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SOFTWARE FOR THE GALE TRANSFORM OF FEWNOMIAL

SYSTEMS AND A DESCARTES RULE FOR FEWNOMIALS

DANIEL J. BATES, JONATHAN D. HAUENSTEIN, MATTHEW E. NIEMERG,
AND FRANK SOTTILE

Abstract. We give a Descartes’-like bound on the number of positive solutions to a
system of fewnomials that holds when its exponent vectors are not in convex position
and a sign condition is satisfied. This was discovered while developing algorithms and
software for computing the Gale transform of a fewnomial system, which is our main
goal. This software is a component of a package we are developing for Khovanskii-Rolle
continuation, which is a numerical algorithm to compute the real solutions to a system
of fewnomials.

Determining the real solutions to a system of polynomial equations is a challenging
problem with real-world applications. Typically, few of the complex solutions are real and
even fewer satisfy meaningful constraints such as positivity. Methods based on symbolic
computation [22] or numerical homotopy continuation [4, 23] first find all complex solu-
tions. It is an active area of research to develop methods that find only the meaningful
real solutions. Among these are exclusion methods [11, 12], methods based on semidefinite
programming [17], the critical point method [13, 21], and one proposed by two of us [5]
that is based on the Khovanskii-Rolle Theorem [16] from the theory of fewnomials.

A system of polynomial equations with few monomials is a fewnomial system. Such a
system enjoys bounds on its number of real solutions independent of its number of complex
solutions [1, 8, 16]. Khovanskii-Rolle continuation is a symbolic-numeric method that
can find all positive real solutions of a fewnomial system without first finding all complex
solutions. In fact, it is the first algorithm for computing positive solutions with complexity
depending primarily on the fewnomial bound on the number of real solutions, rather than
the number of complex solutions or the ambient dimension. The core algorithm was
described in [5], along with a proof of concept implementation.

Khovanskii-Rolle continuation rests upon the fundamental notion of Gale duality for

polynomial systems, which is a scheme-theoretic isomorphism between complete intersec-
tions of Laurent polynomials in an algebraic torus and complete intersections of master

2010 Mathematics Subject Classification. 14P99, 65H10, 65H20.
Key words and phrases. fewnomial, Khovanskii–Rolle, Descartes’ rule, Gale duality, numerical contin-

uation, polynomial system, numerical algebraic geometry, real algebraic geometry.
Bates and Niemerg supported by NSF grants DMS-0914674 and DMS-1115668.
Niemerg supported in part by the National Basic Research Program of China Grants 2011CBA00300,

2011CBA00301, the Natural Science Foundation of China Grants 61044002, 61361136003.
Hauenstein supported by NSF grant DMS-1262428, DARPA YFA, and Sloan Research Fellowship.
Sottile supported by the NSF grants DMS-0915211 and DMS-1001615.
All authors supported by Institut Mittag-Leffler.

1



2 D. J. BATES, J. D. HAUENSTEIN, M. E. NIEMERG, AND F. SOTTILE

functions in the complement of a hyperplane arrangement [9]. The support of the poly-
nomials annihilates the weights of the master functions, whence the term Gale duality.

The Khovanskii-Rolle continuation algorithm finds all real solutions to a system of
master functions. Computing approximations to the real solutions of a fewnomial sys-
tem F requires that F be converted into its dual Gale system G which is solved using
Khovanskii-Rolle continuation, then the numerical approximations to solutions of G are
converted back to numerical approximations to solutions of the original fewnomial sys-
tem F . Symbolic choices made in constructing the dual system affect the performance of
the Khovanskii-Rolle continuation algorithm.

One such choice is that of a basis for the nullspace of the matrix of exponent vectors of
the monomials of F . When the nullspace meets the positive orthant, a bound lower than
the fewnomial bound holds. Choosing a positive basis element results in far fewer paths
to be followed in the Khovanskii-Rolle continuation algorithm. This happens when the
exponent vectors of the original polynomial system are not in convex position and a sign
condition holds on the coefficient matrix. Such sign conditions are also found in recent
work giving very strong bounds on positive solutions [6, 7, 10, 20] and are considered to
be multivariate versions of Descartes’ rule of signs.

In addition to this new Descartes’-like bound, we make explicit the algorithms for both
the creation of G from F and the computation of solutions of F from solutions of G. These
steps were only described existentially in [9]. We have implemented these algorithms in a
software package galeDuality, which is available at each authors’ website. This will be
the front end for a software package in development for Khovanskii-Rolle continuation.

Section 1 gives a description of Gale duality and sketches Khovanskii-Rolle continuation,
illustrating it through an extended example. This material from [5, 9] is presented in a
condensed form to give background both for our Descartes’ bound and for our algorithms
and software. In Section 2, we present our Descartes’-like bound for fewnomial systems
and establish a key lemma about the location of points to be tracked in the algorithm.
Explicit pseudocode for using Gale duality to compute master functions (Algorithm 3.1)
and to transform approximations to solutions of the Gale system into approximations to
solutions of the fewnomial system (Algorithm 3.3) is provided in Section 3, along with
details for portions of these algorithms. One subroutine of Algorithm 3.1 requiring more
care is covered in Subsection 3.3. Finally, a brief description of our software package is
provided in Section 4.

1. Khovanskii-Rolle continuation and the Gale transform

Gale duality transforms a system of Laurent polynomials into a system of rational
master functions, which are in a form that allows us to bound their number of positive real
solutions and compute them. We begin with an example of Gale duality for polynomial
systems before presenting Gale duality in general and sketching the Khovanskii-Rolle
continuation algorithm, including making precise some assumptions and hypotheses of
the algorithm. For a complete treatment, see [5, 9].
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1.1. An example of Gale duality. Consider the system of polynomials,

v2w3 − 11uvw3 − 33uv2w + 4v2w + 15u2v + 7 = 0 ,

v2w3 + 5uv2w − 4v2w − 3u2v + 1 = 0 ,(1.1)

v2w3 − 11uvw3 − 31uv2w + 2v2w + 13u2v + 8 = 0 .

This system has 20 complex solutions. Six are real and three are positive,

(1.194, 0.374, 1.231) , (0.431, 0.797, 0.972) , (0.613, 0.788, 0.850) .

Solving the equations in (1.1) for the monomials v2w3, v2w, and uvw3, gives

v2w3 = 1− u2v − uv2w ,

v2w = 1
2
− u2v + uv2w , and(1.2)

uvw3 = 10
11
(1 + u2v − 3uv2w) .

Since
(
uv2w

)3
·
(
v2w3

)
= u3v8w6 =

(
u2v

)
·
(
v2w

)3
·
(
uvw3

)
and

(
u2v

)2
·
(
v2w3

)3
= u4v8w9 =

(
uv2w

)2
·
(
v2w

)
·
(
uvw3

)2
,

we may substitute the expressions on the right hand sides of (1.2) for the monomials v2w3,
v2w, and uvw3 in these expressions to obtain the system
(
uv2w

)3
·
(
1− u2v − uv2w

)
=

(
u2v

)
·
(
1
2
− u2v + uv2w

)3
·
(
10
11
(1 + u2v − 3uv2w)

)
(
u2v

)2
·
(
1− u2v − uv2w

)3
=

(
uv2w

)2
·
(
1
2
− u2v + uv2w

)
·
(
10
11
(1 + u2v − 3uv2w)

)2
.

Writing x for u2v and y for uv2w and solving for 0, these become

(1.3)
g := y3(1− x− y) − x(1

2
− x+ y)3

(
10
11
(1 + x− 3y)

)
= 0 , and

f := x2(1− x− y)3 − y2(1
2
− x+ y)

(
10
11
(1 + x− 3y)

)2
= 0 .

This system also has 20 solutions with six real, outside of the five lines where the degree
one factors vanish. Figure 1 shows the curves the equations (1.3) define and the five lines.
Three solutions lie in the pentagon. They correspond to the positive solutions of (1.1).

This transformation from the original polynomial system (1.1) to the system (1.3) is
called Gale duality for polynomial systems. The second system has three forms which are
equivalent in the pentagon. We first rewrite (1.3) as a system of rational master functions

(1.4)
x2(1− x− y)3

y2(1
2
− x+ y)

(
10
11
(1 + x− 3y)

)2 =
y3(1− x− y)

x(1
2
− x+ y)3

(
10
11
(1 + x− 3y)

) = 1 .

Then we take logarithms to obtain the last form.

(1.5)
2 log(x) + 3 log(1−x−y)− 2 log(y)− log(1

2
−x+y)− 2 log

(
10
11
(1+x−3y)

)
= 0

3 log(y) + log(1−x−y)− log(x)− 3 log(1
2
−x+y)− log

(
10
11
(1+x−3y)

)
= 0
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Figure 1. Curves defined by (1.3).

1.2. Geometry of Gale duality. Let R× = R/{0} be the nonzero real numbers. Sup-
pose that F : (R×)n → Rn is given by Laurent polynomials that have a total of n+ℓ
distinct monomials, none of which is a constant. For b ∈ Rn, the system F (x) = b of
Laurent polynomials has an equivalent expression. Let A := {a1, . . . , an+ℓ} ⊂ Zn be the
set of n+ℓ exponents of the monomials in F , which we call the support of F . Consider
the map

(1.6)
ϕA : (R×)n −→ (R×)n+ℓ ⊂ Rn+ℓ

x 7−→ (xa1 , xa2 , . . . , xan+ℓ) .

Affine-linear forms L(z) = λ pull back to polynomials with support A, and so F (x) = b
is the pullback of a codimension n (dimension ℓ) affine linear space H of Rn+ℓ defined by
C(z) = b, where C ∈ R

n×(n+ℓ) is the coefficient matrix of F . We define SF to be the set
of solutions of F (x) = b. Then,

(1.7) ϕA(SF ) = ϕA((R
×)n) ∩H .

Let ψ : Rℓ → H be any affine isomorphism. This is given by a point λ = ψ(0) ∈ H and
n+ℓ linear forms L1, . . . , Ln+ℓ on Rℓ which span the dual space of Rℓ,

(1.8) ψ(y) = (L1(y) + λ1, L2(y) + λ2 , . . . , Ln+ℓ(y) + λn+ℓ) ∈ H , for y ∈ R
ℓ.

The forms L1, . . . , Ln+ℓ span the kernel of C, C(L1(y), . . . , Ln+ℓ(y)) = 0. Define

SG := ψ−1(ϕA(SF )) ⊂ R
ℓ.

This set (which is isomorphic to SF as a scheme) satisfies a simple system of equa-
tions in Rℓ.

Any integer linear relation with coefficients βi ∈ Z among the exponents in A,

0 =
n+ℓ∑

i=1

βiai ,
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gives a monomial equation that is satisfied on ϕA((R
×)n) in (R×)n+ℓ,

(1.9)
n+ℓ∏

i=1

zβi

i = 1 .

This pulls back under ψ to an equation involving a rational master function,

(1.10)
n+ℓ∏

i=1

(Li(y) + λi)
βi = 1 ,

which is defined in the complement of the hyperplanes given by the affine forms Li(y)+λi.
Writing elements of A as column vectors yields an n × (n+ℓ) integer matrix, also

written A. An element of the integer nullspace of A gives a monomial equation (1.9)
vanishing on ϕA((R

×)n). Choosing a Z-basis for this nullspace gives a set G of ℓ equations
involving master functions (1.10), and these define the set SG. Assuming there are finitely
many solutions to F (x) = b in (C×)n, these ℓ monomial equations (1.9) that cut out the
torus ϕA((C

×)n) in (C×)n+ℓ restrict to a complete intersection in H and any r of these
master functions defines a subset in the hyperplane complement of codimension r. We
call this set G of ℓ master functions a Gale system dual to the system F (x) = b of Laurent
polynomials. We summarize some results in [8, 9].

Proposition 1.1. Let F (x) = b be a system of n Laurent polynomials on (R×)n with

support A consisting of n+ℓ nonzero exponents of monomials expressed as a matrix

A ∈ Z
n×(n+ℓ) and finitely many zeroes in (C×)n. Necessarily the exponent vectors span

a full rank sublattice ZA of Zn. Let ϕA be the map (1.6) and C ∈ R
n×(n+ℓ) be the coeffi-

cient matrix of F . The kernel of ϕA is the Pontryagin dual to Zn/ZA.

A Gale system dual to F (x) = b is given by a choice of a basis B = {β(1), . . . , β(ℓ)} ⊂ Zn+ℓ

for the integer nullspace of A, a choice of a basis L := {L1, . . . , Ln+ℓ} for the kernel of CT ,

and a choice of a point λ ∈ Rn+ℓ with CTλ = b. Considering each Li as a linear map

on R
ℓ, the system of master functions Gale dual to the Laurent system F (x) = b is

(1.11)
n+ℓ∏

i=1

(Li(y) + λi)
β
(j)
i = 1 j = 1, . . . , ℓ .

When ZA has odd index in Zn, the solutions to F (x) = b in (R×)n are scheme-theoretically

isomorphic to the solutions to (1.11) in the complement of the hyperplane arrangement

defined by Li(y) = −λi for i = 1, . . . , n+ℓ. For any A with ZA of full rank, the so-

lutions to F (x) = b in (R>0)
n correspond to solutions to (1.11) where Li(y) > −λi, for

i = 1, . . . , n+ℓ. The system (1.11) forms a regular sequence in the hyperplane complement.

The effect of the choices of B, L, and λ on the Gale system and its solutions may be
deduced from Proposition 1.1.

Corollary 1.2. Changing the basis B of the integer nullspace of A will change the Gale

system, but not its solutions in R
ℓ or the hyperplane arrangement. Changing the basis L

and the point λ has the effect of an affine-linear change of coordinates in Rℓ.
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Remark 1.3. There are two other forms for the Gale system. First, we may take loga-
rithms of the equations (1.11) to obtain the logarithmic form,

(1.12) φj(y) :=
n+ℓ∑

i=1

β
(j)
i log(Li(y) + λi) = 0 j = 1, . . . , ℓ .

This only makes sense in the positive chamber of the hyperplane complement,

∆ := {y ∈ R
ℓ | Li(y) > −λi for all i = 1, . . . , n+ℓ} .

To obtain the other form, set s+ := max{s, 0} and s− := max{−s, 0}, for s ∈ Z. Note
that s = s+ − s−. With this notation, we may clear the denominators of (1.11) to get a
polynomial form of the Gale dual system,

(1.13)
n+ℓ∏

i=1

(Li(y) + λi)
(β

(j)
i )+ −

n+ℓ∏

i=1

(Li(y) + λi)
(β

(j)
i )− = 0 j = 1, . . . , ℓ .

In the complement of the hyperplanes Li(y)+λi = 0, this has the same solutions as (1.11).

Remark 1.4. It is no loss of generality to assume that this positive chamber ∆ is bounded.
Indeed, suppose that ∆ is unbounded. This occurs if and only if the coefficient matrix C
annihilates a positive vector. Since L1, . . . , Ln+ℓ span the dual space to Rℓ, ∆ is strictly
convex and therefore has a bounded face, P . Then there is an affine form, a0 + L(y)
where L is a linear function on Rℓ and a0 > 0, that is strictly positive on ∆ and such
that P is the set of points of ∆ where this polynomial achieves its minimum value on ∆.
Dividing by a0, we may assume that the constant term is 1.

Consider the projective coordinate change y 7→ y, where

(1.14) yj := yj ·
1

1 + L(y)
for j = 1, . . . , ℓ .

We have

yj = yj ·
1

1− L(y)
for j = 1, . . . , ℓ .

Note that (1 + L(y))(1− L(y)) = 1.
The coordinate change (1.14) manifests itself on affine forms as follows. If p(y) is a

affine form, then

(1.15) p(y) = p(y) ·
1

1− L(y)
and p(y) = p(y) ·

1

1 + L(y)
,

where p(y) := p(y)− p(0)L(y). If Λi(y) := Li(y)+λi is one of the affine forms defining ∆,
then Λi(y) = Li(y) + λi(1 − L(y)). Under the projective transformation (1.14), the
polyhedron ∆ is transformed into ∆, where

∆ := {y ∈ R
ℓ | 1− L(y) > 0 and Λi(y) > 0 for i = 1, . . . , n+ℓ} .

Set Λ0(y) := 1− L(y) and β
(j)
0 := −

∑ℓ+n

i=1 β
(j)
i .
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Proposition 1.5 ([5], Prop. 2.3). Under the coordinate change (1.14), the system of

master functions (1.11) on ∆ is transformed into the system

ℓ+n∏

i=0

Λi(y)
β
(j)
i = 1 for j = 1, . . . , ℓ ,

on the bounded polyhedron ∆.

This coordinate transformation y 7→ y is a concrete and explicit projective transforma-
tion sending the unbounded polyhedron ∆ to a bounded polyhedron ∆. We will henceforth
assume that ∆ is bounded.

1.3. Khovanskii-Rolle continuation. Khovanskii-Rolle continuation is a numerical al-
gorithm introduced in [5] to compute the solutions to a Gale system in the positive
chamber. It is based on the Khovanskii-Rolle Theorem and the proof of the fewnomial
bound [8] which bounds the number of solutions to a Gale system.

We first state the Khovanskii-Rolle Theorem. Write V∆(f1, . . . , fk) for the common
zeroes in ∆ of functions f1, . . . , fk defined on ∆, counted with multiplicity and J(f1, . . . , fℓ)
for the Jacobian (determinant), det(∂fi/∂yj), of f1, . . . , fℓ. For a curve γ in ∆, let ubc∆(γ)
be the number of unbounded components of γ in ∆ (those that meet its boundary).

Theorem 1.6 (Khovanskii-Rolle [16]). Let g1, . . . , gℓ be smooth functions defined on a

polyhedral domain ∆ ⊂ Rℓ with finitely many common zeroes such that γ := V∆(g1, . . . , gℓ−1)
is a smooth curve. Let J be the Jacobian of g1, . . . , gℓ. Then

(1.16) |V∆(g1, . . . , gℓ)| ≤ ubc∆(γ) + |V∆(g1, . . . , gℓ−1, J)| .

The main idea is that along an arc of the curve γ, the Jacobian vanishes at least once
between any two consecutive zeroes of gℓ.

γ = V∆(g1, . . . , gℓ−1)

gℓ = 0

V∆(g1, . . . , gℓ−1, J)✏✏✏✮

If we let S be the points of γ where J = 0 and T be the points where γ meets the
boundary of ∆, then every zero of gℓ on γ lies in a unique interval of γ r (S ∪ T ). Thus,
the Khovanskii-Rolle Theorem leads to the following continuation algorithm, which is
Algorithm 2.2 in [5].

Algorithm 1.7. Using arclength continuation to follow γ starting at points of S ∪ T ,
where γ is traced in both directions from points of S and is traced into the interior of the

polyhedron ∆ from points of T , will recover all points of γ where gℓ = 0, each at least twice.
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We apply this to a Gale system. Let φ1, . . . , φℓ be the functions in the logarithmic form
of a Gale system (1.12). Set γℓ := V(φ1, . . . , φℓ−1). Then γℓ is an algebraic curve in ∆, as
logarithmic functions φi define the same sets as the polynomial functions (1.13), and these
form a complete intersection. Let Jℓ be the Jacobian determinant of φ1, . . . , φℓ. Given
the points Sℓ−1 := V(φ1, . . . , φℓ−1, Jℓ) where Jℓ vanishes on γℓ and the points Tℓ where
γℓ meets the boundary of ∆, we may compute the solutions Sℓ := V∆(φ1, . . . , φℓ) using
arclength continuation along γℓ, by Algorithm 1.7.

A genericity assumption on the coefficient matrix C and the exponents B implies that Tℓ

is a subset of the vertices of ∆. By Lemma 3.4 (1) of [8], J̃ℓ := Jℓ ·
∏

i(Li(y)+λi) is a poly-
nomial of degree n. Thus we may compute the solutions Sℓ to the Gale system G, given
knowledge of the set Tℓ and the set Sℓ−1 in which the transcendental function φℓ defin-

ing Sℓ is replaced by the low degree polynomial J̃ℓ. The Khovanskii-Rolle algorithm [5]
and fewnomial bound [8] iterate this procedure. Before explaining them, we discuss our
genericity assumptions.

The exponent vectors B = {β(1), . . . , β(ℓ)} are the columns of a (n+ℓ+1) × ℓ-matrix,
also written B, whose rows correspond to the affine functions defining ∆. For a face P
of ∆ and any j = 1, . . . , ℓ, let BP,j be the submatrix of B consisting of the first j columns
of the rows of B corresponding to the affine forms vanishing on P . We assumed ∆ is
bounded, which may be achieved by a projective change of coordinates, as explained in
Remark 1.4.

Assumption 1.8. We will make the following assumptions.

(1) The affine forms Li(y) + λi for i = 1, . . . , n+ℓ+1 are in general position in that

exactly ℓ of them vanish at each vertex of ∆.

(2) For every face P of ∆, the square matrix BP,codim(P ) annihilates no nonzero non-

negative row vector.

(3) The algebraic varieties γj defined below are curves.

Assumption (1) is implied by the assumption that the coefficients of the system F (x) = b
are general, which is mild, as we already assumed that the system had only isolated zeroes.
A consequence is that ∆ is a simple polyhedron. That is, any face P of codimension r
lies on exactly r facets, and thus exactly r affine forms Li(y) + λi vanish on P .

Assumptions (2) and (3) depend upon the exponent vectors A of the monomials in F ,
as well as the polyhedron ∆ (which comes from C and b). As explained in [8], these
assumptions hold on a Zariski open subset of the spaces of matrices C and B (when B is
allowed to have real entries).

We sketch the steps of Khovanskii-Rolle continuation under these assumptions. For
each j = ℓ, ℓ−1, . . . , 1, set Jj to be the Jacobian of φ1. . . . , φj , Jj+1, . . . , Jℓ and define γj
to be V∆(φ1, . . . , φj−1 , Jj+1, . . . , Jℓ). By Assumption 1.8(3), this is a curve. Let Tj be the
points where γj meets ∂∆. Finally, for j = 0, . . . , ℓ set Sj := V∆(φ1, . . . , φj , Jj+1, . . . , Jℓ).
Then Sℓ is the set of solutions to the Gale system.

By Algorithm 1.7, arclength continuation along γj beginning from points of Tj and Sj−1

will compute all points of Sj. Thus, the solutions Sℓ of the Gale system in ∆ may be
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computed iteratively from S0 and the sets T1, . . . , Tℓ. Computing these sets is feasible, for
by Lemma 3.4 of [8] and Corollary 2.3, we have

(1) J̃i = Ji ·
(∏

i(Li(y) + λi)
)2ℓ−j

is a polynomial of degree 2ℓ−j · n.

(2) The points of Tj all lie on some faces of ∆ of dimension ℓ−j and are the points of

those faces where the polynomials J̃j, . . . , J̃ℓ vanish.

For j = 2, . . . , ℓ, let µj := V∆(φ1, . . . , φj−1). The faces of ∆ in (2) lie in the closure
of the set µj and are determined by B (Corollary 2.3 gives the precise statement). This
set µj is algebraic, as the transcendental functions φi define the same set in ∆ as do the
polynomials (1.13). Furthermore, µj has dimension ℓ−j+1. Indeed, the rational function
versions (1.11) of the φi(y) form a regular sequence in the hyperplane complement, so
their common zero set µj has expected dimension ℓ−(j−1). The assumption that γj is a
curve is that the Jacobians Jj+1, . . . , Jℓ form a complete intersection on µj.

1.4. Our running example. Let us consider this for the example of Subsection 1.1. The
first two assumptions hold. All polygons are simple, and no entry and no minor vanishes
in the matrix of exponents,

B =

[
−1 −3 1 −1 3
2 −1 3 −2 −2

]T
.

The Jacobian of the logarithmic system (1.5) is the rational function,

J2 :=
2x3 − 16x2y + 12xy2 + 6y3 − 31

2
x2 + 26xy − 53

2
y2 + 9

2
x+ 15

2
y − 2

xy(1− x− y)(1
2
−x+y)(1 + x− 3y)

,

whose denominator is the product of the linear factors defining the lines in Figure 1. The
denominator does not vanish in the interior of the pentagon. Taking the numerator and
multiplying by 2 gives the cubic polynomial,

J̃2 := 4x3 − 32x2y + 24y2x+ 12y3 − 31x2 + 52xy − 53y2 + 9x+ 15y − 4 .

The Jacobian J1 of g and J2 has denominator the product of the squares of the forms
defining the lines, and its numerator is the sextic

− 56x6 + 464x5y − 456x4y2 − 1792x3y3 + 1896x2y4 + 336xy5 − 72y6 + 640x5 − 1960x4y

+456x3y2+3096x2y3− 5176xy4+480y5− 482x4+2248x3y− 2416x2y2+4256xy3+250y4

+ 61x3 − 401x2y − 1769xy2 − 491y3 − 10x2 + 664xy + 278y2 − 81x− 101y + 16 .

The system J1 = J2 = 0 has 18 solutions with 10 real, but it has only two solutions S0 in
the pentagon. The curve γ1 is defined by the vanishing of the Jacobian J2. The set T1 of
points where it meets the boundary of the pentagon consists of two points.

In Figure 2, we illustrate the configuration of the sets S0, S1, S2, T1, and T2 in the
pentagon of Figure 1, along with the curves defined by J1, J2 (written γ1), g (γ2), and f .
The middle picture shows that arclength continuation along γ1 in both directions from
each point of S0 and into the pentagon from each point of T1 will find the point S1 twice
(the other four continuations terminate when they either reach a point of S0 or exit the
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γ1

J1

J1

J1

S0

✄
✄✗

◗◗❦

γ1
g

g

g

g

S0

✄
✄✗

◗◗❦
S1

✄
✄✗

T1PPPPPq❅❅❘

f

f

f

g

g

g

g

S2

❆❆❑ ✄
✄✗
✏✏✏✶

S1

❈
❈❈❲

T2
❳❳② ✘✘✿

T2

❄

✛

Figure 2. Solving the Gale system with Khovanskii-Rolle continuation

pentagon). The picture on the right shows that arclength continuation along γ2 in both
directions from the point of S1 and into the pentagon from the four points of T2 will reach
the three points of S2, twice each. These points are

(1.17) (0.29557, 0.32316) , (0.14846, 0.26681) , (0.53346, 0.20563) .

Remark 1.9. In Figure 2, we see that some of the points T2 are singular points of f = 0.
In general the points T1 are smooth points on the curve γ1, but the other points Tj

with j > 1 may be singular points of the curves γj they lie upon. In Section 2, we will
discuss when it is possible to eliminate tracking from these possibly singular points. A
future publication [2] detailing methods (and software) will explore strategies for arclength
continuation along γj from these singular points of the boundary.

Remark 1.10. Having computed approximations to the points (1.17), we do not yet have
solutions to the original polynomial system. By Gale duality, if SG is the set of solutions
to the Gale system, then ϕ−1

A
(ψ(SG)) is the set of solutions to the original polynomial

system. Suppose S∗
G is a set of approximations to solutions of the Gale system. The

difficulty is that points of ψ(S∗
G) likely do not lie in ϕA((R

×)n), and so ϕ−1
A
(ψ(S∗

G)) is
undefined. In Subsection 3.2, we give a method to overcome this obstruction.

2. A Descartes’ bound for fewnomials

We give a refinement to the upper bound of e2+3
4

2(
ℓ
2)nℓ for the number of solutions to a

Gale system that was discovered while developing our software. This refinement involves
sign conditions and gives a Descartes’-like bound for fewnomials. We then discuss how
this refinement affects the running of the Khovanskii-Rolle algorithm.

Theorem 2.1. Suppose that Φ(x) = 0 is a system of n Laurent polynomials in n variables

involving n+ℓ+1 monomials. If the exponent vector of one monomial lies in the relative

interior of the convex hull of the exponent vectors of the other monomials and if the

coefficient matrix of these other monomials does not have a positive vector in its kernel,

then this system has at most
(
1 + 2−ℓ

(
1 + ℓ

n

))
2(

ℓ
2)nℓ

nondegenerate positive solutions.
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We will give a proof of Theorem 2.1 as part of our discussion on our improvement to
the fewnomial bound. We first derive the fewnomial bound originally given in [8], for we
need to modify that derivation to obtain Theorem 2.1.

As explained at the end of Subsection 1.3, the solutions Sℓ to the Gale system are found

by first computing S0 := V∆(J̃1, . . . , J̃ℓ) and certain sets T1, . . . , Tℓ where Tj consists of
the points of the boundary of ∆ that meet the curve γj. By Corollary 2.3 below, Tj

consists of the points of certain faces of ∆ of dimension ℓ−j where J̃j+1, . . . , J̃ℓ vanish.

As J̃i is a polynomial of degree 2ℓ−in, we may replace faces of ∆ by their affine span and
use Bézout’s Theorem to estimate the cardinality of these sets,

(2.1)

|S0| ≤
ℓ∏

i=1

deg(J̃i) = 2(
ℓ
2)nℓ

|Tj| ≤ fℓ−j(∆) ·
ℓ∏

i=j+1

deg(J̃i) = fℓ−j(∆)2(
ℓ−j
2 )nℓ−j ,

where fi(∆) is the number of i-dimensional faces of ∆. In fact, there is a tighter estimate
for |Tj| given below (2.4).

From the Khovanskii-Rolle Theorem, we have |Si| ≤ |Si−1|+
1
2
|Ti|, and so

|Sℓ| ≤ |S0| + 1
2

(
|T1|+ · · ·+ |Tℓ|

)

≤ 2(
ℓ
2)nℓ +

1

2

ℓ∑

j=1

fℓ−j(∆)2(
ℓ−j
2 )nℓ−j(2.2)

< 2(
ℓ
2)nℓ +

1

2

ℓ∑

j=1

(
n+ℓ+1

j

)
2(

ℓ−j
2 )nℓ−j

≤ 2(
ℓ
2)nℓ +

1

2

ℓ∑

j=1

2j−1

j!
2(

ℓ
2)nℓ <

e2+3

4
2(

ℓ
2)nℓ .

The estimate of the last row is Lemma 3.5 in [8].
Any difference in the two sides of any inequality (its slack) propagates through to the

final bound. One clear way that the estimates (2.1) could have slack would be if a system

J̃j+1, . . . , J̃ℓ on the complex affine span of a face did not have all of its solutions lying in
that face. In practice, we have found that very few of the solutions lie on the desired face
of ∆. While this seems impossible to predict or control, the Khovanskii-Rolle continuation
algorithm always takes advantage of this source of slack.

Another source of slack is our estimates for |Tj|, which depend on the number of certain
faces of ∆, as not all faces of codimension j can contain points of Tj. We investigate the
location of the points Tj. For each j = 2, . . . , ℓ, we defined µj ⊂ ∆ to be closure of the
points in the interior of ∆ given by

(2.3) φ1(y) = · · · = φj−1(y) = 0 .

This set is algebraic and has dimension ℓ−j+1.
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Lemma 2.2. Suppose that Assumption 1.8 (1) holds. If P is a face of ∆ whose interior

meets µj, then the submatrix BP,j−1 of B consisting of the first j−1 columns of rows

corresponding to the facets of ∆ containing P annihilates a nonzero nonnegative row

vector. When this occurs, we have P ⊂ µj.

By annihilating a nonzero nonegative row vector, we mean there is a nonzero vector
v = (v1, . . . , vr) with vi ≥ 0 for all i such that vBP,j−1 = 0. Here, r is the number of facets
containing P .

Proof. Let p be a point lying in the interior of P . After an affine change of coordinates
and a reordering, we may assume that p = 0 and the affine forms defining ∆ are

y1 , y2 , . . . , yr , Λr+1(y) , . . . , Λn+ℓ+1(y) ,

where Λa(0) > 0 for a > r. That is, points of P have their first r coordinates equal to 0.
Then µj is defined on the interior of ∆ by the rational functions

y
β
(i)
1

1 · · · yβ
(i)
r

r ·
n+ℓ+1∏

a=r+1

Λa(y)
β
(i)
a = 1 for i = 1, . . . , j−1 .

After an analytic change of coordinates in the neighborhood of the origin p, we may
assume that these become monomial,

y
β
(i)
1

1 · · · yβ
(i)
r

r = 1 for i = 1, . . . , j−1 .

The solution set meets the origin p if and only if it contains a monomial curve of the form

(tα1 , tα2 , . . . , tαr)

with each exponent αi nonnegative and not all are zero. But then α = (α1, . . . , αr) satisfies

r∑

t=1

βt(i)αt = 0 for i = 1, . . . , j−1 ,

so that α is a nonzero nonnegative row vector annihilated by BP,j−1.
The last statement follows as these arguments may be reversed. ¤

Corollary 2.3. Suppose that Assumption 1.8 holds. Then µj ∩ ∂∆ is the union of those

codimension j faces P of ∆ where BP,j−1 annihilates a nonzero nonnegative row vector.

The points Tj are the points of µj ∩ ∂∆ where the polynomials J̃j+1, . . . , J̃ℓ vanish. By
Corollary 2.3, this is the restriction of those ℓ−j polynomials to a collection of faces, each
of dimension ℓ−j.

Proof. Since µj has dimension ℓ−j+1, its intersection with the boundary of ∆ has dimen-
sion ℓ−j. If this intersection meets the relative interior of a face P of ∆ of codimension r,
then the matrix BP,j−1 annihilates a nonzero nonnegative row vector, by Lemma 2.2.

If r < j, then BP,r is a submatrix of BP,j−1, and so BP,r annihilates a nonzero nonnegative
row vector and contradicts our assumption. Thus r ≥ j, and we see that the rest of the
corollary follows from Lemma 2.2. ¤
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Corollary 2.3 restricts the faces on which points of Tj can lie and implies the following
tighter estimate,

(2.4) |Tj| ≤ Mℓ−j(∆,B) · 2ℓ−jnℓ−j for j > 1 ,

where Mℓ−j(∆,B) counts the faces P of ∆ with codimension j for which BP,j−1 annihilates
a nonzero nonnegative row vector.

Proof of Theorem 2.1. Let Φ(x) = 0 be a system of n Laurent polynomials in n variables
involving n+ℓ+1 monomials. Let xa be a monomial in Φ whose exponent vector a lies in
the interior of the convex hull of the other exponent vectors. We may replace Φ by x−aΦ to
obtain a system of Laurent polynomials with the same zeroes in (R×)n having a constant
term whose exponent 0 lies in the interior of the convex hull of the exponent vectors of
its remaining monomials.

Rewrite Φ(x) = 0 as F (x) = b where F has n+ℓ monomials with exponent vectors A,
and the origin lies in the interior of the convex hull of A. Thus the origin is a nonnegative
integer combination of the vectors in A, with every vector in A participating in this
expression. Consequently, this expression is a positive vector in the integer nullspace
of A, and we may assume it is the first column of the matrix B of exponents for the Gale
system. This implies that no j × (j−1) submatrix of the first j−1 columns of B has a
positive row vector in its kernel, and so Mℓ−j(∆,B) = 0, when j > 1.

If the positive chamber ∆ is bounded, then it has at most n+ℓ facets and T2, . . . , Tℓ are
empty. This gives the estimate

|Sℓ| ≤ |S0|+
1
2
|T1| ≤ 2(

ℓ
2)nℓ + (n+ℓ)2(

ℓ−1
2 )−1nℓ−1

=
(
1 + 2−ℓ

(
1 + ℓ

n

))
2(

ℓ
2)nℓ .(2.5)

If ∆ is unbounded, then, after the transformation of Remark 1.4, ∆ possibly has n+ℓ+1
facets and the first column of B has exactly one negative entry.

To complete the proof, suppose further that the coefficient matrix C of those other
exponent vectors has no positive vector in its kernel. This is equivalent to ∆ being
bounded, and we have the bound (2.5). ¤

The sets T2, . . . , Tℓ are empty under the hypotheses of Theorem 2.1 and when the first
column of B has every entry positive. In this case, Assumption 1.8 (2) on B is satisfied.

We noted in Remark 1.9 that the points Tj for j ≥ 2 will typically be singular points of
the curve γj as µj is singular along the boundary of ∆. Minimizing the number of points Tj

(or eliminating them altogether as in Theorem 2.1), reduces the difficult path tracking
required to track from these singular points Tj , thereby improving the performance of the
Khovanskii-Rolle continuation algorithm.

3. Algorithmic details for the Gale transform

Obtaining the solutions of a fewnomial system by Khovanskii-Rolle continuation is a
3-step process.

(1) Apply the Gale transform to a fewnomial system F (x) = b, producing a dual Gale
system G(y) = 1 of master functions.
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(2) Use Khovanskii-Rolle continuation to find approximations to elements of SG which
are the real solutions of G(y) = 1 in the positive chamber ∆ ⊂ Rℓ. These approx-
imations form the set S∗

G.
(3) For each s∗ ∈ S∗

G, transform s∗ to t∗, a numerical approximation to some t ∈ SF .
Set S∗

F := {t∗ | t∗ is an approximation to t ∈ SF}.

A fewnomial system may be solved using Gale duality by other root-finding methods
in place of Khovanskii-Rolle continuation in Step 2. We provide pseudocode for the
Gale transform of Step 1 (Algorithm 3.1) and for the transformation of the approximate
solutions S∗

G of the Gale system G to the approximate solutions S∗
F of the fewnomial

system F in Step 3 (Algorithm 3.3). Two steps of Algorithm 3.1 require extra attention;
they are detailed in the final two subsections.

3.1. Converting a fewnomial system to a system of master functions. Using the
notation of Section 1, we give pseudocode for the basic algorithm for converting a system
F (x) = b of fewnomials into a system of master functions G(y) = 1.

Algorithm 3.1.

Input: ℓ, n, an n× (n+ℓ) integer matrix A, an n× (n+ℓ) coefficient matrix C, and target
column vector b.
Output: A system G(y) = 1 of ℓ master functions in ℓ variables that is Gale dual to the
system F (x) = b.

1) Choose ℓ monomials and reorder the columns of C so that these monomials are the
last ℓ columns.
2) Put [C | b] in echelon form, obtaining a matrix [−In | L | λ].
3) From the rows of L and entries of λ form the affine forms Li(y) + λi.
4) Choose ℓ integral basis vectors βi of the nullspace ofA to construct B = {β(1), . . . , β(ℓ)}.
5) Use B and the forms Li(y) + λi to form the Gale dual system G(y) = 1 as in (1.11).

We explain some of details in the design and implementation of each step of Algo-
rithm 3.1, and then illustrate it with an example.

1) The effect of this choice is an affine change of coordinates in Rℓ, which affects the
shape of the positive chamber ∆ ⊂ Rℓ and the performance of the Khovanskii-Rolle
continuation when no scaling of the Gale system functions occur. With a simple
scaling routine, discussed in Section 4, the parameterization of the monomials
appears to not matter when ℓ = 2.

2) We simply use Gaussian elimination with partial pivoting.
3) If the space Rn+ℓ has coordinates z ∈ Rn and y ∈ Rℓ, the echelon form [−In | L | λ]

gives a parameterization of the set C(z, y) = b by the affine forms zi = Li(y) + λi

for i = 1, . . . , n.
4) We use the LLL algorithm [18] to compute an initial basis B and then find vectors in

the row space with few negative entries, a heuristic to minimize Mℓ−j(∆,B) (2.4),
which is the number of codimension j faces of ∆ on which the points Tj may lie.
This step is the focus of Section 3.3.
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5) If we set Ln+j(y) := yj and λn+j := 0 for j = 1, . . . , ℓ, then the vectors in B
and affine functions Li(y) + λi for i = 1, . . . , n+ℓ together give the Gale system
G(y) = 1 as in (1.11) in Proposition 1.1.

Example 3.2. Consider the fewnomial system, where n = 5 and ℓ = 2

(3.1)

−a−1b2c2d +
(
1
2
b2c + 2b−4c−7d−5e−1 − 1

)
= 0 ,

−ac + 1
2
(1
4
b2c − b−4c−7d−5e−1 + 1) = 0 ,

−bc4d4 + 1
4
(−1

4
b2c − 3b−4c−7d−5e−1 + 6) = 0 ,

−d + 1
2
(−3

4
b2c − 2b−4c−7d−5e−1 + 8) = 0 ,

−e + (−1
2
b2c + 2b−4c−7d−5e−1 + 3) = 0 ,

with support {a−1b2c2d , ac , bc4d4 , d , e , b2c , b−4c−7d−5e−1}, matrix of exponents

A =




−1 1 0 0 0 0 0
2 0 1 0 0 2 −4
2 1 4 0 0 1 −7
1 0 4 1 0 0 −5
0 0 0 0 1 0 −1



,

and coefficient matrix

[C | b] =




−1 0 0 0 0 1/2 2 −1
0 −1 0 0 0 1/8 −1/2 1/2
0 0 −1 0 0 −1/16 −3/4 3/2
0 0 0 −1 0 −3/8 −1 4
0 0 0 0 −1 −1/2 2 3




where the first seven columns correspond to the seven monomials in A and the final
column corresponds to the constants.

We presented this fewnomial system with a coefficient matrix in echelon form for the
given order of the monomials, so Steps 1 and 2 of Algorithm 3.1 are complete. If we
set s := b2c and t := b−4c−7d−5e−1, the rows of this echelon matrix express each of the
first five monomials as affine functions of the parameters s and t, so that, for example,
a−1b2c2d = 1

2
s+ 2t− 1. We have the seven (= 5 + 2) affine forms,

(3.2)

Λ1(s, t) = 1
2
s+ 2t− 1

Λ2(s, t) = 1
8
s− 1

2
t+ 1

2

Λ3(s, t) = − 1
16
s− 3

4
t+ 3

2

Λ4(s, t) = −3
8
s− t+ 4

Λ5(s, t) = −1
2
s+ 2t+ 3

Λ6(s, t) = s

Λ7(s, t) = t
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Given a vector β = [β1, . . . , β7]
T in the nullspace of A, we have

∏7
i=1(x

ai)βi = 1, where
ai is the ith exponent vector in A. Under the substitution xai = Λi(s, t), we obtain∏7

i=1 Λi(s, t)
βi = 1. One choice of basis B for the nullspace of A is

{[4, 4, 2, 3, 3, 1, 3]T , [−1,−1, 2,−2, 1, 2, 1]T} .

This gives the system of master functions (written in the polynomial form (1.13))

(3.3)

g(s, t) = (s+4t−2)4(s−4t+4)4(s+12t−24)2(3s+8t−32)3(s−4t−6)3st3

−68719476736,

f(s, t) = −2(s+12t−24)2(s−4t−6)s2t − (s+4t−2)(s−4t+4)(3s+8t−32)2 .

Figure 3 displays the algebraic curves in R2 defined by these polynomials, together with
the lines defined by the affine forms Λi(s, t) = 0 for i = 1, . . . , 7.

0.5

1

1.5

2

2 4 6 8

f

f

f

f

g

g

g g

Figure 3. Master function curves in the heptagon

The original system (3.1) has 95 complex solutions with 11 real and six in the positive
orthant. The hypotheses of Theorem 2.1 hold; with n = 5 and ℓ = 2, its improved bound
is 87 by Theorem 2.1 and 67 using (2.2). These hypotheses imply that the curve g = 0
does not meet the boundary of the heptagon ∆.

3.2. Transforming Gale system solutions to fewnomial solutions. The output of
Khovanskii-Rolle continuation is a set S∗

G of approximations to solutions SG of the Gale
system in the positive chamber ∆. Converting these points of ∆ to points S∗

F of Rn
> that

are approximations to solutions SF of the fewnomial system is problematic, for there is
no natural map between points of ∆ and Rn

>, except on the solutions to the two systems.
We present a simple method to accomplish this conversion.

Let s∗ ∈ S∗
G and suppose that s is the point of SG that s∗ approximates. Applying

the map ψ (1.8) of Subsection 1.2 whose components are the affine functions Li(y) + λi

gives points ψ(s∗) and ψ(s) in Rn+ℓ
> that lie on the affine plane H. The point ψ(s) lies
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on ϕA(R
n
>), but the point ψ(s

∗) does not lie on ϕA(R
n
>) (unless s

∗ ∈ SG), as the former is
a solution of the Gale system, while the latter typically is not.

To remedy this, choose a square submatrix A′ of rank n of the matrix A of expo-
nents. Projecting R

n+ℓ to those coordinates indexed by the columns of A′ gives a map
πA′ : Rn+ℓ → Rn. The composition

R
n
>

ϕA−−−→ R
n+ℓ
>

πA′

−−−→ R
n
>

is the map ϕA′ , which is invertible on Rn
>. We set

t∗ := ϕ−1
A′ ◦ πA′ ◦ ψ(s∗) .

Since t = ϕ−1
A′ ◦ πA′ ◦ψ(s) = ϕ−1

A
◦ψ(s) is the solution to the fewnomial system, and these

maps are differentiable, we expect that t∗ is close to t. We formalize this transformation.

Algorithm 3.3.

Input: The exponent matrix A and affine functions Li(y) + λi from Algorithm 3.1, and
the set S∗

G = {s∗i | i = 1, ..., N} of approximations to solutions of the Gale system G in
the positive chamber ∆.
Output: A set S∗

F = {t∗i | i = 1, ..., N} of approximations to positive solutions of the
original fewnomial system F .

Choose a full rank n× n submatrix A′ of the matrix A and compute (A′)−1.
for i := 1 to N do

a) Evaluate the map ψ at the point s∗i to get the point z∗i ∈ Rn+ℓ
> ,

z∗i := (L1(s
∗

i ) + λ1, . . . , Ln+ℓ(s
∗

i ) + λn+ℓ) .

b) Project z∗i to Rn
> using πA′ , set v∗i := πA′(z∗i ).

c) Let w∗
i ∈ Rn be the coordinatewise logarithm of v∗i .

d) Set x∗
i := (w∗

i (A
′)−1)T and let t∗i be the coordinatewise exponentiation of x∗

i .
end for

Note that the homeomorphism ϕA′ : Rn
> → Rn

> becomes the linear isomorphism induced
by x 7→ A′x in logarithmic coordinates. Steps c) and d) invert this transformation.

Even if s∗i is certified to be an approximate solution to the Gale system with associated
solution si (i.e. s

∗
i → si under Newton iterations, doubling the number of significant digits

with each iteration), it need not be the case that t∗i is an approximate solution to the
fewnomial system with associated solution ti := ϕ−1

A
◦ ψ(si). However, we may check

this using, for example, the software alphaCertified [14]. If t∗i is not certified to be an
approximate solution, then we could refine s∗i to be closer to si and reapply the transfor-
mation. Our software has the functionality to do this, either producing a soft certificate
(all calculations done in floating point arithmetic) or a hard certificate (calculations done
with rational arithmetic), which is a proof that t∗i is an approximate solution.

Example 3.4. An approximation to a solution of f(s, t) = g(s, t) = 0 from Example 3.2
lying in the positive chamber is s∗1 = (0.94884808, 0.65721633). We follow the steps of
Algorithm 3.3 to recover a solution of the original fewnomial system.
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We first choose an invertible submatrix of A. The first 5(= n) columns of A suffice as
these are linearly independent. Evaluating the map ψ at s∗1 gives the point

z∗1 =




0.78885671
0.28999784
0.94778474
2.98696564
3.84000863
0.94884808
0.65721633




.

Projecting to the first 5 coordinates of z∗1 and taking coordinatewise logarithms yields

w∗

1 =




−0.23717058
−1.23788180
−0.05362787
1.09425803
1.34547461



.

Proceeding to the next step, we evaluate

x∗

1 = (w∗

1(A
′−1))T =




0.020520123
0.60294767

−1.25840192
1.09425803
1.34547461




.

Finally,

t∗1 = exp(x∗

1) =




1.0207321
1.8274977
0.28410769
2.9869656
3.8400086



.

We carry out Algorithm 3.3 with s∗1 starting with 135 bits of precision for the input and
truncate the output to a 64-bit floating point approximation.

Using alphaCertified [14], we perform two Newton iterations on this approximation,
doubling the precision each time. We obtain a soft certification of this refined approxi-
mation, and then convert the numerical approximation to its rational form and obtain a
hard certification that proves that t∗1 converges to t1.

3.3. Heuristic for the nullspace basis. A choice in the Gale transform that affects the
efficiency of numerical tracking in the Khovanskii-Rolle algorithm is the selection of the
basis B of the annihilator of A.

Observe that the points of Tj for j ≥ 2 are often singular points of the curve γj. For
efficiency and numerical stability, we want to avoid tracking near these points. Corol-
lary 2.3 implies that the curve γj may approach a codimension j face P of ∆ only when
BP,j−1 annihilates a nonzero nonnegative row vector. By Corollary 1.2, changing the basis
elements β(j) of B will change the Gale system as well as the curves γj, without changing
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the solutions. Ideally, we would use this freedom to choose the basis B of the annihilator
of A to minimize the number of faces of P on which points Tj for j ≥ 2 could lie.

The number of possible choices for B up to patterns for the signs of the coordinates
suffers from a combinatorial explosion [15] as ℓ increases. Consequently, this optimization
problem may become infeasible for ℓ large. Instead, we find elements of the annihilator
of A that have the fewest number of negative coordinates. We expect that this choice
will tend to minimize the number of faces on which the points Tj could lie. In the case
of Theorem 2.1, this choice achieves the minimization. When there is a positive vector
annihilating A, we may choose B to consist only of positive vectors, and so no submatrix
annihilates any nonzero nonnegative row vector. By Lemma 2.2, no face of P will contain
points of Tj.

Once a basis for the annihilator of A is known, the algorithm proceeds differently
depending upon the size of ℓ. For small ℓ, we can enumerate all possible patterns for
the signs of the coordinates of vectors in the annihilator of A, and then choose a basis B
consisting of vectors having the fewest number of negative coordinates. When ℓ is large,
we take random integer linear combinations of a basis of the annihilator of A and choose
of these generated vectors those with the minimum number of negative entries.

This heuristic does not always work in practice, as we observed in our test suite de-
scribed below. One problem is when a point of some Sj—a solution to an intermedi-
ate problem—lies close to the boundary of ∆. Such solutions may be numerically ill-
conditioned, and the subroutine in the Gale duality software package that tracks the
curves γj near the boundary of ∆ (the monomial tracker described in [5, § 4.3]) may
miss such ill-conditioned solutions. A future publication [2] will focus on the design and
performance of the monomial tracker subroutine.

4. Software

The algorithms of Section 3 are implemented in a software package, galeDuality [3],
which is available at each author’s website and written in C++. This will be the front end
for a package we are developing for Khovanskii-Rolle continuation. We describe a test
suite (4.1) to evaluate the proposed heuristic in Section 3.3, and some implementation
details of the package (4.2).

4.1. Test suite. As noted in Sections 1 and 2, Khovanskii-Rolle continuation finds the
solutions Sℓ to a Gale system in a polyhedron ∆ using arclength continuation along
curves γj starting at points T0 := S0, T1, . . . , Tℓ where Tj are solutions to ℓ − j Jacobian

determinants (having Bézout number 2(
ℓ−j
2 )nℓ−j) in certain codimension j faces of ∆. The

set T0 lies in the interior of the polyhedron ∆ and points of T1 could lie in every facet,
but the other Tj lie in only a subset of the faces of codimension j. The heuristic of
Subsection 3.3 is intended to minimize or eliminate the number of faces contributing to Tj

for j ≥ 2.
To test this heuristic, we created a test suite of Gale systems for each pair (ℓ, n) with

ℓ = 2 and n = 2, . . . , 13.
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For each n, we generated an (n+2)-gon by successively selecting random rational points
in an annulus until we had n+2 points in convex position. These points formed the
vertices of the (n+2)-gon. The edges of this polygon give n+2 affine forms. To create
a Gale system, we generated two vectors of exponents whose components correspond to
the affine forms. Both had integer components with absolute values selected uniformly
at random in the range 1, . . . , 10. One vector, β+, had all components positive, but the
other, β±, had signs alternating as much as possible traversing the polygon cyclically.
This was intended to emulate the configuration of the master function curves in Figure 3.

Our test suite consists of 100 random Gale systems for each n. For each, we ran
Khovanskii-Rolle continuation twice, once for each ordering of the exponent vectors β+

and β± as columns in B. When β+ is the first column of B, the set T2 is empty as in the
proof of Theorem 2.1, but when β± is the first column, T2 consists of the vertices defined
by affine forms such that the components of β± had differing signs. Our proxy to test for
the affect of the heuristic in Section 3.3 was to compare the average of 10 running times
for these two different choices.

For any fixed n, in a head-to-head comparison of the average run-time of Khovanskii-
Rolle continuation for the two different choices, choosing β+ as the first column of B
outperformed β± for > 92% of the systems in the test suite. For the majority of the
instances in which the choice of β± outperformed β+, the difference between the run
times was insignificant.

For some systems, the choice of β+ causes the Khovanskii-Rolle continuation software
to not find solutions near the boundary of ∆ that an equivalent choice of β± was able
to compute (and also certify). This is due to the inherent numerical instability of the
monomial tracker subroutine that approximates the γj curves near the boundary of ∆.
We note that the solutions that are found with the choice of β± but not with β+ have
been certified by [14]. Improvements to the monomial tracker is the subject of a future
article [2].

Timing of the Khovanskii-Rolle continuation algorithm, information on the number of
points found in Tj , and the number of real solutions for each of the systems in the test
suite is archived with our software, galeDuality [3].

4.2. galeDuality. Our software package, galeDuality, is an open-source program writ-
ten in C++ and accepts as input either a fewnomial system or a Gale system. When given
a fewnomial system, the software symbolically computes the Gale transform and saves the
Gale system to a file, using the algorithms of Section 3, for arbitrary ℓ. Similarly, when
given a Gale system, galeDuality will transform the system of master functions into its
dual fewnomial system and save the fewnomial system to a file.

If the polyhedron ∆ is unbounded, the software applies the projective transformation
of Proposition 1.5. When ℓ = 2, galeDuality calls the maple script of [5] to solve the
Gale system using Khovanskii-Rolle continuation.

After the Khovanskii-Rolle continuation computation is finished, galeDuality will con-
vert the approximations to solutions of the Gale system back to approximations to so-
lutions of the fewnomial system using Algorithm 3.3, and then call alphaCertified,
if desired by the user, to guarantee that the approximations converge to solutions. If
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the user wishes, galeDuality will also certify the approximations in ∆ found by the
Khovanskii-Rolle continuation algorithm.

Finally, software and a user manual with more detailed information is available online
from each of the authors’ websites.
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