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HOPF STRUCTURES ON THE MULTIPLIHEDRA

STEFAN FORCEY, AARON LAUVE, AND FRANK SOTTILE

Abstract. We investigate algebraic structures that can be placed on vertices
of the multiplihedra, a family of polytopes originating in the study of higher
categories and homotopy theory. Most compelling among these are two distinct
structures of a Hopf module over the Loday–Ronco Hopf algebra.

Introduction

The permutahedra S· form a family of highly symmetric polytopes that have

been of interest since their introduction by Schoute in 1911 [23]. The associahe-
dra Y· are another family of polytopes that were introduced by Stasheff as cell

complexes in 1963 [25], and with the permutahedra were studied from the per-
spective of monoidal categories and H-spaces [17] in the 1960s. Only later were
associahedra shown to be polytopes [11, 13, 18]. Interest in these objects was
heightened in the 1990s, when Hopf algebra structures were placed on them in
work of Malvenuto, Reutenauer, Loday, Ronco, Chapoton, and others [6, 14, 16].
More recently, the associahedra were shown to arise in Lie theory through work of
Fomin and Zelevinsky on cluster algebras [7].

We investigate Hopf structures on another family of polyhedra, the multipli-
hedra, M·. Stasheff introduced them in the context of maps preserving higher

homotopy associativity [26] and described their 1-skeleta. Boardman and Vogt [5],
and then Iwase and Mimura [12] described the multiplihedra as cell complexes, and
only recently were they shown to be convex polytopes [8]. These three families of
polytopes are closely related. For each integer n ≥ 1, the permutahedron Sn,
multiplihedron Mn, and associahedron Yn are polytopes of dimension n−1 with
natural cellular surjections Sn ։ Mn ։ Yn, which we illustrate when n = 4.

−։ −։

The faces of these polytopes are represented by different flavors of planar trees;
permutahedra by ordered trees (set compositions), multiplihedra by bi-leveled trees
(Section 2.1), and associahedra by planar trees. The maps between them forget
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the additional structure on the trees. These maps induce surjective maps of graded
vector spaces spanned by the vertices, which are binary trees. The span SSym
of ordered trees forms the Malvenuto-Reutenauer Hopf algebra [16] and the span
YSym of planar binary trees forms the Loday-Ronco Hopf algebra [14]. The alge-
braic structures of multiplication and comultiplication on SSym and YSym are
described in terms of geometric operations on trees and the composed surjection
τ : S· ։ Y· gives a surjective morphism τ : SSym ։ YSym of Hopf algebras.

We define MSym to be the vector space spanned by the vertices of all mul-
tiplihedra. The factorization of τ induced by the maps of polytopes, SSym ։

MSym ։ YSym, does not endow MSym with the structure of a Hopf algebra.
Nevertheless, some algebraic structure does survive the factorization. We show in
Section 3 that MSym is an algebra, which is simultaneously a SSym-module and
a YSym–Hopf module algebra, and the maps preserve these structures.

We perform a change of basis in MSym using Möbius inversion that illuminates
its comodule structure. Such changes of basis helped to understand the coalgebra
structure of SSym [1] and of YSym [2]. Section 4 discusses a second YSym Hopf
module structure that may be placed on the positive part MSym+ of MSym.
This structure also arises from polytope maps between S· and Y·, but not directly
from the algebra structure of SSym. Möbius inversion again reveals an explicit
basis of YSym coinvariants in this alternate setting.

1. Basic Combinatorial Data

The structures of the Malvenuto-Reutenauer and Loday-Ronco algebras are re-
lated to the weak order on ordered trees and the Tamari order on planar trees.
There are natural maps between the weak and Tamari orders which induce a mor-
phism of Hopf algebras. We first recall these partial orders and then the basic
structure of these Hopf algebras. In Section 1.3 we establish a formula involving
the Möbius functions of two posets related by an interval retract. This is a strictly
weaker notion than that of a Galois correspondence, which was used to study the
structure of the Loday-Ronco Hopf algebra.

1.1. S· and Y·. The 1-skeleta of the families of polytopes S·,M·, and Y· are
Hasse diagrams of posets whose structures are intertwined with the algebra struc-
tures we study. We use the same notation for a polytope and its poset of vertices.
Similarly, we use the same notation for a cellular surjection of polytopes and the
poset map formed by restricting that surjection to vertices.

For the permutahedron Sn, the corresponding poset is the (left) weak order,
which we describe in terms of permutations. A cover in the weak order has the
form w⋖(k, k+1)w, where k preceeds k+1 among the values of w. Figure 1 displays
the weak order on S4. We let S0 = {∅}, where ∅ is the empty permutation of ∅.

Let Yn be the set of rooted, planar binary trees with n nodes. The cover relations
in the Tamari order on Yn are obtained by moving a child node directly above a
given node from the left to the right branch above the given node. Thus

−→ −→ −→
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is an increasing chain in Y3 (the moving vertices are marked with dots). Figure 1
shows the Tamari order on Y4.

4321

4312 4231 3421

3412
4213 4132 3241 2431

4123
2341

3214
2413 3142

1432
3124 2314

2143
1423 1342

2134 1324 1243

1234

Figure 1: Weak order on S4 and Tamari order on Y4

The unique tree in Y1 is . Given trees tℓ and tr, form the tree tℓ∨ tr by grafting
the root of tℓ (respectively of tr) to the left (respectively right) leaf of . Form the
tree tℓ\tr by grafting the root of tr to the rightmost leaf of tℓ. For example,

tℓ tr tℓ ∨ tr

=

tℓ\tr
.

Decompositions t = t1\t2 correspond to pruning t along the right branches from
the root. A tree t is indecomposable if it has no nontrivial decomposition t = t1\t2
with t1, t2 6= . Equivalently, t is indecomposable if the root node is the rightmost
node of t. Any tree t is uniquely decomposed t = t1\ · · · \tm into indecomposable
trees t1, . . . , tm.

We define a poset map τ : Sn → Yn. First, given distinct integers a1, . . . , ak, let
a ∈ Sk be the unique permutation such that a(i) < a(j) if and only if ai < aj.
Thus 4726 = 2413. Since S0, Y0, S1, and Y1 are singletons, we must have

τ : S0 −→ Y0 with τ : ∅ 7−→ , and

τ : S1 −→ Y1 with τ : 1 7−→ .

Let n > 0 and assume that τ has been defined on Sk for k < n. For w ∈ Sn

suppose that w(j) = n, and define

τ(w) := τ
(

w(1), . . . , w(j−1)
)

∨ τ
(

w(j+1), . . . , w(n
)

.
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For example,

τ(12) = ∨ = , τ(21) = ∨ = , and

τ(3421) = τ(3) ∨ τ(21) = τ(1) ∨ τ(21) = ∨ = .

Loday and Ronco [15] show that the fibers τ−1(t) of τ are intervals in the weak
order. This gives two canonical sections of τ . For t ∈ Yn,

min(t) := min {w | τ(w) = t} and max(t) := max {w | τ(w) = t} ,

the minimum and maximum in the weak order. Equivalently, min(t) is the unique
231-avoiding permutation in τ−1(t) and max(t) is the unique 132-avoiding permu-
tation. These maps are order-preserving.

The 1-skeleta of Sn and Yn form the Hasse diagrams of the weak and Tamari
orders, respectively. Since τ is an order-preserving surjection, it induces a cellular
map between the 1-skeleta of these polytopes. Tonks [27] extended τ to the faces
of Sn, giving a cellular surjection.

The nodes and internal edges of a tree are the Hasse diagram of a poset with
the root node maximal. Labeling the nodes (equivalently, the gaps between the
leaves) of τ(w) with the values of the permutation w gives a linear extension of
the node poset of τ(w), and all linear extensions of a tree t arise in this way for
a unique permutation in τ−1(t). Such a linear extension w of a tree is an ordered

tree and τ(w) is the corresponding unordered tree. In this way, Sn is identified
with the set of ordered trees with n nodes. Here are some ordered trees,

3 4 2 1 1 4 3 2 2 3 5 4 1 2 5 1 4 3

.

Given ordered trees u, v, form the ordered tree u\v by grafting the root of v to
the rightmost leaf of u, where the nodes of u are greater than the nodes of v, but
the relative orders within u and v are maintained. Thus we may decompose an
ordered tree w = u\v whenever τ(w) = r\s with τ(u) = r, τ(v) = s, and the nodes
of r in w precede the nodes of s in w. An ordered tree w is indecomposable if it
has no nontrivial such decompositions. Here are ordered trees u, v and u\v,

1 4 3 2 1 3 2 4 7 6 5

1 3 2

=

4 7 6 5 1 3 2

.

We may split an ordered tree w along a leaf to obtain either an ordered forest
(where the nodes in the forest are totally ordered) or a pair of ordered trees,

2 5 1 4 3?

Ã

2 5 1 4 3?

g−−→
( 2 5 1

,

4 3
)

or

( 2 3 1

,

2 1
)

.
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Write w
g→ (w0, w1) to indicate that the ordered forest (w0, w1) (or pair of ordered

trees) is obtained by splitting w along some leaf. (Context will determine how
to interpret the result.) More generally, we may split an ordered tree w along a
multiset of m ≥ 0 of its leaves to obtain an ordered forest, or tuple of ordered

trees, written w
g→ (w0, . . . , wm). For example,

(1.1)

3 2 7 5 1 6 4?? ??

Ã

3 2 7 5 1 6 4?? ? ?

g−−→
(

3 2

, ,

7 5 1

,
6

,
4

)

.

Given v ∈ Sm and an ordered forest (w0, . . . , wm), let (w0, . . . , wm)/v be the
ordered tree obtained by grafting the root of wi to the ith leaf of v, where the
nodes of v are greater than all nodes of w, but the relative orders within the wi

and v are maintained. When v is the ordered tree corresponding to 1432 and

w
g→ (w0, . . . , wm) is the splitting (1.1), this grafting is

3 2

8 11

7 5 1

10
6

9
4

=

3 2 8 11 7 5 1 10 6 9 4

The notions of splitting and grafting also make sense for the unordered trees Yn

and we use the same notation, •
g→ • and •/•. (Simply delete the labels in the

constructions above.) These operations of splitting and grafting are compatible

with the map τ : S· → Y·: if w
g→ (w0, . . . , wm) then τ(w)

g→ (τ(w0), . . . , τ(wm))
and all splittings in Y· are induced in this way from splittings in S·. The same is

true for grafting, τ((w0, . . . , wm)/v) = (τ(w0), . . . , τ(wm))/τ(v).

1.2. SSym and YSym. For basics on Hopf algebras, see [19]. Let SSym :=
⊕

n≥0 SSymn be the graded Q–vector space whose nth graded piece has basis
{Fw | w ∈ Sn}. Malvenuto and Reutenauer [16] defined a Hopf algebra structure
on SSym. For w ∈ S·, define the coproduct

∆Fw :=
∑

w
g

→(w0,w1)

Fw0 ⊗ Fw1 ,

where (w0, w1) is a pair of ordered trees. If v ∈ Sm, define the product

Fw · Fv :=
∑

w
g

→(w0,...,wm)

F(w0,...,wm)/v .

The counit is the projection ε : SSym → SSym0 onto the 0th graded piece, which
is spanned by the unit, 1 = F∅, for this multiplication.
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Proposition 1.1 ([16]). With these definitions of coproduct, product, counit, and

unit, SSym is a graded, connected cofree Hopf algebra that is neither commutative

nor cocommutative.

Let YSym :=
⊕

n≥0 YSymn be the graded Q–vector space whose nth graded
piece has basis {Ft | t ∈ Yn}. Loday and Ronco [14] defined a Hopf algebra
structure on YSym. For t ∈ Y·, define the coproduct

∆Ft :=
∑

t
g

→(t0,t1)

Ft0 ⊗ Ft1 ,

and if s ∈ Ym, define the product

Ft · Fs :=
∑

t
g

→(t0,...,tm)

F(t0,...,tm)/s .

The counit is the projection ε : YSym → YSym0 onto the 0th graded piece, which
is spanned by the unit, 1 = F , for this multiplication. The map τ extends to a
linear map τ : SSym → YSym, defined by τ (Fw) = Fτ(w).

Proposition 1.2 ([14]). With these definitions of coproduct, product, counit, and

unit, YSym is a graded, connected cofree Hopf algebra that is neither commutative

nor cocommutative and the map τ a morphism of Hopf algebras.

Some structures of the Hopf algebras SSym and YSym, particularly their prim-
itive elements and coradical filtrations, are better understood with respect to a
second basis. The Möbius function µ (or µP ) of a poset P is defined for pairs (x, y)
of elements of P with µ(x, y) = 0 if x 6< y, µ(x, x) = 1, and, if x < y, then

(1.2) µ(x, y) = −
∑

x≤z<y

µ(x, z) so that 0 =
∑

x≤z≤y

µ(x, z) .

For w ∈ S· and t ∈ Y·, set

(1.3) Mw :=
∑

w≤v

µ(w, v)Fv and Mt :=
∑

t≤s

µ(t, s)Fs ,

where the first sum is over v ∈ S·, the second sum over s ∈ Y·, and µ(·, ·) is the
Möbius function in the weak and Tamari orders.

Proposition 1.3 ([1, 2]). If w ∈ S·, then

(1.4) τ (Mw) =

{

Mτ(w), if w = max(τ(w)) ,

0, otherwise

and

(1.5) ∆Mw =
∑

w=u\v

Mu ⊗ Mv .

If t ∈ Y·, then

(1.6) ∆Mt =
∑

t=r\s

Mr ⊗ Ms .
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This implies that the set {Mw | w ∈ S· is indecomposable} is a basis for the

primitive elements of SSym (and the same for YSym), thereby explicitly realizing
the cofree-ness of SSym and YSym.

1.3. Möbius functions and interval retracts. A pair f : P → Q and g : Q → P
of poset maps is a Galois connection if f is left adjoint to g in that

∀ p ∈ P and q ∈ Q , f(p) ≤Q q ⇐⇒ p ≤P g(q) .

When this occurs, Rota [21, Theorem 1] related the Möbius functions of P and Q:

∀ p ∈ P and q ∈ Q ,
∑

f(y)=q

µP (p, y) =
∑

g(x)=q

µQ(x, q) .

Rota’s formula was used in [2] to establish the coproduct formulas (1.4) and (1.6),
as the maps τ : S· → Y· and max : Y· → S· form a Galois connection [4, Section

9].
We do not have a Galois connection between S· and M·, and so cannot use

Rota’s formula. Nevertheless, there is a useful relation between the Möbius func-
tions of S· and M· that we establish here in a general form. A surjective poset
map f : P → Q from a finite lattice P is an interval retract if the fibers of f are
intervals and if f admits an order-preserving section g : Q → P with f ◦ g = id.

Theorem 1.4. If the poset map f : P → Q is an interval retract, then the Möbius

functions µP and µQ of P and Q are related by the formula

(1.7) µQ(x, y) =
∑

f(a)=x
f(b)=y

µP (a, b) (∀x, y ∈ Q).

In Section 2, we define an interval retract β : Sn → Mn.
We evaluate each side of (1.7) using Hall’s formula, which expresses the Möbius

function in terms of chains. A linearly ordered subset C : x0 < · · · < xr of a poset
is a chain of length ℓ(C) = r from x0 to xr. Given a poset P , let Q(P ) be the set
of all chains in P . A poset P is an interval if it has a unique maximum element
and a unique minimum element. If P = [x, y] is an interval, let Q

′(P ) denote the
chains in P beginning in x and ending in y. Hall’s formula states that

µ(x, y) =
∑

C∈Q
′[x,y]

(−1)ℓ(C) .

Our proof rests on the following two lemmas.

Lemma 1.5. If P is an interval, then
∑

C∈Q(P )

(−1)ℓ(C) = 1.

Proof. Suppose that P = [x, y] and append new minimum and maximum elements

to P to get P̂ := P ∪ {0̂, 1̂}. Then the definition of Möbius function (1.2) gives

µ(0̂, 1̂) = −
∑

0̂≤z≤y

µ(0̂, z) ,
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which is zero by (1.2). By Hall’s formula,

0 = µ(0̂, 1̂) =
∑

C∈Q
′[0̂,1̂]

(−1)ℓ(C) = −1 +
∑

C∈Q(P )

(−1)ℓ(C)+2 ,

where the term −1 comes from the chain 0̂ < 1̂. This proves the lemma. ¤

Call a partition P = K0 ⊔ · · · ⊔ Kr of P into subposets Ki monotone if x < y
with x ∈ Ki and y ∈ Kj implies that i ≤ j. Given ∅ ( I ⊆ [0, r], write QI(P ) for
the subset of chains C in Q(P ) such that C ∩ Ki 6= ∅ if and only if i ∈ I.

Lemma 1.6. Let P = K0 ⊔ · · · ⊔ Kr be a monotonic partition of a poset P . If
⋃

i∈I Ki is an interval for all I ⊆ [0, r], then

(1.8)
∑

C∈Q[0,r](P )

(−1)ℓ(C) = (−1)r .

Proof. We argue by induction on r. Lemma 1.5 is the case r = 0 (wherein K0 = P ),
so we consider the case r ≥ 1.

Form the poset P̂ = P ∪ {0̂, 1̂} as in the proof of Lemma 1.5. Since P is an
interval, we have

∑

C∈Q
′[0̂,1̂](−1)ℓ(C) = 0. As Q

′[0̂, 1̂] =
⊔

I QI(P ) we have,

0 = −1 +
∑

∅(I([0,r]

(

∑

C∈QI(P )

(−1)ℓ(C)

)

+
∑

C∈Q[0,r](P )

(−1)ℓ(C) ,

where the term −1 counts the chain 0̂ < 1̂. Applying induction, we have

0 =
r

∑

k=0

(

r + 1

k

)

(−1)k−1 +
∑

C∈Q[0,r](P )

(−1)ℓ(C) .

Comparing this to the binomial expansion of (1 − 1)r+1 completes the proof. ¤

Proof of Theorem 1.4. Fix x < y in Q. We use Hall’s formula to rewrite the right-
hand side of (1.7) as

(1.9)
∑

f(a)=x
f(b)=y

∑

C∈Q
′[a,b]

(−1)ℓ(C) .

Fix a chain D : x = q0 < · · · < qr = y in Q
′[x, y] and let P |D be the subposet of

P consisting of elements that occur in some chain of P that maps to D under f .
This is nonempty as f has section. Furthermore, the sets Ki := f−1(qi) ∩ P |D,
for i = 0, . . . , r, form a monotonic partition of P |D. We claim that

⋃

i∈I Ki is an
interval for all I ⊆ [0, r]. If so, let us first rewrite (1.9) as a sum over chains D in
Q,

∑

D∈Q
′[x,y]

∑

C∈Q[0,ℓ(D)](P |D)

(−1)ℓ(C) .

By Lemma 1.6, the inner sum becomes (−1)ℓ(D), which completes the proof.
To prove the claim, suppose that I = {i0 < · · · < is}. Each set Ki (i ∈ I) is

an interval, as it is the intersection of two intervals in the lattice P . Thus Ki0 and



HOPF STRUCTURES ON THE MULTIPLIHEDRA 9

Kis are intervals with minimum and maximum elements m and M , respectively.
Any chain in

⋃

i∈I Ki can be extended to a chain beginning with m and ending at
M , so

⋃

i∈I Ki is an interval. ¤

Remark 1.7. In light of the proof of Theorem 1.4, the result holds with a weaker
hypothesis. The condition in the definition of interval retract that P be a lattice
may be replaced by the order map f : P → Q having the property that the set
f−1(q) ∩ P |D is an interval whenever D is a chain in Q and q ∈ D.

2. The Multiplihedra M·
The map τ : S· → Y· forgets the linear ordering of the node poset of an ordered

tree, and it induces a morphism of Hopf algebras τ : SSym → YSym. In fact,
one may take the (ahistorical) view that the Hopf structure on YSym is induced
from that on SSym via the map τ . Forgetting some, but not all, of the structure
on a tree in S· factorizes the map τ . Here, we study combinatorial consequences
of one such factorization, and later treat its algebraic consequences.

2.1. Bi-leveled trees. A bi-leveled tree (t; T) is a planar binary tree t ∈ Yn

together with an (upper) order ideal T of its node poset, where T contains the
leftmost node of t as a minimal element. Thus T contains all nodes along the path
from the leftmost leaf to the root, and none above the leftmost node. Numbering
the gaps between the leaves of t by 1, . . . , n from left to right, T becomes a subset
of {1, . . . , n}.

Saneblidze and Umble [22] introduced bi-leveled trees to describe a cellular pro-
jection from the permutahedra to Stasheff’s multiplihedra M·, with the bi-leveled
trees on n nodes indexing the vertices Mn. Stasheff used a different type of tree
for the vertices of M·. These alternative trees lead to a different Hopf structure

which we explore in a forthcoming paper [9]. We remark that M0 = { }.
The partial order on Mn is defined by (s; S) ≤ (t; T) if s ≤ t in Yn and S ⊇ T.

The Hasse diagrams of the posets Mn are 1-skeleta for the multiplihedra. We
represent a bi-leveled tree by drawing the underlying tree t and circling the nodes
in T. The Hasse diagram of M4 appears in Figure 2.

2.2. Poset maps. Forgetting the order ideal in a bi-leveled tree, (t; T) 7→ t, is a
poset map φ : M· → Y·. We define a map β : S· → M· so that

S· β−−→ M· φ−−→ Y·
factors the map τ : S· → Y·, and we define a right inverse (section) ι of β.

Let w ∈ S· be an ordered tree. Define the set

(2.1) T(w) := {i | w(i) ≥ w(1)} .

Observe that β(w) := (τ(w); T(w)) is a bi-leveled tree. Indeed, as w is a linear
extension of τ(w), T(w) is an upper order ideal which by definition (2.1) contains
the leftmost node as a minimal element. Since covers in the weak order can only
decrease the subset T(w) and τ is also a poset map, we see that β is a poset map.
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Figure 2: The 1-skeleton of the multiplihedron M4.

Theorem 2.1. The maps β : S· → M· and φ : M· → Y· are surjective poset

maps with τ = φ ◦ β.

The fibers of the map β are intervals (indeed, products of intervals); see Fig-
ure 3. We prove this using an equivalent representation of a bi-leveled tree and

β−1

( )

=

3471526

3571426

3671425
3472516

3572416

3672415

Figure 3: The preimages of β are intervals.

a description of the map β in that representation. If we prune a bi-leveled tree
b = (t; T) above the nodes in T (but not on the leftmost branch) we obtain a tree
t′0 (the order ideal) on r nodes and a planar forest t = (t1, . . . , tr) of r trees. If we
prune t′0 just below its leftmost node, we obtain the tree (from the pruning) and
a tree t0, and t′0 is obtained by grafting onto the leftmost leaf of t0. We may
recover b from this tree t0 on r−1 nodes and the planar forest t = (t1, . . . , tr), and
so we also write b = (t0, t). We illustrate this correspondence in Figure 4.

We describe the map β in terms of this second representation of bi-leveled trees.
Given a permutation w with β(w) = (t; T) and |T| = r, let u1u2 . . . ur be the
restriction of w to the set T. We may write the values of w as w = u1v

1u2 · · ·urv
r,

where vi is the (possibly empty) subword of w between the numbers ui and ui+1 and
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1

2

3
4

5

6

7
8

9

-¾ -¾



 ; {1, 2, 5, 6}





6
?

6

?
(

,
(

, , ,
)

)

(t; T) (t0, t)

Figure 4: Two representations of bi-leveled trees.

vr is the word after ur. Call this the bi-leveled factorization of w. For example,

654789132 7−→ (6
u1

, 54
v1

, 7
u2

, ∅
v2

, 8
u3

, ∅
v3

, 9
u4

, 132
v4

) .

Note that β(w) = (τ(u2 . . . ur), (τ(v1), . . . , τ(vr))).

Theorem 2.2. For any b ∈ Mn the fiber β−1(b) ⊆ Sn is a product of intervals.

Proof. Let b = (t0, (t1, . . . , tr)) = (t; T) ∈ Mn be a bi-leveled tree. A permutation
w ∈ β−1(b) ∈ Sn has a bi-leveled factorization w = u1v

1u2 . . . urv
r with

(2.2)
(i) w|T = u1u2 . . . ur, u1 = n+1−r, τ(u2 . . . ur) = t0, and

(ii) τ(vi) = ti, for i = 1, . . . , r .

Since u1 < u2, . . . , ur are the values of w in the positions of T, and u1 = n+1−r
exceeds all the letters in v1, . . . , vr, which are the values of w in the positions in
the complement of T, these two parts of the bi-leveled factorization may be chosen
independently to satisfy (2.2), which shows that β−1(b) is a product.

To see that the factors are intervals, and thus β−1(b) is an interval, we examine
the conditions (i) and (ii) separately. Those u1 . . . ur = w|T for w in the fiber β−1(b)
are exactly the set of n+1−r, u2, . . . , ur with {u2, . . . , ur} = {n+2−r, . . . , n} and
τ(u2 . . . ur) = t0. This is a poset under the restriction of the weak order, and it is in
natural bijection with the interval τ−1(t0) ⊂ Sr−1. Its minimal element is min0(b) =
u1u2 . . . ur, where u2 . . . ur is the unique 231-avoiding word on {n+1−r, . . . , n}
satisfying (i), and its maximal element is max0(b) = u1u2 . . . ur, where now u2 . . . ur

is the unique 132-avoiding word on {n+1−r, . . . , n} satisfying (i).
Now consider sequences of words v1, . . . , vr on distinct letters {1, . . . , n−r} sat-

isfying (ii). This is also a poset under the restriction of the weak order. It has a
minimal element, which is the unique such sequence min(b) satisfying (ii) where the
letters of vi preceed those of vj whenever i < j, and where each vi is 231-avoiding.
Its maximal element is the unique sequence max(b) satisfying (ii) where the letters
of vi are greater than those of vj when i < j and vi is 132-avoiding. ¤
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The fibers of β are intervals so that consistently choosing the minimum or maxi-
mum in a fiber gives two set-theoretic sections. Neither section is order-preserving
as may be seen from Figure 5. We have < but the maxima in their fibers

-β

2143

©©

1243

1342
-β

3241

3142

2341

HH

Figure 5: Fibers of β.

under β, 1342 and 2143, are incomparable. Similarly, < but the minima in
their fibers under β, 2341 and 3142, are incomparable. This shows that the map
β : S· → M· is not a lattice congruence (unlike the map τ : S· → Y· [20]).

In the notation of the proof, given a bi-leveled tree b = (t0, (t1, . . . , tr)), let ι(b) be
the permutation w ∈ β−1(b) with bi-leveled factorization w = u1v

1u2 . . . urv
r where

u1u2 . . . ur = min0(b) and (v1, . . . , vr) = max(b). This defines a map ι : Mn → Sn

that is a section of the map β. For example,

ι

( )

=

7 8 6 11 4 5 9 10 2 3 1

= 786 11 459 10 231 .

Remark 2.3. This map ι may be characterized in terms of pattern avoidance: the
permutation ι(b) is the unique w ∈ β−1(b) avoiding the pinned patterns

{

2031, 0231, 3021
}

,

where the underlined letter must be the first letter of a permutation. To see this,
note that the first pattern forces the letters in vi to be larger than those in vi+1

for 1 ≤ i < r, the second pattern forces u2 . . . ur to be 231-avoiding, and the last
pattern forces each vi to be 132-avoiding.

Theorem 2.4. The map ι is injective, right-inverse to β, and order-preserving.

That is, β : Sn → Mn is an interval retract.

Since Sn is a lattice [10], the fibers of β are intervals, and ι is a section of β.
That is, we need only verify that ι is order-preserving. We begin by describing the
covers in M·. Since β is a surjective poset map, every cover in Mn is the image
of some cover w ⋖ w′ in Sn.

Lemma 2.5. If a cover w⋖w′ ∈ Sn does not collapse under β, i.e., β(w) 6= β(w′),
then it yields one of three types of covers β(w) ⋖ β(w′) in Mn.
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(i) In exactly one tree ti in β(w) = (t0, (t1, . . . , tr)), a node is moved from left

to right across its parent to obtain β(w′). That is, ti ⋖ t′i.
(ii) In β(w) = (t; T), the leftmost node of t is moved across its parent, which

has no other child in the order ideal T, and deleted from T to obtain β(w′).
(iii) If T(w) = {1 = T1 < · · · < Tr}, then τ(w′) = τ(w) and T(w′) = T(w)\{Tj}

for some j > 2.

Proof. Put w′ = (k, k+1)w, with k, k+1 appearing in order in w. Let (t; T) and
(t0, (t1, . . . , tr)) be the two representations of β(w). Write T = {T1 < · · · < Tr}
(with T1 = 1) and w|T = u1u2 . . . ur. If w ⋖ w′ and β(w) ⋖ β(w′), then k appears
within w in one of three ways: (i) u1 6= k, (ii) u1 = k and u2 = k+1, or (iii)
u1 = k and uj = k+1 for some j > 2. These yield the corresponding descriptions
in the statement of the lemma. (Note that in type (i), T(w′) = T, so if we set
β(w′) = (t′0, (t

′
1, . . . , t

′
r)), then ti = t′i, except for one index i, where ti ⋖ t′i.) ¤

Figure 6 illustrates these three types of covers, labeled by their type.

(i)

(i) (ii)

(iii)

Figure 6: Some covers in M7.

For T ⊂ {1, . . . , n} with 1 ∈ T, let Sn(T) := {w ∈ Sn | T(w) = T}. Let Mn(T)
be those bi-leveled trees whose order ideal consists of the nodes in T. Note that
β(Sn(T)) = Mn(T) and β−1(Mn(T)) = Sn(T).

Lemma 2.6. The map ι : Mn(T) → Sn(T) is a map of posets.

Proof. Let T = {1 = T1 < · · · < Tr}. Setting Tr+1 = n+1, define ai := Ti+1−Ti−1
for i = 1, . . . , r. Then b 7→ (t0, (t1, . . . , tr)) gives an isomorphism of posets,

Mn(T)
∼−→ Yr−1 × Ya1 × · · · × Yar

.

As the maps min, max : Ya → Sa are order-preserving, the proof of Theorem 2.2
gives the desired result. ¤

Proof of Theorem 2.4. Let b ⋖ c be a cover in Mn. We will show that ι(b) ≤ ι(c)
in Sn. Suppose that b = (t; T), with T = {1 = T1 < · · · < Tr}. Let ι(b) have
bi-leveled factorization ι(b) = u1v

1u2v
2 . . . urv

r, and set k := n + 1 − |T|.
The result is immediate if the cover b ⋖ c is of type (i), for then b, c ∈ Mn(T)

and ι : Mn(T) → Sn is order-preserving, as observed in Lemma 2.6.
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Now suppose that b ⋖ c is a cover of type (ii). Set w := ι(b). We claim that
w ⋖ (k, k+1)w and ι(c) = (k, k+1)w. Now, u1 = k labels the leftmost node of b,
so the first claim is immediate. Note that u2 labels the parent of the node labeled
u1. This parent has no other child in T, so we must have u2 < u3. As u2u3 . . . ur

is 231-avoiding and contains k+1, we must have u2 = k+1. This shows that

ι(c) = (k, k+1)w = u2 (v1u1v
2) u3 . . . urv

r .

Indeed, u2 is minimal among u2, . . . , ur and u3 . . . ur is 231-avoiding, thus min0(c) =
u2 . . . ur. The bi-leveled factorization of (k, k+1)w gives (v1u1v

2, v3, . . . , vr), which
we claim is max(c). As u1 is the largest letter in the sequence, we need only check
that v1u1v

2 is 132-avoiding. But this is true for v1 and v2 and there can be no
132-pattern involving u1 as the letters in v1 are all greater than those in v2.

Finally, suppose that b⋖ c is of type (iii). Then c = (t; T\{Tj}) for some j > 2.
We will find a permutation w′ ∈ β−1(b) satisfying (k, k+1)w′ ∈ β−1(c) and

(2.3) ι(b) ≤ w′ ⋖ (k, k+1)w′ ≤ ι(c) .

Let w′ ∈ β−1(b) be the minimal permutation having bi-leveled factorization

w′ = u′
1v

1u′
2 . . . u′

rv
r , with u′

j = k+1 .

Here (v1, . . . , vr) = max(b) is the same sequence as in ι(b). The structure of β−1(b)
implies that ι(b) ≤ w′. We also have

w′ ⋖ (k, k+1)w′ and β((k, k+1)w′) = c .

While ι(c) and (k, k+1)w′ are not necessarily equal, we do have that

(k, k+1)w′|T\{Tj} = u′
ju

′
2 . . . u′

j−1u
′
j+1 . . . u′

r

and u′
2 . . . u′

j−1u
′
j+1 . . . u′

r is 231-avoiding. That is, (k, k+1)w′|T\{Tj} = ι(c)|T\{Tj}.
Otherwise, w′ would not be minimal. The bi-leveled factorization of (k, k+1)w′ is

u′
j v1 u′

2 . . . u′
j−1 (vj−1u′

1v
j) u′

j+1 . . . u′
r vr ,

and we necessarily have (v1, . . . , vj−1u′
1v

j, . . . , vr) ≤ max(c), which imples that
(k, k+1)w′ ≤ ι(c). We thus have the chain (2.3) in Sn, completing the proof. ¤

If b ⋖ c is the cover of type (iii) in Figure 6, the chain (2.3) from ι(b) to ι(c) is

4357126 ≤ 4367125 ⋖ 5367124 ≤ 5467123 .

2.3. Tree enumeration. Let

S(q) :=
∑

n≥0

n!qn = 1 + q + 2q2 + 6q3 + 24q4 + 120q5 + · · ·

be the enumerating series of permutations, and define M(q) and Y(q) similarly

M(q) :=
∑

n≥0

Anq
n = 1 + q + 2q2 + 6q3 + 21q4 + 80q5 + · · · ,(2.4)

Y(q) :=
∑

n≥0

Cnq
n = 1 + q + 2q2 + 5q3 + 14q4 + 42q5 + · · · ,
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where An := |Mn| and Cn := |Yn| are the Catalan numbers 1
n+1

(

2n
n

)

, whose enu-
merating series satisfies

Y(q) =
1 −√

1 − 4q

2q
=

2

1 +
√

1 − 4q
.

Bi-leveled trees are Catalan-like [8, Theorem 3.1]: for n ≥ 1, An = Cn−1 +
∑n−1

i=1 Ai An−i. See also [24, A121988]. Their enumerating series satisfies

M(q) = 1 + qY(q) · Y(qY(q)).

We will also be interested in M+(q) :=
∑

n>0 Anq
n = qY(q) · Y(qY(q)).

Theorem 2.7. The only nontrivial quotients among the enumerating series S(q),
M(q), M+(q), and Y(q) whose expansions have nonnegative coefficients are

S(q)/M(q), S(q)/Y(q), M+(q)/Y(q), and M(q)/Y(q).

Proof. We prove the positivity of the quotient S(q)/M(q) in Section 4.2. The
positivity of S(q)/Y(q) was established after [2, Theorem 7.2], which shows that
SSym is a smash product over YSym.

For the positivity of M+(q)/Y(q), we use [3, Proposition 3], which computes
Y(qY(q)) =

∑

n>0 Bnqn−1, where

(2.5) B1 := C0 and Bn :=
n−1
∑

k=0

k

n − 1

(

2n − k − 3

n − k − 1

)

Ck for n > 1 .

In particular, Bn ≥ 0 for all n ≥ 0. Returning to the quotient, we have

M+(q)

Y(q)
=

qY(q) · Y(qY(q))

Y(q)
= qY(qY(q)) ,

so M+(q)/Y(q) =
∑

n>0 Bnqn has nonnegative coefficients.
For M(q)/Y(q), use the identity 1/Y(q) = 1 − qY(q) to obtain

M(q)

Y(q)
= M+(q) + 1 − qY(q) = 1 +

∑

n>0

(Bn − Cn−1)q
n .

Positivity is immediate as Bn − Cn−1 ≥ 0 for n > 0.
We leave the proof that the remaining quotients have negative coefficients to the

reader’s computer. ¤

Remark 2.8. Up to an index shift, the quotient M+(q)/Y(q) corresponds to
the sequence [24, A127632] begining with (1, 1, 3, 11, 44, 185, 804). We give a new
combinatorial interpretation of this sequence in Corollary 4.3.

3. The Algebra MSym

Let MSym :=
⊕

n≥0 MSymn denote the graded Q–vector space whose nth

graded piece has the basis {Fb | b ∈ Mn}. The maps β : S· → M· and φ : M· →
Y· of graded sets induce surjective maps of graded vector spaces

(3.1) SSym
β−−→ MSym

φ−−→ YSym Fw 7→ Fβ(w) 7→ Fφ(β(w)) ,
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which factor the Hopf algebra map τ : SSym → YSym, as φ(β(w)) = τ(w). We
will show how the maps β and τ induce on MSym the structures of an algebra, of
a SSym-module, and of a YSym-comodule so that the composition (3.1) factors
the map τ as maps of algebras, of SSym-modules, and of YSym-comodules.

3.1. Algebra structure on MSym. For b, c ∈ M· define

(3.2) Fb · Fc = β(Fw · Fv) ,

where w, v are permutations in S· with b = β(w) and c = β(v).

Theorem 3.1. The operation Fb · Fc defined by (3.2) is independent of choices of

w, v with β(w) = b and β(v) = c and it endows MSym with the structure of a

graded connected algebra such that the map β : SSym → MSym is a surjective

map of graded connected algebras.

If the expression β(Fw · Fv) is independent of choice of w ∈ β−1(b) and v ∈
β−1(c), then the map β is automatically multiplicative. The associative and unital
properties for MSym are then inherited from those for SSym, and the theorem
follows. To prove independence (in Lemma 3.2), we formulate a description of (3.2)
in terms of splittings and graftings of bi-leveled trees.

Let s
g→ (s0, . . . , sm) be a splitting on the underlying tree of a bi-leveled tree

b = (s; S) ∈ Mn. Then the nodes of s are distributed among the nodes of the
partially ordered forest (s0, . . . , sm) so that the order ideal S gives a sequence of

order ideals in the trees si. Write b
g→ (b0, . . . , bm) for the corresponding splitting

of the bi-leveled tree b, viewing bi as (si; S|si
). (Note that only b0 is guaranteed to

be a bi-leveled tree.) Given c = (t; T) ∈ Mm and a splitting b
g→ (b0, . . . , bm) of

b ∈ Mn, form a bi-leveled tree (b0, . . . , bm)/c whose underlying tree is (s0, . . . , sm)/t
and whose order ideal is either

(3.3)
(i) T, if b0 ∈ M0, or

(ii) S ∪ {the nodes of t}, if b0 6∈ M0.

Lemma 3.2. The product (3.2) is independent of choices of w, v with β(w) = b
and β(v) = c. For b ∈ Mn and c ∈ Mm, we have

Fb · Fc =
∑

b
g

→(b0,...,bm)

F(b0,...,bm)/c .

Proof. Fix any w ∈ β−1(b) and v ∈ β−1(c). The bi-leveled tree β((w0, . . . , wm)/v)

associated to a splitting w
g→ (w0, . . . , wm) has underlying tree (s0, . . . , sm)/t,

where s
g→ (s0, . . . , sm) is the induced splitting on the underlying tree s = τ(w) =

φ(b). Each node of (w0, . . . , wm)/v comes from a node of either w or v, with the
labels of nodes from w all smaller than the labels of nodes from v. Consequently,
the leftmost node of (w0, . . . , wm)/v comes from either

(i) v, and then T((w0, . . . , wm)/v) = T(v) = T(c), or
(ii) w, and then T((w0, . . . , wm)/v) = T(w) = T(b) ∪ {the nodes of v}.

The first case is when w0 ∈ S0 and the second case is when w0 6∈ S0. ¤
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Here is the product F · F , together with the corresponding splittings of ,

F · F = F + F + F + F + F + F .

3.2. SSym module structure on MSym. Since β is a surjective algebra map,
MSym becomes a SSym-bimodule with the action

Fw · Fb · Fv = Fβ(w) · Fb · Fβ(v) .

The map τ likewise induces on YSym the structure of a SSym-bimodule, and the
maps β, φ, and τ are maps of SSym-bimodules.

Curiously, we may use the map ι : M· → S· to define the structure of a right
SSym-comodule on MSym,

Fb 7−→
∑

ι(b)
g

→(w0,w1)

Fβ(w0) ⊗ Fw1 .

This induces a right comodule structure, because if ι(b)
g→ (w0, w1), then w0 =

ι(β(w0)), which may be checked using the characterization of ι in terms of pattern
avoidance, as explained in Remark 2.3.

While MSym is both a right SSym-module and right SSym-comodule, it is
not an SSym–Hopf module. For if it were a Hopf module, then the fundamental
theorem of Hopf modules (see Remark 4.4) would imply that the series M(q)/S(q)
has positive coefficients, which contradicts Theorem 2.7.

3.3. YSym-comodule structure on MSym. For b ∈ M·, define the linear map
ρ : MSym → MSym ⊗ YSym by

(3.4) ρ(Fb) =
∑

b
g

→(b0,b1)

Fb0 ⊗ Fφ(b1) .

By φ(b1), we mean the tree underlying b1.

Example 3.3. In the fundamental bases of MSym and YSym, we have

ρ(F ) = F ⊗ 1 + F ⊗ F + F ⊗ F + F ⊗ F + 1 ⊗ F .

Theorem 3.4. Under ρ, MSym is a right YSym-comodule.

Proof. This is counital as (b, ) is a splitting of b. Coassociativity is also clear
as both (ρ ⊗ 1)ρ and (1 ⊗ ∆)ρ applied to Fb for b ∈ M· are sums of terms

Fb0 ⊗ Fφ(b1) ⊗ Fφ(b2) over all splittings b
g→ (b0, b1, b2). ¤

Careful bookkeeping of the terms in ρ(Fb · Fc) show that it equals ρ(Fb) · ρ(Fc)
for all b, c ∈ M· and thus MSym is a YSym–comodule algebra. Hence, φ is a
map of YSym–comodule algebras, and in fact β is also a map of YSym–comodule
algebras. We leave this to the reader, and will not pursue it further.

Since τ : SSym → YSym is a map of Hopf algebras, SSym is naturally a right
YSym-comodule where the comodule map is the composition

SSym
∆−−→ SSym ⊗ SSym

1⊗τ−−−→ SSym ⊗ YSym .
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With these definitions, the following lemma is immediate.

Lemma 3.5. The maps τ and φ are maps of right YSym-comodules.

In particular, we have the equality of maps SSym → MSym ⊗ YSym,

(3.5) ρ ◦ β = (β ⊗ τ ) ◦ ∆ .

3.4. Coaction in the monomial basis. The coalgebra structures of SSym and
YSym were elucidated by considering a second basis related to the fundamental
basis via Möbius inversion. For b ∈ Mn, define

(3.6) Mb :=
∑

b≤c

µ(b, c)Fc ,

where µ(·, ·) is the Möbius function on the poset Mn.
Given b ∈ Mm and s ∈ Yq, write b\s for the bi-leveled tree with p + q nodes

whose underlying tree is formed by grafting the root of s onto the rightmost leaf
of b, but whose order ideal is that of b. Here is an example of b, s, and b\s,

= .

Observe that we cannot have b = in this construction.
The maximum bi-leveled tree with a given underlying tree t is β(max(t)), which

has order ideal T consisting only of the nodes of t along its leftmost branch. Here
are three such trees of the form β(max(t)),

.

Theorem 3.6. Given b = (t; T) ∈ M·, we have

ρ(Mb) =



















∑

b=c\s

Mc ⊗ Ms if b 6= β(max(t))

∑

b=c\s

Mc ⊗ Ms + 1 ⊗ Mt if b = β(max(t))
.

For example,

ρ(M ) = M ⊗ 1

ρ(M ) = M ⊗ 1 + M ⊗ M

ρ(M ) = M ⊗ 1 + M ⊗ M + M ⊗ M + 1 ⊗ M .

Our proof of Theorem 3.6 uses Proposition 1.3 and the following results.

Lemma 3.7. For any bi-leveled tree b ∈ M·, we have

β

(

∑

β(w)=b

Mw

)

= Mb .
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Proof. Expand the left hand side in terms of the fundamental bases to get

β

(

∑

β(w)=b

∑

w≤v

µS(w, v)Fv

)

=
∑

β(w)=b

∑

w≤v

µS(w, v)Fβ(v) .

As β is surjective, we may change the index of summation to b ≤ c in M· to obtain

∑

b≤c

(

∑

β(w)=b
β(v)=c

µS(w, v)

)

Fc .

By Theorems 1.4 and 2.4, the inner sum is µM(b, c), so this sum is Mb. ¤

Recall that w = u\v only if τ(w) = τ(u)\τ(v) and the values of w in the nodes
of u exceed the values in the nodes of v. We always have the trivial decomposition
w = (∅, w). Suppose that w = u\v with u 6= ∅ a nontrivial decomposition. If
β(w) = b = (t; T), then T is a subset of the nodes of u so that β(u) = (τ(u); S)
and b = β(u)\τ(v). Moreover, for every decomposition b = c\s and every u, v with
β(u) = c and τ(v) = s, we have b = β(u\v). Thus, for b ∈ M·, we have

(3.7)
⊔

β(w)=b

⊔

w=u\v
u 6=∅

(u, v) =
⊔

b=c\t

⊔

β(u)=c

⊔

τ(v)=t

(u, v) .

Proof of Theorem 3.6. Let b = (t; T) with t 6= . Using Lemma 3.7, we have

ρ(Mb) = ρβ

(

∑

β(w)=b

Mw

)

=
∑

β(w)=b

ρβMw .

By (3.5), (3.7), and (1.5), this equals
∑

β(w)=b

∑

w=u\v
u 6=∅

β(Mu) ⊗ τ (Mv) +
∑

β(w)=b

β(M∅) ⊗ τ (Mw)

=
∑

b=c\s

(

∑

β(u)=c

β(Mu)

)

⊗
(

∑

τ(v)=s

τ (Mt)

)

+
∑

β(w)=b

1 ⊗ τ (Mw) .

By Lemma 3.7 and (1.4), the first sum becomes
∑

b=c\s Mc ⊗ Ms and the second

sum vanishes unless b = β(max(t)). This completes the proof. ¤

4. Hopf Variations

4.1. The YSym–Hopf module MSym+. Let M+ := (Mn)n≥1 be the bi-leveled
trees with at least one internal node and define MSym+ to be the positively
graded part of MSym, which has bases indexed by M+. A restricted splitting

of b ∈ M+ is a splitting b
g+−→ (b0, . . . , bm) with b0 ∈ M+, i.e., b0 6= . Given

b
g+−→ (b0, . . . , bm) and t ∈ Ym, form the bi-leveled tree (b0, . . . , bm)/t by grafting

the ordered forest (b0, . . . , bm) onto the leaves of t, with order ideal consisting of
the nodes of t together with the nodes of the forest coming from the order ideal of
b, as in (3.3)(ii).
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We define an action and coaction of YSym on MSym+ that are similar to the
product and coaction on MSym. They come from a second collection of polytope
maps Mn ։ Yn−1 arising from viewing the vertices of Mn as painted trees on n−1
nodes (see [5, 8]). For b ∈ M+ and t ∈ Ym, set

(4.1)

Fb · Ft =
∑

b
g+
−→(b0,...,bm)

F(b0,...,bm)/t ,

ρ+(Fb) =
∑

b
g+
−→(b0,b1)

Fb0 ⊗ Fφ(b1) .

For example, in the fundamental bases of MSym+ and YSym, we have

F · F = F + F + F ,

ρ+(F ) = F ⊗ 1 + F ⊗ F + F ⊗ F + F ⊗ F .

Theorem 4.1. The operations in (4.1) define a YSym–Hopf module structure on

MSym+.

Proof. The unital and counital properties are immediate. We check only that the
action is associative, the coaction is coassociative, and the two structures commute
with each other.

Associativity. Fix b = (t; T) ∈ M+, r ∈ Ym, and s ∈ Yn. A term in the

expression (Fb · Fr) · Fs corresponds to a restricted splitting and grafting b
g+−→

(b0, . . . , bm) Ã (b0, . . . , bm)/r = c, followed by another c
g+−→ (c0, . . . , cn) Ã

(c0, . . . , cn)/t. The order ideal for this term equals T ∪ {the nodes of r and s}.
Note that restricted splittings of c are in bijection with pairs of splittings

(

b
g+−→ (b0, . . . , bm+n) , r

g→ (r0, . . . , rn)
)

.

Terms of Fb ·(Fr ·Fs) also correspond to these pairs of splittings. The order ideal for
this term is again T∪{the nodes of r and s}. That is, (Fb ·Fr) ·Fs and Fb · (Fr ·Fs)
agree term by term.

Coassociativity. Fix b = (t; T) ∈ M+. Terms Fc ⊗ Fr ⊗ Fs in (ρ+ ⊗ 1)ρ+(Fb)

and (1⊗ ∆)ρ+(Fb) both correspond to restricted splittings b
g+−→ (c, c1, c2), where

φ(c1) = r and φ(c2) = s. In either case, the order ideal on c is T|c.
Commuting structures. Fix b = (s; S) ∈ M+ and t ∈ Ym. A term Fc0 ⊗ Fφ(c1)

in ρ+(Fb · Ft) corresponds to a choice of a restricted splitting and grafting b
g+−→

(b0, . . . , bm) Ã (b0, . . . , br)/t = c, followed by a restricted splitting c
g+−→ (c0, c1).

The order ideal on c0 equals the nodes of c0 inherited from S, together with the
nodes of c0 inherited from t. The restricted splittings of c are in bijection with

pairs of splittings
(

b
g+−→ (b0, . . . , bm+1), t

g→ (t0, t1)
)

. If t0 ∈ Yn, then the pair
of graftings c0 = (b0, . . . , bn)/t0 and c1 = (bn+1, . . . , bm)/t1 are precisely the terms
appearing in ρ+(Fb) · ∆(Ft). ¤

The similarity of (4.1) to the coaction (3.4) of YSym on MSym gives the
following result, whose proof we leave to the reader.
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Corollary 4.2. For b ∈ M+, we have

ρ+(Mb) =
∑

b=c\s

Mc ⊗ Ms .

This elucidates the structure of MSym+. Let B ⊂ M+ be the indecomposable
bi-leveled trees—those with only trivial decompositions, b = b\ . Then (t; T) ∈ B
if and only if T contains the rightmost node of t. Every tree c in M+ has a unique
decomposition c = b\s where b ∈ B and s ∈ Y·. Indeed, pruning c immediately

above the rightmost node in its order ideal gives a decomposition c = b\s where
b ∈ B and s ∈ Y·. This induces a bijection of graded sets,

M+ ←→ B × Y· .

Moreover, if b ∈ B and s ∈ Y·, then Corollary 4.2 and (1.6) together imply that

(4.2) ρ+(Mb\s) =
∑

s=r\t

Mb\r ⊗ Mt .

Note that QB ⊗ YSym is a graded right YSym-comodule with structure map,

b ⊗ Ms 7−→ b ⊗ (∆Ms) ,

for b ∈ B and s ∈ Y·. Comparing this with (4.2), we deduce the following algebraic
and combinatorial facts.

Corollary 4.3. The map QB ⊗ YSym → MSym+ defined by b ⊗ Ms 7→ Mb\s is

an isomorphism of graded right YSym comodules.

The quotient of enumerating series M(q)+/Y(q) is equal to the enumerating

series of the graded set B.

In particular, if Bn := B ∩Mn, then |Bn| = Bn by (2.5).

Remark 4.4. The coinvariants in a right comodule M over a coalgebra C are
M co := {m ∈ M | ρ(m) = m ⊗ 1}. We identify the vector space QB with MSymco

+

via b 7→ Mb. The isomorphism QB ⊗ YSym → MSym+ is a special case of the
Fundamental Theorem of Hopf Modules [19, Theorem 1.9.4]: If M is a Hopf module
over a Hopf algebra H, then M ≃ M co ⊗ H as Hopf modules.

4.2. Hopf module structure on MSym. We use Theorem 3.6 to identify the
YSym-coinvariants in MSym. Let B′ be those indecomposable bi-leveled trees
which are not of the form β(max(t)), for some t ∈ Y+, together with { }.
Corollary 4.5. The YSym-coinvariants of MSym have a basis {Mb | b ∈ B′}.

For n > 0, the difference Bn \B′
n consists of indecomposable bi-leveled trees with

n nodes of the form β(max(t)). If β(max(t)) ∈ Bn, then t = s∨ , for some s ∈ Yn−1,
and so |B′

n| = Bn − Cn−1, which we saw in the proof of Theorem 2.7.
For t ∈ Y·, set °t := β(max(t)), and if 6= b ∈ B′, set b°t := b\t. Every bi-

leveled tree uniquely decomposes as b°t with b ∈ B′ and t ∈ Y·. By Theorem 3.6,
Mb ⊗ Mt 7→ Mb°t induces an isomorphism of right YSym-comodules,

(4.3) MSymco ⊗ YSym −→ MSym ,
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where the structure map on MSymco ⊗YSym is Mb ⊗Mt 7→ Mb ⊗∆(Mt). Treat-
ing MSymco as a trivial YSym-module, Mb · Mt = ε(Mt)Mb, MSymco ⊗ YSym
becomes a right YSym-module. As explained in [19, Example 1.9.3], this makes
MSymco ⊗ YSym into a YSym–Hopf module.

We express this structure on MSym. Let b°t ∈ M· and s ∈ Y·, then

(4.4) Mb°t · Ms =
∑

r∈t·s

Mb°r and ρ
(

Mb°t

)

=
∑

t=r\s

Mb°r ⊗ Ms ,

where t ·s is the set of trees r indexing the product Mt ·Ms in YSym. The coaction
is as before, but the product is new. It is not positive in the fundamental basis,

F · F = F − F + F + 2F .

We complete the proof of Theorem 2.7.

Corollary 4.6. The power series S(q)/M(q) has nonnegative coefficients.

Proof. Observe that

S(q)/M(q) =
(

S(q)/Y(q)
)

/

(

M(q)/Y(q)
)

.

Since both SSym and MSym are right YSym–Hopf modules, the two quotients
of enumerating series on the right are generating series for their coinvariants, by
the Fundamental Theorem of Hopf modules. Thus

S(q)/M(q) = Sco(q)/Mco(q) ,

where Sco(q) and Mco(q) are the enumerating series for SSymco and MSymco.
To show that Sco(q)/Mco(q) is nonnegative, we index bases for these spaces by
graded sets S and B′, then establish a bijection B′ × S ′ → S for some graded
subset S ′ ⊂ S.

The set B′ was identified in Corollary 4.5. The coinvariants SSymco were given
in [2, Theorem 7.2] as a left Hopf kernel. The basis was identified as follows. Recall
that pemutations u ∈ S· may be written uniquely in terms of indecomposables,

(4.5) u = u1\ · · · \ur

(taking r = 0 for u = ∅). Let S ⊂ S· be those permutations u whose rightmost

indecomposable component has a 132-pattern, and thus u 6= max(t) for any t ∈ Y+.
(Note that u = ∅ ∈ S.) Then {Mu | u ∈ S} is a basis for SSymco.

Fix a section g : M· → S· of the map β : S· → M· and define a subset S ′ ⊂ S
as follows. Given the decomposition u = u1\ · · · \ur in (4.5) with r ≥ 0, consider
the length ℓ ≥ 0 of the maximum initial sequence u1\ · · · \uℓ of indecomposables
belonging to g(B′). Put u ∈ S ′ if ℓ is even. Define the map of graded sets

κ : B′ × S ′ −→ S by (b, v) 7−→ g(b)\v .

The image of κ lies in S as the last component of a nontrivial g(b)\v is either g(b)
or the last component of v, neither of which can be max(t) for t ∈ Y+.

We claim that κ is bijective. If u ∈ S ′, then u = κ( , u). If u ∈ S \S ′, then u has
an odd number of initial components from g(B′). Letting its first factor be g(b),
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we see that u = g(b)\u′ = κ(b, u′) with u′ ∈ S ′. This surjective map is injective as
the expressions κ( , u′) and κ(b, u′) with b ∈ B′

+ and u′ ∈ S ′ are unique.
This isomorphism of graded sets identifies the enumerating series of the graded

set S ′ as the quotient Sco(q)/Mco(q), which completes the proof. ¤
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