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Abstract. We establish a congruence modulo four in the real Schubert calculus on the
Grassmannian of m-planes in 2m-space. This congruence holds for fibers of the Wronski
map and a generalization to what we call symmetric Schubert problems. This strengthens
the usual congruence modulo two for numbers of real solutions to geometric problems.
It also gives examples of geometric problems given by fibers of a map whose topological
degree is zero but where each fiber contains real points.

Introduction

The number of real solutions to a system of real equations is congruent modulo two
to the number of complex solutions, for the simple reason that complex conjugation is
an involution which acts freely on the nonreal solutions. We establish an additional
congruence modulo four for certain Schubert problems on the Grassmannian of m-planes
in the space of polynomials of degree at most 2m−1, for m > 2. This congruence modulo
four was originally observed in a computational experiment when m = 3 involving the
Wronski map. The reason for this congruence is that a natural symplectic structure on
this space of polynomials induces an additional geometric involution on this Grassmannian
which commutes with the Wronski map. This key result (Lemma 8) is generalized in a
sequel to this paper [12].

This second involution commutes with complex conjugation, and the group they gen-
erate consists of the identity and three involutions whose fixed points are, respectively,
the real Grassmannian, the Lagrangian Grassmannian, and a twisted real form of the
Grassmannian, which we call the Hermitian Grassmannian. The common fixed point lo-
cus of this group is the real Lagrangian Grassmannian, and the congruence modulo four
is a consequence of it not forming a hypersurface in the real Grassmannian when m > 2.
This congruence is a general fact (Lemma 5) concerning fibers of a real map that has a
second involution, whose fixed point locus has codimension at least two. It also applies
to what we call symmetric Schubert problems that have this codimension condition on
their Lagrangian locus. While we are unable to characterize which symmetric Schubert
problems enjoy this condition, we are able to establish this condition for a large class of
symmetric Schubert problems.

Let K be a field which will either be the real numbers, R, or the complex numbers, C.
We write Kd[t] for the d+1 dimensional vector space of univariate polynomials of degree
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at most d with coefficients from K. Given f1, . . . , fm ∈ Km+p−1[t], their Wronskian is the
determinant

det
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which is a polynomial of degree at most mp.
Replacing f1, . . . , fm by polynomials g1, . . . , gm with the same linear span will change

their Wronskian by a constant, which is the determinant of the matrix expressing the gi
in terms of the fj. Thus the Wronskian is a well-defined map

Wr : Gr(m,Km+p−1[t]) −→ Gr(1,Kmp[t]) = P(Kmp[t]) ,

where Gr(k, V ) is the Grassmannian of k-dimensional subspaces of the K-vector space V .
Both Gr(m,Km+p−1[t]) and P(Kmp[t]) are algebraic manifolds of dimension mp, and Wr
is a finite map.

When K = C, the degree of the Wronski map, which is the number of points in a fiber
above a regular value, was shown by Eisenbud and Harris [2] (based on earlier work of
Schubert [25]) to be

(1) #G
m,p =

(mp)! · 1!2! · · · (p−1)!

m!(m+1)! · · · (m+p−1)!
.

(Schubert determined the degree, and Eisenbud and Harris proved finiteness.) In fact,
this is the number of points in every fiber, if we count a point weighted by the algebraic
multiplicity of the scheme-theoretic fiber at that point. In all of our results, the bounds
and congruences hold when the points are counted with this multiplicity.

The real version of this inverse Wronski problem, namely studying the real subspaces
of polynomials in the fiber above a real polynomial Φ ∈ Rmp[t], has been the subject of
recent interest. This began with the conjecture of Boris Shapiro and Michael Shapiro (circa
1994), who conjectured that if Φ had all of its roots real, then every (a priori) complex
vector space in the fiber Wr−1(Φ) would be real. Significant evidence for this conjecture,
both theoretical and computational, was found in [28]. Eremenko and Gabrielov [5] proved
the conjecture when min{m, p} = 2, and it was proved for all m, p by Mukhin, Tarasov,
and Varchenko [19, 20]. In their study of this conjecture, Eremenko and Gabrielov [3]
calculated the topological degree of the real Wronski map, obtaining a nonzero lower
bound for the number of real subspaces in the fiber above a general real polynomial of
degree mp, when m+p is odd. When m+p is even, the topological degree is zero. When
both m and p are even, they gave a real polynomial of degree mp with no real preimages
under the Wronski map [4]. When both m and p are odd it is not known if there is a
nontrivial lower bound on the number of real subspaces in the fibers of the Wronski map.
When m = p, we establish a congruence modulo four on the number of real points in a
fiber of the Wronski map.
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Theorem 1. Suppose that m = p and m ≥ 3. For every Φ(t) ∈ Rm2 [t], the number of

real points in the fiber Wr−1(Φ(t)) is congruent to #G
m,m, modulo four, where each point

is counted with its algebraic multiplicity.

Since #G
3,3 = 42, which is congruent to 2 modulo four, we obtain the following corollary.

Corollary 2. When m = p = 3 in the fiber Wr−1(Φ(t)) of a real polynomial Φ(t) of degree
nine will contain either two simple real points or a real multiple point.

Since the topological degree of the Wronski mapWr: Gr(3,R5[t]) → P(R9[t]) is zero, this
corollary shows that the lower bound can be larger than the topological degree. The lower
bound of two from Corollary 2 is attained because we have examples of polynomials Φ(t)
of degree nine having only two real three-dimensional subspaces of degree five polynomials
in Wr−1(Φ(t)). Table 1 shows the result of a computing 1, 000, 000 fibers of this Wronski
map, a computation that consumed 391 gigaHertz-days. The columns are labeled by

Table 1. Fibers of the Wronski map.

Num. real 0 2 4 6 8 10 12 14 16 18 20 22

Frequency 0 66380 0 310667 0 208721 0 51774 0 34524 0 45940

Num. real 24 26 28 30 32 34 36 38 40 42 Total

Frequency 0 8560 0 17881 0 6632 0 771 0 248150 1000000

the possible numbers of real solutions and each cell in the second row records how many
computed instances had that number of real solutions. This paper originated in our desire
to understand the result of this computation.

Many of the symmetric Schubert problems treated in Section 4 also have a lower bound
of two on their number of real solutions, coming from the congruence modulo four. In
Example 16 we give a family of Schubert problems generalizing that of Corollary 2 and
Table 1. For the problems in this family the topological degree of the corresponding
Wronski map is zero, but there are always at least two points in every fiber. This family
illustrates that these topologically derived lower bounds may not be sharp.

There is now a growing body of examples of geometric problems which have lower
bounds on their numbers of real solutions. This phenomenon occurs not only in the
Schubert calculus [3], but also in counting rational curves on varieties [33, 14, 15] and lines
on hypersurfaces of degree 2n−1 in Pn [21, 6]. While there are some general theoretical
bases for some of these lower bounds [22, 26], this phenomena is far from being understood.
Two of us conducted a large computational experiment of related lower bounds in the (not
necessarily symmetric) Schubert calculus, which was reported on in [11].

While a similar congruence modulo four on the number of real solutions was also ob-
served in [1], such congruences appear to be a new phenomenon. A consequence of these
congruences is that the sharp lower bound on the number of real solutions to these prob-
lems is congruent modulo 4 to the number of complex solutions. A similar congruence for
lower bounds also occurs when enumerating rational curves on some Del Pezzo surfaces.
Welschinger [33] defined an invariant that is a lower bound on the number of real rational
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curves in a given divisor class interpolating real points. Later, Mikhalkin showed that
this Welschinger invariant is congruent modulo four to the number of complex curves, for
toric Del Pezzo surfaces, and this was extended to the other Del Pezzo surfaces (P2 blown
up at a = 4, 5, 6 points) by Itenberg, Kharlamov, and Shustin [16, 17]. (For more, see the
discussion in [17, §7.2].)

This paper is organized as follows. In Section 1 we present some basics on Schubert
calculus and derive the canonical symplectic form on K2m−1[t]. We establish a framework
for congruences modulo four in Section 2. In Section 3 we prove Theorem 1, and in
Section 4 we extend this congruence to certain symmetric Schubert problems.

1. Definitions

All of our varieties and maps between varieties are defined over the real numbers. That
is, they are complex varieties equipped with an antiholomorphic involution which we call
complex conjugation, and the maps commute with the conjugation. We will often write
X when we intend its set of complex points, X(C). Let X(R) be the set of points of
X(C) that are fixed under complex conjugation. Write Z2 for the group Z/2Z with two
elements and [n] for the set {1, 2, . . . , n} where n is a positive integer. We write V ∗ for
the linear dual of a vector space V . Let f : X → Y be a map between varieties of the
same dimension with Y smooth. A point x ∈ X is a critical point of the map f if the
differential of f at x is not an isomorphism of Zariski tangent spaces.

1.1. Schubert Calculus. Let V be a vector space over K of dimension m+p where m, p
are positive integers. We write Gr(m,V ) for the Grassmannian of m-dimensional linear
subspaces of V . This equivalently parametrizes m-dimensional quotients of V ∗. This
Grassmannian is a manifold of dimension mp and is a homogeneous space for the special
linear group SL(V ).

A flag is a sequence F• : F1 ⊂ F2 ⊂ · · · ⊂ Fm+p = V of linear subspaces of V with
dimFi = i. A partition λ is a weakly decreasing sequence of integers λ : p ≥ λ1 ≥ · · · ≥
λm ≥ 0. A flag F• and a partition λ together determine a Schubert variety

(1.1) XλF• := {H ∈ Gr(m,V ) | dimH ∩ Fp+i−λi
≥ i , i = 1, . . . ,m} .

This has codimension |λ| := λ1 + · · · + λm in Gr(m,V ). When λ = (1, 0, . . . , 0) (written
), the Schubert variety is

X F• = {H ∈ Gr(m,V ) | dimH ∩ Fp ≥ 1} .

That is, those H which meet Fp nontrivially.
A Schubert problem is a list λ = (λ1, . . . , λn) of partitions where |λ1|+ · · ·+ |λn| = mp.

Given a Schubert problem λ and general flags F 1
• , . . . , F

n
• , the intersection of Schubert

varieties
Xλ1F 1

• ∩Xλ2F 2
• ∩ · · · ∩XλnF n

•

is transverse [18]. The number d(λ) of complex points in this intersection does not depend
upon the choice of general flags and may be computed using algorithms from the Schubert
calculus. Our concern here is not in computing this number, but in congruences satisfied
by numbers of real solutions, for some Schubert problems and special choices of flags.
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Suppose that p = m and that V is equipped with a symplectic form, i.e. a nondegenerate
alternating form, denoted by 〈·, ·〉. The symplectic group Sp(V ) is the subgroup of SL(V )
consisting of linear transformations that preserve this form 〈·, ·〉,

Sp(V ) = {g ∈ SL(V ) | 〈gv, gw〉 = 〈v, w〉 ∀v, w ∈ V } .

A subspace H ∈ Gr(m,V ) is Lagrangian if 〈H,H〉 ≡ 0. The subset LG(V ) of Gr(m,V )
consisting of Lagrangian subspaces forms a manifold of dimension

(
m+1
2

)
and is a homo-

geneous space for the symplectic group Sp(V ).
The Lagrangian Grassmannian also has Schubert varieties (see [8, Ch. III] for more

details). These require isotropic flags, which are flags where the subspace Fi is the anni-
hilator of F2m−i in that 〈Fi, F2m−i〉 ≡ 0. In particular, Fm is Lagrangian. We also need
symmetric partitions, which we now explain. A partition λ : m ≥ λ1 ≥ · · · ≥ λm ≥ 0 may
be represented by its Young diagram, which is an array of boxes with λi boxes in row i.
For example,

(2, 1) ←→ , (3, 2, 2) ←→ , and (4, 2, 1, 1) ←→ .

A partition is symmetric if its Young diagram is symmetric about its main diagonal. The
partitions (2, 1) and (4, 2, 1, 1) are symmetric, while (3, 2, 2) is not symmetric.

A symmetric partition λ and an isotropic flag F• together determine a Schubert variety
of LG(V ), YλF•, which is equal to XλF• ∩ LG(V ), so that

YλF• = {H ∈ LG(V ) | dimH ∩ Fm+i−λi
≥ i , i = 1, . . . ,m} .

Its codimension in LG(V ) is

‖λ‖ = 1
2
(|λ|+ ℓ(λ)) ,

where ℓ(λ) is the number of boxes in the Young diagram of λ that lie on its main diagonal,
ℓ(λ) = max{i | i ≤ λi}. For example,

ℓ( ) = ℓ( ) = 1 and ℓ( ) = ℓ( ) = 2 .

We compare this to the alternative indexing set by strict partitions κ, which are strictly
decreasing sequences of positive integers κ : m ≥ κ1 > · · · > κk > 0. Such a sequence
is obtained from a symmetric partition λ as the subsequence of positive numbers in the
decreasing sequence λ1 > λ2 − 1 > · · · > λk − k + 1. The diagram of a strict partition
is obtained by removing the boxes below the diagonal from the diagram of a symmetric
partition. For example,

(5, 3, 2, 1, 1) ↔ Ã Ã ↔ (5 > 2) .

One value of this alternative indexing is that ‖λ‖ is the number of boxes in the corre-
sponding strict partition.

Given general isotropic flags F 1
• , . . . , F

n
• and symmetric partitions λ1, . . . , λn, the inter-

section of Schubert varieties

(1.2) Yλ1F 1
• ∩ Yλ2F 2

• ∩ · · · ∩ YλnF n
•
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is generically transverse [18]. When n = 2, we only need F 1
• and F 2

• to be in linear general

position, F 1
i ∩ F 2

2m−i = {0}, for i = 1, . . . , 2m−1. In particular, the intersection (1.2) is
either empty or every component has dimension

(
m+ 1

2

)
− ‖λ1‖ − ‖λ2‖ − · · · − ‖λn‖ .

This intersection consists of the Lagrangian subspaces that belong to the intersection of
Schubert varieties in the Grassmannian Gr(m,V ),

(
Xλ1F 1

• ∩Xλ2F 2
• ∩ · · · ∩XλnF n

•

)
∩ LG(V ) .

1.2. Canonical symplectic form on K2m−1[t]. We follow the discussion of apolarity in
§1 of [23]. Let U be a vector space over K and r a nonnegative integer. Write SrU for the
r-th symmetric power of U . Its elements are degree r homogeneous polynomials on U∗,
the vector space dual to U , and thus r-forms on P(U), the projective space of hyperplanes
of U . The dual vector space to SrU is SrU∗, whose elements act as differential operators
of degree r on the homogeneous polynomials of degree r representing the elements of SrU .

When dimU = 2, the exterior product leads to a symplectic form on U , 〈u, v〉 = u∧ v,
which is well-defined up to a scalar (corresponding to an identification of ∧2U with K).
This induces a nondegenerate form 〈·, ·〉 on SrU which is well-defined up to a scalar
multiple. It is symmetric when r is even and alternating when r is odd. Indeed, let s, t
span U with 〈s, t〉 = 1 and suppose that u = (u0s + u1t)

r and v = (v0s + v1t)
r. Then

a direct calculation gives 〈u, v〉 = (u0v1 − v0u1)
r, so that 〈u, v〉 = (−1)r〈v, u〉. Then the

claim about the symmetry of the form follows as SrU is spanned by r-th powers of linear
forms. This computation gives the following formula: when u =

∑r
i=0 uis

r−iti/i! and
v =

∑r
i=0 vis

r−iti/i!, then, up to a scalar we have

(1.3) 〈u, v〉 =
r∑

i=0

(−1)iuivr−i .

Henceforth we dehomogenize, setting s = 1 and identifying SrU with Kr[t] and work with
these coordinates for Kr[t]. We will restrict to the case when r is odd, writing r = 2m−1,
and thus K2m−1[t] has a natural structure of a symplectic vector space.

This symplectic form on K2m−1[t] is classical and can be derived in several different
ways. One attractive derivation is a consequence of K2m−1[t] being the space of solutions
of the self-adjoint linear differential equation y(2m) = 0. In fact, many of the results of
this paper may be generalized to Schubert calculus on spaces of solutions of a self-adjoint
linear differential equation [12].

1.3. Lagrangian involution and the Hermitian Grassmannian. Suppose that V ≃
C2m is a symplectic vector space with symplectic form 〈·, ·〉. This form induces an in-
volution on Gr(m,V ) whose set of fixed points is the Lagrangian Grassmannian. For a
linear subspace K of V , define K∠ to be {v ∈ V | 〈u, v〉 = 0 for all u ∈ K}. We have
(K∠)∠ = K and dimK + dimK∠ = 2m.
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By this dimension calculation, ∠ restricts to an involution on Gr(m,V ), which we call
the Lagrangian involution. Since H is Lagrangian if and only if H∠ = H, the Lagrangian
Grassmannian is the set of fixed points of the Lagrangian involution.

The real points (those fixed by complex conjugation, x 7→ x) of Gr(m,V ) and LG(V )
are, respectively, the real Grassmannian RGr(m,V ) and the real Lagrangian Grassman-
nian, RLG(V ). These real points correspond to real linear subspaces of V and real La-
grangian subspaces of V , respectively.

There is another distinguished type of linear subspace of V . An m-dimensional linear
subspace H of V is Hermitian if

H = H∠ equivalently H = H
∠

.

The Hermitian Grassmannian HG(V ) ⊂ Gr(m,V ) is the set of all Hermitian linear sub-

spaces of V . The map H 7→ H
∠

is an anti-holomorphic involution which equips Gr(m,V )
with a second real structure whose real points constitute the Hermitian Grassmannian.
Thus HG(V ) is a real algebraic manifold of dimension m2 whose complexification is
Gr(m,V ). We have the following diagram of inclusions.

Gr(m,V )
✟

✟
✟

✟
✟

❍
❍
❍
❍

❍

RGr(m, v) LG(V ) HG(V )

❍
❍

❍
❍

❍

✟
✟
✟
✟

✟

RLG(V )

Proposition 3. Each of these five Grassmannians may be realized as the smooth com-

pactification of a space of matrices according to the following table.

Space of matrices Mm×m(C) Mm×m(R) Symm(C) Symm(R) Hm

Grassmannian Gr(m,V ) RGr(m,V ) LG(V ) RLG(V ) HG(V )

Here Mm×m(K) is the set of all m ×m matrices over K, Symm(K) is m ×m symmetric

matrices over K, and Hm is all m×m Hermitian matrices.

Proof. Let V ≃ C2m have basis f0, . . . , f2m−1 for which the symplectic form is

〈fi , fj〉 =

{
δi+m,j if i < m

−δi,j+m if i ≥ m
.

Let Im be the m×m identity matrix. In this ordered basis, the association

X 7−→ row space[Im : X] ,

defines a map from the space of m×m matrices X to the Grassmannian Gr(m,V ). This
identifies the space of m ×m matrices with the big cell of Gr(m,V ). In this cell, points
of the real Grassmannian correspond to real matrices, points of the Lagrangian Grass-
mannian to symmetric matrices, and points of the Hermitian Grassmannian to Hermitian
matrices. ¤
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Remark 4. If we consider the symmetric form on V = C2m given by 〈fi, fj〉 = δ|i−j|,m, then
the space of isotropic m-planes in V—called the orthogonal Grassmannian—corresponds
to skew-symmetric matrices, those with XT = −X, and there is a similar skew-Hermitian

Grassmannian corresponding to skew-Hermitian matrices, those with X
T
= −X.

2. A very simple lemma

Suppose that f : X → Z is a proper dominant map between irreducible complex vari-
eties of the same dimension with Z smooth. Then f has a degree, d, which is the number
of (complex) inverse images of a regular value z ∈ Z. Suppose that X, Z, and the map f
are all defined over the real numbers, R. When z ∈ Z(R), we have the congruence,

(2.1) #f−1(z) ∩X(R) ≡ d mod 2 ,

which holds as the group Z2 generated by complex conjugation acts freely on the nonreal
points of the fiber. When the map f is finite, this congruence (2.1) holds for all z, when
multiplicities are taken into account. By multiplicity, we mean the usual Hilbert-Samuel
multiplicity of a point in a zero-dimensional scheme.

There is an additional congruence on the number of real points when there is an addi-
tional involution which satisfies a simple hypothesis.

Lemma 5. Suppose that f : X → Z is a proper dominant map of varieties defined over

R with Z smooth. Suppose that the variety X has an involution ∠ y X written x 7→ x∠

satisfying f(x∠) = f(x) such that the image f(X∠) in Z of the set of fixed points X∠ has

codimension at least 2, in that dim f(X∠) + 2 ≤ dimZ.
If y, z ∈ Z(R) belong to the same connected component of Z(R) and the fibers above

them are finite and contain no points of X∠, then

#f−1(y) ∩X(R) ≡ #f−1(z) ∩X(R) mod 4 .

Proof. By our assumption on dimX∠ and y, z, it is possible to connect y with z by a path
γ : [0, 1] → Z(R) which does not meet the set f(X∠)(R) of points w ∈ Z(R) whose fiber
f−1(w) meets X∠. Furthermore, we may assume that the image of γ contains at most
finitely many critical values of f . Let S ⊂ [0, 1] be those parameter values s for which
γ(s) is a critical value.

Pulling back regular fibers of f along γ and then taking the closure in X(C) × [0, 1]
gives a map fγ : Xγ → [0, 1] with finite fibers. At a point t ∈ [0, 1] for which the fiber of f
over γ(t) is finite, this fiber has the same number of points as the fiber of Xγ over t, and
they have the same number of real points. If we let c denote complex conjugation, then
the group K = {e, c,∠, c∠} ≃ Z2 × Z2 acts on the fibers of fγ. By our assumption on γ
and X∠, there are no ∠-fixed points in Xγ.

Over each interval I in [0, 1]r S, Xγ consists of a collection of disjoint arcs which may
come together at endpoints of I lying in S. Each of the arcs either has all of its points real
(fixed by c), all of its points fixed by c∠, or has K acting freely on all of its points. The
last two types of arcs contain no real points, and the second cannot have a real endpoint
as Xγ has no ∠-fixed points.
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Let s ∈ S be a critical value and I an interval in [0, 1]rS with s as one endpoint. The
multiplicity of a point x ∈ f−1

γ (s) is the number of arcs in Xγ over I with endpoint at x.

It follows that the number of real points in f−1
γ (s), counted with multiplicity, is at least

the number of real arcs over I. Only the real singular points x ∈ f−1
γ (s) can contribute to

the difference. The contribution from x is the number of complex arcs in Xγ over I that
come together at x, which is an even number. The same even number of complex arcs
comes together at x∠, which implies that the pair {x, x∠} contributes a multiple of four
to any change in multiplicity at the point s. This completes the proof. ¤

Remark 6. We could have argued symmetrically that the number of points fixed by c∠
may only change in multiples of four. This follows from Lemma 5 as the composition c∠
of the two involutions c and ∠ gives a second real structure on X.

Corollary 7. Let f : X → Z and ∠ be as above. Then every point of X∠ is a critical

point of f .

In particular, this shows that the hypotheses on the points y and z in Lemma 5 are
satisfied if they are not critical values of f .

Proof. Given a point x ∈ X∠, consider a curve C in Z that contains f(x), is smooth at
f(x), and only meets f(X∠) at f(x). Then ∠ acts fiberwise on the inverse image f−1(C)
of C in X. We have that x is a fixed point and ∠ acts freely on other points in f−1(C)
lying in a neighborhood of x. This implies that at least two branches of C come together
at x and proves the corollary. ¤

3. A mod 4 congruence in the real Schubert calculus

Let m ≥ 2 be an integer. We work in a vector space V ≃ C2m equipped with the
ordered basis e0, e1, . . . , e2m−1 whose dual space V ∗ has dual basis e∗0, . . . , e

∗
2m−1. That

is (ei, e
∗
j) = δi,j where (·, ·) is the pairing between V and V ∗. Let g : C → V be the

rational normal curve g(t) :=
∑

i eit
i/i!. Evaluating an element u =

∑
i uie

∗
i of V ∗

on g(t) gives a polynomial (g(t), u) =
∑

i uit
i/i!, and this identifies V ∗ with C2m−1[t].

Under this identification, the canonical symplectic form of Subsection 1.2 becomes 〈u, v〉 =
uJ−1v,where J−1 :=

∑
i(−1)iei⊗e2m−1−i is an isomorphism V ∗ → V . Its inverse, J : V →

V ∗, is
∑

i(−1)ie∗i ⊗ e∗2m−1−i, which gives a symplectic form on V , 〈p, q〉 := pJq that is
dual to the form on V ∗.

Let η ∈ End(V ) be the following tensor,

η :=
2m−2∑

i=0

ei+1 ⊗ e∗i .

This is nilpotent, η2m = 0. Since η has trace zero, it lies in sl2m, the Lie algebra of the
special linear group SL(V ). Since ηTJ + Jη = 0, it also lies in sp(V ), the Lie algebra of
the symplectic group Sp(V ) (which is defined with respect to the form 〈·, ·〉 on V ).

For t ∈ C, define Fm(t) to be

(3.1) eηtspan{e0, . . . , em−1} .
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Since span{e0, . . . , em−1} is Lagrangian and as η ∈ sp(V ), we have eηt ∈ Sp(V ), this (3.1)
defines a curve in LG(m) ⊂ Gr(m,V ). Taking the limit as t → ∞ gives Fm(∞) =
span{em, . . . , e2m−1}, and defines Fm(t) for t ∈ P1.

For H ∈ Gr(m,V ) there will be m2 points t of P1 (counted with multiplicity) for
which H meets Fm(t) nontrivially. (We explain this below.) That is, points t such
that H ∈ X F•(t), where F•(t) is a flag extending Fm(t). Conversely, given m2 points
t1, . . . , tm2 of P1, it is a problem in enumerative geometry to ask how many H ∈ Gr(m,V )
meet each linear subspace Fm(t1), . . . , Fm(tm2) nontrivially. By work of Schubert [25] and
of Eisenbud and Harris [2], there are #G

m,m (1) such planes W , counted with multiplicity.
Eisenbud and Harris’ contribution is that despite the flags F•(ti) not being in general
position, the corresponding intersection of Schubert varieties is zero-dimensional.

We may also pose a version of this enumerative problem on the Lagrangian Grass-
mannian. Given generic points t1, . . . , t(m+1

2 ) of P1, how many Lagrangian subspaces

W ∈ LG(V ) meet each of Fm(t1), . . . , Fm(t(m+1

2 )) nontrivially? By results of [13, Cor. 3.6]

(for the degree) and [29] (for finiteness) there are

#∠

m := 2(
m

2 )
(
m+1
2

)
! · 1! . . . (m−1)!

1!3! · · · (2m−1)!

such Lagrangian subspaces, counted with multiplicity. More specifically, there exists a
choice of t1, . . . , t(m+1

2 ) ∈ RP1 for which there are finitely many such Lagrangian subspaces,

and none of them are real.
The first problem in the Schubert calculus on Gr(m,V ) may be recast in the language

of Section 2. Let H ∈ Gr(m,V ) be a m-dimensional linear subspace of V . Its annihilator,
H⊥ ⊂ V ∗, also has dimension m. Let f1, . . . , fm be a basis for H⊥, which we consider to
be polynomials in C2m−1[t]. Their Wronskian is the determinant

Wr(f1, . . . , fm) := det




f1(t) f2(t) · · · fm(t)
f ′
1(t) f ′

2(t) · · · f ′
m(t)

...
...

. . .
...

f
(m−1)
1 (t) f

(m−1)
2 (t) · · · f

(m−1)
m (t)


 ,

which is a polynomial of degree at most m2. This Wronskian depends on the subspace H
up to multiplication by nonzero scalars (coming from different bases for H⊥), and thus

gives a well-defined element of the projective space P(Cm2 [t]) ≃ Pm2

.
This defines the Wronski map

(3.2) Wr : Gr(m,V ) −։ P(Cm2 [t]) .

To relate the Wronski map to the Schubert calculus in Gr(m,V ) first note that the rational
normal curve g(t) is equal to eηt.e0. Moreover, given a point u =

∑
i uie

∗
i ∈ V ∗, its

evaluation, (eηt.ei, u), on eηt.ei is the ith derivative of the polynomial (eηt.e0, u) = (g(t), u)
corresponding to u. As above, let H ∈ Gr(m,V ) and suppose that f1, . . . , fm ∈ C2m−1[t]
are a basis for H⊥. As shown in [30, p. 123], the zeroes of the Wronskian Wr(f1, . . . , fm)
are exactly those numbers s where H ∩ Fm(s) 6= {0}.

We restate and prove Theorem 1.
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Theorem 1. Suppose that m ≥ 3. If Φ is any real polynomial of degree at most m2, then

the number of real subspaces in Gr(m,R2m−1[t]) whose Wronskian is proportional to Φ is

congruent to #G
m,m modulo four.

Equivalently, given any subset T = {t1, . . . , tm2} of P1 which is stable under complex

conjugation, T = T , the number of real subspaces H ∈ Gr(m,V ) whose complexifications

meet each of Fm(t1), . . . , Fm(tm2) nontrivially is congruent to #G
m,m modulo four, where

each point is counted with its algebraic multiplicity.

We state the key lemma of this paper.

Lemma 8. The Wronski map commutes with the Lagrangian involution on Gr(m,V ).
That is, for H ∈ Gr(m,V ),

Wr(H∠) = Wr(H) .

Proof of Theorem 1. TheWronski map (3.2) is a finite map from Gr(m,V ) to P(Cm2 [t]) [2],
both of which are irreducible smooth varieties. (This implies that it is proper and dom-
inant.) Since LG(V ) = Gr(m,V )∠ and dimLG(V ) = 1

2
(m2 +m), we see that the image

Wr(LG(V )) in P(Cm2 [t]) has codimension at least two when m ≥ 3. By Lemma 8 the
involution ∠ on Gr(m,V ) commutes with Wr. Since the set of real points of P(Cm2 [t])
(which is P(Rm2 [t])) are connected, Lemma 5 implies that the number of real points in any
two fibers above real polynomials are congruent modulo four. The congruence to #G

m,m

follows as there is a real polynomial Φ(t) with #G
m,m real points in Wr−1(Φ) [27]. ¤

Proof of Lemma 8. By continuity, it suffices to show this for H whose Wronskian has only
simple roots, as this set is dense in Gr(m,V ). Since η ∈ sp(V ), we have eηt ∈ Sp(V ). As
Fm(t) = eηt.Fm(0) and Fm(0) is Lagrangian, we see that if H ∈ Gr(m,V ) meets Fm(t)
nontrivially, then so does H∠. This implies that Wr(H) = Wr(H∠). ¤

4. A congruence modulo four in the symmetric Schubert calculus

We retain the notation and definitions of Section 3 and extend Theorem 1 to more
general Schubert problems.

We defined the Lagrangian involution ∠ in Subsection 1.3. For a linear subspace K of
V , recall that K∠ is its annihilator with respect to the form 〈·, ·〉. If F• is a flag, then

F∠

• : (F2m−1)
∠ ⊂ (F2m−2)

∠ ⊂ · · · ⊂ (F2)
∠ ⊂ (F1)

∠ ⊂ V

is also a flag. Furthermore, F• = F∠

• if and only if F• is isotropic.
For a partition λ, its transpose, λ∠, is given by the matrix transpose of Young diagrams,

∠

= and
∠

= .

A partition λ is symmetric if it equals it transpose, λ = λ∠.

Lemma 9. Let λ be a partition with m ≥ λ1 and λm+1 = 0 and F• be a flag. Then

∠ (XλF•) = Xλ∠F∠

• .
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Proof. Write
(
[2m]
m

)
for the set of all subsets of [2m] of cardinality m. To a partition λ, we

associate an element of
(
[2m]
m

)
,

a(λ) := {m+ 1− λ1,m+ 2− λ2, . . . ,m+m− λm} .

We define an involution on
(
[2m]
m

)
,

(
[2m]

m

)
∋ α 7−→ α∠ := {2m+ 1− i | i 6∈ α} .

It is a pleasing combinatorial exercise to show that

a(λ)∠ = a(λ∠) .

To prove the lemma, we use the following reformulation of the definition (1.1) of a
Schubert variety:

XλF• = {H ∈ Gr(m,V ) | dimH ∩ Fi ≥ #(a(λ) ∩ [i]), i = 1, . . . , 2m} .

We have the following chain of equivalences for α ∈
(
[2m]
m

)
and flags F•.

dimH ∩ Fi ≥ #(α ∩ [i])

⇔ dim span{H,Fi} ≤ m+ i−#(α ∩ [i]) = i+#(α ∩ {i+1, . . . , 2m})

⇔ dim span{H,Fi}
∠ ≥ 2m− i−#(α ∩ {i+1, . . . , 2m}) .

But we have (span{H,Fi})
∠ = H∠ ∩ (Fi)

∠ = H∠ ∩ F∠

2m−i and

2m− i−#(α ∩ {i+1, . . . , 2m}) = #(α∠ ∩ [2m−i]) ,

which completes the proof. ¤

Corollary 10. Let F• be a isotropic flag and λ a partition. Then ∠(XλF•) = XλF• if and

only if λ is symmetric. When λ is symmetric, the set of fixed points (XλF•)∠ of XλF• is

YλF•.

In Section 3 we defined a family Fm(t) for t ∈ P1 of Lagrangian subspaces of V . We
extend this to a family of isotropic flags. For j = 1, . . . , 2m and t ∈ C define

Fj := span{e0, . . . , ej−1} and Fj(t) := eηtFj .

As 〈Fj, F2m−j〉 = 0, the subspaces Fj define an isotropic flag, F•. Since eηt ∈ Sp(V ), the
subspaces Fj(t) also form an isotropic flag F•(t) with F•(0) = F•. Taking the limit as
t → ∞ shows

Fj(∞) = span{e2m−j, . . . , e2m−1} ,

so that F•(∞) is isotropic. This family of flags has the property that if a b are distinct
points of P1, then F•(a) is in linear general position with respect to F•(b). (By linear
general position we mean that dimFi(a) ∩ Fj(b) = max{0, i+j−2m}).

Let λ = (λ1, . . . , λn) be a Schubert problem. We consider a family of all corresponding
intersections of Schubert varieties given by flags F•(t) for t ∈ P1. Write (P1)n6= for the set



A CONGRUENCE MODULO FOUR IN REAL SCHUBERT CALCULUS 13

of n-tuples of distinct points. Let Xλ ⊂ Gr(m,V )× (P1)n be the closure of the incidence
variety

X◦
λ := {(H, t1, . . . , tn) | (t1, . . . , tn) ∈ (P1)n6= and H ∈ XλiF•(ti) i = 1, . . . , n} .

Let f : Xλ → (P1)n be the projection. Since for t = (t1, . . . , tn) ∈ (P1)n6=, we have

(4.1) f−1(t) = Xλ1F•(t1) ∩ Xλ2F•(t2) ∩ · · · ∩ XλnF•(tn) ,

this family f : Xλ → (P1)n contains all instances of the Schubert problem λ given by flags
F•(t).

Lemma 11. For any Schubert problem λ on Gr(m,V ), the map f : Xλ → (P1)n is finite

and has degree d(λ).

If the osculating flags in (4.1) were in general position so that the Schubert varieties
met transversally, then d(λ) is the number of points in the intersection. The point of this
Lemma is that even though osculating flags are not general, we still have that d(λ) is the
number of points in the intersection (4.1).

Remark 12. Speyer [31] constructed and studied a more refined compactification of X◦
λ.

Since PGL(2,C) acts on P1, and through the one-parameter subgroup eηt it acts on V and
on Gr(m,V ), we have that PGL(2,C) acts on the family X◦

λ → (P1)n6=. The orbit space is

a family of Schubert problems over M0,n := (P1)n6=/PGL(2,C), the open moduli space of n

marked points on P
1, which Speyer extended to a family over its compactification M0,n.

Proof of Lemma 11. Let us assume that d(λ) 6= 0 for otherwise Xλ = ∅. Consider the
map χ : (P1)n → P(Cm2 [t]) given by

χ : (t1, . . . , tn) 7−→ (t− t1)
|λ1|(t− t2)

|λ2| · · · (t− tn)
|λn| ,

and let X∗ → (P1)n be the pullback of the Wronski map

Wr : Gr(m,V ) −→ P(Cn2 [t])

along the map χ.
Since the Wronski map is finite (it is a surjective map of smooth complete varieties with

finite fibers), the map X∗ → (P1)n is finite. Purbhoo studied the fibers of the Wronski
map [24]. The set-theoretic fiber over a polynomial g ∈ P(Cn2 [t]) is

⋂

{s : g(s)=0}

⋃

{ν : |ν|=ords g}

XνF•(s) .

In the scheme-theoretic fiber, the Schubert variety XνF•(s) in this intersection is not
reduced; it has multiplicity equal to the number of standard Young tableaux of shape ν.
Thus the set-theoretic fiber of X∗ over a point (t1, . . . , tn) ∈ (P1)n6= is

n⋂

i=1

⋃

{ν : |ν|=|λi|}

XνF•(ti) .

It follows that Xλ is a union of irreducible components of X∗ and so Xλ → (P1)n is
finite. ¤
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We call a Schubert problem λ = (λ1, . . . , λn) symmetric if each partition λi is symmet-
ric. By Lemma 9, if λ is a symmetric Schubert problem, then the fibers of Xλ → (P1)n

are preserved by the Lagrangian involution. We would like to show that the number of
real points in a fiber is congruent to d(λ) modulo four. Unfortunately, Xλ → (P1)n is not
the right family for this. If (t1, . . . , tn) is a real point in (P1)n6=, then each ti is real and the
Mukhin-Tarasov-Varchenko Theorem [19, 20] states that the intersection (4.1) consists of
d(λ) real points, so that the desired congruence to d(λ) modulo four is not interesting.

The problem with the familyXλ → (P1)n is that the points t1, . . . , tn are distinguishable

as they are labeled. Since Fi(t) = Fi(t), we have

(4.2) XλF•(t) := {H | H ∈ XλF•(t)} = XλF•(t) ,

and so there may be fibers of Xλ → (P1)n which are real (stable under complex conju-
gation), for which the corresponding ordered n-tuple (t1, . . . , tn) is not fixed by complex
conjugation. To remedy this, we replace (P1)n by a space in which the points ti and tj of
P1 are indistinguishable when λi = λj.

Our remedy uses an alternative representation of a symmetric Schubert problem which
records the frequency of the different partitions. Suppose that {µ1, . . . , µr} are the distinct
partitions appearing in a Schubert problem λ so that µi 6= µj for i 6= j, and µi occurs
ni > 0 times in λ. In that case, we write [µ] = {(µ1, n1), . . . , (µ

r, nr)} for the Schubert
problem. For example,

{(
, 2
)
,
(

, 4
)
,
(

, 5
)}

and
{(

, 1
)
,
(

, 5
)
,
(

, 4
)}

are symmetric Schubert problems on Gr(5,C10). We may write [µ] = [µ](λ) to indicate
that [µ] and λ are the same Schubert problem and define d([µ]) := d(λ) when this occurs.

Given a symmetric Schubert problem in this form [µ] = {(µ1, n1), . . . , {µ
r, nr)}, set

Z[µ] := {(u1, u2, . . . , ur) | ui ∈ P(Cni
[t])} ≃

r∏

i=1

P
ni ,

and let U[µ] be the subset consisting of (u1, . . . , ur) ∈ Z[µ] where each polynomial ui is
square-free and any two are relatively prime (i.e. the roots of u1 · · · ur all have multiplicity
one). Let X[µ] ⊂ Gr(m,V )× Z[µ] be the closure of the incidence correspondence

{(H , u1, . . . , ur) | (u1, . . . , ur) ∈ U[µ] and H ∈ Xµi(s) for ui(s) = 0 , i = 1, . . . , r} .

Let f : X[µ] → Z[µ] be the projection. Since for u = (u1, . . . , ur) ∈ U[µ], we have

(4.3) f−1(u) =
r⋂

i=1

⋂

{s : ui(s)=0}

XµiF•(s) ,

the family f : X[µ] → Z[µ] is another family containing all instances of the Schubert
problem [µ] given by flags F•(t).

By (4.2) an intersection (4.3) is stable under complex conjugation exactly when the
roots of ui are stable under complex conjugation. That is, exactly when each ui is a real
polynomial, so that (u1, . . . , ur) ∈ U[µ](R).

Lemma 13. The map f : X[µ] → Z[µ] is finite.
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This may be proved in nearly the same manner as the proof of the finiteness of Xλ →
(P1)n. Consequently, we only indicate the differences. The main difference is that the
map χ is replaced by the map ϕ : Z[µ] → P(Cn2 [t]) defined by

Z[µ] ∋ (u1, . . . , ur) 7−→ u
|µ1|
1 · u

|µ2|
2 · · · u|µr |

r ∈ P(Cm2 [t]) .

When [µ] = [µ](λ) so that [µ] and λ are the same Schubert problem, the map
χ : (P1)n → P(Cm2 [t]) factors through ϕ. Define the map ψ : (P1)n → Z[µ] by

(4.4) ψ : (t1, . . . , tn) 7−→
( ∏

{j∈[n]|λj=µi}

(t− tj) | i = 1, . . . , r
)
.

Then χ = ϕ ◦ ψ, and we have the commutative diagram

Xλ X[µ] Gr(m,V )✲ ✲

❄

f
❄

f
❄

Wr

(P1)n Z[µ] P(Cm2 [t])✲
ψ

✲
φ

The Lagrangian involution ∠ on Gr(m,V ) induces an involution ∠ on Gr(m,V )×Z[µ]

which acts trivially on the second factor. When [µ] is symmetric, this restricts to an
involution ∠ onX[µ] with f(H∠) = f(H), by Corollary 10. In this context, the Theorem of
Mukhin, Tarasov, and Varchenko implies that if u = (u1, . . . , ur) is a point of U[µ] in which
the polynomials ui have distinct real roots, then all points in the fiber f−1(u) consists of
d(λ) real points. Thus we have the following corollary of Lemma 5 for f : X[µ] → Z[µ].

Theorem 14. Suppose that [µ] is a symmetric Schubert problem. If f((X[µ])∠) has

codimension at least 2 in Z[µ], then the number of real points in a fiber of f over u ∈
U[µ](R) is congruent to d(λ) modulo four, where each point is counted with its algebraic

multiplicity.

Since the map ψ : (P1)n → Z[µ] is finite, the map Xλ → X[µ] is finite and so this
condition on codimension is equivalent to the image of (Xλ)∠ in (P1)n having dimension
at most n−2.

Both aspects of Theorem 14, the condition on codimension and the congruence modulo
four, are quite subtle. We will give several examples which serve to illustrate this subtlety.
Conjecture 21 below gives a combinatorial condition which should imply the condition on
codimension and hence the congruence modulo four, but we cannot prove it as we lack a
Bertini-type theorem. We instead offer a weaker condition that we can prove. Recall that
if λ is a symmetric partition, then ℓ(λ) is the number of boxes in the main diagonal of
the Young diagram of λ.

Theorem 15. Let λ = (λ, µ, ν1, . . . , νn) be a symmetric Schubert problem in which either

λ 6= µ or else λ = µ and there is some i with λ = µ = νi. Set [µ] = [µ](λ). If

(4.5) 2 +
1

2

(
|ν1|+ · · ·+ |νn| + m− ℓ(λ)− ℓ(µ)

)
≤ n ,

then the number of real points in a fiber of X[µ] over a real point of U[µ] is congruent to

d(λ) modulo four, where each point is counted with its algebraic multiplicity.
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We defer the proof of Theorem 15, first giving a family of Schubert problems for which it
gives lower bounds, and then another example of a Schubert problem to which it applies.

Example 16. The work of Eremenko and Gabrielov on lower bounds in the Schubert
calculus [3] was generalized in Theorem 6.4 of [26], which applies to the Wronski map
restricted to certain intersections of two Schubert varieties. In some cases when the
topological degree is zero and Theorem 15 applies the congruence modulo four implies
that every fiber has at least two real points as in Corollary 2. We explain this.

Let λ and µ be partitions encoding Schubert conditions on Gr(m,V ). These define a
skew partition, λc/µ. Here, λc is the partition complementary to λ in that λc

i = m−λm+1−i

for i = 1, . . . ,m and λc/µ is the collection of boxes that remain in λc after removing µ.
Implicit in this construction is that µ ⊂ λc. Below are two examples, one when m = 4
with λ = and µ = , and the other when m = 5 with λ = and µ = . The skew
partition is unshaded.

(4.6)

Let |λc/µ| := m2 − |λ| − |µ| be the number of boxes in the skew partition λc/µ. Re-
stricting the Wronski map to the intersection Ωλ,µ := ΩλF•(∞) ∩ ΩµF•(0) of Schubert
varieties (and dividing by t|µ|) gives a finite map

(4.7) Wrλ,µ : Ωλ,µ −→ P(C|λc/µ|[t]) .

Its degree is the number f(λc/µ) of standard Young tableaux of skew shape λc/µ [7]. The
boxes in λc/µ form a poset in which a box is covered by it neighbors immediately to its
right or below and f(λc/µ) is the number of linear extensions of this poset [32].

The variety Ωλ,µ in the Plücker embedding of the Grassmannian Gr(m,V ) is a variety
whose coordinate ring is an algebra with straightening law on the poset λc/µ, which is a
distributive lattice. In these Plücker coordinates the map Wrλ,µ is what is called in [26,
§6] a Wronski projection for λc/µ with constant sign. Furthermore, the subset of Ωλ,µ

where the minimally indexed Plücker coordinate xµ does not vanish is an open subset of
affine space and is therefore orientable. By Theorem 6.4 of [26] the degree (called there
the characteristic) of the Wronski map is the sign-imbalance of the poset λc/µ.

This sign-imbalance is defined as follows. Fixing one linear extension of λc/µ, all others
are obtained from it by a permutation. The sign-imbalance of λc/µ is the absolute value
of the sum of the signs of these permutations.

When λ and µ are symmetric, transposition induces an involution T 7→ T∠ on the set of
Young tableaux/linear extensions. The permutations corresponding to T and to T∠ differ
by the product of transpositions, one for each pair of boxes in λc/µ that are interchanged
by transposing. Thus when there is an odd number of such pairs, T and T∠ contribute
opposite signs to the sign-imbalance. Since T 6= T∠ when |λc/µ| > 1, this argument also
shows that f(λc/µ) is even. We deduce the following lemma.

Lemma 17. When a symmetric skew partition λc/µ has an odd number of boxes above

its main diagonal, its sign-imbalance is zero.
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The skew partitions in (4.6) have three and five boxes above their main diagonal,
respectively, and so both have sign-imbalance zero. For symmetric partitions λ and µ,
we have a symmetric Schubert problem [µ] := {(λ, 1), (µ, 1), ( , |λc/µ|)}. Then Z[µ] is
the product P1 × P1 × P(C|λc/µ|[t]) and the restricted Wronski map (4.7) is simply the
restriction of the map X[µ] → Z[µ] to the set {(0,∞)} × P(C|λc/µ|[t]), and the whole
family X[µ] → Z[µ] is the closure of the PGL(2,C)-orbit of (4.7). Thus we lose nothing
by considering the restricted Wronski map (4.7) in place of X[µ] → Z[µ].

Corollary 18. Let λ and µ be symmetric partitions. If 4 + m ≤ |λc/µ| + ℓ(λ) + ℓ(µ),
λc/µ has an odd number of boxes above its main diagonal, and f(λc/µ) is congruent to

two modulo four, then the degree of the real restricted Wronski map (4.7) is zero, but its

fiber over every real polynomial contains either two simple real points or a multiple point.

The condition 4 + m ≤ |λc/µ| + ℓ(λ) + ℓ(µ) is the condition of Theorem 15 for the
Schubert problem {(λ, 1), (µ, 1), ( , |λc/µ|)} as n = |λc/µ|. Thus Corollary 18 gives a
class of geometric problems in which the lower bound given by the degree is not sharp.
It generalizes Corollary 2 as the problem {( , 9)} on Gr(3,C6) with 42 solutions satisfies
the hypotheses of Corollary 18. There are two such Schubert problems on Gr(4,C8),

{( , 1), ( , 8)} with 90 solutions and {( , 1), ( , 1), ( , 8)} with 426 solutions.

We give the numbers of problems satisfying the hypotheses of Corollary 18 for small values
of m.

m 3 4 5 6 7
number 1 2 7 18 34

The problem for the second skew tableau of (4.6) has 40, 370 solutions, and the largest
on Gr(7,C14) has λ = (5, 4, 2, 2, 1), µ = (6, 5, 2, 2, 2, 1), and 843, 201, 530 solutions.

Example 19. Consider the Schubert problem λ = ( , , , , , , ) on Gr(4,C8) with
40 solutions. Here n = 5, λ = , µ = , and ν1, . . . , ν5 = . Then (4.5) is

5 ≥ 2 +
1

2
(1 + 1 + 1 + 1 + 1 + 4− 2− 1) = 5 .

Theorem 15 implies that this Schubert problem exhibits a congruence modulo four. We
have observed this in experimentation. Table 2 displays the result of a computation
which took 30.6 gigaHertz-days. The columns are labeled by the possible numbers of real

Table 2. Schubert problem
{(

, 5
)
,
(

, 1
)
,
(

, 1
)}

with 40 solutions.

Num. real 0 2 4 6 8 10 12 14 16 18 20

Frequency 181431 0 62673 0 48005 0 29422 0 8360 0 11506

Num. real 22 24 26 28 30 32 34 36 38 40 Total

Frequency 0 14137 0 6123 0 2040 0 9696 0 226607 600000

solutions, and each cell records how many computed instances had that number of real
solutions.
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Proof of Theorem 15. Let λ = (λ, µ, ν1, . . . , νn) be a symmetric Schubert problem for
Gr(m,V ). Recall that f : X◦

λ → (P1)2+n
6= is the family whose fiber over (a, b, t1, . . . , tn) ∈

(P1)2+n
6= is

XλF•(a) ∩ XµF•(b) ∩
n⋂

i=1

XνiF•(ti) .

Consider its closure X̃λ in Gr(m,V )× (P1)26=× (P1)n—the points a and b defining the first
two Schubert varieties remain distinct, but any other pair may collide.

The fiber of X̃λ over a point t := (a, b, t1, . . . , tn) ∈ (P1)2+n
6= is a subset of

XλF•(a) ∩ XµF•(b) .

The fiber of (X̃λ)∠ over the same point t is a subset of (XλF•(a) ∩ XµF•(b))∠, which is

(4.8) (XλF•(a))∠ ∩ (XµF•(b))∠ = YλF•(a) ∩ YµF•(b) .

As a 6= b, the flags F•(a) and F•(b) are in linear general position and so this intersection
is generically transverse in LG(V ). Thus (4.8) has dimension

dimLG(V )− ‖λ‖ − ‖µ‖ =
1

2
(m2 +m) −

1

2
(|λ|+ ℓ(λ)) −

1

2
(|µ|+ ℓ(µ))

=
1

2
(m2 +m− |λ| − |µ| − ℓ(λ)− ℓ(µ))

=
1

2
(|ν1|+ · · ·+ |νn| + m− ℓ(λ)− ℓ(µ)) ,(4.9)

because |λ|+ |µ|+ |ν1|+ · · ·+ |νn| = m2 as λ is a Schubert problem on Gr(m,V ).
Let Yλ,µ ⊂ LG(V )× (P1)26= be the family of intersections (4.8)

{(H, a, b) | H ∈ YλF•(a) ∩ YµF•(b)} ,

which has dimension

dimYλ,µ = 2 +
1

2
(|ν1|+ · · ·+ |νn| + m− ℓ(λ)− ℓ(µ)) .

Forgetting (t1, . . . , tn) gives a map π : (X̃λ)∠ → Yλ,µ. Its fiber over a point (H, a, b) is

{(t1, . . . , tn) | H ∈ XνiF•(ti) for i = 1, . . . , n} .

Since H ∈ XνF•(t) implies that H ∈ X F•(t), and this second condition occurs for only
finitely many t ∈ P1 (these are the zeroes of the Wronskian of H), the fiber π−1(H, a, b)
is either empty or it is a finite set. Thus

(4.10) dim(X̃λ)∠ ≤ 2 +
1

2
(|ν1|+ · · ·+ |νn| + m− ℓ(λ)− ℓ(µ)) ,

and so the condition (4.5) implies that

dim f((X̃λ)∠) ≤ dim(X̃λ)∠ ≤ n = dim((P1)26= × (P1)n)− 2 .

To complete the proof, let [µ] := [µ](λ) and consider the map ψ defined in (4.4)

ψ : (P1)26= × (P1)n −→ Z[µ] .
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To apply the argument in the proof of Lemma 5 to the family f : X[µ] → Z[µ] requires
that there exists a curve γ ⊂ Z[µ](R) connecting any two points u,u′ ∈ U[µ](R) such that
f−1(γ) ∩ (X[µ])∠ = ∅. This is always possible if the codimension of f((X[µ])∠) is at least
2, Z[µ] is smooth, and Z[µ](R) is connected.

From the first part of this proof, we have control over the points of (X[µ])∠ lying over
the image of ψ. Thus we seek a curve γ lying in the real points of the image of ψ. This
image consists of polynomials (u1, . . . , ur) ∈ Z[µ] where the root a corresponding to λ is
distinct from the root b corresponding to µ. The curve γ connecting u,u′ ∈ U[µ](R) must
be a curve of real polynomials where these roots remain distinct. This can always be done
when either λ 6= µ (so that a and b are roots of different polynomials), or else λ = µ
and there is some i with µ = νi. In this second case, we require that the polynomial uj

corresponding to this common partition has at least two distinct roots at every point of
γ—which is possible, as deg uj ≥ 3. ¤

Example 20. The condition of Theorem 15 is sufficient, but by no means necessary for
there to be a congruence modulo four. In particular, the estimate (4.10) on the dimension

of (X̃λ)∠ could be improved. Consider the problem λ = ( , , , , , ) on Gr(4,C8)
with 12 solutions. For Condition (4.5), we have n = 4, λ = , µ = , and ν1, . . . , ν4

equal to , , , . Then (4.5) becomes

4 ≥ 2 +
1

2
(4 + 1 + 1 + 1 + 4− 1− 2) = 6 ,

which does not hold. Nevertheless, we observed a congruence modulo four in this Schubert
problem. Table 3 displays the results of a computation that consumed 150.8 gigaHertz-

days of computing. While we did not explicitly compute dim f((X̃λ)∠), it is at most 3,

Table 3. Schubert problem
{(

, 3
)
,
(

, 2
)
,
(

, 1
)}

with 12 solutions.

Num. real 0 2 4 6 8 10 12 Total

Frequency 214375 0 231018 0 61600 0 293007 800000

and we expect it to be 2, based on heuristic arguments that we give below.

Suppose that λ is symmetric and t = (t1, . . . , tn) ∈ (P1)n6=. Then the fiber of Xλ over t
is the intersection (4.1). By Corollary 10, the points of (Xλ)∠ lying over t are

Yλ1F•(t1) ∩ Yλ2F•(t2) ∩ · · · ∩ YλnF•(tn) ,

which is a subscheme of LG(V ). Since the codimension of YλF•(t) in LG(V ) is ‖λ‖, it
is reasonable to conjecture that the expected dimension of such an intersection gives the
dimension of the image of (Xλ)∠ in (P1)n, which would then imply a congruence modulo
four. We make a conjecture based on these observations.

Conjecture 21. Suppose that λ = (λ1, . . . , λn) is a symmetric Schubert problem for

Gr(m,V ). If we have

(4.11) 2 ≤ ‖λ1‖ + · · · + ‖λn‖ − dimLG(V ) ,
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then the number of real points in a fiber of X[µ] over a real point of U[µ] is congruent to

d(λ) modulo four, where [µ] = [µ](λ).

Lemma 22. The inequality (4.5) implies the inequality (4.11).

Proof. Let λ = (λ, µ, ν1, . . . , νn) be a symmetric Schubert problem on Gr(m,V ). Rewrite
the inequality (4.5) as

2 +
1

2
(m− ℓ(λ)− ℓ(µ)) ≤ n −

1

2
(|ν1|+ · · ·+ |νn|) .

Since 1 ≤ ‖ν‖ = 1
2
(|ν|+ ℓ(ν)), this implies that

2 +
1

2
(m− ℓ(λ)− ℓ(µ)) ≤

1

2
(ℓ(ν1) + · · ·+ ℓ(νn)) .

As λ is a Schubert problem on Gr(m,V ), we have m2 = |λ|+ |µ|+ |ν1|+ · · ·+ |νn|, and
so this becomes

2 ≤
1

2

(
ℓ(λ) + ℓ(µ) + ℓ(ν1) + · · ·+ ℓ(νn)−m+ |λ|+ |µ|+ |ν1|+ · · ·+ |νn| −m2

)

= ‖λ‖+ ‖µ‖+ ‖ν1‖+ · · ·+ ‖νn‖ −
1

2
(m2 +m) ,

which is the inequality (4.11) of Conjecture 21 as dimLG(V ) = 1
2
(m2 +m) ¤

Remark 23. For the Schubert problem of Example 20, we have

‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖ − dimLG(C8)

= 1 + 1 + 1 + 3 + 3 + 3− 10 = 2 .

Thus the inequality (4.11) holds, and so Conjecture 21 predicts the congruence modulo
four that we observed in Example 20.

In every example of a Schubert problem we have computed in which the inequality (4.11)
holds, we have observed this congruence to d(λ) modulo four.

The intuition behind Conjecture 21 is the following. Let Yλ ⊂ LG(V )× P1 be {(H, t) |
H ∈ YλF•(t)}, which is the family over P1 whose fiber over t ∈ P1 is YλF•(t). This
has codimension ‖λ‖ in LG(V ) × P1. Let ∆: LG(V ) → LG(V )n be the diagonal map.
Suppose that λ = (λ1, . . . , λn) is a symmetric Schubert problem. Then the fiber product
of Yλ1 , . . . ,Yλn over LG(V ) is

(4.12)
(
Yλ1 × Yλ2 × · · · × Yλn

) ⋂ (
∆× 1(P1)n

(
LG(V )× (P1)n

))
.

The codimension of Yλ1×· · ·×Yλn in (LG(V )×P1)n is ‖λ1‖+· · ·+‖λn‖ and the dimension
of LG(V )× (P1)n is 1

2
(m2 +m) + n. Thus the expected dimension of (4.12) is

1

2
(m2 +m) + n − ‖λ1‖ − ‖λ2‖ − · · · − ‖λn‖ ,

which is the difference of n = dim(P1)n and the number (4.11). Thus Conjecture 21 and
the observed congruence modulo four would follow from a Bertini-type theorem for the
families Yλi implying that the intersection (4.12) is proper.
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The inequality (4.11) is not the final word on this congruence modulo four. When it
fails, there may or may not be a congruence modulo four. We illustrate this with three
examples.

The Schubert problem λ = ( , , , , ) on Gr(4,C8) has 14 solutions. We have

‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖ − dimLG(C8) = 1 + 1 + 2 + 3 + 4− 10 = 1 ,

so the inequality (4.11) does not hold. Table 4 shows the result of computing 200,000
instances of this problem, which took 8.7 gigaHertz-days. We observed every possible

Table 4. Schubert problem
{(

, 2
)
,
(

, 1
)
,
(

, 1
)
,
(

, 1
)}

with 14 solutions.

Num. real 0 2 4 6 8 10 12 14 Total

Frequency 38008 17926 14991 4152 6938 210 6038 111737 200000

number of real solutions and thus there is no congruence modulo four for this problem.
The Schubert problem λ = ( , , , ) on Gr(4,C8) has 8 solutions. We have

‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖ − dimLG(C8) = 1 + 2 + 4 + 4− 10 = 1 ,

so the inequality (4.11) does not hold. Nevertheless, we computed 400,000 instances of
this problem using 265 gigaHertz-days (see Table 5), observing a congruence modulo four.

Table 5. Schubert problem
{(

, 1
)
,
(

, 1
)
,
(

, 2
)}

with 8 solutions

Num. real 0 2 4 6 8 Total

Frequency 160337 0 39663 0 200000 400000

Finally, the Schubert problem λ = ( , , , ) on Gr(4,C8) has 8 solutions. We have

‖ ‖+ ‖ ‖+ ‖ ‖+ ‖ ‖+ − dimLG(C8) = 2 + 2 + 3 + 3− 10 = 0 ,

so the inequality (4.11) does not hold. In fact λ gives a Schubert problem on LG(C8)
with four solutions, so we have that f((X[µ])∠) = Z[µ]. Nevertheless, we computed 400,000
instances of this problem using 3.2 gigaHertz-years (see Table 6), observing a congruence

Table 6. Schubert problem
{(

, 2
)
,
(

, 2
)}

with 8 solutions.

Num. real 0 2 4 6 8 Total

Frequency 147611 0 152389 0 100000 400000

modulo four.
We studied fibers of f : X[µ] → Z[µ] over points of U[µ](R) for all symmetric Schubert

problems on Gr(m,V ) when m ≤ 4 whose degree d([µ]) was at most 96, a total of 44
Schubert problems in all. For each, we computed the fibers of X[µ] over several hundred
thousand points in U[µ](R), determining the number of real points in each fiber. These
data are recorded in frequency tables such as those we have given here. These are available
on line [10] and are part of a larger experiment [9]. Of these, 21 satisfy the inequality (4.11)
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and each exhibited a congruence modulo four. (Ten satisfy the weaker condition (4.10).)
Four of the remaining 23 do not satisfy the inequality (4.11), but still had the congru-
ence modulo four, and the remaining 19 neither satisfy the inequality (4.11), nor have a
congruence modulo four.

4.1. Further Lacunae. We close with two more symmetric Schubert problems which
exhibit additional lacunae in their observed numbers of real solutions. The first is the
problem {( , 1), ( , 7)} on Gr(4,C8) with 20 solutions. The inequality (4.5) holds for
this problem, so the possible numbers of real solutions are congruent to 20 modulo four.
Table 7 displays the result of computing 400,000 instances which used 2 gigaHertz-days

Table 7. Schubert problem
{(

, 1
)
,
(

, 7
)}

with 20 solutions.

Num. real 0 2 4 6 8 10 12 14 16 18 20 Total

Frequency 7074 0 114096 0 129829 0 0 0 0 0 119001 400000

of computing. In this computation, we did not observe 12 or 16 real solutions. This is
one of a family of Schubert problems on Gr(m,Cm+p) for which there are provable lower
bounds and lacunae. This is explained in [11], which describes the larger experiment [9].

Our last example is the symmetric Schubert problem
{(

, 1
)
,
(

, 2
)
,
(

, 1
)
,
(

, 1
)}

on Gr(4,C8) with 16 solutions. The inequality (4.11) does not hold, so we expect every
even number of solutions between 0 and 16 to occur. Table 7 displays the result of comput-
ing 200,000 instances which used 8.4 gigaHertz-days of computing. In this computation,

Table 8. Schubert problem
{(

, 1
)
,
(

, 2
)
,
(

, 1
)
,
(

, 1
)}

with 16 solutions

Num. real 0 2 4 6 8 10 12 14 16 Total

Frequency 37069 16077 24704 10 22140 0 0 0 100000 200000

we did not observe 10 or 12 or 14 real solutions. We do not know a reason for this gap in
the observed number of real solutions.
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