Gale duality for complete intersections FRANK SOTTILE (joint work with Frédéric Bihan)

This talk is based upon the preprint [4]. A complete intersection in $(\mathbb{C}^{\times})^{n+m}$ defined by Laurent polynomials,

(1)
$$f_1(x_1, \ldots, x_{m+n}) = \cdots = f_n(x_1, \ldots, x_{m+n}) = 0$$

where each polynomial f_i contains the same monomials $\{1, x^{\alpha_1}, \ldots, x^{\alpha_{l+m+n}}\}$ may also be viewed as the intersection of a codimension n affine linear space L in \mathbb{C}^{l+m+n} with the image of $(\mathbb{C}^{\times})^{m+n}$ under the map

$$\varphi : (\mathbb{C}^{\times})^{m+n} \ni x \longmapsto (x^{\alpha_1}, \dots, x^{\alpha_{l+m+n}}) \in (\mathbb{C}^{\times})^{l+m+n} \subset \mathbb{C}^{l+m+n}$$

When the exponent vectors $\{\alpha_1, \ldots, \alpha_{l+m+n}\}$ span the integer lattice \mathbb{Z}^{m+n} , the map φ is injective and the complete intersection (1) in $(\mathbb{C}^{\times})^{m+n}$ is scheme-theoretically isomorphic to the intersection $\varphi((\mathbb{C}^{\times})^{m+n}) \cap L$.

Suppose that $\psi \colon \mathbb{C}^{l+m} \to L$ parameterizes L. Then $\psi^{-1}(\varphi((\mathbb{C}^{\times})^{m+n}) \cap L)$ is also isomorphic to the original complete intersection (1). In the coordinates for \mathbb{C}^{l+m+n} , ψ is given by degree 1 polynomials $p_1(y), \ldots, p_{l+m+n}(y)$, and the inverse image of $(\mathbb{C}^{\times})^{l+m+n}$ is the complement M_H of the arrangement H of hyperplanes in \mathbb{C}^{l+m} defined by $\prod_i p_i(y) = 0$. If z_1, \ldots, z_{l+m+n} are coordinates for \mathbb{C}^{l+m+n} , then $\varphi((\mathbb{C}^{\times})^{m+n})$ is defined in $(\mathbb{C}^{\times})^{l+m+n}$ by all monomial equations $z^{\beta} = 1$, where $\beta = (b_1, \ldots, b_{l+m+n}) \in \mathbb{Z}^{l+m+n}$ is a vector such that

$$b_1\alpha_1 + b_2\alpha_2 + \dots + b_{l+m+n}\alpha_{l+m+n} = 0$$

The monomial z^{β} pulls back to a master function on M_H ,

$$p(y)^{\beta} := (p_1(y))^{b_1} \cdot (p_2(y))^{b_2} \cdots (p_{l+m+n}(y))^{b_{l+m+n}}.$$

Letting β_1, \ldots, β_l form a basis for the free abelian group of all such linear relations, we see that the pullback $\psi^{-1}(\varphi((\mathbb{C}^{\times})^{m+n}) \cap L)$ is a complete intersection in M_H defined by the system of master functions,

(2)
$$p(y)^{\beta_1} = p(y)^{\beta_2} = \cdots = p(y)^{\beta_l} = 1$$

We say that the system of polynomials (1) in $(\mathbb{C}^{\times})^{m+n}$ is *Gale dual* to the system of master functions (2) in M_H .

The isomorphism between schemes defined by Gale dual systems was a key idea behind the new fewnomial bounds in [1, 2, 3]. The number of positive solutions of a system of n polynomials in n variables with l + n + 1 monomials is at most

$$\frac{e^2+3}{4}2^{\binom{l}{2}}n^l$$

This dramatically improves Khovanskii's bound [5], which is $2^{\binom{l+n}{2}}(n+1)^{l+n}$.

We close with an example. Let n = l = 2 and m = 0 and consider the system

(3)
$$x^{3}y^{2} = x^{4}y^{-1} - x^{4}y - \frac{1}{2},$$
$$xy^{2} = x^{4}y^{-1} + x^{4}y - 1.$$

in $(\mathbb{C}^{\times})^2$. This is isomorphic to $\varphi((\mathbb{C}^{\times})^2) \cap L$, where L is defined by

$$z_1 - (z_3 - z_4 - \frac{1}{2}) = z_2 - (z_3 + z_4 - 1) = 0$$
, and
 $\varphi: (x, y) \longmapsto (x^3 y^2, x y^2, x^4 y^{-1}, x^4 y) = (z_1, z_2, z_3, z_4)$

Let s, t be new variables and set

Then $\psi_p: (s,t) \mapsto (p_1, p_2, p_3, p_4)$ parametrizes L.

The primitive weights
$$(-1, 3, 2, -2)$$
 and $(3, -1, 1, -3)$ annihilate the exponents:
 $(x^3y^2)^{-1}(xy^2)^3(x^4y^{-1})^2(x^4y)^{-2} = (x^3y^2)^3(xy^2)^{-1}(x^4y^{-1})(x^4y)^{-3} = 1.$

The polynomial system (3) in $(\mathbb{C}^{\times})^2$ is equivalent to the system of master functions

(4)
$$\frac{s^2(s+t-1)^3}{t^2(s-t-\frac{1}{2})} = \frac{s(s-t-\frac{1}{2})^3}{t^3(s+t-1)} = 1.$$

in the complement of the hyperplane arrangement $st(s+t-1)(s-t-\frac{1}{2})=0$.

The polynomial system (3) and the system of master functions (4).

References

- D.J. Bates, F. Bihan, and F. Sottile, Bounds on real solutions to polynomial equations, IMRN, (2007), 2007:rnm114-7.
- [2] F. Bihan, J.M. Rojas, and F. Sottile, Sharpness of fewnomial bounds and the number of components of a fewnomial hypersurface, Algorithms in Algebraic Geometry (A. Dickenstein, F.-O. Schreyer, and A. Sommese, eds.), IMA Volumes in Mathematics and its Applications, vol. 146, Springer New York, 2007, pp. 15–20.
- [3] F. Bihan and F. Sottile, New fewnomial upper bounds from Gale dual polynomial systems, Moscow Mathematical Journal 7 (2007), no. 3, 387–407.
- [4] _____, Gale duality for complete intersections, 2007, Annales de l'Institut Fourier, to appear.
- [5] A.G. Khovanskii, Fewnomials, Trans. of Math. Monographs, 88, AMS, 1991.