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Physical objects and constraints may be mod-
eled by polynomial equations and inequalities.
For this reason algebraic geometry, the study of
solutions to systems of polynomial equations, is
a tool for scientists and engineers. Moreover, re-
lations between concepts arising in science and
engineering are often described by polynomials.
Whatever their source, once polynomials enter
the picture, notions from algebraic geometry—its
theoretical base, trove of classical examples, and
modern computational tools—may all be brought
to bear on the problem at hand.
As a part of applied mathematics, algebraic ge-

ometry has two faces. One is an expanding list
of recurring techniques and examples which are
common to many applications, and the other con-
sists of topics from the applied sciences which in-
volve polynomials. Linking these two aspects are
algorithms and software for algebraic geometry.

1 Algebraic Geometry for

Applications

We present some concepts and objects common
in applications of algebraic geometry.

1.1 Varieties and their ideals

The fundamental object in algebraic geometry is
a(n affine) variety, which is a set in the vector
space Cn (perhaps restricted to Rn for an appli-
cation) defined by polynomials,

V (S) := {x ∈ Cn | f(x) = 0 ∀f ∈ S},

where S ⊂ C[x] = C[x1, . . . , xn] is a set of polyno-
mials. Common geometric figures—points, lines,
planes, circles, conics, spheres, etc.—are all alge-
braic varieties. Thus questions about everyday
objects may be treated with algebraic geometry.
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On the left below are the real points of the line
x+ y− 1 = 0. Its complex points are the Argand
plane C embedded obliquely in C2.
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We may compactify algebraic varieties by
adding points at infinity. This is done in pro-
jective space Pn—the set of lines through the ori-
gin in Cn+1 (or RPn for Rn+1), which may be
thought of as Cn with a Pn−1 at infinity, giving
directions of lines in Cn. The projective line P1

is the Riemann sphere (on the right above).
Points of Pn are represented by (n+1)-tuples

of homogeneous coordinates where [x0, . . . , xn] =
[λx0, . . . , λxn] if λ 6= 0 and at least one xi is
nonzero. Projective varieties are subsets of Pn de-
fined by homogeneous polynomials in x0, . . . , xn.
To a subset Z of a vector space we associate

the set of polynomials which vanish on Z,

I(Z) := {f ∈ C[x] | f(z) = 0 ∀z ∈ Z}.

Let f, g, h ∈ C[x] with f, g vanishing on Z. Then
both f + g and h · f vanish on Z, which im-
plies that I(Z) is an ideal of the polynomial ring
C[x1, . . . , xn]. Similarly, if I is the ideal generated
by a set S of polynomials, then V (S) = V (I).

Both V and I reverse inclusions with S ⊂
I(V (S)) and Z ⊂ V (I(Z)), with equality when
Z is a variety. Thus we have the correspondence

{ideals} V−−−→←−−−
I

{varieties}

linking algebra and geometry. By Hilbert’s Null-
stellensatz, this correspondence is bijective when
restricted to radical ideals (fN ∈ I ⇒ f ∈ I).
This allows ideas and techniques to flow in both
directions and is the source of the power and the
depth of algebraic geometry.
The Fundamental Theorem of Algebra asserts

that a nonconstant univariate polynomial has a
complex root. The Nullstellensatz is a multivari-
ate version, for it is equivalent to the statement
that if I ( C[x] is a proper ideal, then V (I) 6= ∅.
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It is essentially for this reason that algebraic
geometry works best over the complex numbers.
Many applications require answers whose coor-
dinates are real numbers, so results from alge-
braic geometry are often filtered through the lens
of the real numbers when used in applications.
While this restriction to R poses significant chal-
lenges for algebraic geometers, the generalization
from R to C and then on to projective space often
makes the problems easier to solve. The solution
to this useful algebraic relaxation is often helpful
in treating the original application.

1.2 Parameterization and rationality

Varieties also occur as images of polynomial
maps. For example, the map t 7→ (t2−1, t3−t) =
(x, y) has image the plane cubic y2 = x3 + x2.

7−→

Given such a parametric representation of a va-
riety (or any other explicit description), the im-

plicitization problem asks for its ideal.
The converse problem is more subtle: Can a

given variety be parameterized? Euclid and Dio-
phantus discovered the rational parameterization
of the unit circle x2 + y2 = 1, t 7→ (x, y), where

x =
2t

1 + t2
and y =

1− t2

1 + t2
. (1)

This is the source of both Pythagorean triples
and the rationalizing substitution z = tan( θ2 ) of
integral calculus. Homogenizing by setting t =
a
b
, (1) gives an isomorphism between P1 (with

coordinates [a, b]) and the unit circle, and then
by translation and scaling to any circle.
On the other hand, the cubic y2 = x3 − x

(at left) has no rational parameterization. This is
because the corresponding cubic in P2 is a curve of
genus one (an elliptic curve), which is a torus (see
above), and there is no nonconstant map from
the Riemann sphere P1 to the torus. However,
(x, y) 7→ x sends the cubic curve to P1 and is two-
to-one except at the branch points {−1, 0, 1,∞}.
In fact, any curve with a two-to-one map to P1

having four branch points has genus one.
A smooth biquadratic curve also has genus one.

The product P1 × P1 is a compactification of C2

different from P2. Suppose that C ⊂ P1×P1 is de-
fined by an equation that is separately quadratic
in the two variables s and t,

a00 + a10s+ a01t+ · · ·+ a22s
2t2 = 0,

where s and t are coordinates for the P1 factors.
Analyzing the projection onto the second factor,
one can show that the map is two-to-one, except
at four branch points, and so C has genus one.

1.3 Toric varieties

Varieties parameterized by monomials (toric va-
rieties) often arise in applications, and may be
completely understood in terms of the geometry
and combinatorics of the monomials.
Let C∗ be the nonzero complex numbers. An

integer vector α = (a1, . . . , ad) ∈ Zd is the
exponent vector of a Laurent monomial tα :=
ta1

1 · · · tad

d , where t = (t1, . . . , td) ∈ (C∗)d is a
d-tuple of nonzero complex numbers. Let A =
{α0, . . . , αn} ⊂ Zd be a finite set of integer vec-
tors. Then the toric variety XA is the closure of
the image of the map

ϕA : (C∗)d ∋ t 7−→ [tα0 , tα1 , . . . , tαn ] ∈ Pn.

The toric variety XA has dimension equal to the
dimension of the affine span of A and it has an
action of (C∗)d (via the map ϕA) with a dense
orbit (the image of ϕA).
The implicitization problem for toric varieties

is elegantly solved. Assume that A lies on an
affine hyperplane, so that there is a vector w ∈ Rd

with w ·αi = w ·αj( 6= 0) for all i, j, where · is the
dot product. For v ∈ Rn+1, write Av for

∑
i αivi.

Theorem 1. The homogeneous ideal of XA is

spanned by binomials xu − xv where Au = Av.
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The assumption that we have w with w · αi =
w ·αj for all i, j may be arranged by appending a
new (d+1)st coordinate of 1 to each αi and setting
w = (0, . . . , 0, 1) ∈ Rd+1. This does not change
the projective variety XA.
Applications also use the tight relation between

XA and the convex hull ∆A of A, which is a
polytope with integer vertices. The points of XA

with nonnegative coordinates form its nonnega-

tive part X+
A . This is identified with ∆A through

the algebraic moment map, πA : Pn
99K Pd which

sends a point x to Ax. (The broken arrow 99K

means that the map is not defined everywhere.)
By Birch’s Theorem from statistics, πA maps X+

A

homeomorphically to ∆A.
There is a second homeomorphism βA : ∆A

∼
−→

X+
A given by polynomials. The polytope ∆A is

defined by linear inequalities,

∆A := {x ∈ Rd | ℓF (x) ≥ 0},

where F ranges over the codimension one faces
of ∆A and ℓF (F ) ≡ 0 with the coefficients of ℓF
coprime integers. For each α ∈ A, set

βα(x) :=
∏

F

ℓF (x)
ℓF (α), (2)

which is nonnegative on ∆A. For x ∈ ∆A, set

βA(x) := [βα0
(x), . . . , βαn

(x)] ∈ X+
A .

While πA and βA are homeomorphisms between
the same spaces, they are typically not inverses.
A useful variant is to translateXA by a nonzero

weight, ω = (ω0, . . . , ωn) ∈ (C∗)n+1,

XA,ω := {[ω0x0, . . . , ωnxn] | x ∈ XA}.

This translated toric variety is spanned by bino-
mials ωvxu − ωuxv with Au = Av as in Theo-
rem 1, and it is parameterized by monomials via

ϕA,ω(t) = (ω0t
α0 , . . . , ωnt

αn).

When the weights ωi are positive real numbers,
Birch’s Theorem holds, πA : X+

A,ω

∼
−→ ∆A, and

we have the parameterization βA,ω : ∆A → X+
A,ω

where the components of βA,ω are ωiβαi
.

Example 1. When A consists of the standard unit
vectors (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) in Rn+1, the
toric variety is projective space Pn and ϕA gives

the usual homogeneous coordinates [x0, . . . , xn]
for Pn. The nonnegative part of Pn is the convex
hull of A, which is the standard n-simplex,

n
,

and πA = βA is the identity map.

Example 2. Let A = {0, 1, . . . , n} so that ∆A =
[0, n], and choose weights ωi =

(
n
i

)
. Then XA,ω

is the closure of the image of the map

t 7→ [1, nt,
(
n
2

)
t2, . . . , ntn−1, tn] ∈ Pn,

which is the (translated) moment curve. Its non-
negative part X+

A,ω is the image of [0, n] under
the map βA,ω whose components are

βi(x) =
1
nn

(
n
i

)
xi(n− x)n−i.

Replacing x by ny gives the Bernstein polynomial

βi,n(y) =
(
n
i

)
yi(1− y)n−i, (3)

and thus the moment curve is parameterized by
the Bernstein polynomials. Because of this, we
call the functions ωiβαi

(2) generalized Bernstein

polynomials.
The composition πA ◦ βA,ω(x) is

1

nn

n∑

i=0

i

(
n

i

)
xi(n− x)n−i =

nx

nn

n∑

i=1

(
n− 1

i− 1

)
xi−1(n− x)n−i = x,

as the last sum is (x+(n−x))n−1. Similarly,
1
n
πA ◦ β(y) = y, where β is the parameteriza-

tion by the Bernstein polynomials. The weights
ωi =

(
n
i

)
are essentially the unique weights for

which πA ◦ βA,ω(x) = x.

Example 3. For positive integers m,n consider
the map ϕ : Cm × Cn → P(Cm×n) defined by

(x, y) 7→ [xiyj | i = 1, . . . ,m, j = 1, . . . , n].

Its image is the Segre variety, which is a toric
variety, as the map ϕ is ϕA where A is

{ei + fj | i = 1, . . . ,m, j = 1, . . . , n} ⊂ Zm ⊕ Zn.

Here, {ei} and {fj} are the standard bases for Zm

and Zn, respectively.
If zij are the coordinates of Cm×n, then the

Segre variety is defined by the binomial equations

zijzkl − zilzkj =

∣∣∣∣
zij zil
zkj zkl

∣∣∣∣ .
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Identifying Cm×n with m×n matrices shows that
the Segre variety is the set of rank one matrices.

Other common toric varieties include the
Veronese variety, where A is An,d := n

d ∩
Zd+1, and the Segre-Veronese variety, where A
is Am,d × An,e. When d = e = 1, A consists of
the integer vectors in the m× n rectangle

A = {(i, j) | 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

2 Algorithms for Algebraic

Geometry

Mediating between theory and examples and fa-
cilitating applications are algorithms developed
to study, manipulate, and compute algebraic va-
rieties. These come in two types, exact symbolic
methods and approximate numerical methods.

2.1 Symbolic algorithms

The words algebra and algorithm share an Arabic
root, but their relation is more than just history.
When we write a polynomial, say as a sum of
monomials or as an expression such as a determi-
nant of polynomials, that symbolic representation
is an algorithm for evaluating the polynomial.
Expressions for polynomials lend themselves to

algorithmic manipulation. While these represen-
tations and manipulations have their origin in an-
tiquity, and methods such as Gröbner bases pre-
date the Computer Age, the rise of computers has
elevated symbolic computation to a key tool for
algebraic geometry and its applications.
Euclid’s algorithm, Gaussian elimination, and

Sylvester’s resultants are important symbolic al-
gorithms which are supplemented by universal
symbolic algorithms based on Gröbner bases.
They begin with a term order ≺, which is a well-
ordering of all monomials that is consistent with
multiplication. For example, ≺ could be the lex-
icographic order in which xu ≺ xv if the first
nonzero entry of the vector v − u is positive. A
term order organizes the algorithmic representa-
tion and manipulation of polynomials and it is
the basis for the termination of algorithms.
The initial term in≺f of a polynomial f is its

term cαx
α with the ≺-largest monomial in f . The

initial ideal in≺I of an ideal I is the ideal gener-
ated by initial terms of polynomials in I. This

monomial ideal is a well-understood combinato-
rial object and the passage to an initial ideal pre-
serves much information about I and its variety.
A Gröbner basis for I is a finite set G ⊂ I

of polynomials whose initial terms generate in≺I.
This set G generates I and facilitates the transfer
of information from in≺I back to I. This infor-
mation may typically be extracted using linear
algebra, so a Gröbner basis essentially contains
all the information about I and its variety.

Consequently, a bottleneck in this approach to
symbolic computation is the computation of a
Gröbner basis (which has high complexity due
to its information content). Gröbner basis cal-
culation also appears to be essentially serial—no
efficient parallel algorithm is known.
The subject began in 1965 when Buchberger

gave an algorithm to compute a Gröbner ba-
sis. Decades of development, including sophisti-
cated heuristics and completely new algorithms,
have led to reasonably efficient implementations
of Gröbner basis computation. Many algorithms
have been devised and implemented to use a
Gröbner basis to study a variety. All of this is
embedded in freely available software packages
which are revolutionizing the practice of algebraic
geometry and its applications.

2.2 Numerical algebraic geometry

While symbolic algorithms lie on the algebraic
side of algebraic geometry, numerical algorithms,
which compute and manipulate points on vari-
eties, have a strongly geometric flavor.
These numerical algorithms rest upon New-

ton’s method for refining an approximate solution
to a system of polynomial equations. A system
F = (f1, . . . , fn) of polynomials in n variables is
a map F : Cn → Cn with solutions F−1(0). We
focus on systems with finitely many solutions. A
Newton iteration is the map NF : Cn → Cn where

NF (x) = x−DF−1
x (F (x)),

with DFx the Jacobian matrix of partial deriva-
tives of F at x. If ξ ∈ F−1(0) is a solution to F

with DFξ invertible, then when x is sufficiently
close to ξ, NF (x) is closer still in that it has twice
as many digits in common with ξ as does x. Smale
showed that sufficiently close may be decided al-
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gorithmically, which can allow the certification of
output from numerical algorithms.
Newton iterations are used in numerical contin-

uation. For a polynomial systemHt depending on
a parameter t, the solutions H−1

t (0) for t ∈ [0, 1]
form a collection of arcs. Given a point (xt, t) of
some arc and a step δt, a predictor is called to
give a point (x′, t + δt) that is near to the same
arc. Then Newton iterations are used to refine
this to a point (xt+δt , t + δt) on the arc. This
numerical continuation algorithm can be used to
trace arcs from t = 0 to t = 1.
We may use continuation to find all solutions to

a system F consisting of polynomials fi of degree
d. Define a new system Ht = (h1, . . . , hn) by

hi := tfi + (1−t)(xd
i−1).

At t = 0, this is xd
i − 1 whose solutions are the

dth roots of unity. When F is general, H−1
t (0)

consists of dn arcs connecting these known solu-
tions at t = 0 to the solutions of F−1(0) at t = 1.
These may be found by continuation.
While this Bézout homotopy illustrates the ba-

sic idea, it has exponential complexity and may
not be efficient. In practice, other more elegant
and efficient homotopy algorithms are used for
numerically solving systems of polynomials.
These numerical methods underlie numerical

algebraic geometry which uses them to manipu-
late and study algebraic varieties on a computer.
The subject began when Sommese, Verschelde
and Wampler introduced its fundamental data
structure of a witness set, as well as algorithms
to generate and manipulate witness sets.
Suppose we have a variety V ⊂ Cn of dimen-

sion n−d that is a component of the zero set
F−1(0) of d polynomials F = (f1, . . . , fd). A
witness set for V consists of a general affine sub-
space L ⊂ Cn of dimension d (given by d affine
equations) and (approximations to) the points of
V ∩ L. The points of V ∩ L may be numerically
continued as L moves to sample points from V .

An advantage of numerical algebraic geometry
is that path-tracking is inherently parallelizable,
as each of the arcs in H−1

t (0) may be tracked in-
dependently. This parallelism is one reason why
numerical algebraic geometry does not face the
complexity affecting symbolic methods. Another
reason is that by computing approximate solu-

tions to equations, the full information of a vari-
ety is never computed.

3 Algebraic Geometry in

Applications

We illustrate some of the many ways that alge-
braic geometry arises in applications.

3.1 Kinematics

Kinematics is concerned with motions of linkages
(rigid bodies connected by movable joints). While
its origins were in the simple machines of antiq-
uity, its importance grew with the age of steam
and today it is fundamental to robotics. As the
positions of a linkage are solutions to a system of
polynomial equations, kinematics has long been
an area of application of algebraic geometry.

An early challenge important to the develop-
ment of the steam engine was to find a linkage
with a motion along a straight line. Watt dis-
covered a linkage in 1784 approximating straight
line motion (tracing a curve near a flex) and in
1864 Peaucellier gave the first linkage with a true
straight line motion (based on circle inversion).

b

p

(When the bar b is rotated about its anchor point,
the point p traces a straight line.)

Cayley, Chebyshev, Darboux, Roberts, and
others contributed to kinematics in the 19th cen-
tury. The French Academy of Sciences recognized
the importance of kinematics, posing the problem
of determining the nontrivial mechanisms with a
motion constrained to a sphere for its 1904 Prix
Vaillant, which was awarded to Borel and Bricard
for their partial solutions.

The four-bar linkage consists of four bars in
the plane connected by rotational joints with one
bar fixed. A triangle is erected on the coupler bar
opposite the fixed bar and we wish to describe the
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coupler curve traced by the apex of the triangle.

c

b
b′

To understand the motion of this linkage, note
that if we remove the coupler bar c, the bars b and
b′ swing freely, tracing two circles, each of which
we parameterize by P1 as in (1). The coupler bar
constrains the endpoints of the bars b, b′ to lie at a
fixed distance. In the parameters s, t of the circles
and if b, b′, c are lengths of the corresponding bars,
the coupler constraint gives the equation

c2 =
(
b 1−s2

1+s2
− b′ 1−t2

1+t2

)2
+

(
b 2s
1+s2

− b′ 2t
1+t2

)2

= b2 + b′
2
− 2bb′

(1− s2)(1− t2) + 4st

(1 + s2)(1 + t2)
.

Clearing denominators gives a biquadratic equa-
tion in the variety P1×P1 that parameterizes the
rotations of the bars b, b′. Thus the coupler curve
is a genus one curve and is irrational. The real
points of a genus one curve have either one or
two components, which corresponds to the link-
age having one or two assembly modes—to reach
all points of a coupler curve with two components
requires disassembly of the mechanism.
Roberts and Chebyshev discovered that there

are three linkages (Roberts cognates) with the
same coupler curve, and they may be constructed
from one another using straightedge and compass.
The nine-point path synthesis problem asks for
the four-bar linkages whose coupler curve con-
tains nine given points. Morgan, Sommese and
Wampler used numerical continuation to solve the
equations, finding 4326 distinct linkages in 1442
triplets of Roberts cognates. Here is one linkage
solving this problem for the indicated nine points.

Such applications in kinematics drove the early
development of numerical algebraic geometry.

3.2 Geometric modeling

Geometric modeling uses curves and surfaces to
represent objects on a computer for industrial
design, manufacture, architecture, and entertain-
ment. These applications of computer-aided ge-
ometric design and computer graphics are pro-
foundly important to the world economy.
Geometric modeling began around 1960 in the

work of de Casteljau at Citroën, who introduced
what are now called Bézier curves (they were pop-
ularized by Bézier at Renault) for use in automo-
bile manufacturing.
Bézier curves (and higher-dimensional analogs,

rectangular tensor-product and triangular Bézier
patches) are parametric curves (and surfaces)
that have become widely used for many reasons,
including ease of computation and the intuitive
method to control shape by manipulating con-
trol points. They begin with Bernstein polyno-
mials (3), which are nonnegative on [0, 1]. Ex-
panding 1n = (t+ (1−t))n shows that

1 =

n∑

i=1

βi,n(t).

Given control points b0, . . . ,bn in R2 (or R3), we
have the Bézier curve

[0, 1] ∋ t 7−→
n∑

i=0

biβi,n(t). (4)

Here are two cubic (n = 3) Bézier curves in R2.

b0 b3

b1
b2

b0 b3

b2
b1

By (4), a Bézier curve is the image of the non-
negative part of the translated moment curve of
Example 2 under the map defined on projective
space by

[x0, . . . , xn] 7→
n∑

i=0

xibi.
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On the standard simplex
n
, this is the canon-

ical map to the convex hull of the control points.
The tensor product patch of bidegree (m,n)

has basis functions

βi,m(s)βj,m(t),

for i = 0, . . . ,m and j = 0, . . . , n. These are
functions on the unit square. Control points

{bi,j | i = 0, . . . ,m, j = 0, . . . , n} ⊂ R3

determine the map

(s, t) 7−→
∑

bijβi,m(s)βj,n(t),

whose image is a rectangular patch.
Bézier triangular patches of degree d have basis

functions

βi,j;d(s, t) =
d!

i!j!(d− i− j)!
sitj(1−s−t)d−i−j ,

for 0 ≤ i, j with i+j ≤ d. Again, control points
give a map from the triangle with image a Bézier
triangular patch. Here are two surface patches.

These patches correspond to toric varieties,
with tensor product patches coming from Segre-
Veronese surfaces and Bézier triangles from
Veronese surfaces. The basis functions are the
generalized Bernstein polynomials ωiβαi

of Sub-
section 1.3, and this explains their shape as they
are images of ∆A, which is a rectangle for the
Segre-Veronese surfaces and a triangle for the
Veronese surfaces.
An important question is to determine the in-

tersection of two patches, given parametrically as
F (x) andG(x) for x in some domain (a triangle or
rectangle). This is used for trimming the patches
or drawing the intersection curve. A common ap-
proach is to solve the implicitization problem for
G, giving a polynomial g which vanishes on the
patch G. Then g(F (x)) defines the intersection
in the domain of F . This application has led to
theoretical and practical advances in algebra con-
cerning resultants and syzygies.

3.3 Algebraic Statistics

Algebraic statistics applies tools from algebraic
geometry to questions of statistical inference.
This is possible because many statistical models
are (part of) algebraic varieties, or they have sig-
nificant algebraic or geometric structures.
Suppose that X is a discrete random variable

with n+1 possible states, 0, . . . , n. (E.g., the
number of tails observed in n coin flips.) If pi
is the probability that X takes value i,

pi := P (X = i),

then p0, . . . , pn are nonnegative and sum to 1.
Thus p lies in the standard n-simplex,

n
. Here

are two views of it when n = 2.

p0

p1

p2 p0

p1

p2

A statistical model M is a subset of
n
. If

(p0, . . . , pn) ∈ M , then we may think of X as
being explained by M .

Example 4. Let X be a discrete random variable
whose states are the number of tails in n flips of
a coin with a probability t of landing on tails and
1−t of heads. We may calculate that

P (X = i) =
(
n
i

)
ti(1− t)n−i,

the Bernstein polynomial βi,n (3) evaluated at the
parameter t. We call X a binomial random vari-

able or binomial distribution. The set of binomial
distributions as t varies gives the translated mo-
ment curve of Example 2 parameterized by Bern-
stein polynomials. This curve is the model for
binomal distributions. Here is a picture of this
curve when n = 2.

p0

p1

p2

Example 5. Suppose that we have discrete ran-
dom variables X and Y with m and n states, re-
spectively. Their joint distribution has mn states
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(cells in a table or a matrix) and lies in the sim-

plex
mn−1

. The model of independence con-
sists of all distributions p ∈ mn−1

such that

P (X = i, Y = j) = P (X = i)P (Y = j). (5)

It is parameterized by
m−1× n−1

(probabil-
ity simplices for X and Y ), and (5) shows it is the
nonnegative part of the Segre variety of Exam-
ple 3. Thus the model of independence consists
of those joint probability distributions which are
rank one matrices.

Other common statistical models, called dis-
crete exponential families or toric models, are
also the nonnegative part X+

A,ω of some toric
variety. For these, the algebraic moment map
πA :

n → ∆A (or u 7→ Au) is a sufficient statis-

tic. For the model of independence, Au is the
vector of row and column sums of the table u.
Suppose that we have data from N indepen-

dent observations (or draws), each from the same
distribution p(t) from a model M , and we wish
to estimate the parameter t best explaining the
data. One method is to maximize the likelihood

(the probability of observing the data given a pa-
rameter t). Suppose that the data are represented
by a vector u of counts where ui is how often state
i was observed in the N trials. The likelihood
function is

L(t|u) =

(
N

u

) n∏

i=0

pi(t)
ui ,

where
(
N
u

)
is the multinomial coefficient.

Suppose that M is the binomial distribution of
Example 4. It suffices to maximize the logarithm
of L(t|u), which is

C +
n∑

i=0

ui(i log t+ (n−i) log(1−t)),

where C is a constant. By calculus, we have

0 =
1

t

n∑

i=0

iui +
1

1− t

n∑

i=0

(n− i)ui.

Solving, we obtain that

t :=
1

n

n∑

i=0

i
ui

N
(6)

maximizes the likelihood. If û := u
N

∈ n
is the

point corresponding to our data, then (6) is the
normalized algebraic moment map 1

n
πA of Ex-

ample 2 applied to û. For a general toric model
X+

A,ω ⊂ n
, likelihood is maximized at the pa-

rameter t satisfying πA ◦ βA,ω(t) = πA(û). An
algebraic formula exists for the parameter maxi-
mizing likelihood exactly when πA and βA,ω are
inverses.

Suppose that we have data u as a vector of
counts as before and a model M ⊂ n

, and we
wish to test the null hypothesis that the data u

come from a distribution in M . Fisher’s exact

test uses a score function
n → R≥ which is

zero exactly on M , and computes how likely it is
for data v to have a higher score than u, when v

is generated from the same probability distribu-
tion as u. This requires that we sample from the
probability distribution of such v.

For a toric model X+
A,ω, this is a probability

distribution on the set of possible data with the
same sufficient statistics,

Fu := {v | Au = Av}.

For a parameter t, this distribution is

L(v | v ∈ Fu, t) =

(
N
v

)
ωvtAv

∑
w∈Fu

(
N
w

)
ωwtAw

=

(
N
v

)
ωv

∑
w∈Fu

(
N
w

)
ωw

, (7)

as Av = Aw for v, w ∈ F(u).

This sampling may be accomplished using a
random walk on the fiber Fu with stationary dis-
tribution (7). This requires a connected graph on
Fu. Remarkably, any Gröbner basis for the ideal
of the toric variety XA gives such a graph.

3.4 Tensor rank

The fundamental invariant of a m × n matrix is
its rank. The set of all matrices of rank at most
r is defined by the vanishing of the determinants
of all (r+1)× (r+1) submatrices. From this per-
spective, the simplest matrices are those of rank
one, and the rank of a matrix A is the minimal
number of rank one matrices that sum to A.
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A m× n matrix A is a linear map V2 = Cn →
V1 = Cm. If it has rank one, it is the composition

V2

v2

−։ C
v1

−֒→ V1,

of a linear function v2 on V2 (v2 ∈ V ∗
2 ) and an

inclusion given by 1 7→ v1 ∈ V1. Thus A = v1 ⊗
v2 ∈ V1⊗V ∗

2 , as this tensor space is naturally the
space of linear maps V2 → V1. A tensor of the
form v1 ⊗ v2 has rank one, and the set of rank
one tensors forms the Segre variety of Example 3.
Singular value decomposition writes a matrix

A as a sum of rank one matrices of the form

A =

rank(A)∑

i=1

σiv1,i ⊗ v2,i, (8)

where {v1,i} and {v2,i} are orthonormal and σ1 ≥
· · · ≥ σrank(A) > 0 are the singular values of A.
Often, only the relatively few terms of (8) with
largest singular values are significant, and the rest
are noise. Letting Alr be the sum of terms with
large singular values and Anoise be the sum of the
rest, then A is the sum of the low-rank matrix Alr

plus noise.
A k-way tensor (k-way table) is an element of

V1⊗· · ·⊗Vk, where each Vi is a finite dimensional
vector space. A rank one tensor has the form
v1 ⊗ · · · ⊗ vk, where vi ∈ Vi. These form a toric
variety, and the rank of a tensor v is the minimal
number of rank one tensors that sum to v.
The (closure of) the set of rank r tensors is the

rth secant variety. When k = 2 (matrices), the
set of determinants of all (r+1) × (r+1) subma-
trices solves the implicitization problem for the
rth secant variety. For k > 2 there is not yet a
solution to the implicitization problem for the rth
secant variety.
Tensors are more complicated than matrices.

Some tensors of rank > r lie in the rth secant
variety, and these may be approximated by low
rank (rank r) tensors. Algorithms for tensor de-
composition generalize singular value decomposi-
tion. Often their goal is an expression of the form
v = vlr + vnoise for a tensor v as the sum of a low
rank tensor vlr plus noise vnoise.
Some mixture models in algebraic statistics

are secant varieties. Consider an inhomogeneous
population in which the fraction θi obeys a prob-
ability distribution p(i) from a model M . Then

the distribution of data collected from this popu-
lation behaves as the convex combination

θ1p
(1) + θ2p

(2) + · · ·+ θrp
(r),

which is a point on the rth secant variety of M .
Theoretical and practical problems in complex-

ity may be reduced to knowing the rank of spe-
cific tensors. Matrix multiplication gives a nice
example of this.
Let A = (aij) and B = (bij) be 2× 2 matrices.

In the usual multiplication algorithm, C = AB is

cij = ai1b1j + ai2b2j , i, j = 1, 2. (9)

This involves eight multiplications. For n×n ma-
trices, the algorithm uses n3 multiplications.
Strassen discovered an alternative. Set

s1 := (a11 + a22)(b11 + b22)

s2 := (a21 + a22)b11

s3 := (a11 + a12)b22

s4 := a11(b12 − b22)

s5 := a22(b21 − b11)

s6 := (a21 − a11)(b11 + b12)

s7 := (a12 − a22)(b21 + b22)

Then C = AB is
(
s1 − s3 + s5 + s7 s2 + s5

s3 + s4 s1 − s2 + s4 + s6

)
,

which only involves seven multiplications.
If A and B are 2k × 2k matrices with k × k

blocks aij and bij , then these formulas apply and
enable the computation of AB using 7k3 multi-
plications. Recursive application of this idea en-
ables the multiplication of n × n matrices using
only nlog

2
7 ≃ n2.81 multiplications. This method

is used in practice to multiply large matrices.
We interpret Strassen’s algorithm in terms of

tensor rank. The formula (9) for C = AB is a
tensor µ ∈ V ⊗ V ∗ ⊗ V ∗, where V = M2×2(C).
Each multiplication is a rank one tensor, and (9)
exhibits µ as a sum of eight rank one tensors, so
µ has rank at most eight. Strassen’s algorithm
shows that µ has rank at most seven. We now
know that the rank of any tensor in V ⊗ V ∗ ⊗
V ∗ is at most seven, which shows how Strassen’s
algorithm could have been anticipated.
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The fundamental open question about the com-
plexity of multiplying n × n matrices is to de-
termine the rank rn of the multiplication ten-
sor. We only have bounds for rn. We know that
rn ≥ o(n2), as matrices have n2 entries and im-
provements to the idea behind Strassen’s algo-
rithm show that rn < O(n2.38).

3.5 Hardy-Weinberg equilibrium

We close with a simple application to Mendelian
genetics.
Suppose that a gene exists in a population in

two variants (alleles), a and b. Individuals will
have one of three genotypes, aa, ab or bb, and
their distribution p = (paa, pab, pbb) is a point in
the probability 2-simplex. A fundamental and
originally controversial question in the early days
of Mendelian genetics was: Which distributions
are possible in a population at equilibrium? (As-
suming no evolutionary pressures, equidistribu-
tion of the alleles among the sexes, etc.)
The proportions qa and qb of alleles a and b in

the population are

qa = paa +
1
2pab, qb =

1
2pab + pbb, (10)

and the assumption of equilibrium is

paa = q2a, pab = 2qaqb, pbb = q2b . (11)

If A =
(
2 1 0
0 1 2

)
with

(
2
0

)
↔ aa,

(
1
1

)
↔

ab, and
(
0
2

)
↔ bb, then (10) is (qa, qb) =

1
2πA(paa, pab, pbb), the normalized algebraic mo-
ment map of Examples 2 and 4 applied to
(paa, pab, pbb). Similarly, the assignment q → p

of (11) is the parametrization β of the translated
quadratic moment curve of Example 2 given by
the Bernstein polynomials.
Since 1

2πA ◦ β(q) = q, the population is
at equilibrium if and only if the distribution
(paa, pab, pbb) of alleles lies on the translated
quadratic moment curve, that is, if and only if
it is a point in the binomial distribution, which
we reproduce.

p0

p1

p2

This is called the Hardy-Weinberg equilibrium af-
ter its two independent discoverers.
Hardy here is the great English mathematician

G.H. Hardy, who was known for his disdain for
applied mathematics, and this contribution came
early in his career, in 1908. He was later famous
for his work in number theory, a subject that he
extolled for its purity and uselessness. As we all
now know, Hardy was mistaken on this last point
for number theory underlies our modern digital
world, from the security of financial transactions
via cryptography to using error correcting codes
to ensure the integrity of digitally transmitted
documents, such as the one you have now finished
reading.
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