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DEGENERATIONS OF REAL IRRATIONAL TORIC VARIETIES

ELISA POSTINGHEL, FRANK SOTTILE, AND NELLY VILLAMIZAR

Abstract. A real irrational toric variety X is an analytic subset of the simplex associated
to a finite configuration of real vectors. The positive torus acts on X by translation, and
we consider limits of sequences of these translations. Our main result identifies all possible
Hausdorff limits of translations of X as toric degenerations using elementary methods and
the geometry of the secondary fan of the vector configuration. This generalizes work of
Garćıa-Puente et al., who used algebraic geometry and work of Kapranov, Sturmfels, and
Zelevinsky, when the vectors were integral.

Dedicated to the memory of Andrei Zelevinsky

Introduction

A not necessarily normal complex projective toric variety YA is parametrized by monomials
whose exponent vectors form a finite set A of integer vectors. The theory of toric varieties [3]
elucidates many ways how the structure of YA is encoded in the point set A. For example,
the set XA of nonnegative real points of YA is homeomorphic to the convex hull ∆A of A
through a linear projection.
If we drop algebraicity, we may associate a real irrational toric variety XA to any finite set

A of real vectors. This is the analytic subvariety of the standard A-simplex A parametrized
by monomials with exponent vectors from A, and it is homeomorphic to the convex hull ∆A
of A through a linear projection, by Birch’s Theorem from algebraic statistics [1, p. 168].
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Other aspects of the dictionary between toric varieties YA and sets of integer vectors A extend
to real irrational toric varieties XA and finite sets of real vectors A [4].
We further extend this dictionary. When A ⊂ Zd, the torus (C×)A of the ambient pro-

jective space of the toric variety YA acts on it via translations. Kapranov, Sturmfels, and
Zelevinsky [9, 10] identified the closure in the Hilbert scheme of the set of torus translations
{w.YA | w ∈ (C×)A} as the toric variety associated to the secondary fan of the set A. The
cones of this fan correspond to regular subdivisions of A, which are described in [8, Ch. 7].
A consequence is that the only limiting schemes of torus translations of YA are one-

parameter toric degenerations. Restricting to the nonnegative part XA of YA and to positive
translations w.XA for w ∈ RA

> gives an identification between limiting positions of positive
torus translations of XA and toric degenerations of XA by cosets of one-parameter subgroups
of RA

>. Here, limiting position is measured with respect to the Hausdorff metric on subsets
of the nonnegative part of the projective space. In [7] this was used to identify all Hausdorff
limits of Bézier patches in geometric modeling.
We extend this identification between Hausdorff limits of torus translates of XA and toric

degenerations from the case whenA consists of integer vectors (and thus the methods of [9, 10]
using algebraic geometry apply) to the case when A consists of any finite set of real vectors,
so that methods from algebraic geometry do not apply.
We do this through a direct argument, identifying all Hausdorff limits of torus translations

of XA with toric degenerations of XA. We state our main theorem.

Theorem 3.3. Let A ⊂ Rd be a finite set of real vectors and {wi | i ∈ N} ⊂ RA
> a sequence

in the positive torus. Then there exists a subsequence {uj | j ∈ N} ⊂ {wi | i ∈ N} and a
toric degeneration X(S, w) such that

lim
j→∞

uj.XA = X(S, w)

in the Hausdorff topology on subsets of the simplex A.

In particular, if a sequence of torus translates of XA has a limit in the Hausdorff topology,
then that limit is a toric degeneration. This shows that the space of torus translates of XA
is compactified by adding the toric degenerations.
Real irrational toric varieties arise naturally in mathematics and its applications. They

are log-linear (toric) models in algebraic statistics [13], they were critical in the proof of the
improved bound [2] for positive solutions to fewnomial systems, and they are a natural frame-
work in which to understand properties of Bézier patches [6, 11]. Toric degenerations have
played a role in these last two areas. In geometric modeling, they are the possible limiting
positions of a Bézier patch with varying weights, giving rise to a meaningful generalization of
the control polygon [4, 7]. Toric degenerations were a key tool to compute lower bounds on
the number of real solutions [14] to systems of polynomial equations. We believe that further
properties of real irrational toric varieties will be useful in all these application domains.
This paper is organized as follows. In Section 1, we develop some technical results about

sequences in cones and of regular subdivisions and the secondary fan. In Section 2, we define



DEGENERATIONS OF REAL IRRATIONAL TORIC VARIETIES 3

a real irrational toric variety XA associated to a configuration of points A ⊂ Rd, recalling
some of its properties and identifying its torus translations, as well as recalling the Hausdorff
metric and topology. In Section 3, we study toric degenerations of XA, relating them to the
secondary fan, and (re)state our main theorem. Its proof occupies Section 4.

1. Some geometric combinatorics

We develop some results about sequences in cones, regular subdivisions, and the secondary
fan. Write N = {1, 2, . . . } for the positive integers, R for the real numbers, R≥ for the
nonnegative real numbers, and R> for the strictly positive real numbers. We use the standard
notions of polyhedron, polytope, cone, face, etc. from geometric combinatorics, which may
be found in [5, 8, 15]. For example, a polyhedron is an intersection of finitely many closed
half-spaces, a polytope is a bounded polyhedron and it is also the convex hull of a finite set
of points. Faces of a polyhedron are its intersections with hyperplanes bounding half-spaces
containing it. The smallest affine space containing a polyhedron is its affine span and its
relative interior is its interior as a subset of its affine span.
A cone is a polyhedron given by half-spaces {x ∈ Rn | ψ(x) ≥ 0}, where ψ is a linear form.

The boundary hyperplane of such a half-space is the linear subspace ψ⊥ := {x ∈ Rn | ψ(x) =
0}. The intersection of its boundary hyperplanes is the lineality space of a cone and it is
pointed if its lineality space is the origin. Two faces ρ, σ of a pointed cone τ are adjacent if
ρ ∩ σ is not the vertex of τ . The affine span of a cone σ is its linear span, 〈σ〉.
A polyhedral complex is a finite collection Π of polyhedra that is closed under taking

faces such that the intersection of any two polyhedra in Π is a face of both (or empty). A
polyhedral complex is a triangulation if it consists of simplices. A fan is a polyhedral complex
consisting of cones.

1.1. Sequences in cones. We formulate two technical results about sequences in cones,
Lemmas 1.3 and 1.4, that are used in an essential way in the formulation and proof of
Theorem 3.3. Let |x| be the usual Euclidean length of x in a real vector space.
A sequence {vi | i ∈ N}, or simply {vi}, is divergent if it has no bounded subsequence,

that is, if for all M > 0, there is an N such that if i > N , then |vi| > M .

Lemma 1.1. If ρ and σ are non-adjacent faces of a pointed cone τ and {ri | i ∈ N} ⊂ ρ and
{si | i ∈ N} ⊂ σ are divergent sequences, then {ri−si | i ∈ N} is divergent.

Proof. Let S be the unit sphere centred at the origin. As σ, ρ are not adjacent, there is a
positive lower bound, δ, for the distance |r−s| between any pair of points r ∈ ρ ∩ S and
s ∈ σ ∩ S.
Let M > 0. Since {ri | i ∈ N} and {si | i ∈ N} are divergent sequences, there exists N

such that |ri|, |si| > M/δ for all i > N . Take i > N , and suppose that |ri| ≥ |si| (otherwise
interchange the sequences). Then

(1) |ri − si| = |si|
∣∣∣∣
ri
|si|

− si
|si|

∣∣∣∣ ≥ |si|
∣∣∣∣
ri
|ri|

− si
|si|

∣∣∣∣ >
M

δ
δ = M ,
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which completes the proof. ¤

The first inequality in (1) is elementary geometry: If u, v are unit vectors and t ≥ 1, then

|tu− v| ≥ |u− v| .
This is clear if u = v. Otherwise, let θ be the angle between u and v. Then in the triangle
with vertices tu, u, v, the angle at u is π

2
+ θ

2
, which is obtuse. Then this inequality is just

that the longest side of a triangle is opposite to its largest angle.
Let τ be a cone in Rn, {vi | i ∈ N} a sequence in τ , and σ a face of τ . We say that {vi} is

σ-bounded if for every linear function ψ vanishing on σ, the set {ψ(vi) | i ∈ N} is bounded
in R. It is immediate that if {vi} is both σ- and ρ-bounded, then it is (σ ∩ ρ)-bounded.
The minimum face of boundedness of {vi} ⊂ τ is the smallest face σ of τ such that {vi} is
σ-bounded.

Example 1.2. Let σ := R> · (−1,−1) and ρ := R> · (0,−1) be rays in R2, and τ the cone they
span. Consider the two sequences {vi} and {ui} in the cone τ , defined for i ≥ 1 by

vi :=
(
−i− 1

i
, −i− 1

)
and ui :=

(
−i+

√
i , −i

)
.

Neither sequence is 0- or ρ-bounded and both are τ -bounded. However, only {vi} is σ-
bounded. Note that both sequences have the same asymptotic direction (along σ),

lim
i→∞

vi
|vi|

= lim
i→∞

ui

|ui|
= (−1,−1) .

We display the first few terms of the two sequences in the cone τ below.

σ τ ρ

vi

σ τ ρ

ui

Lemma 1.3. Let {vi | i ∈ N} ⊂ τ be a sequence in a cone τ . Then there is a face σ of τ
and a subsequence {ui | i ∈ N} of {vi} such that σ is the minimum face of boundedness of
any subsequence of {ui}.
Proof. The set B of faces σ of τ for which {vi} has a subsequence that is σ-bounded is
nonempty (τ ∈ B). It forms an order ideal, for if σ ∈ B and σ ⊂ ρ a face of τ , then
ρ ∈ B. Let σ be a minimal element of B and {ui | i ∈ N} be a σ-bounded subsequence. The
minimum face of boundedness of a subsequence of {ui} is a subface of σ and therefore equals
σ, by its minimality in B. ¤

Lemma 1.4. Let τ be a cone in Rn, {vi | i ∈ N} ⊂ τ a sequence whose minimum face of
boundedness is σ. Then, for any v ∈ σ, all except finitely many elements of the sequence
{vi − v | i ∈ N} lie in τ .
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Proof. Suppose by way of contradiction that v ∈ σ and {uj | j ∈ N} is an infinite subset of
{vi} such that {uj − v | j ∈ N} is disjoint from τ . Without loss of generality, assume that
〈τ〉 = Rn. Let Ψ be a finite irredundant collection of linear forms defining τ ,

τ = {x ∈ Rn | ψ(x) ≥ 0 for all ψ ∈ Ψ} .
Since Ψ is irredundant and 〈τ〉 = Rn, each form ψ ∈ Ψ supports a facet ψ⊥ ∩ τ of τ .
Since {uj − v | j ∈ N} ∩ τ = ∅, for each j ∈ N there is a form ψ ∈ Ψ with ψ(uj − v) < 0 so

that ψ(uj) < ψ(v). Since Ψ is finite, there is a subsequence {wk | k ∈ N} of {uj} and a form
ψ ∈ Ψ such that ψ(wk) < ψ(v) for all k ∈ N. Since {wk} ⊂ τ , we have that ψ(wk) ∈ [0, ψ(v))
for all k ∈ N. Thus if ρ := ψ⊥ ∩ τ is the face of τ given by ψ, then {wk} is ρ-bounded.
Since {vi} has a ρ-bounded subsequence, we have σ ⊂ ρ. Since v ∈ σ and ρ ⊂ ψ⊥, we have

ψ(v) = 0, which contradicts the inequality 0 ≤ ψ(uj) < ψ(v) that we have for any j. This
concludes the proof. ¤

1.2. Regular subdivisions. Fix a positive integer d and let A ⊂ Rd be a finite set of points,
which we assume affinely spans Rd. We use elements of A throughout to index coordinates,
variables, functions, etc. For example, RA is the space of real-valued functions on A. This has
a distinguished subspace Aff(A) ≃ Rd+1, consisting of functions on A that are restrictions of
affine functions on Rd. For z ∈ RA and a ∈ A, we write za for z(a), its a-th coordinate.
For any subset F ⊂ A, the extension by zero gives an inclusion RF →֒ RA and the

restriction of functions given by w 7→ w|F defines a map RA → RF .
For F ⊂ A, let ∆F be the convex hull of F i.e.,

∆F :=
{∑

f∈F
µf f | µf ≥ 0 and 1 =

∑

f∈F
µf

}
.

A polyhedral subdivision S of A is a collection of subsets F of A, called faces of S, whose
convex hulls {∆F | F ∈ S} form a polyhedral complex ΠS which covers ∆A. If F ,G are faces
of a polyhedral subdivision S of A, then H := F ∩ G is also a face of S and ∆H = ∆F ∩∆G.
A facet is a maximal face of S, which is a face F that affinely spans Rd so that ∆F has
dimension d. A triangulation of A is a polyhedral subdivision S in which every face ∆F of
ΠS is a simplex with vertices F . A polyhedral subdivision S is regular if there is a piecewise-
affine concave function g on ∆A where the maximal domains on which g is affine are ∆F for
facets F of S. Such a concave function g is strictly concave on the subdivision S.
Elements λ ∈ RA induce regular subdivisions of A in the following way. Let Pλ be the

convex hull of the graph of λ, defined by

Pλ := conv{(a, λ(a)) | a ∈ A} .
Its upper faces are those having an outward-pointing normal vector with last coordinate
positive. For an upper face F of Pλ, let F(F ) be the points a of A such that (a, λ(a)) lies
on F . Let Sλ be the collection of subsets F(F ) of A where F ranges over the upper faces
of Pλ. This forms a polyhedral subdivision of A as the upper faces of Pλ form a polyhedral
complex whose projection to ∆A covers ∆A, and the projection of an upper face F is ∆F(F ).
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Lastly, Sλ is regular—the upper faces of Pλ form the graph of the desired concave function,
gλ. Conversely, if S is a regular subdivision with strictly concave function g, then any λ ∈ RA

satisfying λ(a) ≤ g(a) with equality if and only if a lies in some face of S has S = Sλ.

Example 1.5. Let A ⊂ R2 be a 3 × 3 grid of nine points. Figure 1 shows three polyhedral
subdivisions of A induced by elements λ ∈ RA, together with the lifted points {(a, λ(a)) |
a ∈ A} and the corresponding upper faces. All elements of A participate in the first two

Figure 1. Three regular subdivisions

subdivisions, but the center element of A does not participate in the third, for it does not
lie on an upper face.

A subset F of A is a subset of a face of Sλ if and only if the restriction λ|F of λ to F is
an affine function whose extension to ∆F agrees with the restriction of gλ to ∆F , where gλ
is the strictly convex function whose graph is the upper faces of Pλ. The minimal subsets of
A that are not contained in any face of Sλ are singletons {c} that do not participate in the
subdivision and doubletons {a,b} in which both a and b participate in the subdivision, but
no face contains both, so that the interior of the line segment between the lifted points lies
below the upper faces.

Lemma 1.6. Let S = Sλ be a regular subdivision of A.

(i) If {a,b} ⊂ A is not a subset of any face of S, then there is a facet G of S, a point
p ∈ ∆G, and numbers βa, βb > 0 and αg ≥ 0 for g ∈ G with

(2) p = βaa+ βbb =
∑

g∈G
αgg . where 1 = βa + βb =

∑

g∈G
αg .

(ii) If c ∈ A is not a member of any face of S, then there is a facet G of S with c ∈ ∆G
and therefore an expression

(3) c =
∑

g∈G
αgg where αg ≥ 0 and 1 =

∑

g∈G
αg .

(iii) If G is a facet of S and d 6∈ G, then there is an expression

(4) d =
∑

g∈G
αgg where 1 =

∑

g∈G
αg ,

of d as an affine combination of points of G.
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In any of (i), (ii), or (iii), if λ̃ is the affine function whose restriction to the facet G agrees
with λ, then

λ̃

(∑

g∈G
αgg

)
=

∑

g∈G
αgλ(g) ,

and we have the (respective) inequalities

(5) βaλ(a) + βbλ(b) < λ̃(p) , λ(c) < λ̃(c) , and λ(d) < λ̃(d) .

Proof. If {a,b} is not a subset of any face of S, then the interior of the line segment they span
meets the convex hull ∆F of some facet G of S in a point p. This gives the expression (2).
The first inequality of (5) expresses that the interior of the segment joining the lifted points
(a, λ(a)) and (b, λ(b)) lies strictly below the upper hull of Pλ.
If c ∈ A is not a member of a face of S, then there is a facet G of S with c lying in ∆G.

Thus c is a convex combination of the points of G, giving (3). Since c lies in no face of S,
the lifted point (c, λ(c)) is below the upper hull of Pλ, which implies the middle inequality

of (5) as λ̃(c) is the height of the point on the upper hull of Pλ above c.
Finally, as G is a facet of S, its points affinely span Rd, so there is an expression of d as

an affine combination of the points of G (4). The graph of the function λ̃ is the hyperplane
supporting the upper facet of the lifted polytope Pλ corresponding to G. Then, if a 6∈ G, we
have λ(a) < λ̃(a), and the third inequality of (5) is a special case of this. ¤

1.3. Secondary fan of a point configuration. For a regular subdivision S of a point
configuration A ⊂ Rd, let σ(S) ⊂ RA be the (closure of) the set of all functions λ which
induce S. This forms a cone in RA which is full-dimensional if and only if S is a regular
triangulation of A. The collection of these cones forms the secondary fan ΣA of the point
configuration A. Write Sσ for the subdivision corresponding to a cone σ of the secondary
fan. The minimal cone of ΣA is the linear space Aff(A), for adding an affine function ψ to a
function λ does not change the subdivision, Sλ = Sψ+λ, and elements of Aff(A) induce the
trivial subdivision of A whose only facet is A.
A polyhedral subdivision S of A is refined by another S ′ (S ≺ S ′) if for every face F ′ of

S ′, there is a face F of S with F ⊃ F ′. This refinement poset is equal to the poset of the
cones of the secondary fan under inclusion. That is, Sσ is refined by Sρ if and only if σ is a
face of ρ. In particular, if {a1, . . . , ar} is not a subset of any face of Sσ then it is not a subset
of any face of Sρ for any cone ρ of the secondary fan that contains σ.

Example 1.7. Let A = {(0, 0), (1, 0), (1, 1), (1
2
, 3
2
), (0, 1)} ⊂ R2. Its convex hull is a pentagon.

( 1
2
, 3

2
)

(0, 1) (1, 1)

(0, 0) (1, 0)
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Figure 2 shows the poset of regular subdivisions of A. For each, it gives the corresponding
polyhedral subdivision of ∆A and functions λ inducing the subdivision. Working modulo
Aff(A), we assume that a function λ ∈ RA takes value zero at the three points where the
second coordinate is positive. The parameter r in the middle row is always positive. Working

0

0 0

0 0

0

0 0

−r 0

ρ5

0

0 0

r

2
r

ρ1

0

0 0

−r −r

ρ4

0

0 0

r r

2

ρ2

0

0 0

0 −r

ρ3

0

0 0

s t
t > 0
t > 2s

τ5

0

0 0

s t
t < 0
s < t

τ4

0

0 0

s t
t > 0

2t > s > t

2

τ1

0

0 0

s t
s < 0
t < s

τ3

0

0 0

s t
s > 0
s > 2t

τ2

Figure 2. Poset of regular subdivisions of A.

modulo Aff(A) (using these parameters), the secondary fan of A is shown in Figure 3.

2. Real irrational toric varieties

Let A ⊂ Rd be a finite set of vectors. We do not assume that A affinely spans Rd. The
A-simplex A ⊂ RA

≥ is the convex hull of the standard basis vectors {ea | a ∈ A} in RA i.e.,

A :=

{
z ∈ RA

≥ |
∑

a∈A
za = 1

}
.

ρ5

ρ1

ρ3

ρ2

ρ4

τ5
τ1

τ3
τ2τ4

Figure 3. Secondary fan of A.
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It is convenient to represent points of A using homogeneous coordinates [za | a ∈ A] where
each za ≥ 0, not all coordinates are equal to zero, and we have

[za | a ∈ A] = [γza | a ∈ A] for all γ ∈ R> .

The real torus RA
> acts on A where for w ∈ RA

> and z ∈ A, we have

w.z := [wa · za | a ∈ A] .

When F ⊂ A, the simplex F is a face of A and all faces of A arise in this way. The
restriction map from RA to RF given by z 7→ z|F induces a rational map πF : A

99K
F ,

which is undefined on ArF . On the remainder A r ArF , we restrict z ∈ RA to
z|F ∈ RF and then rescale z|F to obtain a point in the simplex F .
The simplex A is a compact metric space where we measure distance with the ℓ1-metric

from RA. That is, if y, z ∈ A, then

d(y, z) :=
∑

a∈A
|ya − za| .

Lemma 2.1. Suppose that F ⊂ A and z ∈ A r ArF , so that the projection πF(z) to
F is defined. Then

d(z, πF(z)) = 2
∑

a∈ArF
za .

Proof. Set y := πF(z), which is obtained by restricting z ∈ RA to z|F ∈ RF and then scaling
to obtain a point in the simplex F . That is,

ya =

{
0 if a 6∈ F
za∑
f∈F zf

if a ∈ F

Note that if f ∈ F then yf ≥ zf . Thus,

d(y, z) =
∑

a∈ArF
za +

∑

a∈F

(
za∑
f∈F zf

− za

)

=
∑

a∈ArF
za + 1 −

∑

a∈F
za = 2

∑

a∈ArF
za ,

as 1 =
∑

a∈ArF za +
∑

a∈F za. ¤

2.1. Hausdorff distance. The Hausdorff distance beween closed subsets X, Y ⊂ A is

dH(X, Y ) := max

{
sup
x∈X

inf
y∈Y

d(x, y) , sup
y∈Y

inf
x∈X

d(x, y)

}
.

This endows the set of closed subsets of A with the structure of a complete metric space,
and the corresponding metric topology is the Hausdorff topology. If we have a sequence
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{Xi | i ∈ N} of subsets of A, then

lim
i→∞

Xi = X

if and only if X contains all accumulation points of the sequence {Xi | i ∈ N}, and each
point of X is a limit point of the sequence.

2.2. Real irrational toric varieties. For x ∈ R> and a ∈ R, set xa := exp(a log(x)). For
x ∈ Rd

> and a ∈ Rd, we have the monomial xa := xa1
1 · · · xad

d . The points A ⊂ Rd define a
map

(6) ϕA : Rd
> −→ A where ϕA(x) = [xa | a ∈ A] .

The real irrational toric variety XA is the closure of the image X◦
A of ϕA in A.

The convex hull ∆A of A is the image of A under the map tautA : RA → Rd defined by

tautA : (za | a ∈ A) 7−→
∑

a∈A
zaa .

The following theorem of Birch from algebraic statistics [1, p. 168] identifies XA with ∆A.

Theorem 2.2. The restriction of tautA to XA is a homeomorphism tautA : XA → ∆A.

In particular this shows that the toric variety XA has dimension equal to the dimension of
the convex hull of A. We call this restriction of tautA to XA the algebraic moment map.
Homogeneous equations for XA were described in [4, Prop. B.3] as follows. For every affine

relation among the points of A with nonnegative coefficients

(7)
∑

a∈A
αaa =

∑

a∈A
βaa where

∑

a∈A
αa =

∑

a∈A
βa ,

with αa, βa ∈ R>, we have the valid equation for points z ∈ XA,

(8)
∏

a∈A
zαa

a =
∏

a∈A
zβa

a .

Conversely, if z ∈ A satisfies equation (8) for every affine relation (7), then z ∈ XA.
Given a point w = (wa | a ∈ A) ∈ RA

> of the real torus, we have the translated toric
variety XA,w := w.XA, which is the closure of X◦

A,w := w.X◦
A. Birch’s Theorem still holds for

XA,w; it is mapped homeomorphically to ∆A by the algebraic moment map tautA. We have
the following description of the equations for XA,w.

Proposition 2.3. A point z ∈ A lies in XA,w if and only if
∏

a∈A
zαa

a ·
∏

a∈A
wβa

a =
∏

a∈A
zβa

a ·
∏

a∈A
wαa

a ,

for every affine relation (7) among the points of A. On X◦
A,w, we additionally have such

equations coming from affine relations (7) where the numbers αa, βa are allowed to be negative.
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The real torus RA
> acts on XA with the stabilizer of XA the image of Rd+1

> in RA
> under

the map

(t0, t1, . . . , td) 7→ (t0t
a | a ∈ A) .

Under the coordinatewise logarithm map Log : RA
> → RA, this stabilizer subgroup is mapped

to the subspace Aff(A) of affine functions on A.

Lemma 2.4. For w,w′ ∈ RA
>, XA,w = XA,w′ if and only if Log(w)− Log(w′) ∈ Aff(A).

The toric variety XF ⊂ F is the image of the toric variety XA under the map πF . This
can be seen either from the definition (6) or from the equations (8) for XA. Likewise, if
w ∈ RA

> and w|F is its restriction to F , then πF(XA,w) = XF ,w|F . We write XF ,w for XF ,w|F
to simplify notation. When ∆F has dimension d, the map πF : X◦

A,w → X◦
F ,w is a bijection.

A consequence of the properties of tautA is a description of the boundary of XA,w. Let F
be a face of the polytope ∆A and F = A∩F be the points of A lying on F , also called a face

of A. Then the toric variety XF ,w equals XA,w ∩ F . The collection of toric varieties XF ,w

where F ranges over the faces of ∆A forms the boundary of XA,w. We have the decomposition
of XA,w into disjoint subsets,

(9) XA,w =
⊔

F
X◦

F ,w ,

where F ranges over all faces of A. Each set X◦
F ,w is an orbit of RA

> acting on XA,w.

3. Toric degenerations of real irrational toric varieties

We describe all limits of the toric variety XA under cosets of one-parameter subgroups
of RA

>, called toric degenerations. Each limit is a complex of toric varieties supported on a
union of faces of A that is the geometric realization of a regular subdivision of A. Its proof
follows that of Theorem A.1 in [7] which was for the case when A ⊂ Zd.

3.1. Complexes of toric varieties. Let S be a polyhedral subdivision of A. The geometric

realization |S| of S is the union

|S| :=
⋃

F a face of S

F

of faces of A corresponding to faces of the subdivision S. The following is standard, it
holds for more general simplicial complexes on A (see for instance [12, Chapter 1]).

Proposition 3.1. The geometric realization |S| of a polyhedral subdivision S of A is defined
as an analytic subset of A by the vanishing of the monomials

{zazb | {a,b} is not a subset of any face of S}
⋃

{zc | c lies in no face of S} .



12 ELISA POSTINGHEL, FRANK SOTTILE, AND NELLY VILLAMIZAR

For a polyhedral subdivision S of A, the corresponding union of toric varieties

(10) X(S) :=
⋃

F a face of S
XF

is the complex of toric varieties corresponding to S. This is the union of toric varieties XF
for F a facet of S glued together along toric subvarieties corresponding to common faces.
That is, if G = F ∩ F ′, then ∆G = ∆F ∩∆F ′ is a common face and XG = XF ∩XF ′ .
A point w ∈ RA

> of the positive torus acts on the complex of toric varieties (10) by
translation, giving the translated complex,

(11) X(S, w) := w.X(S) =
⋃

F a face of S
XF ,w .

A consequence of (11) and the decomposition (9) of XA into disjoint orbits is the decompo-
sition of X(S, w) into disjoint orbits,

X(S, w) =
⊔

F a face of S
X◦

F ,w .

The union of X◦
F ,w where F ranges over the facets of S forms a dense open subset of the

complex X(S, w) of toric varieties.

3.2. Toric degenerations. An element λ ∈ RA defines a one-parameter subgroup λ(t) in
RA: for t ∈ R set λ(t)a := exp(tλ(a)). Given w ∈ RA, we have the coset wλ(t) := λ(t) ·w and
the corresponding family of translated toric varieties XA,wλ(t) = λ(t).XA,w. We omit the proof
of the following theorem, which is the same, mutatis mutandis, as that of the corresponding
statement (Theorem 3) in [7].

Theorem 3.2. Let λ ∈ RA. For any w ∈ RA
>, the family λ(t).XA,w of translated toric

varieties has a limit as t → ∞ in the Hausdorff topology on closed subsets of A, and

lim
t→∞

λ(t).XA,w = X(S, w) ,

where S is the regular subdivision of A induced by λ.

This theorem shows that when S is the regular subdivision induced by the function λ, the
complex of toric varieties X(S, w) is the limit of a sequence of translates of the real irrational
toric variety XA,w by elements of the one-parameter subgroup λ(t).
In [7, Th. 5.2] a weak converse of Theorem 3.2 was proved when A ⊂ Zd: if a sequence of

translates of XA has a limit in the Hausdorff topology, then this limit is the complex of toric
varieties X(S, w) for some regular subdivision S of A and w ∈ RA

>.
We prove a stronger result, that every sequence of translates has a subsequence that

converges in the Hausdorff topology to some complex X(S, w) of toric varieties. This implies
that the set of translates of XA is compactified by the set of toric degenerations of XA.



DEGENERATIONS OF REAL IRRATIONAL TORIC VARIETIES 13

Theorem 3.3. For every finite set A ⊂ Rd and every sequence {wi | i ∈ N} in the positive
torus RA

>, there is a subsequence {uj | j ∈ N} ⊂ {wi | i ∈ N}, a regular subdivision S of A,
and an element w ∈ RA

> such that

lim
j→∞

uj.XA = X(S, w)

in the Hausdorff topology on subsets of the simplex A.

The subsequence {uj | j ∈ N} and regular subdivision S of Theorem 3.3 are obtained as
follows. The sequence of logarithms {Log(uj) | j ∈ N} is a subsequence of {Log(wi) | i ∈ N}
that lies in a cone τ of the secondary fan of A having a face σ that is the minumum face of
boundedness of any subsequence of {Log(uj) | j ∈ N}, as in Lemma 1.3. Then the subdivision
S is Sσ, the regular subdivision of A corresponding to the cone σ. More details are given in
Subsection 4.1, where we also define the weight w.
The proof of Theorem 3.3 occupies Section 4.

4. Hausdorff limits of torus translates

Let {wi | i ∈ N} ⊂ RA
> be a sequence of elements of the positive torus. Consider the

corresponding sequence of logarithms, vi := Log(wi) for i ∈ N. We show the existence of
a subsequence of {wi} (equivalently of {vi}) so that the corresponding sequence of torus
translates XA,wi

of XA converges in the Hausdorff topology to a complex of toric varieties
X(S, w) for some regular subdivision S (which we construct) of A and a weight w ∈ RA

>

(which we also identify). For this, we will freely replace the sequence {vi} by subsequences
throughout. Let us begin with an example.

Example 4.1. Suppose that the sequence {vi | i ∈ N} has an accumulation point modulo
Aff(A). Replacing {vi} by a subsequence, we may assume that it is convergent modulo
Aff(A). Convergent sequences are bounded so there is a bounded set B ⊂ RA with {vi | i ∈
N} ⊂ Aff(A) +B and therefore a sequence {ui | i ∈ N} ⊂ Aff(A) and a convergent sequence
{vi | i ∈ N} ⊂ B such that vi = ui + vi, for each i ∈ N. Let v be the limit of the sequence
{vi}.
Set wi := Exp(vi) and w := Exp(v). As vi − vi ∈ Aff(A), we have XA,wi

= XA,wi
. Then,

as limi→∞ wi = w, the equations of Proposition 2.3 for XA,wi
show that

lim
i→∞

wi.XA = lim
i→∞

wi.XA = w.XA ,

In this case, the limit of torus translate is just another torus translate.

4.1. The limiting set X(S, w). We replace {vi | i ∈ N} by a subsequence from which
we determine a regular subdivision S of A and a weight w ∈ RA

>. These define a complex
X(S, w) of toric varieties which we will show is the limit of the sequence of torus translates
XA,wi

corresponding to that subsequence.
The secondary fan ΣA consists of finitely many cones σ. Let τ ∈ ΣA be a cone which is

minimal under inclusion such that τ ∩ {vi | i ∈ N} is infinite. Replacing {vi} by τ ∩ {vi}, we
have that {vi} ⊂ τ and if σ ( τ , then {vi} ∩ σ is finite.
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By Lemma 1.3, replacing {vi} by a subsequence if necessary, there is a face σ of τ that is
the minimum face of boundedness of any subsequence of {vi}. Let S := Sσ be the regular
subdivision of A corresponding to σ.
As {vi} is σ-bounded, its image in RA/〈σ〉 is bounded, and so there exists a closed bounded

set B ⊂ τ with {vi} ⊂ σ + B. Thus there are sequences {ui} ⊂ σ and {vi} ⊂ B with

vi = ui + vi for i ∈ N .

The sequence {vi} has an accumulation point v ∈ B. Replacing {vi} by a subsequence we
have that

lim
i→∞

vi = v ,

and replace {ui} and {vi} by the corresponding subsequences. We define the vector w by
wa := exp(va) and write w = Exp(v).
We show that X(S, w) is the limit of the sequence of translations of the complex X(S) of

toric varieties by the sequence {wi | i ∈ N} = {Exp(vi) | i ∈ N}.
Lemma 4.2. In the Hausdorff topology we have

lim
i→∞

X(S, wi) = X(S, w) .

Proof. Set wi := Exp(vi). Let F be a face of S = Sσ. Then vi − vi = ui ∈ σ, and so the
restriction of each ui to F is an affine function. Thus XF ,wi

= XF ,wi
, by Lemma 2.4. Since

vi → v as i → ∞, we have wi → w as i → ∞, and thus

(12) lim
i→∞

XF ,wi
= XF ,w .

This proves the lemma, by the definition (11), X(S, wi) and X(S, w) are the union of XF ,wi

and XF ,w for F a face of S, respectively. ¤

Example 4.3. For the point configuration A := {(0, 0), (1, 0), (1, 1), (1
2
, 3
2
), (0, 1)} in R2 of

Example 1.7, consider the sequence {wi | i ∈ N} ⊂ RA
> where wi := Exp(vi) and

vi :=
(
−i−1

i
, i−1 , i , − i

2
, −i

)
.

An affine function on R2 is given by (x, y) 7→ a+ bx+ cy, and so this sequence is equivalent
modulo Aff(A) to any sequence of the form

(
ai−i−1

i
, ai+bi+i−1 , ai+bi+ci+i , ai+

bi
2
+3ci

2
− i

2
, ai+ci−i

)
.

Setting ai = 0, bi = −2i, and ci = i, we obtain the equivalent sequence

ṽi :=
(
−i−1

i
, −i−1 , 0 , 0 , 0

)
,

which lies in the plane used in Example 1.7 for representatives of RA modulo Aff(A).
In Figure 4, we show the coordinates of vi and ṽi, together with the induced triangulation,

which is the same for all i > 1. Thus we see that each ṽi and also vi lies in the full-dimensional
cone τ3 of the secondary fan ΣA (see Figures 2 and 3). In the coordinates R2 for RA/Aff(A),
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vi
− i

2

−i i

−i− 1

i
i−1

ṽi
0

0 0

−i− 1

i
−i−1

Figure 4. Triangulation induced by {vi | i ∈ N}.

we have ṽi = (−i− 1
i
,−i−1) and the rays ρ3 and ρ4 of τ3 are generated by e3 := (0,−1) and

e4 := (−1,−1), respectively. Writing ṽi in this basis for R2 gives

ṽi := (1−1
i
)e3 + (i+1

i
)e4 .

Thus the images of {vi} in the quotients RA/〈ρ3〉 = R2/Re3 ≃ Re4 and RA/〈ρ4〉 = R2/Re4 ≃
Re3 are, respectively,

{(i+1
i
)e4} and {(1−1

i
)e3} .

The first is divergent while the second is bounded.
The minimum face of boundedness of any subsequence of {vi} is ρ4. If we set

ui := (−i− 1

i
, −i− 1

i
, 0 , 0 , 0) and vi := (0 , −1 +

1

i
, 0 , 0 , 0) ,

then ṽi = ui + vi, where ui ∈ ρ4 and {vi} is bounded in τ3. Then v = (0,−1, 0, 0, 0) and thus
w := (1, 1

e
, 1, 1, 1). We display ṽi for i = 1, . . . , 6, v + 〈ρ4〉, and v below.

ρ4 τ3 ρ3

v
v + 〈ρ4〉✛

ṽi ✲❳❳❳③◗
◗s❏
❏❫

❈
❈❈❲

❄

We determine the limit of the sequence {XA,wi
| i ∈ N}. By Proposition 2.3, for w ∈ RA,

XA,w is defined by the vanishing of the five homogenous binomials,

w10w01z00z11 − w00w11z10z01 ,

w00w
3
11z

2
10z

2
1
2

3
2

− w2
10w

2
1
2

3
2

z00z
3
11 , w10w

3
01z

2
00z

2
1
2

3
2

− w2
00w

2
1
2

3
2

z10z
3
01 ,(13)

w2
01w11z00z

2
1
2

3
2

− w00w
2
1
2

3
2

z201z11 , w01w
2
11z10z

2
1
2

3
2

− w10w
2
1
2

3
2

z01z
2
11

Set wi = Exp(vi) = (e−i− 1
i , ei−1, ei, e−

1
2 , e−i) and consider the sequence {XA,wi

}. We invite
the reader to check that if w ∈ Exp(Aff(A)), then the coefficients of the monomial terms
in each binomial of (13) are equal and therefore XA = XA,w. It follows that for each i,
XA,wi

≃ XA,w̃i
, where

w̃i := Exp(ṽi) = (e−i− 1
i , e−i−1, 1, 1, 1) .
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Then XA,w̃i
is defined by the binomials

e−i−1z00z11 − e−i− 1
i z10z01 , e−i− 1

i z210z
2
1
2

3
2

− e−2i−2z00z
3
11 , e−i−1z200z

2
1
2

3
2

− e−2i− 2
i z10z

3
01 ,

z00z
2
1
2

3
2

− e−i− 1
i z201z11 , z10z

2
1
2

3
2

− e−i−1z01z
2
11

We may rewrite the first three as

e−1+ 1
i z00z11 − z10z01 , z210z

2
1
2

3
2
− e−i−2+ 1

i z00z
3
11 , z200z

2
1
2

3
2
− e−i+1− 2

i z10z
3
01 .

Then, if we let i → ∞, these five binomials become one binomial and two monomials,

e−1z00z11 − z10z01 , z210z
2
1
2

3
2
, z200z

2
1
2

3
2
.

The monomials define the subdivision S of A corresponding to the ray ρ4, and the binomial
defines the toric variety XF ,w, where F is the facet of the subdivision consisting of the points
Ar {(1

2
, 3
2
)}. In particular, this computation implies that

lim
i→∞

XA,wi
= X(S, w) ,

which shows the conclusion of Theorem 3.3 for this example.

Example 4.4. Example 4.3 involved torus translations corresponding to the sequence {vi} of
Example 1.2. We now consider the limit of torus translations corresponding to the sequence
{ui} of Example 1.2. For i ∈ N, set

wi := (e
√
i−i, e−i, 1, 1, 1) ,

and ui := Log(wi) = (
√
i − i,−i, 0, 0, 0), which is essentially the sequence of {vi} of Exam-

ple 1.2. Then XA,wi
is defined by the binomials

e−iz00z11 − e
√
i−iz10z01 , e

√
i−iz210z

2
1
2

3
2

− e−2iz00z
3
11 , e−iz200z

2
1
2

3
2

− e2
√
i−2iz10z

3
01 ,

z00z
2
1
2

3
2

− e
√
i−iz201z11 , z10z

2
1
2

3
2

− e−iz01z
2
11

Rewriting the first three gives

e−
√
iz00z11 − z10z01 , z210z

2
1
2

3
2
− e−i−

√
iz00z

3
11 , z200z

2
1
2

3
2
− e2

√
i−iz10z

3
01 .

Then, as i → ∞, these five binomials become the three monomials,

z10z01 , z10z
2
1
2

3
2
, z00z

2
1
2

3
2
.

These monomials define the geometric realization |S| of the triangulation S of A correspond-
ing to the cone τ3. In particular,

lim
i→∞

XA,wi
= X(S, w) ,

for any weight w ∈ RA
>, which shows the conclusion of Theorem 3.3 for this example.
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4.2. Hausdorff limits of translates. We prove Theorem 3.3, that

lim
i→∞

XA,wi
= X(S, w) .

We prove this limit in three steps:

(i) Any accumulation point of the sequence {XA,wi
| i ∈ N} lies in the geometric real-

ization |S| of the regular subdivision S. (Lemma 4.5.)
(ii) For each face F of S, any accumulation points of {XA,wi

| i ∈ N} in F lie in XF ,w.
(Lemma 4.6.)

(iii) Every point of X(S, w) is a limit point of {XA,wi
| i ∈ N}. (Lemma 4.7.)

By (i) and (ii) the accumulation points of {XA,wi
} are a subset of X(S, w). This, together

with (iii), establishes the limit as observed in § 2.1.

Lemma 4.5. Let y ∈ A be an accumulation point of {XA,wi
| i ∈ N}. Then y ∈ |S|.

Proof. We show that no point of A r |S| is an accumulation point of {XA,wi
| i ∈ N}. Let

y 6∈ |S|. We will produce an ǫ > 0 and an N such that if i > N then d(y,XA,wi
) > ǫ.

By Proposition 3.1, either there are a,b ∈ A with {a,b} not a subset of any face of S and
yayb 6= 0, or else there is a c ∈ A that lies in no face of S and yc 6= 0. In the first case, set
ǫ := 1

2
min{ya, yb} and in the second case, set ǫ := 1

2
yc. Suppose that we are in the first case.

Since {a,b} is not a subset of any face of Sσ, σ is a face of τ , and S = Sσ is refined by Sτ ,
{a,b} is not a subset of any face of Sτ . By Lemma 1.6 there is a relation (2) expressing a
point p in the interior of the segment a,b as a convex combination of the points in a facet G
of Sτ . By Proposition 2.3 this gives the valid equation on points z ∈ XA,wi

,

zβa

a zβb

b =
wi(a)

βawi(b)
βb

∏
g∈G wi(g)αg

·
∏

g∈G
zαg

g ,

where we write wi(a) for (wi)a. As 0 ≤ zg ≤ 1, αg ≥ 0, and wi = Exp(vi), we have

zβa

a zβb

b ≤ exp
(
βavi(a) + βbvi(b) −

∑

g∈G
αgvi(g)

)
.

It suffices to show that the exponential has limit 0, which is equivalent to

(14) lim
i→∞

(
βavi(a) + βbvi(b) −

∑

g∈G
αgvi(g)

)
= −∞ .

For then, as 0 < βa, βb < 1, if i is large enough, then one of za or zb is less than ǫ, which
implies that d(y, z) > ǫ and thus d(y,XA,wi

) > ǫ.
To establish (14), consider the linear function ϕ defined for λ ∈ RA by

ϕ(λ) := βaλ(a) + βbλ(b)−
∑

g∈G
αgλ(g) .

Then the limit (14) is equivalent to

(15) lim
i→∞

ϕ(vi) = −∞ .
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By the inequality (5), ϕ(λ) < 0 for λ in the relative interior of τ , and thus ϕ is nonpositive
on τ . As G is a subset of a facet F of Sσ, the inequality (5) shows that ϕ(λ) is also negative
for λ in the relative interior of σ.
If ϕ(vi) does not have the limit (15), then there is an M with M < ϕ(vi) for infinitely

many vi. Then M is negative, as ϕ(vi) < 0 for all but finitely many i ∈ N since all but
finitely many vi lie in the relative interior of τ . Since ϕ is negative on the relative interior
of the cone σ, there is some v ∈ σ with ϕ(v) = M , and so there are infinitely many vi with
ϕ(v) < ϕ(vi). Such a vi has 0 < ϕ(vi − v), which implies that vi − v 6∈ τ . Consequently,
infinitely many elements of {vi − v | i ∈ N} do not lie in τ , which contradicts Lemma 1.4.
This establishes the limit (14) and shows that there is some N ∈ N such that if i > N then
d(y,XA,wi

) > ǫ.
Suppose that we are in the second case of yc 6= 0 with c not lying in any face of S. As σ

is a face of τ , S = Sσ is refined by Sτ and we see that c does not lie in any face of Sτ . By
Lemma 1.6 there is a relation (3) expressing c as a convex combination of the points of a
facet G of Sτ . By Proposition 2.3 this gives the valid equation on points z ∈ XA,wi

,

zc =
wi(c)∏

g∈G wi(g)γg
·
∏

g∈G
zγgg with 0 ≤ γg ≤ 1 .

As 0 ≤ zg ≤ 1 and wi = Exp(vi), this implies that

zc ≤ exp
(
vi(c)−

∑

g∈G
γgvi(g)

)
.

We complete the proof by showing that

lim
i→∞

(
vi(c)−

∑

g∈G
γgvi(g)

)
= −∞ .

Set ϕ(λ) := λ(c)−∑
g∈G γgλ(g), for λ ∈ RA. This limit becomes limi→∞ ϕ(vi) = −∞, which

is proved by the same arguments as for the limit (15). Thus in this second case there is a
number N ∈ N such that if i > N , then d(y,XA,wi

) > ǫ. ¤

Lemma 4.6. If y ∈ |S| is an accumulation point of {XA,wi
| i ∈ N}, then y ∈ X(S, w).

Proof. Let y ∈ |S|, so that y ∈ F for some face F of S. If y is also an accumulation point
of {XA,wi

| i ∈ N}, then for all ǫ > 0 and for all N > 0 there is an i > N and point z ∈ XA,wi

with d(y, z) < 1
3
ǫ. Since ya = 0 for a ∈ Ar F , we must have

∑

a∈ArF
za <

1

3
ǫ ,

and so by Lemma 2.1, d(z, πF(z)) < 2
3
ǫ, which implies that d(y, πF(z)) < ǫ. As πF(z) ∈

πF(XA,wi
) = XF ,wi

, this shows that y is an accumulation point of {XF ,wi
| i ∈ N}. Since we

have limi→∞ XF ,wi
= XF ,w (12) and Lemma 4.2, we have y ∈ XF ,w. ¤

Lemma 4.7. Every point of X(S, w) is a limit point of the sequence {XA,wi
| i ∈ N}.
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Proof. We prove that every x ∈ X◦
F ,w for F a facet of S is a limit point of {XA,wi

}. This
suffices, as the union of these sets,

X◦(S, w) :=
⊔

F a facet of S
X◦

F ,w .

is a dense subset of X(S, w).
Let F be a facet of S. For δ > 0, define

Bδ := {y ∈ F | yf ≥ δ for f ∈ F} .
Let x ∈ X◦

F ,w and ǫ > 0. Since xf 6= 0 for f ∈ F , there is a δ > 0 with xf ≥ 2δ for f ∈ F . By
Lemma 4.8 below, there is a number N1 such that if i > N1 and y ∈ Bδ ∩XF ,wi

, there is a
point z ∈ XA,wi

with d(z, y) < ǫ. We showed (in (12)) that

lim
i→∞

XF ,wi
= XF ,w .

Thus there is a number N ≥ N1 such that if i > N , there is a point y ∈ XF ,wi
with

d(x, y) < min{ǫ, δ}. Since |xf − yf | < δ and xf ≥ 2δ, we have yf > δ for all f ∈ F , and thus
y ∈ Bδ. As i > N1, there is a point z ∈ XA,wi

with d(y, z) < ǫ. Therefore d(x, z) ≤ 2ǫ, which
shows that x is a limit point of {XA,wi

}. ¤

Lemma 4.8. Let F be a facet of S and δ, ǫ > 0. Then there exists a number N such that
for every i > N and y ∈ Bδ ∩XF ,wi

the point z ∈ XA,wi
with πF(z) = y satisfies d(y, z) < ǫ.

Proof. Let d ∈ ArF . As F is a facet of Sσ and Sσ is refined by Sτ , there is a facet G of Sτ

with G ⊂ F . By Lemma 1.6 there is a relation (4) expressing d as an affine combination of
points of G, and by Proposition 2.3 this gives the valid equation on points x ∈ X◦

A,wi
,

(16) xd =
wi(d)∏

g∈G wi(g)αg

∏

g∈G
xαg

g .

For each d ∈ ArF , fix one such affine expression (4) for d in terms of a subset G of F that
is a facet in Sτ , together with the corresponding equation (16) on X◦

A,wi
.

For y ∈ Bδ ∩XF ,wi
, we have y ∈ X◦

F ,wi
, so there is a unique z ∈ X◦

A,wi
with πF(z) = y. We

find z by first computing the number yd satisfying (16) (with yg substituted for xg) for each
d ∈ ArF . Then the point y′ whose coordinates for f ∈ F equal those of y and whose other
coordinates are these yd satisfies the equations (16) for X◦

A,wi
, but it is not a point of the

standard simplex, A for the sum of its coordinates exceeds 1. Dividing each coordinate of
y′ by this sum gives the point z ∈ X◦

A,wi
lying in the simplex A with πF(z) = y.

We extract from this discussion that the coordinate zd of z is smaller than the coordinate
yd of y′ that we computed from y ∈ Bδ ∩XF ,wi

and (16).
We show below that for every ǫ > 0 there is a number N such that if i > N and y ∈

Bδ ∩XF ,wi
, then for each d ∈ Ar F the number yd that we compute from y and (16) is at
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most 1
2|ArF|ǫ. Then if z ∈ XA,wi

is the point which projects to y, we have

d(y, z) = 2
∑

d∈ArF
zd < 2

∑

d∈ArF
yd < 2

∑

d∈ArF

ǫ

2|Ar F| = ǫ ,

which will complete the proof. (The formula for d(y, z) is from Lemma 2.1).
First fix d ∈ Ar F . For y ∈ Bδ, the monomial from (16),

∏

g∈G
yαg

g ,

is defined (as yg ≥ δ) and is thus bounded on the compact set Bδ by some number, L. Then

yd ≤ wi(d)∏
g∈G wi(g)αg

· L ,

if y ∈ Bδ ∩XF ,wi
. We will show that the coefficient of L has limit zero as i → ∞. Since this

holds for all d ∈ A r F , there is a number N such that if i > N , then every number yd is
bounded by 1

2|ArF|ǫ, which will complete the proof.

Taking logarithms, this limit being zero is equivalent to

lim
i→∞

(
vi(d) −

∑

g∈G
αgvi(g)

)
= −∞ .

Define the linear function ϕ on RA by

ϕ(λ) := λ(d) −
∑

g∈G
αgλ(g) ,

where λ ∈ RA. Then our limit becomes limi→∞ ϕ(vi) = −∞, which is proved by the same
arguments as for the limit (15). ¤
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4. G. Craciun, L. Garćıa-Puente, and F. Sottile, Some geometrical aspects of control points for toric patches,
Mathematical Methods for Curves and Surfaces, Lecture Notes in Computer Science, vol. 5862, Springer,
Berlin, Heidelberg, New York, 2010, pp. 111–135.

5. J. A. De Loera, J. Rambau, and F. Santos, Triangulations, Algorithms and Computation in Mathematics,
vol. 25, Springer-Verlag, Berlin, 2010, Structures for algorithms and applications.



DEGENERATIONS OF REAL IRRATIONAL TORIC VARIETIES 21
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