Gale duality for complete intersections

Frank Sottile
(joint work with Frédéric Bihan)
This talk is based upon the preprint [4]. A complete intersection in $\left(\mathbb{C}^{\times}\right)^{n+m}$ defined by Laurent polynomials,

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{m+n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{m+n}\right)=0 \tag{1}
\end{equation*}
$$

where each polynomial f_{i} contains the same monomials $\left\{1, x^{\alpha_{1}}, \ldots, x^{\alpha_{l+m+n}}\right\}$ may also be viewed as the intersection of a codimension n affine linear space L in \mathbb{C}^{l+m+n} with the image of $\left(\mathbb{C}^{\times}\right)^{m+n}$ under the map

$$
\varphi:\left(\mathbb{C}^{\times}\right)^{m+n} \ni x \longmapsto\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{l+m+n}}\right) \in\left(\mathbb{C}^{\times}\right)^{l+m+n} \subset \mathbb{C}^{l+m+n}
$$

When the exponent vectors $\left\{\alpha_{1}, \ldots, \alpha_{l+m+n}\right\}$ span the integer lattice \mathbb{Z}^{m+n}, the $\operatorname{map} \varphi$ is injective and the complete intersection (1) in $\left(\mathbb{C}^{\times}\right)^{m+n}$ is scheme-theoretically isomorphic to the intersection $\varphi\left(\left(\mathbb{C}^{\times}\right)^{m+n}\right) \cap L$.

Suppose that $\psi: \mathbb{C}^{l+m} \rightarrow L$ parameterizes L. Then $\psi^{-1}\left(\varphi\left(\left(\mathbb{C}^{\times}\right)^{m+n}\right) \cap L\right)$ is also isomorphic to the original complete intersection (1). In the coordinates for \mathbb{C}^{l+m+n}, ψ is given by degree 1 polynomials $p_{1}(y), \ldots, p_{l+m+n}(y)$, and the inverse image of $\left(\mathbb{C}^{\times}\right)^{l+m+n}$ is the complement M_{H} of the arrangement H of hyperplanes in \mathbb{C}^{l+m} defined by $\prod_{i} p_{i}(y)=0$. If z_{1}, \ldots, z_{l+m+n} are coordinates for \mathbb{C}^{l+m+n}, then $\varphi\left(\left(\mathbb{C}^{\times}\right)^{m+n}\right)$ is defined in $\left(\mathbb{C}^{\times}\right)^{l+m+n}$ by all monomial equations $z^{\beta}=1$, where $\beta=\left(b_{1}, \ldots, b_{l+m+n}\right) \in \mathbb{Z}^{l+m+n}$ is a vector such that

$$
b_{1} \alpha_{1}+b_{2} \alpha_{2}+\cdots+b_{l+m+n} \alpha_{l+m+n}=0
$$

The monomial z^{β} pulls back to a master function on M_{H},

$$
p(y)^{\beta}:=\left(p_{1}(y)\right)^{b_{1}} \cdot\left(p_{2}(y)\right)^{b_{2}} \cdots\left(p_{l+m+n}(y)\right)^{b_{l+m+n}} .
$$

Letting $\beta_{1}, \ldots, \beta_{l}$ form a basis for the free abelian group of all such linear relations, we see that the pullback $\psi^{-1}\left(\varphi\left(\left(\mathbb{C}^{\times}\right)^{m+n}\right) \cap L\right)$ is a complete intersection in M_{H} defined by the system of master functions,

$$
\begin{equation*}
p(y)^{\beta_{1}}=p(y)^{\beta_{2}}=\cdots=p(y)^{\beta_{l}}=1 \tag{2}
\end{equation*}
$$

We say that the system of polynomials (1) in $\left(\mathbb{C}^{\times}\right)^{m+n}$ is Gale dual to the system of master functions (2) in M_{H}.

The isomorphism between schemes defined by Gale dual systems was a key idea behind the new fewnomial bounds in $[1,2,3]$. The number of positive solutions of a system of n polynomials in n variables with $l+n+1$ monomials is at most

$$
\frac{e^{2}+3}{4} 2^{\binom{l}{2}} n^{l} .
$$

This dramatically improves Khovanskii's bound [5], which is $2\left(\begin{array}{c}\binom{+n}{2} \\ (n+1)^{l+n} \text {. }\end{array}\right.$
We close with an example. Let $n=l=2$ and $m=0$ and consider the system

$$
\begin{align*}
x^{3} y^{2} & =x^{4} y^{-1}-x^{4} y-\frac{1}{2} \tag{3}\\
x y^{2} & =x^{4} y^{-1}+x^{4} y-1
\end{align*}
$$

in $\left(\mathbb{C}^{\times}\right)^{2}$. This is isomorphic to $\varphi\left(\left(\mathbb{C}^{\times}\right)^{2}\right) \cap L$, where L is defined by

$$
\begin{gathered}
z_{1}-\left(z_{3}-z_{4}-\frac{1}{2}\right)=z_{2}-\left(z_{3}+z_{4}-1\right)=0, \quad \text { and } \\
\varphi:(x, y) \longmapsto\left(x^{3} y^{2}, x y^{2}, x^{4} y^{-1}, x^{4} y\right)=\left(z_{1}, z_{2}, z_{3}, z_{4}\right) .
\end{gathered}
$$

Let s, t be new variables and set

$$
\begin{aligned}
p_{1}:=s-t-\frac{1}{2} & p_{3}:=s \\
p_{2}:=s+t-1 & p_{4}:=t
\end{aligned}
$$

Then $\psi_{p}:(s, t) \mapsto\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ parametrizes L.
The primitive weights $(-1,3,2,-2)$ and $(3,-1,1,-3)$ annihilate the exponents:

$$
\left(x^{3} y^{2}\right)^{-1}\left(x y^{2}\right)^{3}\left(x^{4} y^{-1}\right)^{2}\left(x^{4} y\right)^{-2}=\left(x^{3} y^{2}\right)^{3}\left(x y^{2}\right)^{-1}\left(x^{4} y^{-1}\right)\left(x^{4} y\right)^{-3}=1
$$

The polynomial system (3) in $\left(\mathbb{C}^{\times}\right)^{2}$ is equivalent to the system of master functions

$$
\begin{equation*}
\frac{s^{2}(s+t-1)^{3}}{t^{2}\left(s-t-\frac{1}{2}\right)}=\frac{s\left(s-t-\frac{1}{2}\right)^{3}}{t^{3}(s+t-1)}=1 \tag{4}
\end{equation*}
$$

in the complement of the hyperplane arrangement $s t(s+t-1)\left(s-t-\frac{1}{2}\right)=0$.

The polynomial system (3) and the system of master functions (4).

References

[1] D.J. Bates, F. Bihan, and F. Sottile, Bounds on real solutions to polynomial equations, IMRN, (2007), 2007:rnm114-7.
[2] F. Bihan, J.M. Rojas, and F. Sottile, Sharpness of fewnomial bounds and the number of components of a fewnomial hypersurface, Algorithms in Algebraic Geometry (A. Dickenstein, F.-O. Schreyer, and A. Sommese, eds.), IMA Volumes in Mathematics and its Applications, vol. 146, Springer New York, 2007, pp. 15-20.
[3] F. Bihan and F. Sottile, New fewnomial upper bounds from Gale dual polynomial systems, Moscow Mathematical Journal 7 (2007), no. 3, 387-407.
[4] _ Gale duality for complete intersections, 2007, Annales de l'Institut Fourier, to appear.
[5] A.G. Khovanskii, Fewnomials, Trans. of Math. Monographs, 88, AMS, 1991.

