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Injectivity of Generalized Wronski Maps

YanheHuang, Frank Sottile, and Igor Zelenko

Abstract. We study linear projections on Plücker space whose restriction to the Grassmannian is a
non-trivial branched cover. When an automorphism of the Grassmannian preserves the ûbers, we
show that theGrassmannian is necessarily ofm-dimensional linear subspaces in a symplectic vector
space of dimension 2m, and the linear map is the Lagrangian involution. _e Wronski map for a
self-adjoint linear diòerential operator and the pole placement map for symmetric linear systems
are natural examples.

Introduction

Some applications of geometry involve maps on Grassmannians that are projections
on the ambient Plücker space; these generalizedWronski maps include the classical
Wronskian in diòerential equations and the pole placement map in feedback control
of linear systems [5]. When the center of projection is disjoint from theGrassmannian
and has maximal dimension, the image is a projective space of the same dimension as
the Grassmannian and the map is a branched cover of degree equal to the degree of
theGrassmannian. When the center of projection does not havemaximal dimension,
the image of the Grassmannian is a proper subset of projective space. If in addition
the center is general, there is an open subset of the Grassmannian on which themap
is injective. We consider generalized Wronski maps when the center does not have
maximal dimension, and yet the map is a non-trivial branched cover. _is occurs
when an automorphism of the Grassmannian preserves each ûber and thus induces
the identity on the image.
Chow [4] classiûed automorphisms of theGrassmannian ofm-planes in a complex

vector spaceV . When 2m /= dimV , they are induced by automorphisms ofP(V), and
when 2m = dimV there are additional automorphisms induced by isomorphisms
between P(V) and its dual projective space P(V∗). Given a projection with center Z
that does notmeet theGrassmannianwhere the automorphism φ preserves the ûbers
of the projection, we show that V is a symplectic vector space of dimension 2m with
φ the Lagrangian involutionL, and that Z contains the (−1)-eigenspace ofL. We also
show that any generalizedWronski map of degree 2 has this form.

Such maps arise in nature. One source is the Wronski map on m-dimensional
spaces of functions that satisfy a self-adjoint linear diòerential equation Ly = 0 of
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order 2m. Another is the pole placement map for a symmetric linear system. In both
cases, the center Z strictly contains the (−1)-eigenspace of L and, in fact, contains
all irreducible summands under the action of the symplectic group, except the one
meeting theGrassmannian. We call such a generalizedWronskimap self-adjoint. _is
structure (Lagrangian involution preserving the ûber) of the classical Wronski map
(when Ly = y(2m)) implies a congruencemodulo four on the number of real solutions
to certain problems in the real Schubert Calculus [17, 18], which was our motivation.

While this classiûcation of projections that induce a non-trivial branched cover on
the Grassmannian is complete when the ûbers are preserved by an automorphism of
the Grassmannian, we do not know if there are other such projections not coming
from an automorphism of the Grassmannian. More speciûcally, we ask the following
questions: Are there any generalizedWronski mapswith degree exceeding 2 not aris-
ing from an automorphism of theGrassmannian and whose image is not a projective
space? What is the case when the center of the projection meets the Grassmannian,
but the projection still has ûnite ûbers over an open subset of its image?

In Section 1 we prove our main results, Corollary 1.5 and_eorem 1.6, about pro-
jections on Grassmannians and automorphisms. Section 2 shows how self-adjoint
linear diòerential operators are a source of such maps. In Section 3, we explain how
symmetric linear control systems are another source.

In Sections 2 and 3, the projection comes from a curve in a Grassmannian. For a
linear control system this is the Hermann–Martin curve [21]. For a linear diòeren-
tial operator this is a curve of osculating spaces associated with the operator [27,30].
_ese osculating curves are important in othermathematical topics, such as Sturmian
theory of self-adjoint linear diòerential equations [2, 24], general linear diòerential
equations [28], diòerential geometry of nonlinear diòerential equations [6], varia-
tional problems [8], rank 2 distributions [7], and single-input nonlinear control sys-
tems [9].

1 Projections and Grassmannians

We use elementary algebraic geometry, as may be found in Harris’ vivid book [16].

1.1 Projections

Let V be a ûnite-dimensional complex vector space andwrite P(V) for the projective
space of one-dimensional linear subspaces of V . For any proper linear subspace Z of
V the projection πZ with center P(Z),

πZ ∶P(V) ∖ P(Z)Ð→ P(V/Z),

is induced by the quotient map V ↠ V/Z. _is projection is only a rational map on
P(V) as it is not deûned for points of P(Z).

If X ⊂ P(V) is an algebraic variety that is disjoint from the center P(Z), then
we can restrict πZ to X and obtain a map πZ ∶X → P(V/Z). Note that dimX ≤
dimP(V/Z). When the dimensions are equal, so that P(Z) has themaximal dimen-
sion of a linear subspace disjoint from X, then the projection is surjective, realizing
X as a branched cover of P(V/Z) of degree equal to the degree of X. Indeed, a point
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p ∈ P(V/Z) corresponds to a linear subspaceM containing Z as a hyperplane in that
dimM = 1 + dim Z. _en the inverse image of p under πZ in X consists of the points
M∩X,which is necessarily zero-dimensional as Z∩X = ∅ and Z is a hyperplane inM.
_e number of points in M∩X, countedwithmultiplicity, is the degree of X in P(Z).
As the projectionmap is proper and has ûnite ûbers, it is a ûnitemorphism [15, Part 4,
Corollaire 18.12.4].

_e automorphism group of P(V) is the projective linear group Γ(V). _is is
the quotient of the group GL(V) of invertible linear transformations of V by scalars
(which act trivially on P(V)). _us, any automorphism φ of P(V) is induced by a
linear map ψ ∈ GL(V). _is li� ψ is well deûned up to multiplication by a scalar. If
Z ⊂ V is a linear subspace such that P(Z) is preserved by φ, then ψ preserves Z and
acts on V/Z. _is induces an automorphism φ on P(V/Z) and the projection map
πZ is φ-equivariant,

φ(πZ(v)) = πZ(φ(v)) for v ∈ P(V) ∖ P(Z).

Lemma 1.1 Suppose that φ ∈ Γ(V) has ûnite order and that it preserves the ûbers
of a projection πZ ∶P(V) ∖ P(Z) → P(V/Z). If ψ is any li� of φ, then Z contains all
eigenspaces of ψ except one.

Proof As φ preserves the ûbers of πZ , it acts as the identity on P(V/Z), so that ψ
acts as scalar multiplication on V/Z. Since φ has ûnite order, ψ is semisimple, and
so V is the direct sum of its eigenspaces. Since ψ acts as multiplication by a scalar
λ on V/Z, the kernel Z must contain all eigenspaces of ψ with eigenvalue diòerent
from λ.

In Lemma 1.1 we can choose a li� ψ that acts trivially on the quotient V/Z.

1.2 Automorphisms of Grassmannians

Let 1 ≤ m < n = dimV be a positive integer. _e Grassmannian Grm V of m-dimen-
sional linear subspaces of V is a smooth projective algebraic variety of dimension
m(n−m). We have Gr1 V = P(V). _e Grassmannian has a natural Plücker embed-
ding induced by m-th exterior powers

Grm V ∋ H z→ ∧mH ∈ P(∧mV).

(Since dimH = m, them-th exterior power ∧mH of H is a 1-dimensional subspace of
∧mV .) We will always consider Grm V as a subvariety of this Plücker space, P(∧mV).
A linear isomorphism ψ ∈ GL(V) acts as an automorphism of both Grm V and

P(∧mV), and the Plücker embedding is ψ-equivariant. Since scalars act trivially on
both Grm V and P(∧mV), elements of the projective linear group Γ(V) act as au-
tomorphisms of Grm V , and every such automorphism is the restriction of one on
Plücker space.
Chow [4] (for amodern exposition, see [25]) showed that if 2m /= dimV , these are

the only automorphisms ofGrm V andwhen 2m = dimV , Γ(V) has index two in the
automorphism group, forming its identity component. Elements of the non-identity
component are induced by linear isomorphisms ψ∶V∗ → V . We explain this.
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Fix a linear isomorphism ψ∶V∗ → V and let m be between 1 and n − 1, where
n = dimV . For H ∈ Grm V , its annihilator H⊥ is an element of Grn−m(V∗), and we
deûne Hψ to be ψ(H⊥) ∈ Grn−m(V). _is map H ↦ Hψ is an isomorphism that is
induced by an isomorphism of Plücker space as follows.
Fix a volume form Ω∶ ∧nV ∼Ð→ C. _en there is a pairing ∧mV × ∧n−mV →

C given by (α, β) ↦ Ω(α ∧ β). _is is nondegenerate, and the identiûcation
(∧n−mV)∗ = ∧n−mV∗ gives the Hodge star operator ∗Ω ∶ ∧mV ∼Ð→ ∧n−mV∗, which
satisûes ∗Ω(∧mH) = ∧n−mH⊥. Composing with themap induced by ψ gives the iso-
morphism

(1.1) α z→ αψ ∶ ∧mV ∼Ð→ ∧n−mV ,

with the property that (∧mH)ψ = ∧n−mHψ . _e Hodge star operator depends upon
the choice of Ω, with any two choices diòering by a nonzero scalar. _is ambiguity is
removed by viewing (1.1) as an isomorphism of Plücker space

( ⋅ )ψ ∶P(∧mV) ∼Ð→ P(∧n−mV)

that extends the map H ↦ Hψ on the Grassmannian. When 2m = dimV this map
( ⋅ )ψ is an automorphismof theGrassmannianGrm V and of Plücker space P(∧mV).

Proposition 1.2 (Chow [4,_m. 1]) If 2m /= dimV , then Γ(V) is the automorphism
group of the Grassmannian Grm V . When 2m = dimV , Γ(V) has index two in the
automorphism group of the Grassmannian Grm V , where the elements not from Γ(V)
have the form ( ⋅ )ψ for some isomorphism ψ∶V∗

∼Ð→ V .

We show explicitly how the square of themap H ↦ Hψ for ψ∶V∗
∼Ð→ V is induced

by an element of GL(V). For v ∈ V , let χ(v) ∈ V∗ be the linear map V ∋ u ↦
v(ψ−1(u)). Writing elements ofV as linearmaps onV∗, this is u(χ(v)) = v(ψ−1(u)).
_en χ∶V → V∗ is an isomorphism as ψ is an isomorphism. Set A ∶= ψ ○ χ ∈ GL(V).

Lemma 1.3 For any H ∈ Grk V , (Hψ)ψ = A(H).

Proof Since v(ψ−1(u)) = u(χ(v)), we have that χ(H) annihilates Hψ = ψ(H⊥).
_en we see that (Hψ)ψ = ψ((Hψ)⊥) = ψ ○ χ(H) = A(H).

1.3 Symplectic vector spaces

A reference for this material is [14, pp. 236–237]. An isomorphism ψ∶V∗ → V is
alternating if for any u, v ∈ V∗ we have that v(ψ(u)) = −u(ψ(v)). Equivalently, if
the bilinear form ⟨u, v⟩ ∶= v(ψ−1(u)) on V is nondegenerate and alternating. _en
in Lemma 1.3 themap χ = −ψ−1 and A = −I, V has even dimension 2m, and the form
is represented by an element ω ∈ ∧2V∗ that is non-degenerate in that 0 /= ∧mω ∈
∧2mV∗. Write θ ∈ ∧2V for the 2-form ψ(ω). An even-dimensional vector space
with these structures is a symplectic vector space, and ω is the symplectic form on V .
_e symplectic group Spω(V) is the subgroup of GL(V) preserving the symplectic
form ω.
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For H ∈ Grk V , Hψ ∈ Gr2m−k V is its annihilator under the symplectic form

Hψ = {v ∈ V ∣ ⟨v ,w⟩ = 0 for all w ∈ H}.

Observe that (Hψ)ψ = H as A = −I. For k ≤ m, a subspace H ∈ Grk V is isotropic if
H ⊂ Hψ . Lagrangian subspaces are isotropic subspaces with maximal dimension m.
_e symplectic group acts on isotropic subspaces in Grk V , which form an orbit.

Let k ≤ m. A tensor v ∈ ∧kV is isotropic if it lies in a one-dimensional subspace
∧kH where H ∈ Grk V is isotropic. Let H(∧kV ,ω) be the subspace of ∧kV spanned
by isotropic tensors. _is is an irreducible representation of Spω(V), and the collec-
tion of these for 1 ≤ k ≤ m are its fundamental representations. _e exterior product
∧kV decomposes as a sum of fundamental representations:

(1.2) ∧kV =
⌊k/2⌋

⊕
p=max{0,⌈(k−m)/2⌉}

∧pθ ∧H(∧k−2pV ,ω).

Deûne L∶ ∧kV → ∧2m−kV to be the linear map ( ⋅ )ψ of Subsection 1.2, using the
volume form Ω ∶= (−1)(m2) 1

m! ∧
m ω. _is satisûesL(∧kH) = ∧2m−kHψ . AsL∶ ∧mV →

∧mV and commutes with the action of Spω(V), it acts by a scalar on each irreducible
summand in (1.2) when m = k.

Proposition 1.4 _emap L is an involution on ∧mV , and it acts as multiplication by
(−1)p on the summand ∧pθ ∧H(∧m−2pV ,ω) in (1.2).

Call L the Lagrangian involution.

Proof We compute L(v) for v lying in one of the summands of (1.2). A Darboux
basis for V provides a normal form for ω. Darboux bases always exist; let us ûx one
forV . _is is a basis e1 , f2 , . . . , em , fm with a dual basis e∗1 , f ∗1 , . . . , e∗m , f ∗m forV∗ such
that

ω = e∗1 ∧ f ∗1 + e∗2 ∧ f ∗2 +⋯ + e∗m ∧ f ∗m .

_en ψ(e∗i ) = − f i , ψ( f ∗i ) = e i , θ = ψ(ω) = e1 ∧ f1 + ⋯ + em ∧ fm , and the volume
form is

Ω = (−1)(
m
2)

1
m!

∧m ω = (−1)(
m
2)e1 ∧ f1 ∧⋯ ∧ em ∧ fm .

Let 0 ≤ p ≤ ⌊m/2⌋ be an integer, set [2p] ∶= {1, . . . , 2p}, and let ([2p]p ) be the set
of p-element subsets of [2p]. For I ∈ ([2p]p ) let (e ∧ f )I ∶= e i1 ∧ f i1 ∧ ⋯ ∧ e ip ∧ f ip ,
where I = {i1 , . . . , ip}. _e order of the factors e i∧ f i in this expression does not aòect
(e∧ f )I , as doublets e i∧ f i commutewith all tensors. Set hI ∶= (e∧ f )I∧e2p+1∧⋯∧em .

_e exterior power ∧mV has a basis of tensors v1 ∧ ⋯ ∧ vm where {v1 , . . . , vm}
is a subset of the basis {e1 , . . . , em , f1 , . . . , fm} for V . For such a tensor v, the map
v ↦ Ω(hI ∧ v) is zero unless the components of v are elements of the basis that do
not appear in hI . _us, we can suppose that v = (e ∧ f )Ic ∧ f2p+1 ∧ ⋯ ∧ fm , where
Ic ∶= [2p]∖I is the complement of I. Keeping track of the signs induced by permuting
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factors, we have

Ω(hI ∧ v) = Ω((e ∧ f )I ∧ e2p+1 ∧⋯ ∧ em ∧ (e ∧ f )Ic ∧ f2p+1 ∧⋯ ∧ fm)
= Ω((e ∧ f )I ∧ (e ∧ f )Ic ∧ e2p+1 ∧⋯ ∧ em ∧ f2p+1 ∧⋯ ∧ fm)

= (−1)(
m
2)(−1)(

m−2p
2 ) = (−1)p .

_us, ∗Ω(hI) = (−1)p(e∗ ∧ f ∗)Ic ∧ f ∗2p+1 ∧ ⋯ ∧ f ∗m , and so L(hI) = ψ(∗Ω(hI)) =
(−1)phIc .

Since

∧pθ ∧ e2p+1 ∧⋯ ∧ em = m!
(m−p)! ∑

I⊂([2p]p )

(e ∧ f )I ∧ e2p+1 ∧⋯ ∧ em ,

L(∧pθ ∧ e2p+1 ∧⋯∧ em) = (−1)p ∧p θ ∧ e2p+1 ∧⋯∧ em , which completes the proof,
as e2p+1 ∧⋯ ∧ em is an isotropic tensor in ∧m−2pV .

We will call the restriction of a projection on ∧mV to the Grassmannian Grm V a
generalizedWronski map.

Corollary 1.5 Suppose that V ≃ C2m is symplectic, Z ⊂ ∧mV contains the
(−1)-eigenspace of the Lagrangian involution L, and P(Z) is disjoint from the Grass-
mannian Grm V . _en L acts on the ûbers of πZ on Grm V , which has even degree over
its image.

1.4 Projections Commuting with Automorphisms

Wenow prove ourmain theoremon linear projections ofGrassmannianswhose ûbers
are preserved by automorphisms. _is shows thatCorollary 1.5 is the only case in this
situation.

_eorem 1.6 Let Z ⊂ ∧mV be a linear subspace with P(Z) disjoint from the Grass-
mannian Grm V and πZ ∶Grm V → P((∧mV)/Z) the generalizedWronski map. If φ
is an automorphism of the Grassmannian of ûnite order at least 2 that preserves the
ûbers of πZ , then V is a symplectic vector space of dimension 2m, φ is the Lagrangian
involution L on Grm V , and Z contains the (−1)-eigenspace of L acting on ∧mV .

We begin with a lemma.

Lemma 1.7 Let ψ ∈ GL(V) be semisimple. _en Grm V meets P(Z) for Z any
eigenspace of ψ acting on ∧mV .

Proof _e vector space V has an eigenbasis e1 , . . . , en (n = dimV ), where for each
i, ψ(e i) = λ i e i with λ i the corresponding eigenvalue. _e basis of ∧mV of tensors
eI ∶= e i1 ∧ ⋯ ∧ e im for I = {i1 , . . . , im} ⊂ {1, . . . , n} is an eigenbasis for ψ acting on
∧mV . Indeed, ψ(eI) = λIeI , where λI = λ i1⋯λ im . _e lemma follows, as eI spans the
image of the m-plane spanned by e i1 , . . . , e im under the Plücker embedding.

Proof of_eorem 1.6 By Chow’s _eorem [4], φ is the restriction of an automor-
phism (also written φ) of P(∧mV). Since φ preserves the ûbers of πZ on Grm V , it
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ûxes its image πZ(Grm V) ⊂ P((∧mV)/Z) pointwise. As Grm V spans P(∧mV), its
image spans P((∧mV)/Z) and so φ ûxes P((∧mV)/Z) pointwise. _erefore, φ pre-
serves the ûbers of the projection map πZ ∶P(∧mV) ∖ P(Z) → P((∧mV)/Z). By
Lemma 1.1, Z contains all eigenspaces except one of any li� φ̃ of φ. Since φ is not the
identity, φ̃ has more than one eigenspace, and so Z contains at least one eigenspace
of φ̃.

_e automorphism φ ofGrm V has one of two types. Either it is induced by a linear
automorphism ψ of V or by an isomorphism ψ∶V∗ → V and 2m = dimV . We show
that the ûrst type cannot occur. Suppose that φ is induced by ψ ∈ GL(V). As φ has
ûnite order, ψ is semisimple, and by Lemma 1.7, Grm V meets every eigenspace of ψ
acting on ∧mV , and, therefore, Grm V meets P(Z), a contradiction.

We are le�with the possibility that 2m = dimV and that φ is induced by an isomor-
phism ψ∶V∗ → V . Since φ lies in the non-identity component of the automorphism
group ofGrm V , its square φ2 lies in the identity component, and is therefore induced
by an element of GL(V). Since φ2 also preserves the ûbers of πZ , our previous argu-
ments imply that φ2 is the identity, and thus φ is an involution.

In particular, this means that H = (Hψ)ψ for all H ∈ Grm V . By Lemma 1.3, if
χ∶V → V∗ is the isomorphism deûned by v(ψ−1(u)) = u(χ(v)), and A ∶= ψ ○ χ, then
A(H) = H for all H ∈ Grm V . _is implies that A is a scalar matrix, A = cI, for some
scalar c. _e computation

Av(ψ−1(Au)) = Av(χ(u)) = u(ψ−1(Av)) = u(χ(v)) = v(ψ−1(u))

implies that c2 = 1, and so either c = 1 or c = −1.
Consider the nondegenerate bilinear form on V deûned by ⟨u, v⟩ ∶= u(ψ−1(v)).

_is is symmetric when c = 1 and alternating when c = −1. Suppose that c = −1. _en
the map φ is the Lagrangian involution L. By Proposition 1.4 and the decomposi-
tion (1.2) of ∧mV into irreducible representations of Spω(V), L has two eigenspaces
on ∧mV with eigenvalues +1 and −1. By Lemma 1.1, Z must contain one of them.
_e +1 eigenspace containsH(∧mV ,ω),which is spanned by isotropic (and even La-
grangian) tensors. As these are elements of Grm V , we deduce that Z contains the −1
eigenspace as P(Z) ∩Grm V = ∅.

To complete the proof, assume that c = 1 so that the form ⟨ ⋅ , ⋅ ⟩ induced by ψ
is symmetric. _e identity component of the subgroup of GL(V) of linear maps that
preserve the formis the special orthogonal group, SO(2m). As explained in [14, p. 235],
under SO(2m), ∧mV decomposes into two irreducible summands,

(1.3) ∧mV =W2ϖm−1 ⊕W2ϖm ,

where ϖm−1 and ϖm are highest weights of the two half-spin representations of
SO(2m). As in Subsection 1.3, the involution ( ⋅ )ψ on ∧mV commutes with SO(2m),
and so the summands in (1.3) are eigenspacesof ( ⋅ )ψ . Sinceone is the (+1)-eigenspace
and the other the (−1)-eigenspace, Z must contain one summand. Since each sum-
mand is spanned by isotropic vectors, P(Z) meets the Grassmannian Grm V , a con-
tradiction.

Corollary 1.8 Let Z ⊂ ∧mV be a linear subspace with P(Z) disjoint from the
Grassmannian Grm V with πZ ∶Grm V → P((∧mV)/Z) the corresponding generalized
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Wronski map. If the map πZ on Grm V has degree 2 with ûnite ûbers, then V is a
symplectic vector space of dimension 2m with Z containing the (−1)-eigenspace of the
Lagrangian involution L on ∧mV , and L acts on each each ûber of πZ on Grm V .

Proof Since πZ ∶Grm V → P((∧mV)/Z) is proper, each ûber consists of one or two
points. Interchanging the points when there are two is a global analytic involution
on Grm V . By Chow’s _eorem XV in [4], any analytic automorphism of Grm V is
algebraic of the form given in Proposition 1.2, so that we are in the situation of_eo-
rem 1.6.

2 Wronski Map for Self-adjoint Differential Operators

Let V be a ûnite-dimensional vector space of suõciently diòerentiable complex func-
tions on an open interval I ⊂ R. Given linearly independent functions f1 , . . . , fm ∈ V ,
their Wronskian is the function on I deûned by the determinant

(2.1) Wr( f1 , . . . , fm) ∶= det
⎛
⎜⎜
⎝

f1(t) f ′1 (t) ⋯ f (m−1)
1 (t)

⋮ ⋮ ⋯ ⋮
fm(t) f ′m(t) ⋯ f (m−1)

m (t)

⎞
⎟⎟
⎠
.

Up to a scalar, this depends only upon the linear span of the functions f1 , . . . , fm . IfV
is a space such that no suchWronskian vanishes identically (for example, ifV consists
of analytic functions), then theWronskian is a map from the Grassmannian Grm V
to a projective space of functions. We are interested in cases when the Wronskian
realizes Grm V as a non-trivial branched cover of its image.

When V = Cn−1[t] is the space of univariate polynomials of degree at most n−1,
theWronskian is such amap from Grm Cn−1[t] to P(Cm(n−m)[t]) of degree

(m(n−m))! ⋅ 1!2!⋯(n−m−1)!
m!(m+1)!⋯(n−1)! ,

the degree of theGrassmannian in Plücker space [26]. _isWronski map, while clas-
sical, has been essential in the theory of limit linear series [10,11] and in the resolution
of the Shapiro conjecture [12,22,29]. It is a linear projection on Plücker space applied
to the Grassmannian arising from the linear diòerential operator Ly = y(n) = 0.

To begin to explain this, let L be a linear diòerential operator of order n on I:

(2.2) Ly = y(n) + an−1 y(n−1) +⋯ + a0 y,

where a0 , . . . , an−1 are complex-valued smooth functions on I. Deûne VL to be the
complex vector space of solutions to the homogeneous diòerential equation Ly = 0.

Proposition 2.1 An n-dimensional space V of functions on an interval I is the space
VL of solutions of the homogeneous equation corresponding to a linear diòerential oper-
ator L as in (2.2) if and only ifWr(V) is a nowhere-vanishing function on I.



Injectivity of GeneralizedWronski Maps 755

Proof For suõciency, let f1 , . . . , fn be any basis for V ; then y ∈ V if and only if

Ly = (−1)n

Wr( f1 , . . . , fn)
⋅ det

⎛
⎜⎜⎜⎜
⎝

y y′ ⋯ y(n)

f1 f ′1 ⋯ f (n)1
⋮ ⋮ ⋱ ⋮
fn f ′n ⋯ f (n)n

⎞
⎟⎟⎟⎟
⎠
= 0,

and necessity is provided by the classical Abel _eorem.

2.1 The Wronski Map is a Projection

We henceforth assume that V = VL is the space of functions associated with a linear
diòerential operator L (2.2) of order n. Equivalently, that theWronskian Wr(V) is a
nowhere-vanishing function on I.

One can assign a curve in a projective space to any linear diòerential operator L and
the corresponding osculating curves in Grassmannians. _is is well known (see the
classical book ofWilczynski [30, p. 51] or [27] or [23, §§ 2.2] for modern expositions).
For t ∈ I the evaluation map

ev(t) = evL(t)∶V Ð→ C f z→ f (t)

is an element of V∗. _en t ↦ ev(t) is a smooth map ev∶ I → V∗. For each i =
0, 1, . . . , n−1 and t ∈ I, let

E(i)(t) = E(i)
L (t) ∶= span{ev(t), ev′(t), . . . , ev(i)(t)} ,

be the i-th osculating space to the curve ev(I) at ev(t).

Lemma 2.2 For t ∈ I and 0 ≤ i ≤ n−1, the osculating space E(i)(t) has dimension i+1.

A curve γ∶ I → V∗ whose i-th osculating spaces have dimension i+1 in P(V∗) for
every i and t ∈ I is convex. Lemma 2.2 implies that ev is convex, and thus for every i,
E(i)∶ I → Gri+1 V∗ is a curve in the Grassmannian.

Proof Let f1 , . . . , fn be a basis for V with dual basis f ∗1 , . . . , f ∗n . Observe that for
t ∈ I, we have ev(t) = f1(t) f ∗1 +⋯ + fn(t) f ∗n . Consequently,

ev(i)(t) = f (i)1 (t) f ∗1 +⋯ + f (i)n (t) f ∗n .

As Wr(V)(t) /= 0, the n column vectors in (2.1) (where m = n) are linearly inde-
pendent. But these are ev(t), ev′(t), . . . , ev(n−1)(t). _us, the ûrst i+1 are linearly
independent, which implies that E(i)(t) has dimension i+1.

We observe that if f ∈ V , t ∈ I and i = 0, . . . , n−1, then f (i)(t) is obtained by
evaluating the linear function f ∈ V on the vector ev(i)(t) ∈ V∗.

Let U ⊂ ∧mV∗ be the linear span of the one-dimensional spaces ∧mE(m−1)(t) for
t ∈ I. A linear form λ on U deûnes a function on I by

λ∶ t z→ λ(ev(t) ∧ ev′(t) ∧⋯ ∧ ev(m−1)(t)) .
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_is identiûes the dual space U∗ with a space of functions on I as the function λ(t)
is identically zero only if λ = 0. Set Z ∶= U⊥ ⊂ ∧mV , the annihilator of U , so that the
quotient (∧mV)/Z is identiûed with U∗ and thus with this space of functions.

Proposition 2.3 With this identiûcation of their codomains, the Wronski map on
Grm V equals the projection map πZ .

_is justiûes our terminology, that a projection map restricted to the Grassman-
nian is a generalizedWronski map.

Proof Let f1 , . . . , fm ∈ V be linearly independent. For t ∈ I, consider the com-
position Cm → V∗ → Cm , where the ûrst map sends the standard basis element
e i ∈ Cm to ev(i−1)(t), and the second is given by the m linear functions f1 , . . . , fm on
V∗. Expressing this composition as a matrix gives ( f ( j−1)

i (t))m
i , j=1, the matrix of the

Wronskian (2.1).
Taking m-th exterior powers gives the composition

C = ∧mCm Ð→ ∧mV∗ Ð→ ∧mCm = C,

which is multiplication by Wr( f1 , . . . , fm)(t). _e ûrst map sends the generator e1 ∧
⋯∧ em to ev(t)∧ev′(t)∧⋯∧ev(m−1)(t), and the second is the linear formon ∧mV∗

given by f1 ∧⋯ ∧ fm . _is identiûes theWronskian with the function f1 ∧⋯ ∧ fm in
U∗.

2.2 Self-dual Curves in Projective Space and Self-adjoint Differential Operators

We describe the relation between duality of linear diòerential operators and the cor-
responding curves in projective spaces. _is can be found in the classical text [30].
Details are also in any of themodern sources [1,23,24].

Two curves γ∶ I → P(V) and γ̃∶ I → P(Ṽ) are equivalent if there exists a projective
isomorphism φ∶P(V) → P(Ṽ) such that for all t ∈ I, φγ(t) = γ̃(t). Two linear
diòerential operators L, L̃ on I with leading coeõcient 1 are equivalent if there exists
a nowhere-vanishing function µ on I such that for all smooth functions y, µL̃y =
L(µy). Since
(µy)(n) + an−1(µy)(n−1) = µy(n) + (µan−1 + nµ′)y(n−1) + lower order terms in y,

there is a unique operator equivalent to L whose coeõcient of y(n−1) vanishes.

Remark 2.4 Two linear diòerential operators L and L̃ on I are equivalent if and
only if there exists a nowhere-vanishing function µ such that y ∈ VL if and only if
µy ∈ VL̃ .

Lemma 2.5 Let L, L̃ be linear diòerential operators on I of order n with ev∶ I →
P(V∗

L ) and ẽv∶ I → P(V∗

L̃ ), their corresponding evaluation curves. _en L is equivalent
to L̃ if and only if ev is equivalent to ẽv.

Proof Suppose that L is equivalent to L̃ and µ is the nonvanishing function on I such
that µL̃y = L(µy) for y a function on I. _en y ↦ µy deûnes a linear isomorphism
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µ∶VL̃ → VL . Let µ∗∶V∗

L → V∗

L̃ be the dual map. For t ∈ I and y ∈ VL̃ , we have

( µ∗ ev(t))(y) = ev(t)(µy) = µ(t) ⋅ y(t) = µ(t) ⋅ ẽv(t)(y).
_us, µ∗ ev(t) and ẽv(t) areproportional,which shows that the corresponding curves
in P(VL) and P(VL̃) are equivalent.

Suppose that the projective curves ev and ẽv are equivalent, and let φ∶P(V∗

L ) →
P(V∗

L̃ ) be the projective isomorphism such that φ(ev) = ẽv. Let ψ∶V∗

L → V∗

L̃ be a
li� of φ. For each t ∈ I the linear maps ψ(ev(t)) and ẽv(t) on VL̃ are proportional
in that ψ(ev(t)) = µ(t) ⋅ ẽv(t). _en µ is smooth and nowhere-vanishing on I. Let
ψ∗∶VL̃ → VL be themap dual to ψ. For y ∈ VL̃ , we have

ψ∗(y)(t) = ev(t)(ψ∗(y)) = ψ(ev(t))(y) = µ(t) ⋅ ẽv(t)(y) = µ(t) ⋅ y(t),
so that ψ∗(y) = µy. By Remark 2.4 L is equivalent to L̃.

Setting an = 1 in the deûnition (2.2) of a linear diòerential operator L of order n,
its (formal) adjoint L∗ is

L∗y ∶=
n

∑
i=0

(−1)i(a i y)(i) .

If L = L∗, then L is (formally) self-adjoint. _is implies that n = 2m is even. When
n is odd, the corresponding notion is anti self-adjoint, i.e., L∗ = −L. In either case,
an−1 = 0. Atmost one operator in an equivalence class is self-adjoint/anti self-adjoint.

Given a convex curve γ∶ I → V∗, its dual curve γ∗∶ I → V is deûned by setting
γ∗(t) to be the (n−2)nd osculating space to γ at γ(t). More speciûcally, set γ∗(t) =
γ(t)∧ γ′(t)∧⋯∧ γ(n−2)(t), and then use an identiûcation of V with ∧n−1V∗. While
this only deûnes γ∗ up to a scalar function µ(t) in V , it is well deûned as a curve in
P(V). Observe that γ is convex if and only if γ∗ is convex. _e curve γ is self-dual
if it is equivalent to its dual. _e following has appeared in [30, p. 55]. A modern
exposition is in [23,_. 2.2.6], and comments concluding Section 2.2 in loc. cit.

Proposition 2.6 Let evL ∶ I → VL be the curve associated with a linear diòerential
operator L. _en its dual curve (evL)∗ is equivalent to the curve associated with the
adjoint operator (−1)nL∗. An operator is equivalent to a self-adjoint/anti self-adjoint
operator L if and only if its curve evL is self-dual.

If a curve γ∶ I → V∗ is equivalent to its dual curve γ∗, there is a linear transfor-
mation ψ∶V∗ → V such that for t ∈ I, γ∗(t) = ψ(γ(t)). If γ is convex, then ψ is an
isomorphism. _e following proposition has appeared in [23, Rem. 2.2.8].

Proposition 2.7 _emap ψ is skew-symmetric if n is even and symmetric if n is odd.

When n = 2m is even, ψ endows V with a symplectic structure. If L is a self-
adjoint linear diòerential operator, then this is the canonical symplectic structure on
VL . Write ωL ∈ ∧2V∗

L for the symplectic form and LL for the corresponding La-
grangian involution. _e following is found in [24, Lem. 2].

Proposition 2.8 Suppose that L has even order 2m. _en L is equivalent to its adjoint
L∗ if and only if the (m−1)st osculating space E(m−1)

L (t) is Lagrangian.
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2.3 The Wronski Map of a Self-adjoint Operator

Let L be a linear diòerential operator of even degree 2m that is equivalent to its adjoint.
As in Subsection 2.1, let U ⊂ ∧mV∗

L be the span of the tensors ev(t)∧⋯∧ ev(m−1)(t)
for t ∈ I. By Proposition 2.8, these are Lagrangian, so that U ⊂H(∧mV∗

L ,ω∗L). As the
decomposition (1.2) for k = 2m is preserved by duality, we have

(2.3) Z = U⊥ ⊃
⌊m/2⌋

⊕
p=1

∧pθ ∧H(∧m−2pVL ,ωL) = θ ∧ (∧m−2V).

(Note that θ = ω∗L .) In particular, Z properly contains the (−1)-eigenspace of the
Lagrangian involution LL when m ≥ 4.

_eorem 2.9 Let L be a linear diòerential operator of even degree 2m that is equiv-
alent to its adjoint. _en the Wronski map on Grm VL has even degree, and the
space of functions spanned by Wronskians of m solutions of L has dimension at most
(2m

m ) − (2m−2
m−2 ).

In particular, suchWronski maps provide examples of linear projections on Grass-
mannians that are non-trivial branched covers of their images.

Proof By Proposition 2.3, theWronskimap is the projection πZ with center Z. _en
Corollary 1.5 implies the statement about the degree of theWronski map. _e state-
ment about the dimension follows, as dimH(∧mVL ,ωL) = (2m

m ) − (2m−2
m−2 ).

3 Self-adjoint Projections and Symmetric Linear Systems

Let πZ ∶Grm V → P((∧mV)/Z) be a linear projection on the Grassmannian with
center P(Z) as in Section 1. By Corollary 1.5, if V has a symplectic structure given by
a form ω ∈ ∧2V∗ with dual form θ ∈ ∧2V , and Z contains the (−1)-eigenspace

⊕
p odd

1≤p≤m/2

∧pθ ∧H(∧m−2pV ,ω)

of the Lagrangian involution L, then πZ is a branched cover of even degree over its
image. In Subsection 2.3, we saw that the Wronski map πZ of a self-adjoint linear
diòerential operator L satisûes a stronger property, that the center Z contains all terms
of the sum (2.3), which is the subspace θ ∧ (∧m−2V). A generalizedWronski map πZ
is self-adjoint if its center Z contains θ ∧ (∧m−2V) for some symplectic structure on
V . We show that the pole placement map is self-adjoint in this sense for symmetric
linear systems of suõciently high McMillan degree.

3.1 Pole Placement for Constant State-space Feedback

For more on linear systems theory, see [5]. A state-space realization of a (strictly
proper) m-input p-output linear system is a triple Σ = (A, B,C) of matrices of sizes
N × N , N × m, and p × N , which deûnes a system of ûrst order constant coeõcient
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linear diòerential equations,

(3.1) ẋ = Ax + Bu and y = Cx ,

where x ∈ CN , y ∈ Cp , and u ∈ Cm are functions of t ∈ C (and ẋ = d
d t x). Applying

Laplace transform and assuming x(0) = 0, we eliminate to obtain

ŷ(s) = C(sI − A)−1Bû(s) = G(s)û(s),

where ⋅̂ indicates Laplace transform andG(s) ∶= C(sI−A)−1B is the transfer function
of (3.1). _is p ×m matrix of rational functions has poles at the eigenvalues of A.
A linear system can be controlled with output feedback, setting u = Ky, where

K is a constant m × p matrix. Substitution in (3.1) and elimination gives the closed
loop system, ẋ = (A+ BKC)x, whose transfer function has poles at the zeroes of the
characteristic polynomial

PΣ(K) = PΣ ∶= det( sI − (A+ BKC)) .

_e map K → PΣ(K) is called the pole placement map. Given a system (3.1) with
state space realization Σ and poles z = {z1 , . . . , zN} ⊂ C, the pole placement problem
asks for amatrix K such that PΣ(K) vanishes at the points of z. _is is only possible
for general z if N ≤ mp [3]. We are interested when N ≥ mp and the pole placement
map is a non-trivial branched cover of its image.

Using the injectionMatm×p C→ Grp Cm+p where K is sent to the column space of
thematrix ( K

Ip ) , standardmanipulations show that the pole placement map is a lin-
ear projection on theGrassmannian Grp Cm+p , of a form similar to theWronski map
of Subsection 2.1. For this, the map that sends s ∈ P1 to the column space of ( Im

G(s) )
deûnes theHermann–Martin curve γΣ ∶P1 → Grm Cm+p [21]. Its degree is theMcMil-
lan degree of the system, which is theminimal number N in a state-space realization
giving the transfer function G(s). Such a minimal representation is observable and
controllable [5].

IfU ⊂ ∧m Grm Cm+p is the linear span of the curve γ(P1) as in Subsection 2.1, and
Z ∶= U⊥ is its annihilator in ∧pCm+p , then the pole placement map is the generalized
Wronski map πZ , and we can identify the quotient U∗ = (∧pCm+p)/Z as the space
of polynomials of degree at most N . _e pole placement map is proper if P(Z) is dis-
joint from theGrassmannian Grp Cm+p . _is terminology is not standard in systems
theory.

Two triples Σ = (A, B,C) and Σ̃ = (Ã, B̃, C̃) are state feedback equivalent if

Ã = L−1(A+ BQT−1C)L, B̃ = L−1BW , and C̃ = T−1CL.

for matrices L,W , T ,Q. _e corresponding transfer functions satisfy

G̃(s) = T−1G(s)( I − QT−1G(s))−1W .

_e following result is standard.

Proposition 3.1 State feedback equivalent realizations have equivalent Hermann–
Martin curves, where the equivalence is induced by an element of GL(Cm+p).



760 Y. Huang, F. Sottile, and I. Zelenko

3.2 Symmetric Linear Systems

A linear system is symmetric if p = m and the transfer function is symmetric,G(s)T =
G(s). Symmetric linear systems have symmetric state space realizations [13], where
AT = A and CT = B. If G(s) is symmetric, then there is a symplectic structure ω on
C2m such that theHermann–Martin curve in Grm C2m lies in the Lagrangian Grass-
mannian, L(m) = Grm V ∩H(∧mC2m ,ω) [19, 20], and vice-versa: if the Hermann-
Martin curve of a linear system lies in the Lagrangian Grassmannian for a symplectic
structure, then that linear system is state feedback equivalent to a symmetric linear
system. By the discussion of Subsection 3.1 and the same reasoning as _eorem 2.9,
we deduce the following theorem.

_eorem 3.2 If a controllable and observable linear systemis state feedback equivalent
to a symmetric system and the pole placement map is proper, then it is a self-adjoint
generalizedWronski map.

_e pole placement map for symmetric systems therefore has even degree.

Corollary 3.3 Given a general feedback law K for a symmetric linear system Σ, there
are an odd number of other feedback laws K2 , . . . ,K2r such that K ,K2 , . . . ,K2r all have
the same image under the pole placement map.

We also have a converse to _eorem 3.2.

Corollary 3.4 If the pole placement map is a self-adjoint generalizedWronski map,
then the given system is state feedback equivalent to a symmetric system.

Proof If the pole placement map is self-adjoint, then the Hermann-Martin curve
lies in the Lagrangian Grassmannian for some symplectic form. But this implies that
the original system was state feedback equivalent to a symmetric linear system.
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