy +ten, Ao

Then y(e]) = —fi, w(f") = €1, 0 = y(w) = e1 A fi + - + e A fm, and the volume
form is

Q- (-1)<’z”)$ A" 0= () Der A fi A nem A .

Let 0 < p < |m/2] be an integer, set [2p] := {1,...,2p}, and let ([zlf]) be the set
of p-element subsets of [2p]. For I € ([2;]) let (e n f)r = ey A fiy A nei, Afis
where I = {i},...,i,}. The order of the factors e; A f; in this expression does not affect
(enf)r,asdoublets e; A f; commute with all tensors. Set by := (eAf)Aezps1 A Aep.

The exterior power A™V has a basis of tensors v; A --- A v, where {v1,...,v,,}
is a subset of the basis {e1,...,em, fi,...> fm} for V. For such a tensor v, the map
v = Q(hy A v) is zero unless the components of v are elements of the basis that do
not appear in hj. Thus, we can suppose that v = (e A f)1e A fops1 A== A fiu, where
I¢ := [2p]~ I is the complement of I. Keeping track of the signs induced by permuting
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factors, we have
Q(hrAv)=Q((enfineypmnAemA(eA e A frpir A A fn)
=Q((eAf)in(enf)rAespir A Aem A fapii A A fn)
= (=)D (=) (") = (—1)P.
Thus, +0(h1) = (<P(e* A f )i A fips A+ A fiand 50 £(h1) = y(xa(hp)) =

(-1)Phye.
Since
1
NON ey A Ney = oy Y (eAf)IAerpia A Aen,
Ic([zlf])
L(APO N ezpii A New) = (1) AP O A ezpir A A ey, which completes the proof,
as e3p41 A - A ey 1S an isotropic tensor in APV |

We will call the restriction of a projection on A™V to the Grassmannian Gr,, V a
generalized Wronski map.

Corollary 15  Suppose that V. ~ C>™ is symplecticc Z c A™V contains the
(—1)-eigenspace of the Lagrangian involution £, and P(Z) is disjoint from the Grass-
mannian Gr,, V. Then £ acts on the fibers of mz on Gr,,, V, which has even degree over
its image.

Projections Commuting with Automorphisms

We now prove our main theorem on linear projections of Grassmannians whose fibers
are preserved by automorphisms. This shows that Corollary 1.5 is the only case in this
situation.

Theorem 1.6 Let Z c A"V be a linear subspace with P(Z) disjoint from the Grass-
mannian Gr, V and nz:Gr,, V - P((A™V)/Z) the generalized Wronski map. If ¢
is an automorphism of the Grassmannian of finite order at least 2 that preserves the
fibers of mz, then V is a symplectic vector space of dimension 2m, ¢ is the Lagrangian
involution £ on Gr,, V, and Z contains the (—1)-eigenspace of £ acting on A" V.

We begin with a lemma.

Lemma 1.7 Let y € GL(V) be semisimple. Then Gr,, V meets P(Z) for Z any
eigenspace of y acting on A" V.

Proof The vector space V has an eigenbasis ey, ..., e, (n = dim V), where for each
i, y(e;) = Aje; with A; the corresponding eigenvalue. The basis of A"V of tensors
er:=e; A ne; forl={i,...,i,,} c{1,...,n} is an eigenbasis for y acting on
A™V. Indeed, yw(e;) = Arer, where A = A;,--+A;,, . The lemma follows, as e; spans the
image of the m-plane spanned by ¢;,, .. ., e;,, under the Pliicker embedding. ]

Proof of Theorem 1.6 By Chow’s Theorem [4], ¢ is the restriction of an automor-
phism (also written ¢) of P(A™ V). Since ¢ preserves the fibers of 7z on Gr,, V, it
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fixes its image 77 (Gr,, V) c P((A™V)/Z) pointwise. As Gr,, V spans P(A™ V), its
image spans P((A™V)/Z) and so ¢ fixes P((A"V)/Z) pointwise. Therefore, ¢ pre-
serves the fibers of the projection map nz:P(A™V) N P(Z) — P((A"V)/Z). By
Lemma 1.1, Z contains all eigenspaces except one of any lift ¢ of ¢. Since ¢ is not the
identity, ¢ has more than one eigenspace, and so Z contains at least one eigenspace
of ¢.

The automorphism ¢ of Gr,,, V has one of two types. Either it is induced by a linear
automorphism y of V or by an isomorphism y: V* — V and 2m = dim V. We show
that the first type cannot occur. Suppose that ¢ is induced by y € GL(V). As ¢ has
finite order, y is semisimple, and by Lemma 1.7, Gr,, V meets every eigenspace of y
acting on A™V, and, therefore, Gr,, V meets P(Z), a contradiction.

We are left with the possibility that 2m = dim V and that ¢ is induced by an isomor-
phism y: V* — V. Since ¢ lies in the non-identity component of the automorphism
group of Gr,, V, its square ¢? lies in the identity component, and is therefore induced
by an element of GL(V'). Since ¢? also preserves the fibers of 77z, our previous argu-
ments imply that ¢ is the identity, and thus ¢ is an involution.

In particular, this means that H = (HY)Y for all H € Gr,, V. By Lemma 1.3, if
x: V = V* is the isomorphism defined by v(y~*(u)) = u(x(v)), and A := yo y, then
A(H) = H for all H € Gr,, V. This implies that A is a scalar matrix, A = cI, for some
scalar ¢. The computation

Av(y (Auw)) = Av(x(u)) = u(y ™ (A) = u(x(v)) = v(y " (v))

implies that ¢? = 1, and so either ¢ = L or ¢ = 1.

Consider the nondegenerate bilinear form on V defined by (u,v) := u(y™'(v)).
This is symmetric when ¢ = 1 and alternating when ¢ = —1. Suppose that ¢ = —1. Then
the map ¢ is the Lagrangian involution £. By Proposition 1.4 and the decomposi-
tion (1.2) of A™V into irreducible representations of Sp (V'), £ has two eigenspaces
on A™V with eigenvalues +1 and —1. By Lemma 1.1, Z must contain one of them.
The +1 eigenspace contains H(A™ V, ), which is spanned by isotropic (and even La-
grangian) tensors. As these are elements of Gr,, V, we deduce that Z contains the -1
eigenspace as P(Z) N Gr,, V = @.

To complete the proof, assume that ¢ = 1 so that the form (-, -) induced by v
is symmetric. The identity component of the subgroup of GL(V') of linear maps that
preserve the form is the special orthogonal group, SO(2m). As explained in [14, p. 235],
under SO(2m), A™V decomposes into two irreducible summands,

(1.3) AV = Wao, , @ Waa,,»

where ®,,_; and ®,, are highest weights of the two half-spin representations of
SO(2m). As in Subsection 1.3, the involution (- )¥ on AV commutes with SO(2m),
and so the summands in (1.3) are eigenspaces of ( - )¥. Since one is the (+1)-eigenspace
and the other the (-1)-eigenspace, Z must contain one summand. Since each sum-
mand is spanned by isotropic vectors, P(Z) meets the Grassmannian Gr,, V, a con-
tradiction. [ |

Corollary 1.8 Let Z c A™V be a linear subspace with P(Z) disjoint from the
Grassmannian Gr,, V with nz7: Gr,,, V. — P((A"V) [ Z) the corresponding generalized
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Wronski map. If the map nz on Gr,, V has degree 2 with finite fibers, then V is a
symplectic vector space of dimension 2m with Z containing the (—1)-eigenspace of the
Lagrangian involution £ on AV, and £ acts on each each fiber of mz on Gr,, V.

Proof Since 77:Gr,, V - P((A™V)/Z) is proper, each fiber consists of one or two
points. Interchanging the points when there are two is a global analytic involution
on Gr,, V. By Chow’s Theorem XV in [4], any analytic automorphism of Gr,, V is
algebraic of the form given in Proposition 1.2, so that we are in the situation of Theo-
rem L.6. |

Wronski Map for Self-adjoint Differential Operators

Let V be a finite-dimensional vector space of sufficiently differentiable complex func-
tions on an open interval I ¢ R. Given linearly independent functions fi,..., fm € V,
their Wronskian is the function on I defined by the determinant

OB {OREN A0
) S0~ £

(21 Wr(fi,.- ., fm) := det

Up to a scalar, this depends only upon the linear span of the functions fi, ..., f. f V
is a space such that no such Wronskian vanishes identically (for example, if V consists
of analytic functions), then the Wronskian is a map from the Grassmannian Gr,, V
to a projective space of functions. We are interested in cases when the Wronskian
realizes Gr,, V as a non-trivial branched cover of its image.

When V = C,_1[t] is the space of univariate polynomials of degree at most n-1,
the Wronskian is such a map from Gr,, C,,_1[t] to P(C,,(s—m)[]) of degree

120+(n-m-1)!
m!(m+1)!--(n-1)1"

(m(n-m))!-

the degree of the Grassmannian in Pliicker space [26]. This Wronski map, while clas-
sical, has been essential in the theory of limit linear series [10,11] and in the resolution
of the Shapiro conjecture [12,22,29]. It is a linear projection on Pliicker space applied
to the Grassmannian arising from the linear differential operator Ly = y{") = 0.

To begin to explain this, let L be a linear differential operator of order # on I:

(2.2) Ly = y™ +a,y"™ 4+ agy,

where ag, ..., a,_; are complex-valued smooth functions on I. Define V7 to be the
complex vector space of solutions to the homogeneous differential equation Ly = 0.

Proposition 2.1 An n-dimensional space V of functions on an interval I is the space
VL of solutions of the homogeneous equation corresponding to a linear differential oper-
ator L as in (2.2) if and only if Wr(V') is a nowhere-vanishing function on I.
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Proof For sufficiency, let fi, ..., f, be any basis for V; then y € V if and only if
T ()

y oy y o
p— n / e n
Ly= 7( D -det fl fl ) f1 =0,
Wr(fl,...,fn) : : - :
fu fl (n)
and necessity is provided by the classical Abel Theorem. ]

The Wronski Map is a Projection

We henceforth assume that V' = V7 is the space of functions associated with a linear
differential operator L (2.2) of order n. Equivalently, that the Wronskian Wr(V) is a
nowhere-vanishing function on I.

One can assign a curve in a projective space to any linear differential operator L and
the corresponding osculating curves in Grassmannians. This is well known (see the
classical book of Wilczynski [30, p. 51] or [27] or [23, §§ 2.2] for modern expositions).

For t € I the evaluation map

ev(t) =evp(t):V—C f— f(t)

is an element of V*. Then ¢ — ev(t) is a smooth map ev:I — V*. For each i =
0,1,...,n-land t € I, let

ED (1) = EX(¢) = span{ev(t),ev'(£),...,ev(D (1)},
be the i-th osculating space to the curve ev(I) at ev(¢).

Lemma 2.2 Forteland0 < i < n—1, the osculating space E() (t) has dimension i+1.

A curve y: I - V* whose i-th osculating spaces have dimension i+1in P(V*) for
every i and t € I is convex. Lemma 2.2 implies that ev is convex, and thus for every i,
EM:] - Gr;,; V* is a curve in the Grassmannian.

Proof Let fi,..., f, be a basis for V with dual basis f*,..., f,". Observe that for
t eI, wehaveev(t) = fi(t)fi +- + fu () f,}. Consequently,

o (0)= O+ + [ (O

As Wr(V)(t) # 0, the n column vectors in (2.1) (where m = n) are linearly inde-
pendent. But these are ev(t),ev'(t),...,ev(""V(t). Thus, the first i+1 are linearly
independent, which implies that E(!) (¢) has dimension i+1. [ |

We observe thatif f € V,t € Tand i = 0,...,n-], then f(i)(t) is obtained by
evaluating the linear function f € V on the vector ev() (¢) € V*.

Let U c A™V* be the linear span of the one-dimensional spaces A" E("~1 (t) for
t € I. A linear form A on U defines a function on I by

At — A(ev(t) Aev'(t) A A ev(m_l)(t)).
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This identifies the dual space U* with a space of functions on I as the function A(¢)
is identically zero only if A = 0. Set Z := U* c A"V, the annihilator of U, so that the
quotient (A" V)/Z is identified with U* and thus with this space of functions.

Proposition 2.3  With this identification of their codomains, the Wronski map on
Gry, V equals the projection map my.

This justifies our terminology, that a projection map restricted to the Grassman-
nian is a generalized Wronski map.

Proof Let fi,...,fn € V be linearly independent. For ¢ € I, consider the com-
position C"™ — V* — C™, where the first map sends the standard basis element
e; € C™ to ev(™)(¢), and the second is given by the m linear functions f,, ..., f, on
V*. Expressing this composition as a matrix gives ( fi(J _1)(t)),'-’,’j:1, the matrix of the
Wronskian (2.1).
Taking m-th exterior powers gives the composition
C=A"C" — A"V — A™C™ = C,

which is multiplication by Wr(fi, ..., fm ) (). The first map sends the generator e; A
- nemtoev(t) Aev' () A--Aev™ D (1), and the second is the linear form on A™ V*

given by fi A -+ A fy,. This identifies the Wronskian with the function fy A -+ A f, in
U*. [ |

Self-dual Curves in Projective Space and Self-adjoint Differential Operators

We describe the relation between duality of linear differential operators and the cor-
responding curves in projective spaces. This can be found in the classical text [30].
Details are also in any of the modern sources [1,23,24].

Two curves y: I — P(V) and 321 — P(V) are equivalent if there exists a projective
isomorphism ¢:P(V) — P(V) such that for all ¢ € I, py(t) = 7(t). Two linear
differential operators L, L on I with leading coefficient 1 are equivalent if there exists
a nowhere-vanishing function u on I such that for all smooth functions y, uLy =
L(uy). Since

()™ + apy (1) = wuy™ & (pay_y +np')y "™V +lower order terms in y,
there is a unique operator equivalent to L whose coefficient of y("~1) vanishes.

Remark 2.4 Two linear differential operators L and L on I are equivalent if and
only if there exists a nowhere-vanishing function y such that y € V; if and only if

uy e Vvg.

Lemma 2.5 Let L,L be linear differential operators on I of order n with ev:1 —
P(Vy') and &v:1 - P(VY), their corresponding evaluation curves. Then L is equivalent

to L if and only if ev is equivalent to &v.

Proof Suppose that L is equivalent to L and g is the nonvanishing function on I such
that uLy = L(puy) for y a function on I. Then y — py defines a linear isomorphism
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p: Vi — Vp. Let y*: Vi" — V= be the dual map. For ¢ € I and y € Vi, we have

(1" ev(t) () = ev()(uy) = u(t) - y(£) = u(t) - &V (1)(y).
Thus, u* ev(t) and év(t) are proportional, which shows that the corresponding curves
inP(Vy) and P(V;) are equivalent.

Suppose that the projective curves ev and év are equivalent, and let ¢: P(V;") —
P(VZ) be the projective isomorphism such that ¢(ev) = év. Let y: V' - V7 bea
lift of ¢. For each t € I the linear maps y(ev(t)) and év(t) on V5 are proportional
in that y(ev(t)) = u(t) - év(¢). Then u is smooth and nowhere-vanishing on I. Let
y*: Vi — Vi be the map dual to y. For y € Vi, we have

v (1) =ev() (¥ () = w(ev())(y) = u(t) - & (1) (y) = u(t) - y(0),
so that y*(y) = uy. By Remark 2.4 L is equivalent to L. [ |

Setting a,, = 1 in the definition (2.2) of a linear differential operator L of order n,
its (formal) adjoint L* is

Ly = 20 )

If L = L*, then L is (formally) self-adjoint. This implies that n = 2m is even. When
n is odd, the corresponding notion is anti self-adjoint, i.e., L* = —L. In either case,
an-1 = 0. At most one operator in an equivalence class is self-adjoint/anti self-adjoint.
Given a convex curve y:I — V¥, its dual curve y*:1 — V is defined by setting
y*(t) to be the (n-2)nd osculating space to y at y(t). More specifically, set y* () =
y(t) AY'(t) A~ Ay"2)(t), and then use an identification of V with A"~'V*. While
this only defines y* up to a scalar function y(t) in V, it is well defined as a curve in
P(V'). Observe that y is convex if and only if p* is convex. The curve y is self-dual
if it is equivalent to its dual. The following has appeared in [30, p. 55]. A modern
exposition is in [23, Th. 2.2.6], and comments concluding Section 2.2 in loc. cit.

Proposition 2.6  Let evy:I — Vi be the curve associated with a linear differential
operator L. Then its dual curve (evy)™ is equivalent to the curve associated with the
adjoint operator (=1)"L*. An operator is equivalent to a self-adjoint/anti self-adjoint
operator L if and only if its curve evy, is self-dual.

If a curve y:I — V™ is equivalent to its dual curve y*, there is a linear transfor-
mation y: V* — V such that for t € I, y*(t) = w(y(t)). If y is convex, then v is an
isomorphism. The following proposition has appeared in [23, Rem. 2.2.8].

Proposition 2.7  The map v is skew-symmetric if n is even and symmetric if n is odd.

When n = 2m is even, ¥ endows V with a symplectic structure. If L is a self-
adjoint linear differential operator, then this is the canonical symplectic structure on
Vi. Write wy € A*V}' for the symplectic form and £ for the corresponding La-
grangian involution. The following is found in [24, Lem. 2].

Proposition 2.8  Suppose that L has even order 2m. Then L is equivalent to its adjoint
L* if and only if the (m—1)st osculating space Eimil) (t) is Lagrangian.
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Let L be alinear differential operator of even degree 2m that is equivalent to its adjoint.
As in Subsection 2.1, let U c A™ V;* be the span of the tensors ev(t) A - A ev(" D (t)
for t € I. By Proposition 2.8, these are Lagrangian, so that U ¢ H(A™ V}*, w]). As the
decomposition (1.2) for k = 2m is preserved by duality, we have

Lm/2]
@3) Z=U"> @ AOAH(A" VL, 01) = 08 (A7),
p=1

(Note that 6 = w}.) In particular, Z properly contains the (—1)-eigenspace of the
Lagrangian involution £; when m > 4.

Theorem 2.9  Let L be a linear differential operator of even degree 2m that is equiv-
alent to its adjoint. Then the Wronski map on Gr,, Vi, has even degree, and the
space of functions spanned by Wronskians of m solutions of L has dimension at most

G- ()

In particular, such Wronski maps provide examples of linear projections on Grass-
mannians that are non-trivial branched covers of their images.

Proof By Proposition 2.3, the Wronski map is the projection 7 with center Z. Then
Corollary 1.5 implies the statement about the degree of the Wronski map. The state-
ment about the dimension follows, as dim H (A" V;, wy) = (Zr;") - (221__22). [ |

Self-adjoint Projections and Symmetric Linear Systems

Let 77:Gr,, V. = P((A™V)/Z) be a linear projection on the Grassmannian with
center P(Z) as in Section 1. By Corollary 1.5, if V has a symplectic structure given by
aform w € A>V* with dual form 6 € A%V, and Z contains the (~1)-eigenspace

D APOAH(A"TV, w)
p odd
1<p<m/2

of the Lagrangian involution £, then 7z is a branched cover of even degree over its
image. In Subsection 2.3, we saw that the Wronski map n; of a self-adjoint linear
differential operator L satisfies a stronger property, that the center Z contains all terms
of the sum (2.3), which is the subspace 0 A (A™2V'). A generalized Wronski map 7
is self-adjoint if its center Z contains 6 A (A™"2V') for some symplectic structure on
V. We show that the pole placement map is self-adjoint in this sense for symmetric
linear systems of sufficiently high McMillan degree.

Pole Placement for Constant State-space Feedback

For more on linear systems theory, see [5]. A state-space realization of a (strictly
proper) m-input p-output linear system is a triple £ = (A, B, C) of matrices of sizes
N x N, N x m, and p x N, which defines a system of first order constant coefficient
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linear differential equations,
(3.1) x = Ax + Bu and y =Cx,

where x € CV, y € C?, and u € C™ are functions of t € C (and % = %x). Applying
Laplace transform and assuming x(0) = 0, we eliminate to obtain

7(s) = C(sI - A)'Bui(s) = G(s)u(s),

where ~indicates Laplace transform and G(s) := C(sI— A) ™' B is the transfer function
of (3.1). This p x m matrix of rational functions has poles at the eigenvalues of A.

A linear system can be controlled with output feedback, setting u = Ky, where
K is a constant m x p matrix. Substitution in (3.1) and elimination gives the closed
loop system, x = (A + BKC)x, whose transfer function has poles at the zeroes of the
characteristic polynomial

Ps(K) = Py := det(sI - (A + BKC)).

The map K — Ps(K) is called the pole placement map. Given a system (3.1) with
state space realization X and poles z = {z),...,zn} c C, the pole placement problem
asks for a matrix K such that Ps (K) vanishes at the points of z. This is only possible
for general z if N < mp [3]. We are interested when N > mp and the pole placement
map is a non-trivial branched cover of its image.

Using the injection Mat,,, C - Gr, C"*? where K is sent to the column space of
the matrix ( IIi ) , standard manipulations show that the pole placement map is a lin-
ear projection on the Grassmannian Gr, C™*?, of a form similar to the Wronski map
of Subsection 2.1. For this, the map that sends s € ' to the column space of ( GI('"S) )
defines the Hermann-Martin curve ys:P* — Gr,,, C™*P [21]. Its degree is the McMil-
lan degree of the system, which is the minimal number N in a state-space realization
giving the transfer function G(s). Such a minimal representation is observable and
controllable [5].

If U ¢ A™ Gr,,, C™*? is the linear span of the curve y(P') as in Subsection 2.1, and
Z := U* is its annihilator in APC™*?, then the pole placement map is the generalized
Wronski map 7z, and we can identify the quotient U* = (APC™*?)/Z as the space
of polynomials of degree at most N. The pole placement map is proper if P(Z) is dis-
joint from the Grassmannian Gr, C™*?. This terminology is not standard in systems
theory.

Two triples X = (A, B, C) and £ = (A, B, C) are state feedback equivalent if

A=L"(A+BQT'C)L, B=L"'"BW, and C=T"'CL.
for matrices L, W, T, Q. The corresponding transfer functions satisfy
G(s) = T'G(s)(1- QT'G(s)) ' W.
The following result is standard.

Proposition 3.1  State feedback equivalent realizations have equivalent Hermann-
Martin curves, where the equivalence is induced by an element of GL(C™*?).
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Alinear system is symmetric if p = m and the transfer function is symmetric, G(s)” =
G(s). Symmetric linear systems have symmetric state space realizations [13], where
AT = Aand CT = B. If G(s) is symmetric, then there is a symplectic structure w on
C?™ such that the Hermann-Martin curve in Gr,,, C*™ lies in the Lagrangian Grass-
mannian, L(m) = Gr,, V n H(A™C*", w) [19,20], and vice-versa: if the Hermann-
Martin curve of a linear system lies in the Lagrangian Grassmannian for a symplectic
structure, then that linear system is state feedback equivalent to a symmetric linear
system. By the discussion of Subsection 3.1 and the same reasoning as Theorem 2.9,
we deduce the following theorem.

Theorem 3.2 If a controllable and observable linear system is state feedback equivalent
to a symmetric system and the pole placement map is proper, then it is a self-adjoint
generalized Wronski map.

The pole placement map for symmetric systems therefore has even degree.

Corollary 3.3  Given a general feedback law K for a symmetric linear system X, there
are an odd number of other feedback laws K, . . ., Ky, such that K, K5, . . ., Ky, all have
the same image under the pole placement map.

We also have a converse to Theorem 3.2.

Corollary 3.4  If the pole placement map is a self-adjoint generalized Wronski map,
then the given system is state feedback equivalent to a symmetric system.

Proof If the pole placement map is self-adjoint, then the Hermann-Martin curve
lies in the Lagrangian Grassmannian for some symplectic form. But this implies that
the original system was state feedback equivalent to a symmetric linear system. W

Acknowledgment We thank Mark Pankov, who pointed us to the work of Chow
and the anonymous referee for valuable comments.

References

[1] V. Arnol’d, On the number of flattening points on space curves. Sinai’s Moscow Seminar on
Dynamical Systems, Amer. Math. Soc. Transl. Ser. 2, 171, American Mathematical Society, 1996,
pp. 11-22.

[2] —, Sturm theorems and symplectic geometry. Funktsional. Anal. i Prilozhen. 19(1985), no. 4,
1-10, 95.  http://dx.doi.org/10.1007/BF01086018

[3] C.I. Byrnes, Algebraic and geometric aspects of the analysis of feedback systems. In: Geometrical
methods for the study of linear systems, NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci., 62,
Reidel, Dordrecht-Boston, Mass., 1980, pp. 85-124.

[4] W.-L. Chow, On the geometry of algebraic homogeneous spaces. Ann. of Math. (2) 50(1949), 32-67.
http://dx.doi.org/10.2307/1969351

[5] D.F Delchamps, State space and input-output linear systems. Springer-Verlag, New York, 1988.
http://dx.doi.org/10.1007/978-1-4612-3816-4

[6] B. Doubrov, Contact trivialization of ordinary differential equations. In: Differential geometry and
its applications (Opava, 2001), Math. Publ., 3, Silesian Univ. Opava, Opava, 2001, pp. 73-84.


http://dx.doi.org/10.1007/BF01086018
http://dx.doi.org/10.2307/1969351
http://dx.doi.org/10.1007/978-1-4612-3816-4

Injectivity of Generalized Wronski Maps 761

[7] B. Doubrov and I. Zelenko, On local geometry of non-holonomic rank 2 distributions. J. Lond.
Math. Soc. (2) 80(2009), no. 3, 545-566. http:/dx.doi.org/10.1112/jlms/jdp044

, Equivalence of variational problems of higher order. Differential Geom. Appl. 29(2011),

no. 2, 255-270.  http://dx.doi.org/10.1016/j.difge0.2010.12.004

, On geometry of affine control systems with one input. In: Geometric control theory and
sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 133-152.
http://dx.doi.org/10.1007/978-3-319-02132-4_9

[10] D. Eisenbud and J. Harris, Divisors on general curves and cuspidal rational curves. Invent. Math.
74(1983), 371-418.  http://dx.doi.org/10.1007/BF01394242

, When ramification points meet. Invent. Math. 87(1987), 485-493.
http://dx.doi.org/10.1007/BF01389239

[12] A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M.
Shapiro conjecture in real enumerative geometry. Ann. of Math. (2) 155(2002), no. 1, 105-129.
http://dx.doi.org/10.2307/3062151

[13] P. A. Fuhrmann, On symmetric rational transfer functions. Linear Algebra Appl. 50(1983),
167-250.  http://dx.doi.org/10.1016/0024-3795(83)90057-5

[14] R. Goodman and N. R. Wallach, Representations and invariants of the classical groups.
Encyclopedia of Mathematics and its Applications, 68, Cambridge University Press, Cambridge,
1998.

[15] A. Grothendieck, Eléments de géométrie algébrique. IV. Etude locale des schémas et des
morphismes de schémas IV. Inst. Hautes Etudes Sci. Publ. Math. (1967), no. 32, 361.

[16] J. Harris, Algebraic geometry. Graduate Text in Mathematics, 133, Springer-Verlag, New York,
1992.  http://dx.doi.org/10.1007/978-1-4757-2189-8

[17] N. Hein, F. Sottile, and I. Zelenko, A congruence modulo four in real Schubert calculus. ]. Reine
Angew. Math. 714(2016), 151-174.  http://dx.doi.org/10.1515/crelle-2013-0122

, A congruence modulo four for real Schubert calculus with isotropic flags. Canad. Math.
Bull,, to appear.  http://dx.doi.org/10.4153/CMB-2016-087-2

[19] U. Helmke, J. Rosenthal, and X. A. Wang, Output feedback pole assignment for transfer functions

with symmetries. SIAM J. Control Optim. 45(2006), no. 5, 1898-1914.

http://dx.doi.org/10.1137/050644276

C.J. Hillar and F. Sottile, Complex static skew-symmetric output feedback control. SIAM J. Control

Optim. 51(2013), no. 4, 3011-3026. _ http://dx.doi.org/10.1137/110855363

[21] C.FE Martin and R. Hermann, Applications of algebraic geometry to system theory: The McMillan
degree and Kronecker indices as topological and holomorphic invariants. SIAM J. Control Optim.
16(1978), no. 5, 743-755.  http://dx.doi.org/10.1137/0316050

[22] E.Mukhin, V. Tarasov, and A. Varchenko, The B. and M. Shapiro conjecture in real algebraic
geometry and the Bethe ansatz. Ann. of Math. (2) 170(2009), no. 2, 863-881.
http://dx.doi.org/10.4007/annals.2009.170.863

[23] V. Ovsienko and S. Tabachnikov, Projective differential geometry old and new. Cambridge Tracts
in Mathematics, 165, Cambridge University Press, Cambridge, 2005.

[24] V. Yu. Ovsienko, Selfadjoint differential operators and curves on a Lagrangian Grassmannian that
are subordinate to a loop. Mat. Zametki 47(1990), no. 3, 65-73, 142; translation Math. Notes
47(1990), no. 3-4, 270-275.  http://dx.doi.org/10.1007/BF01138507

[25] M. Pankov, Geometry of semilinear embeddings. Relations to graphs and codes. World Scientific
Publishing Co. Pte. Ltd., Hackensack, NJ, 2015.  http://dx.doi.org/10.1142/9465

[26] H. Schubert, Anzahl-Bestimmungen fiir lineare Riume beliebiger Dimension. Acta. Math. 8(1886),
97-118.  http://dx.doi.org/10.1007/BF02417085

[27] B. Z. Shapiro, Spaces of linear differential equations and flag manifolds. Izv. Akad. Nauk SSSR Ser.
Mat. 54(1990), no. 1, 173-187, 223; translation in Math. USSR-Izv. 36(1991), no. 1, 183-197.

[28] B. Shapiro and M. Shapiro, Linear ordinary differential equations and Schubert calculus.
Proceedings of the Gokova Geometry-Topology Conference 2010, Int. Press, 2011, pp. 79-87.

[29] E. Sottile, Frontiers of reality in Schubert Calculus. Bull. Amer. Math. Soc. 47(2010), no. 1, 31-71.
http://dx.doi.org/10.1090/50273-0979-09-01276-2

[30] E.J. Wilczynski, Projective differential geometry. Bull. Amer. Math. Soc. 13(1906), no. 3, 102-105.
http://dx.doi.org/10.1090/50002-9904-1906-01425-2

(8]
(9]

[20

Department of Mathematics, University of California, Berkeley, CA 94720, USA
e-mail: yanhe_huang@berkeley.edu

Department of Mathematics, Texas Ae~M University, College Station, Texas 77843, USA
e-mail: sottile@math.tamu.edu zelenko@math.tamu.edu


http://dx.doi.org/10.1112/jlms/jdp044
http://dx.doi.org/10.1016/j.difgeo.2010.12.004
http://dx.doi.org/10.1007/978-3-319-02132-4_9
http://dx.doi.org/10.1007/BF01394242
http://dx.doi.org/10.1007/BF01389239
http://dx.doi.org/10.2307/3062151
http://dx.doi.org/10.1016/0024-3795(83)90057-5
http://dx.doi.org/10.1007/978-1-4757-2189-8
http://dx.doi.org/10.1515/crelle-2013-0122
http://dx.doi.org/10.4153/CMB-2016-087-2
http://dx.doi.org/10.1137/050644276
http://dx.doi.org/10.1137/110855363
http://dx.doi.org/10.1137/0316050
http://dx.doi.org/10.4007/annals.2009.170.863
http://dx.doi.org/10.1007/BF01138507
http://dx.doi.org/10.1142/9465
http://dx.doi.org/10.1007/BF02417085
http://dx.doi.org/10.1090/S0273-0979-09-01276-2
http://dx.doi.org/10.1090/S0002-9904-1906-01425-2
mailto:yanhe_huang@berkeley.edu
mailto:sottile@math.tamu.edu
mailto:zelenko@math.tamu.edu

