
Mss., arXiv.org/1406.0864, 19 Maarch 2015

A PRIMAL-DUAL FORMULATION FOR CERTIFIABLE

COMPUTATIONS IN SCHUBERT CALCULUS

JONATHAN D. HAUENSTEIN, NICKOLAS HEIN, FRANK SOTTILE

Abstract. Formulating a Schubert problem as the solutions to a system of equations in
either Plücker space or in the local coordinates of a Schubert cell typically involves more
equations than variables. We present a novel primal-dual formulation of any Schubert
problem on a Grassmannian or flag manifold as a system of bilinear equations with the
same number of equations as variables. This formulation enables numerical computations
in the Schubert calculus to be certified using algorithms based on Smale’s α-theory.

Introduction

Numerical algebraic geometry provides fast, efficient methods to approximate all solu-
tions to a system of polynomial equations [29]. When the system is square in that the
number of equations is equal to the number of variables, Smale’s α-theory [5, Ch. 8] gives
methods to certify that these approximate solutions correspond to actual solutions. This
is implemented in software which can be used to prove that all solutions have been found
and to certifiably count the number of real solutions [12].

The Schubert calculus of enumerative geometry has come to mean all problems of
determining the linear subspaces of a vector space that have specified positions with
respect to other, fixed but general subspaces. Originating in work of Schubert [23, 24,
25, 26], it has long been an active subject, undergoing significant recent development.
As a rich and well-understood class of geometric problems, the Schubert calculus is a
laboratory for the systematic study of new phenomena in enumerative geometry [18, 32],
particularly as Schubert problems are readily formulated and studied on a computer.

There are two traditional formulations of Schubert problems, one in global Plücker
coordinates and one in the local coordinates of a Schubert cell [8]. The first involves
quadratic Plücker equations and linear equations, while the second uses no Plücker equa-
tions and the linear equations are replaced by minors of matrices. Both formulations
typically involve far more equations than variables. The second method was used to pro-
vide evidence for the Shapiro conjecture and discover its generalizations [7, 19, 20, 21, 31]
through the systematic study of many billions of instances of several thousand Schubert
problems [9, 11, 14, 22, 30]. These were exact computations, using symbolic methods.
Numerical computation should enable the study of far more and far larger Schubert prob-
lems as well as more delicate monodromy computations on a computer. For this hope
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to become a reality, algorithms tailored to Schubert calculus need to be developed and
implemented—this is starting to occur [15, 33]—and methods to certify computation need
to be developed.

This second point was highlighted in a proof-of-concept paper to compute monodromy
(Galois groups) of some Schubert problems [17]. This included numerically solving a
Schubert problem with 17589 solutions and numerically computing enough monodromy
permutations to conclude that the monodromy was the full symmetric group S17589. These
computations were not proofs in the ordinary sense as they relied upon software heuristics
for their conclusions. This nevertheless inspired the development and implementation of
methods to certify computations in numerical algebraic geometry.

Certification in numerical algebraic geometry rests upon work of Smale, who studied
the convergence of iterations of Newton’s method applied to a point x0, considered to be
an approximate solution to a system F (x) = 0 of polynomial equations, when the system
is square [28]. This is called α-theory for the existence of an absolute constant α0 > 0
such that when a constant α = α(x0, F ) > 0 satisfies α < α0, Newton iterates starting
at x0 converge quadratically (doubling significant digits with each step) to a solution to
F (x) = 0. This was implemented in software [12] as an a posteri test to certify the
output of a numerical solver while Beltrán and Leykin [3, 4] developed and implemented
a certified path-tracking algorithm which also certifies monodromy computations. In an
important special case, a posteri estimates suffice to certify monodromy [10].

Traditional formulations of Schubert problems typically lead to overdetermined systems
(more equations than variables) so algorithms based on α-theory cannot be used to certify
traditional numerical computation in Schubert calculus. We present a novel formulation of
any Schubert problem in primal-dual coordinates as a square system of bilinear equations.
This will enable certification based on α-theory, both a posteri certification of approximate
solutions and certified path-tracking.

The set of all ℓ-dimensional linear subspaces (ℓ-planes) in a vector space V having
specified position with respect to a fixed subspace forms a Schubert subvariety of the
Grassmannian. A Schubert problem is formulated as the intersection of a collection of
Schubert varieties in a Grassmannian which are in general position. A natural extension
is to consider a Schubert problem to be given by intersecting a collection of Schubert sub-
varieties in general position in a flag manifold. We give a square primal-dual formulation
of any Schubert problem on any flag manifold.

The main ideas are well illustrated for the Grassmannian. In Section 1 we describe
Schubert varieties in the Grassmannian and give a traditional formulation of a Schubert
problem as an overdetermined system of determinantal equations in local coordinates for
the Grassmannian. We introduce our primal-dual reformulation in Section 2, where we
use duality to recast Schubert problems as a square system of bilinear equations in a
larger space. We improve this, using a hybrid approach and more sophisticated local
coordinates to our primal-dual formulation in Section 3. Finally, in Section 4 we explain
how this extends to all Schubert problems in a flag manifold.
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1. Modeling Schubert problems

We describe Schubert varieties, Schubert problems, and how to model them as systems
of equations. For a positive integer n, write [n] for the set {1, . . . , n}. Fix ℓ to be a positive
integer at most n−1. Let w0 ∈ Sn be the permutation of [n] such that w0(i) = n+1−i.

1.1. Schubert problems. Let V be an n-dimensional complex vector space. The Grass-
mannian Gr(ℓ, V ) of ℓ-planes of V is a complex manifold of dimension ℓ(n−ℓ) that is a

subvariety of Plücker space, P(∧ℓV ) ≃ P(
n
ℓ)−1. We often write Gr(ℓ, n) to denote Gr(ℓ,Cn).

The Grassmannian has distinguished Schubert subvarieties. A (complete) flag F• is a
sequence

F• : {0} ( F1 ( F2 ( · · · ( Fn = V ,

of linear subspaces of V where dimFi = i. The position of a ℓ-plane H with respect to
the flag F• is the increasing sequence α : 1 ≤ α1 < · · · < αℓ ≤ n where

αi := min{j : dim(H ∩ Fj) = i} , for i = 1, . . . , ℓ .

Write α := α(H,F•) and call α a Schubert condition. All such increasing sequences

may occur. Write
(

[n]
ℓ

)

for the set of Schubert conditions which is partially ordered by
coordinatewise comparison: α ≤ β if and only if αi ≤ βi for each i = 1, . . . , ℓ.

Let X◦
αF• be the set of all ℓ-planes H with α(H,F•) = α, which is a Schubert cell. This

has dimension dim(α) := (α1 − 1) + · · ·+ (αℓ − ℓ). We have the Bruhat decomposition of
the Grassmannian

Gr(ℓ, n) =
⊔

α∈([n]
k )

X◦
αF• .

Given a Schubert condition α and a flag F•, define the Schubert subvariety XαF• by

(1.1) XαF• := {H ∈ Gr(ℓ, V ) | dim(H ∩ Fαi
) ≥ i , for i = 1 . . . , ℓ} ,

which is the closure of the Schubert cell X◦
αF•. This has dimension dim(α) and thus

codimension |α| := ℓ(n−ℓ)− dim(α) = ℓ(n−ℓ)−
∑

i(αi − i).

Example 1.1. Suppose that ℓ = 2, n = 8, and F• is a complete flag in C8. Then

X(4,8)F• = {H ∈ Gr(2, 8) | H ∩ F4 6= {0} } ,

as the remaining condition is that H ⊂ F8 = C8, which always holds. The codimension
of X(4,8)F• is 2(8−2)− (4−1)− (8−2) = 3. ⋄

A Schubert problem is a list α = (α1, . . . , αs) with αi ∈
(

[n]
ℓ

)

satisfying |α1|+· · ·+|αs| =
ℓ(n−ℓ). By Kleiman’s Transversality Theorem [16], if F 1

• , . . . , F
s
• are general flags, then

the intersection

(1.2) Xα1F 1
• ∩ Xα2F 2

• ∩ · · · ∩ XαsF s
• ,

is transverse and consists of finitely many points. Such an intersection (1.2) is an instance
of the Schubert problem α.
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Example 1.2. Suppose that α = ((4, 8), (4, 8), (4, 8), (4, 8)), which is a Schubert problem
on Gr(2, 8). Let F 1

• , F
2
• , F

3
• , F

4
• be general flags. The corresponding instance is

X(4,8)F
1
• ∩ X(4,8)F

2
• ∩ X(4,8)F

3
• ∩ X(4,8)F

4
•

= {H ∈ Gr(2, 8) | H ∩ F i
4 6= {0} i = 1, 2, 3, 4} .

That is, the 2-planes that have non-trivial intersection with four 4-planes in general po-
sition in C8. This can be shown to have four solutions. ⋄

We may use the global Plücker coordinates to formulate a Schubert problem as the

solutions to a system of equations. In the projective space P(
n
ℓ)−1, the Grassmannian is

defined by quadratic Plücker equations and Schubert varieties are given by certain linear
equations. This is not considered to be an efficient encoding of the Schubert problem.

For instance, in the Schubert problem of Example 1.2, Plücker space has dimension
(

8
2

)

− 1 = 27 and there are
(

8
4

)

= 70 linearly independent quadratic Plücker equations.
These cut out the twelve-dimensional Grassmannian Gr(2, 8) and each Schubert variety
X(4,8)F• is cut out by six independent linear equations, for a total of 94 equations.

1.2. Local coordinates for Schubert varieties. Local coordinates for Schubert vari-
eties in Gr(ℓ, V ) are described in [8, Ch. 10]. Let M be a full rank m × n matrix with
m ≤ n. If ℓ ≤ m, let Mℓ be the first ℓ rows of M and set Rℓ(M) to be the row span
of Mℓ. For this, fix a basis e1, . . . , en of V ≃ Cn corresponding to the columns of M . If
a• = a1 < · · · < at ⊂ [n] and at ≤ m then Ra•(M) is the (partial) flag of linear subspaces

Ra1(M) ( Ra2(M) ( · · · ( Rat(M) ,

and we write R•(M) for the complete flag obtained from an invertible n× n matrix M .
If N is an n×m matrix, we similarly have the column span Cℓ(N) and the flag Ca•(N).

These are subspaces of the dual vector space V ∗ equipped with the basis e∗1, . . . , e
∗
n of V ∗

dual to e1, . . . , en, which corresponds to the rows of N .
The association M 7→ Rℓ(M) realizes the open subset of rank ℓ matrices in Matℓ×n(C)

as a GL(ℓ,C)-principal bundle over the Grassmannian, called the Stiefel manifold. We
identify subsets of the Stiefel manifold that parametrize Schubert varieties and their in-
tersections, and call these subsets Stiefel coordinates.

Every ℓ-plane H is the row space of a unique unique echelon matrix, M ∈ Matℓ×n(C).
That is, the last entry (the pivot) in row i of M is 1, and if αi is the column of the pivot,
then α1 < · · · < αℓ and the 1 in position (i, αi) is the only nonzero element of its column.
Here are echelon matrices for α = (4, 8) and α = (2, 4, 5, 7) with (ℓ, n) = (2, 8) and (4, 7),
respectively, and where mi,j represents some complex number.

(1.3)

(

m1,1 m1,2 m1,3 1 0 0 0 0
m2,1 m2,2 m2,3 0 m2,5 m2,6 m2,7 1

)









m1,1 1 0 0 0 0 0
m2,1 0 m2,3 1 0 0 0
m3,1 0 m3,3 0 1 0 0
m4,1 0 m4,3 0 0 m4,6 1









Let Mα be the set of echelon matrices with pivots α. The number of unspecified
entries in matrices in Mα is dim(α), which shows that Mα ≃ Cdim(α). Let e1, . . . , en be
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an ordered basis of Cn corresponding to the columns of our matrices. If we define the
standard coordinate flag E• so that Ej := span{e1, . . . , ej}, then a ℓ-plane H has position
α with respect to the flag E•, so that H ∈ X◦

αE•, if and only if its echelon matrix has
pivots α. As distinct echelon matrices give distinct ℓ-planes and vice-versa, this shows that
Rℓ : Mα → X◦

αE• is an isomorphism and thus X◦
αE• ≃ Cdim(α). Since the Schubert cell is

dense in the Schubert variety, Mα gives local coordinates for the Schubert variety XαE•.
These echelon matrices Mα also give local coordinates for arbitrary Schubert varieties.

Let Φ be a full rank n × n matrix. If M ∈ Mα, then we invite the reader to check that
Rℓ(MΦ) ∈ X◦

αR•(Φ).
Let E ′

• be the coordinate flag opposite to E•, where E ′
i := span{en+1−i, . . . , en} and

dimEi ∩ E ′
j = max{0, i+j−n}, so that E• and E ′

• are in linear general position. For

β ∈
(

[n]
ℓ

)

, let Mβ be the set of echelon matrices in which row j has its first non-zero entry
of 1 in column n+1−βℓ+1−j, and this entry is the only nonzero entry in its column, but
the remaining entries are unconstrained. Rotating a matrix 180◦ gives a bijection between
Mβ and Mβ, and the map M 7→ Rℓ(M) is a bijection between Mβ and the Schubert
cell X◦

βE
′
•. Here is a typical matrix in M(3,7,9) for Gr(3, 9),





1 m1,2 0 m1,4 m1,5 m1,6 0 m1,8 m1,9

0 0 1 m2,4 m2,5 m2,6 0 m2,8 m2,9

0 0 0 0 0 0 1 m3,8 m3,9



 .

Suppose that we have indices α, β ∈
(

[n]
ℓ

)

with αi+βℓ+1−i ≤ n for i = 1, . . . , a. Consider

the set Mβ
α of matrices (mi,j) where

mi,j = 0 if i < βℓ+1−i or αi < j

mi,j = 1 if i = βℓ+1−i ,

and mi,j is otherwise unconstrained. Here is a typical matrix in M
(5,7,8,11)
(6,8,10,11),









1 m1,2 m1,3 m1,4 m1,5 m1,6 0 0 0 0 0
0 0 0 1 m2,5 m2,6 m2,7 m2,8 0 0 0
0 0 0 0 1 m3,6 m3,7 m3,8 m3,9 m3,10 0
0 0 0 0 0 0 1 m4,8 m4,9 m4,10 m4,11









.

If M ∈ Mβ
α, then Rℓ(M) ∈ XαE• ∩ XβE

′
•. Indeed, as the last nonzero element mi,αi

in
row i is in column αi, we conclude that H ∈ XαE•. To see that H ∈ XαE

′
•, simply read

the rows in reverse order.
A full rank n × n matrix Φ gives a complete flag F• = R•(Φ). If we let F ′

i be the row
span of the last i rows of Φ, we get a second flag F ′

• = R•(w0Φ) which is opposite to F•

in that dimFi ∩ F ′
j = max{0, i+j−n}, and given any two such flags, there is a full rank

matrix Φ which gives rise to them. We will refer to F• and F ′
• as the pair of opposite flags

given by Φ. Note that E• and E ′
• are given by the identity matrix.

Proposition 1.3. Let F• and F ′
• be opposite flags given by a full rank n × n matrix Φ,

F• = R•(Φ) and F ′
• = R•(w0Φ). The set Mα of echelon matrices with pivots α is an

affine space isomorphic to the Schubert cell X◦
αF• via the map Mα ∋ M 7→ Rℓ(MΦ).
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When αi+βℓ+1−i ≤ n for i = 1, . . . , ℓ, the set Mβ
α is an affine space which parametrizes

a dense subset of the intersection XαF• ∩ XβF
′
• via the map Mβ

α ∋ M 7→ Rℓ(MΦ). (If
αi + βℓ+1−i > n for some i, then both Mβ

α and XαF• ∩XβF
′
• are empty.)

It only remains to show that Mβ
α parametrizes a dense subset of XαF• ∩ XβF

′
•. This

follows as the map is injective on the locus where the entries mi,αi
are simultaneously

nonzero and the two varieties are irreducible of the same dimension ℓ(n−ℓ)−|α|−|β|. For
the intersection of Schubert varieties, this is because the flags are in general position, and
for Mβ

α this is verified by counting parameters.

1.3. Determinantal equations for Schubert varieties. Let α ∈
(

[n]
ℓ

)

and let F• =
R•(Φ) be a flag given by a full rank matrix Φ. The geometric conditions (1.1) defining a
Schubert variety XαF• give determinantal equations in local coordinates.

If H = Rℓ(M), where M ∈ Matℓ×n(C), then dim(H ∩ Fb) ≥ c if and only if

rank

(

M
Φb

)

≤ ℓ+b−c ,

where Φb denotes the submatrix of Φ given by the first b rows. This is characterized by
the vanishing of each of the square ℓ+b−c+1 subdeterminants (minors) of

(

M
Φb

)

.

Proposition 1.4. Let M be a set of matrices parametrizing a subset Y of Gr(ℓ,Cn), let

Φ be a full-rank matrix, and let α ∈
(

[n]
ℓ

)

. Then, in the coordinates M ∈ M for Y , the
intersection Y ∩ XαR•(Φ) of Y with the Schubert variety is defined by the vanishing of
the square ℓ+αi−i+1 minors of

(

M
Φαi

)

, for i = 1, . . . , ℓ.

This set I(α,Φ) of minors defining XαF• is typically more than is necessary. For

α ∈
(

[n]
ℓ

)

, let ‖α‖ be the number of sequences β ∈
(

[n]
ℓ

)

such that β 6≤ α.

Lemma 1.5. The ideal generated by I(α,Φ) that defines Y ∩ XαF• is generated by at
most ‖α‖ polynomials that are linear combinations of full rank minors of M .

Proof. In the Plücker embedding of Gr(ℓ, n), the Plücker coordinates {pβ | β ∈
(

[n]
ℓ

)

} form
a basis of the linear forms. If M is a ℓ × n matrix with H = Rℓ(M), then pβ(H) is the
ℓ× ℓ minor of the matrix M formed by its columns indexed by β.

The Schubert variety XαE• given by the coordinate flag E• is defined in Gr(ℓ, n) by the
vanishing of the Plücker coordinates pβ for β 6≤ α. If g is a matrix sending E• to F•, then
it acts on Plücker space sending XαE• to XαF• and thus XαF• is defined by the linear
forms g(pβ) with β 6≤ α. Thus Y ∩XαF• is defined by the linear combinations of minors
{g(pβ)(H) | β 6≤ α}, and this set has cardinality ‖α‖. ¤

Corollary 1.6. The Schubert variety XαF• is defined by |α| > 0 equations if and only if
either ℓ = 1, ℓ = n−1, or α = (n−ℓ, n−ℓ+ 2, . . . , n) so that 1 = |α| = ‖α‖.

Proof. By Lemma 1.5, we must describe when |α| = ‖α‖. First, observe that the poset
(

[n]
ℓ

)

is ranked. This implies that |α| ≤ ‖α‖ and equality holds when the complement of

the interval below α in
(

[n]
ℓ

)

is a chain. This also implies that every index β ∈
(

[n]
ℓ

)

is
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comparable to α. When ℓ = 1 or ℓ = n−1, the poset
(

[n]
ℓ

)

is a chain, so these conditions
hold for all α.

Also note that if |α| < ‖α‖ and α < β, then we also have |β| < ‖β‖ as the poset
(

[n]
ℓ

)

is
ranked. When 1 < ℓ < n−1, there are two indices α with |α| = 2, so that we have |α| <
‖α‖ for all indices α with |α| > 1. As there is a unique index α = (n−ℓ, n−ℓ + 2, . . . , n)
with |α| = 1, for this we have 1 = |α| = ‖α‖. ¤

Example 1.7. The set M(7,8) of matrices of the form M = [X : I2] for X ∈ Mat2×6(C)
parametrizes X◦

(7,8)E•, which is a dense subset of the Grassmannian Gr(2, 8). In this cell,

the Schubert variety X(4,8)F• is defined by the vanishing of the
(

8
6

)

= 28 minors of size 6×6

of
(

M
Φ4

)

(when i = 1), and there are no equations for i = 2. These minors are dependent.
For Φ general, these 28 minors span a six-dimensional linear space of polynomials, by
Lemma 1.5. Indeed, the set of sequences {β ∈

(

[8]
2

)

| (4, 8) 6≥ β} is

{(7, 8) , (6, 8) , (5, 8) , (6, 7) , (5, 7) , (5, 6)} . ⋄

Let (α1, . . . , αs) be a Schubert problem on Gr(ℓ, n) and suppose that F 1
• , . . . , F

s
• are

flags in general position, giving an instance (1.2) of this Schubert problem. We use
Propositions 1.4 and 1.3 to give three formulations of this instance in terms of equations
and local coordinates. Let Φ1, . . . ,Φs be full-rank matrices giving the flags, F i

• := R•(Φ
i).

1.3.1. Local coordinates for Gr(ℓ, n). LetM := M(n−ℓ+1,...,n) be the set of matrices (X : Iℓ)
where X ∈ Matℓ×(n−ℓ)(C), which parametrizes the dense Schubert cell X◦

(n−ℓ+1,...,n)E•.

Then the instance (1.2) is defined inM by the collection of ideals I(αi,Φi), for i = 1, . . . , s.
This uses ℓ(n−ℓ) variables.

1.3.2. Local coordinates for XαsF s
• . Assume that the coordinates for Cn have been chosen

so that F s
• = E•, the standard coordinate flag—this may be achieved by replacing each

matrix Φi by Φi(Φs)−1. Let M := Mαs be the set of matrices parametrizing the Schubert
cell X◦

αsE•. Then the instance (1.2) is defined in M by the collection of ideals I(αi,Φi),
for i = 1, . . . , s−1. This uses ℓ(n−ℓ)− |αs| variables.

1.3.3. Local coordinates for XαsF s
• ∩Xαs−1F s−1

• . Assume that the coordinates for Cn have
been chosen so that F s

• = E• and F s−1
• = E ′

• are the standard coordinate flags. This may
be achieved by choosing ei to be any nonzero vector in the one-dimensional linear subspace
F s
i ∩F s−1

n+1−i for each i = 1, . . . , n. Then the instance (1.2) is defined in M = Mαs−1

αs by the
collection of ideals I(αi,Φi), for i = 1, . . . , s−2. This uses ℓ(n−ℓ)−|αs|− |αs−1| variables.
(This requires that dimF s

i ∩F s−1
n+1−i = 1 for each i, which is equivalent to the two flags F s

•

and F s−1
• being in linear general position.)

Remark 1.8. In each of these formulations, if the flags F i
• are general then the set of solu-

tions to the system of equations inM will give the set of solutions to the Schubert problem,
under the map M ∋ M 7→ Rℓ(M). Indeed, the parametrization map M → Gr(ℓ, n) is
one-to-one on an open subset of M and the image is dense in the corresponding Schubert
variety or intersection of Schubert varieties. By Kleiman’s Transversality Theorem, there
are no solutions in the lower-dimensional subvariety where the map is not injective. ⋄
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2. Primal-dual formulation of Schubert problems

Associating a ℓ-plane H in V = Cn to its annihilator H⊥ in the linear dual V ∗ of V
identifies the Grassmannian Gr(ℓ, V ) with Gr(n−ℓ, V ∗). This identification sends Schubert
varieties to Schubert varieties. The graph of this map is defined by bilinear equations in
Stiefel coordinates. We explain how the parametrization of Schubert varieties and a twist
on the classical reduction to the diagonal leads to a formulation of any Schubert problem
on Gr(ℓ, V ) as a square system of bilinear equations.

2.1. Parametrizing dual Schubert varieties. Let e1, . . . , en be a basis for the vector
space V and e∗1, . . . , e

∗
n be the dual basis for V ∗. Write ⊥ for the canonical map ⊥ : H →

H⊥ between Gr(ℓ, V ) and Gr(n−ℓ, V ∗). We first identify the image ⊥(XαF•) of a Schubert
variety under the map ⊥.

Each flag F• on V has a corresponding dual flag F⊥
• on V ∗, where (F⊥

• )i = (Fn−i)
⊥,

F⊥
• : (Fn−1)

⊥ ( (Fn−2)
⊥ ( · · · ( (F1)

⊥ ( V ∗ ,

For α ∈
(

[n]
ℓ

)

, define the sequence α⊥ ∈
(

[n]
n−ℓ

)

by j ∈ α⊥ if and only if n+1−j 6∈ α. For

example, if ℓ = 4 and n = 7, then (2, 4, 5, 7)⊥ = (2, 5, 7). Note that

[n] = α⊥ ∪ {n+ 1− αi | i = 1, . . . , ℓ} ,

and thus n−i = #(α∩{i+1, . . . , n})+#(α⊥ ∩ [n−i]). (Here, #S is the cardinality of the
set S, and (α ∩ S) := (αi | αi ∈ S).)

Lemma 2.1. For a Schubert variety XαF• ⊂ Gr(ℓ, V ), we have ⊥(XαF•) = Xα⊥F⊥
• .

Note that XαF• = ⊥(Xα⊥F⊥
• ). We call XαF• and Xα⊥F⊥

• dual Schubert varieties.

Proof. Observe that if F• is a flag and H a linear subspace, then dimH ∩ Fb ≥ a implies
that dimH ∩ Fb+1 ≥ a. Thus the definition (1.1) of Schubert variety is equivalent to

(2.1) XαF• := {H ∈ Gr(ℓ, V ) | dim(H ∩ Fi) ≥ #(α ∩ [i]), for i = 1, . . . , n} .

For every H ∈ Gr(ℓ, V ) and all i = 1, . . . , n, the following are equivalent.

dimH ∩ Fi ≥ #(α ∩ [i])

⇔ dim(span{H,Fi}) ≤ ℓ+i−#(α ∩ [i]) = i+#(α ∩ {i+1, . . . , n})

⇔ dim(span{H,Fi}
⊥) ≥ n−i−#(α ∩ {i+1, . . . , n})

⇔ dim(H⊥ ∩ F⊥
n−i) ≥ n−i−#(α ∩ {i+1, . . . , n}) .

Since n−i−#(α ∩ {i+1, . . . , n}) = #(α⊥ ∩ [n−i]), the lemma follows from (1.1). ¤
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Example 2.2. Observe that we have

(2.2)









m1,1 1 0 0 0 0 0
m2,1 0 m2,3 1 0 0 0
m3,1 0 m3,3 0 1 0 0
m4,1 0 m4,3 0 0 m4,6 1



























1 0 0
−m1,1 0 0

0 1 0
−m2,1 −m2,3 0
−m3,1 −m3,3 0

0 0 1
−m4,1 −m4,3 −m4,6



















=









0 0 0
0 0 0
0 0 0
0 0 0









.

Thus if H ∈ XαE• is the row space of the 4 × 7 matrix M ∈ M(2,4,5,7) in (2.2), then
H⊥ ∈ X(2,4,5,7)⊥E

⊥
• is the column space of the 7× 3 matrix in (2.2) and vice-versa. Here,

the dual basis e∗1, . . . , e
∗
n corresponds to the rows of the 7 × 3 matrix. In particular,

M(2,5,7) parametrizes X(2,4,5,7)⊥E
⊥
• via the map M 7→ C3(M

T ). Here, we write MT for
the transpose of a matrix M . ⋄

Lemma 2.3. The Schubert cell Xα⊥E⊥
• is parametrized by matrices in Mα⊥

via M 7→
Cn−ℓ(M

T ). Similarly, the intersection Xα⊥E⊥
• ∩ Xβ⊥E ′

•
⊥ is parametrized by matrices in

Mα⊥

β⊥ via M 7→ Cn−ℓ(M
T ).

We leave the proof of this lemma to the reader.
Note that if H ∈ Mα and K ∈ Mα⊥

, then each of the equations HKT = 0ℓ×(n−ℓ) is
either trivial or of the form mi,j+kt,j = 0 as in (2.2). Define Nα to be the set of n× (n−ℓ)

matrices {MT | M ∈ Mα⊥

}. Then Nα parametrizes Xα⊥E⊥
• via N 7→ Cn−ℓ(N). As

ΦΦ−1 = I, if F• = R•(Φ) then (F•)
⊥ is the flag whose i plane is the span of the last i

columns of Φ−1. Thus Nα parametrizes Xα⊥E⊥
• via N 7→ Cn−ℓ(Φ

−1N).

2.2. The primal-dual formulation of a Schubert problem. Let ∆: Gr(ℓ, V ) →
Gr(ℓ, V ) × Gr(n−ℓ, V ∗) be the graph of the isomorphism ⊥ : Gr(ℓ, V ) → Gr(n−ℓ, V ∗).
We call ∆ the dual diagonal map and will identify Gr(ℓ, V ) with its image under ∆. In
this context, the classical reduction to the diagonal becomes the following.

Lemma 2.4. Let A,B ⊂ Gr(ℓ, V ). Then ∆(A ∩B) = (A×⊥(B)) ∩∆(Gr(ℓ, V )). When
A and B are subschemes, this is a scheme-theoretic equality.

Proof. Let H ∈ A ∩ B. Then ∆(H) = (H,H⊥) ∈ A × ⊥(B), which establishes the
containment ⊂. For the other containment, let (H,K) ∈ (A×⊥(B))∩∆(Gr(ℓ, V )). Then
H ∈ A and H⊥ = K ∈ ⊥(B), so that H ∈ B, which completes the proof of the equality
as sets. To see that this equality is scheme-theoretic, observe that pulling back the ideal
of A×⊥(B) along the map ∆ gives the ideal generated by the ideals of A and of B, which
is the ideal of the scheme-theoretic intersection, A ∩ B. ¤

We use Lemma 2.4 to express a Schubert problem as a complete intersection given by
bilinear equations. Suppose that M is a ℓ × n matrix whose row space H is a ℓ-plane
in V and N is a n × (n−ℓ) matrix whose column space K is a (n−ℓ)-plane in V ∗. (The
coordinates of the matrices—columns for M and rows for N—are with respect to the
bases ei and e∗j , respectively.) Then H⊥ = K if and only if MN = 0ℓ×(n−ℓ), giving ℓ(n−ℓ)
bilinear equations in the entries of M and N for ∆(Gr(ℓ, V )). We record this fact.
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Lemma 2.5. Let A,B be two subsets of Gr(ℓ, V ) and suppose that M is a set of ℓ × n
matrices parametrizing A (via row span) and that N is a set of n × (n−ℓ) matrices
parametrizing ⊥(B) (via column span). Then the subset of M×N defined by the equations
MN = 0ℓ×(n−ℓ) parametrizes ∆(A ∩ B) as a subscheme of A×⊥(B).

We deduce the primal-dual formulation of the Schubert variety XαF•.

Corollary 2.6. Suppose that F• = R•(Φ) is a general flag. Then the bilinear equations
MΦ−1N = 0k×(n−ℓ) on pairs (M,N) ∈ M(n−ℓ+1,...,n)×Nα define ∆(X◦

(n−ℓ+1,...,n)E•∩X
◦
αF•)

as a system of ℓ(n−ℓ) equations in 2ℓ(n−ℓ)− |α| variables.

These bilinear equations define the scheme-theoretic intersection; this is just the local
version of Lemma 2.4.

We require F• to be sufficiently general so that X◦
(n−ℓ+1,...,n)E• ∩X◦

αF• is nonempty, for

then it is a dense subset of XαF• (as X◦
(n−ℓ+1,...,n)E• is a dense subset of Gr(ℓ, V )). Since

dim∆(X◦
(n−ℓ+1,...,n)E•∩X◦

αF•) = dim(XαF•) = ℓ(n−ℓ)−|α|, this system of equations and
variables exhibitsXαF• as a complete intersection of bilinear equations in local coordinates
which we call the primal-dual formulation of the Schubert variety XαF•.

2.3. Primal-dual formulation of a Schubert problem. Extending this primal-dual
formulation to Schubert problems uses a dual diagonal map to the small diagonal in a
larger product of Grassmannians. Define

∆s : Gr(ℓ, V ) → Gr(ℓ, V )×
(

Gr(n− ℓ, V ∗)
)s−1

,

by sending H 7→ (H,H⊥, . . . , H⊥).

Lemma 2.7. Let A1, . . . , As ⊂ Gr(ℓ, V ). Then we have the scheme-theoretic equality

∆s(A1 ∩ · · · ∩ As) = (A1 ×⊥(A2)× · · · × ⊥(As))
⋂

∆s(Gr(ℓ, V )) .

Lemma 2.5 extends to the dual diagonal of many factors.

Lemma 2.8. Let A1, . . . , As ⊂ Gr(ℓ, V ), suppose that M is a set of ℓ × n matrices
parametrizing A1 and Ni is set of n × (n−ℓ) matrices parametrizing ⊥(Ai), for each
i = 2, . . . , s. Then ∆s(A1∩· · ·∩As) is the subscheme of A1×⊥(A2)×· · ·×⊥(As) defined
in the parametrization M×N2×· · ·×Ns by the equations MNi = 0ℓ×(n−ℓ) for i = 2, . . . , s,
where (M,N2, . . . , Ns) ∈ M×N2 × · · · × Ns.

We deduce our main theorem of this section.

Theorem 2.9. Let (α1, . . . , αs) be a Schubert problem for Gr(ℓ, V ) and suppose that
F 1
• , . . . , F

s
• are general flags given by matrices Φ1, . . . ,Φs. Then the system of equations

(2.3) (MΦs)(Φi)−1Ni = 0ℓ×(n−ℓ) for i = 1, . . . , s−1 ,

where (M,N1, . . . , Ns−1) ∈ Mαs ×Nα1 × · · · × Nαs−1 defines the instance of the Schubert
problem (1.2) as the common zeroes of (s−1) · ℓ(n−ℓ) bilinear equations in

s
∑

i=1

(

ℓ(n−ℓ)− |αi|
)

= (s−1) · ℓ(n−ℓ)
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variables, exhibiting the Schubert problem as a square system of equations.

Proof. An instance of the Schubert problem (1.2) is zero-dimensional and each point occurs
with multiplicity one. The result follows from Lemma 2.8 in which A1 is the open subset
of XαsF s

• parametrized by Mαs and for i < s, Ai is the open subset of XαiF i
• with ⊥(Ai)

parametrized by Mαi⊥ . This gives (s−1) · ℓ(n−ℓ) bilinear equations in (s−1) · ℓ(n−ℓ)
variables, and the generality of the flags ensures that all points in the intersection of
Schubert varieties (1.2) lie in the intersection of Schubert cells. ¤

Remark 2.10. Theorem 2.9 provides a formulation of an instance of a Schubert problem as
a square system, to which the certification afforded by Smale’s α-theory may be applied.
This rectifies the fundamental obstruction to using numerical methods in place of certified
symbolic methods for solving Schubert problems. ⋄

Remark 2.11. The bilinear equations (2.3) are partitioned into s−1 blocks of ℓ(n−ℓ)
equations. Each block of equations is linear in the ℓ(n−ℓ) − |αs| variables in Mαs , with
the ith block also linear in the variables in Nαi , which occur in no other block. This
bilinear structure can be exploited in the certification via α-theory. Since all equations
are quadratic, the supremum defining the γ term for α-theory is taken over only one term.
In particular, if G is the bilinear system and x is a point, we have

(2.4) γ(G, x) =

∥

∥

∥

∥

DG(x)−1D2G

2

∥

∥

∥

∥

≤

∥

∥

∥

∥

D2G

2

∥

∥

∥

∥

·
∥

∥DG(x)−1
∥

∥

where DG(x) is the Jacobian matrix of G evaluated at x and D2G is the 2nd derivative
of G, which is constant. In practice, one can either compute γ exactly or use an easier
formula to compute an upper bound. The upper bound in (2.4) follows from the sub-
multiplicative property of operator norms and allows one to compute ‖D2G‖ once. A
general upper bound for polynomial systems is provided in Proposition 3 from § I-3 of
[27], which could possibly be made sharper by exploiting the bilinear structure. Similar
bilinear structure was exploited for eigenvalue and generalized eigenvalue problems in
[1, 6]. ⋄

We conclude this section with a short summary of how to derive the corresponding
square system from (1.2). In particular, for each instance of a Schubert problem α involv-
ing flags F 1

• , . . . , F
s
• , one obtains a parametrized system Gα. The parameters correspond

to matrices Φ1, . . . ,Φs which define the flags via F i
• = R•(Φ

i) for each i = 1, . . . , s.

(1) The rows of Φs give a basis of V , and H ∈ X◦
αsF s

• if an only if H is the row space of
a matrix M ∈ Mαs defined relative to this basis. Thus we introduce ℓ(n−ℓ)−|αs|
variables to parametrize Mαs . A change of basis to e1, . . . , en induces an action of
GL(V ) given by M 7→ MΦs. Thus H ∈ X◦

αsF s
• if and only if H is the row space of

MΦs for some M ∈ Mαs . Note that the entries of MΦs are linear in the entries of
M , and the nonconstant entries of M are the primal coordinates for an instance
of the Schubert problem α. Determining these coordinates solves the instance.

(2) For i = 1, . . . , s− 1, we use parameters for Nαi⊥ which are dual to those of Mαi .
First, we note the columns of (Φi)−1 give a basis of V ∗, and H ∈ X◦

αiF i
• if and only

ifH⊥ ∈ X◦
αi⊥F

i⊥
• which occurs whenH⊥ is the column space of a matrix Ni ∈ Nαi⊥
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defined relative to the columns of (Φi)−1. Thus we introduce ℓ(n−ℓ)−|αi| variables
to parametrize Nαi⊥ . A change of basis to e∗1, . . . , e

∗
n induces an action of GL(V ∗)

given by Ni 7→ (Φi)−1Ni, and we have H⊥ ∈ X◦
αi⊥F

i⊥
• when H⊥ is the column

space of (Φi)−1Ni for some Ni ∈ Nαi⊥ . The entries of (Φi)−1Ni are linear in Ni,
and the nonconstant entries ofNi are dual coordinates for an instance of a Schubert
problem.

(3) We now construct Gα. An ℓ-plane H in the space parametrized by the primal
coordinates is a member of XαiF i

• if and only if H⊥ is a member of Xαi⊥F i⊥
• . As

the bases e1, . . . , en and e∗1, . . . , e
∗
n are dual, this membership is characterized by

the ℓ(n−ℓ) equations given by (MΦs)(Φi)−1Ni = 0ℓ×(n−ℓ). Solving the system of
these equations given by all i = 1, . . . , s−1 and projecting the solutions to the
primal factor solves the given instance of α.

3. Improvements to the primal-dual formulation

The formulation of a Schubert problem in Theorem 2.9 solves the problem of certifia-
bility, but is not particularly efficient. For example, the Schubert problem of Example 1.2
involves 3 · 12 = 36 equations and variables. We present two improvements to Theo-
rem 2.9. Let α = (α1, . . . , αs) be a Schubert problem for Gr(ℓ, V ) and F 1

• , . . . , F
s
• be

general flags in V .

3.1. Efficient local coordinates. The formulation of Theorem 2.9 may be improved
using the local coordinates Mβ

α for XαF• ∩ XβF
′
•. This reduces the number of equa-

tions/variables by ⌊ s
2
⌋ℓ(n− ℓ).

Adding a trivial condition (n−ℓ+1, . . . , n) to α if necessary, we will assume that s = 2k.
For each i = 1, . . . , k, let Φi be a matrix such that F 2i−1

• = R•(Φ
i) and F 2i

• = R•(w0Φ
i).

This requires that F 2i−1
• and F 2i

• are in linear general position. For α, β ∈
(

[n]
ℓ

)

with

αi + βℓ+1−i ≤ n for all i, let N β
α be the set of n× (n−ℓ) matrices {MT | M ∈ Mα⊥

β⊥}.

Theorem 3.1. The system of equations

(3.1) (MΦk)(Φi)−1Ni = 0k×(n−ℓ) for i = 1, . . . , k−1 ,

where (M,N1, . . . , Nk−1) ∈ Mα2k

α2k−1×N α2

α1 ×· · ·×N α2k−2

α2k−3 defines the instance of the Schubert
problem (1.2) as the common zeroes of (k−1) · ℓ(n−ℓ) bilinear equations in

k
∑

i=1

(

ℓ(n−ℓ)− |α2i−1| − |α2i|
)

= (k−1) · ℓ(n−ℓ)

variables, exhibiting the Schubert problem as a square system of equations.

We omit the proof, as it is similar to that of Theorem 2.9.

Remark 3.2. The equations (3.1) exhibit a block structure similar to the equations (2.3),
and the same comments made in Remark 2.11 about their structure also apply here.

We determine the reduction in the numbers of equations/variables obtained by using the
formulation of Theorem 3.1 in place of the formulation of Theorem 2.9. Set ν := ℓ(n−ℓ).
If s = 2k is even, then we do not add a trivial Schubert condition to α. In this case
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the formulation of Theorem 2.9 involves (2k−1) · ν equations while that of Theorem 3.1
involves (k−1) · ν, a reduction of kν.

If s = 2k−1 is odd, then we add a trivial Schubert condition and the number of
equations from Theorem 2.9 is (2k−2) · ν and (k−1) · ν in Theorem 3.1, for a reduction of
(k−1)·ν. Thus the formulation of Theorem 3.1 reduces the numbers of equations/variables
by ⌊ s

2
⌋ · ℓ(n−ℓ) from that of Theorem 2.9. ⋄

3.2. Exploiting hypersurface Schubert varieties. A further improvement is possible
when the Schubert problem α includes some codimension 1 (hypersurface) conditions. Let
us write for the Schubert condition (n−ℓ, n−ℓ+2, . . . , n), which defines a hypersurface
Schubert variety. Recall that the Schubert varietyX F• is defined by a single determinant.
Suppose that α has the form (α1, . . . , α2k, , . . . , ), where there are at least t occurrences
of and s = 2k + t.

For each i = 1, . . . , k, let Φi be a matrix giving the pair of opposite flags F 2i−1
• = R•(Φ)

and F 2i
• = R•(w0Φ) as in Subsection 3.1. For each j = 1, . . . , t, let Ψj be a (n−ℓ) × n

matrix with Rn−ℓ(Ψ
j) the linear subspace F 2k+j

n−ℓ in the flag F 2k+j
• .

Theorem 3.3. With these definitions, the system of equations

(3.2)

(MΦk)(Φi)−1Ni = 0ℓ×(n−ℓ) for i = 1, . . . , k−1 ,

det

(

M
Ψj

)

= 0 for j = 1, . . . , t ,

where (M,N1, . . . , Nk−1) ∈ Mα2k

α2k−1 × N α2

α1 × · · · × N α2k−2

α2k−3 defines the instance of the
Schubert problem (1.2) as the common zeroes of (k−1) · ℓ(n−ℓ) bilinear equations and t
determinantal equations in

k
∑

i=1

(

ℓ(n−ℓ)− |α2i−1| − |α2i|
)

= k · ℓ(n−ℓ)−
2k
∑

i=1

|αi| = (k−1) · ℓ(n−ℓ) + t

variables, exhibiting the Schubert problem as a square system of equations.

Remark 3.4. The previous comments based on the block structure of equations remain
valid for the formulation (3.2).

Suppose now that α has a conditions α1, . . . , αa with |αi| > 1 for i = 1, . . . , a and
b ≥ 1 occurrences of the codimension 1 condition . If a = 2k is even, then we apply
Theorem 3.3 with t = b. If a = 2k−1 is odd, then we set α2k = and apply Theorem 3.3
with t = b−1 (necessarily, b ≥ 2 for this). Table 1 shows the gain in efficiency from using
Theorem 3.3 in place of Theorem 3.1 when we have hypersurface Schubert conditions,
recording the reduction in the number of equations/variables. Set ν := ℓ(n−ℓ). In all
cases we have a net reduction. ⋄

Table 1. Efficiency gain with hypersurfce Schubert conditions

(a, b) mod 2 (0, 0) (0, 1) (1, 0) (1, 1)

reduction ⌊ b
2
⌋ν − b ⌊ b+1

2
⌋ν − b ⌊ b

2
⌋ν − b+ 1 ⌊ b

2
⌋ν − b+ 1
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Example 3.5. We compare all these formulations for a Schubert problem in Gr(3, 9). Let
β := (4, 8, 9), which has |β| = 3 and corresponds to the condition that a 3-plane H meets a
fixed 4-plane nontrivially. Set α := (β, β, β, β, , , , , , ), which has 437 solutions.

The Grassmannian Gr(3, 9) is defined in Plücker space P83 by 1050 independent qua-
dratic Plücker equations. Sinice ‖β‖ = 10 and ‖ ‖ = 1, any instance of the Schubert
problem α is defined in Plücker space by 1050 quadratic and 46 linear equations.

The formulation of § 1.3.1 in local coordinates (X : Ia) for Gr(3, 9) with X ∈ Mat3×6

uses 18 variables and 46 independent cubic minors/determinants to express the Schubert
problem α. Using the local coordinates Mβ as in § 1.3.2, reduces this to 15 variables and

36 cubic equations, while the formulation of § 1.3.3 using local coordinates Mβ
β involves

12 variables and 26 cubic equations. These formulations are all overdetermined.
In contrast, the formulation of Theorem 2.9 for α uses 9 · 18 = 162 variables and 162

bilinear equations, that of Theorem 3.1 uses 4 · 18 = 72 variables and bilinear equations,
while that of Theorem 3.3 uses 24 variables with 18 bilinear equations and six cubic
determinants, coming from the six codimension one conditions .

To test the square formulation of 24 variables, we used Bertini [2] to solve an instance
of this Schubert problem given by random real flags. The computation consumed approx-
imately 20.37 gigaHertz-hours of processing power to calculate 437 approximate solutions,
and the output suggests that 85 solutions are real 3-planes while the other 352 are nonreal.
For this, we used regeneration which is not specific to Schubert calculus and which may
be done efficiently in parallel.

We used rational arithmetic in alphaCertified [13] to prove that the 437 solutions given
by Bertini are approximate solutions to the computed instance, and that they correspond
to distinct solutions. Since they are distinct, theorems of Schubert calculus guarantee that
we have approximations for every solution to the instance. We also verified that 85 of the
approximate solutions correspond to real solutions. This calculation took approximately
2.00 gigaHertz-hours of processing power. Certification may be done in parallel, efficiently
using up to 437 processors. ⋄

4. Primal-dual formulation for flag manifolds

A flag manifold is the set of all flags of linear subspaces of specified dimensions, and is
therefore a generalization of the Grassmannian. Flag manifolds have Schubert varieties
and Schubert problems, and these may be formulated as systems of determinantal equa-
tions in local coordinates. Like the Grassmannian, there is a primal-dual formulation of
Schubert problems on flag manifolds.

Let V be an n-dimensional complex vector space and let a• : 0 < a1 < · · · < at < n be
a sequence of integers. A (partial) flag of type a• is an increasing sequence

Va• : Va1 ( Va2 ( · · · ( Vat ( V ,

of linear subspaces of V with dimVai = ai for i = 1, . . . , t. A flag is complete if a• = [n−1].
The set of all flags of type a• forms the flag manifold Fℓ(a•, V ), which is a homogeneous
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space for the general linear group GL(V ). If we set a0 := 0, then it has dimension

dim a• :=
t

∑

i=1

(ai − ai−1)(n− ai) .

If Pa• is the subgroup stabilizing a flag of type a•, then Fℓ(a•, V ) ≃ GL(n,C)/Pa• . The
Weyl group Wa• of Pa• is the Young subgroup Sa1 ×Sa2−a1 ×· · ·×Sn−at of the symmetric
group Sn, which is the Weyl group of GL(n,C).

Given a complete flag F•, the flag manifold has a decomposition into Schubert cells
whose closures are Schubert varieties. A Schubert cell consists of all flags Va• having the
same specified position with respect to the reference flag F•. These positions are indexed
by permutations w ∈ Sn on n letters with descents in the set a•,

W a• := {w ∈ Sn | w(i) < w(i+1) if i 6∈ a•} ,

which are also minimal length representatitives of cosets of Wa• in Sn. The Schubert
variety associated to a (complete) flag F• and permutation w ∈ W a• is

(4.1) XwF• := {Va• ∈ Fℓ(a•, V ) | dimVai ∩ Fj ≥ #{k ≤ ai | w(k) ≤ j}} .

For a ∈ a• we have the map w 7→ w|a := {w(1), . . . , w(a)} which sends W a• to
(

[n]
a

)

. An
equivalent form of the definition (4.1) is that

(4.2) Va• ∈ XwF• if and only if Va ∈ Xw|aF• ⊂ Gr(a, V ) for all a ∈ a• .

When t = 1 so that a• = {a}, then Fℓ(a•, V ) = Gr(a, V ), permutations in W {a} are in

bijection with
(

[n]
a

)

via w 7→ w|a, and we obtain the same Schubert varieties as before.
As explained in [8, Ch. 10], matrices in partial echelon form parametrize Schubert cells.

For w ∈ W a• let Mw be the set of those at × n matrices (mi,j) where for all i, j,

mi,j = 1 if j = w(i)

mi,j = 0 if j > w(i) or j = w(k) for some k < i .

Note then that mi,j is 1 or 0 unless j = w(k) < w(i) for some k > i. Thus Mw ≃ Cℓ(w),
where ℓ(w) is the length of w, which is

ℓ(w) := #{k > i | w(k) < w(i)} .

For example, here are M463512 with a• = 2 < 4 and M3625714 for a• = 2 < 5









m1,1 m1,2 m1,3 1 0 0
m2,1 m2,2 m2,3 0 m2,5 1
m3,1 m3,2 1 0 0 0
m4,1 m4,2 0 0 1 0





















m1,1 m1,2 1 0 0 0 0
m2,1 m2,2 0 m2,4 m2,5 1 0
m3,1 1 0 0 0 0 0
m4,1 0 0 m4,4 1 0 0
m5,1 0 0 m5,4 0 0 1













Recall that given a full rank at × n matrix M , Ra•(M) is the flag of type a• whose
ai-dimensional linear subspace is the span of the first ai rows of M . Under the map
M 7→ Ra•(M), the set Mw of partial echelon matrices parametrizes the Schubert cell
X◦

wE•. This extends to any flag, not just E•.
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Proposition 4.1. Let Φ be a full rank n×n matrix. For w ∈ W a•, the set Mw of partial
echelon matrices parametrizes the Schubert cell X◦

wR•(Φ) via the map M 7→ Ra•(MΦ).

Let Φ be a full rank n × n matrix and let M be a full rank at × n matrix. By the
definition (4.1), for any w ∈ W a• the partial flag Ra•(M) lies in XwR•(Φ) if and only if,
for all i = 1, . . . , r and j = 1, . . . , n, we have that

(4.3) rank

(

Mai

Φj

)

≤ ai + j −#{k ≤ ai | w(k) ≤ j} .

Set rw(ai, j) := ai + j −#{k ≤ ai | w(k) ≤ j}, which is this bound on rank. We use (4.3)
to give the traditional determinantal equations defining a Schubert variety.

Proposition 4.2. Let M be a set of matrices parametrizing a subset Y of the flag manifold
Fℓ(a•, n), Φ a full-rank matrix, and w ∈ W a•. The intersection of Y with the Schubert
variety XwR•(Φ) is defined in the coordinates M for Y by the vanishing of the square

rw(ai, j)+1 minors of
(Mai

Φj

)

, for j = 1, . . . , t and k = 1, . . . , n.

The codimension of XwF• is |w| := dim(a•) − ℓ(w). A Schubert problem on Fℓ(a•, V )
is a list w1, . . . , ws of permutations in W a• such that |w1| + · · · + |ws| = dim(a•). By
Kleiman’s Transversality Theorem, if F 1

• , . . . , F
s
• are general flags then the intersection

(4.4) Xw1F 1
• ∩ Xw2F 2

• ∩ · · · ∩ XwsF s
•

either is empty or is transverse and consists of finitely many points. As in Section 1,
we may formulate a Schubert problem as a system of determinantal equations (given by
Proposition 4.2) for membership in XwiF i

• for i = 1, . . . , s−1 in the system Mws of local
coordinates for X◦

wsF s
• . This will be overdetermined unless |wi| = 1 for i = 1, . . . , s−1.

4.1. Primal-dual formulation for Schubert problems in Fℓ(a•, V ). Given a se-
quence a• ⊂ [n−1] , let ar• be its reversal

ar• : n−at < n−at−1 < · · · < n−a2 < n−a1 .

When n = 9, we have (2, 3, 5)r = (4, 6, 7). The annihilator map of Section 2 gives an

isomorphism ⊥ : Fℓ(a•, V )
∼
−→ Fℓ(ar•, V

∗) in which ⊥(Va•)arj = (Vat+1−j
)⊥. Let w0 ∈ Sn be

the permutation so that w0(i) = n+1−i. Note that ℓ(w) = ℓ(w0ww0) and w ∈ W a• if and
only if w0ww0 ∈ W ar• . We give the version of Lemma 2.1 for Fℓ(a•, V ).

Lemma 4.3. For a Schubert variety XwF• ⊂ Fℓ(a•, V ), we have ⊥(XwF•) = Xw0ww0F
⊥
• .

For w ∈ W a• , define Nw to be the set of n× (n−a1)-matrices,

Nw := {(M · w0)
T | M ∈ Mw0ww0} ,

which are obtained by first reversing the columns of a matrix in Mw0ww0 and then trans-
posing the result. We state the analog of Lemma 2.3 in this context.

Lemma 4.4. Let Φ be a nonsingular n × n matrix. Under the map N 7→ Car•(Φ
−1N)

the set Nw of matrices for w ∈ W a• parametrizes the Schubert cell X◦
w0ww0

(R•(Φ))
⊥ in

Fℓ(ar•, V
∗).
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Let us consider this duality in terms of bilinear equations in Stiefel coordinates. Suppose
that M is a full rank at × n matrix with corresponding flag Va• := Ra•(M) and N a full
rank n × (n−a1) matrix with corresponding flag Uar• := Car•(N). As in Section 2, the
columns of M correspond to a basis e1, . . . , en of V and the rows of N to the dual basis
e∗1, . . . , e

∗
n of V ∗. Then the condition that Uar• = V ⊥

a•
is that

Uart+1−j
= Un−aj = (Vaj)

⊥ for j = 1, . . . , t .

In terms of the matrices M and N this is

(4.5) Maj ·N
′
n−aj

= 0aj×(n−aj) for j = 1, . . . , t .

(HereN ′
n−aj

is the matrix formed by the first n−aj columns ofN .) This set of
∑

j aj(n−aj)

bilinear equations is redundant. Write rowi(M) for the ith row of the matrix M and
colj(N) for the jth column of N . The following lemma is easily verified.

Lemma 4.5. The set of bilinear equations (4.5) for (M,N) ∈ Matat×n(C)×Matn×(n−a1)(C)
consists of the equations

rowi(M) · colj(N) = 0 ,

for those (i, j) such that there is some k with i ≤ ak and j ≤ (n−ak). There are exactly
dim a• such equations.

Write MN = 0a• for this set of dim a• bilinear equations. We give the primal-dual
formulation of Schubert problems in Fℓ(a•, V ), which follows from the reduction to the
dual diagonal as in Section 2.

Theorem 4.6. Let (w1, . . . , ws) be a Schubert problem for Fℓ(a•, V ) and suppose that
F 1
• , . . . , F

s
• are general flags given by matrices Φ1, . . . ,Φs so that F i

• = R•(Φ
i). Then the

system of equations

(4.6) (MΦs)(Φi)−1Ni = 0a• for i = 1, . . . , s−1 ,

where (M,N1, . . . , Ns−1) ∈ Mws ×Nw1 × · · · ×Nws−1 defines the instance of the Schubert
problem (4.4) as the common zeroes of (s−1)·dim(a•) bilinear equations in (s−1)·dim(a•)
variables, exhibiting the Schubert problem as a square system of equations.

As in Corollary 2.6, these are scheme-theoretic equations for the Schubert problem in
local coordinates.

As in Section 3, there are some improvements to this formulation. Rather than for-
mulate a general result along the lines of Theorem 3.3, we will make a series of remarks
indicating some reductions that are possible.

For α ∈
(

[n]
a

)

with a ∈ a•, there are many permutations w ∈ W a• with w|a = α. (These
are in bijection with W{a}/Wa• = (Sa×Sn−a)/(Sa1×Sa2−a1×· · ·×Sn−at).) Write w(α, a•),
or w(α) when a• is assumed, for the longest such permutation in W a• . For example, if
n = 8 and a• = (2 < 4 < 5), then w(2, 5, 6, 8) = 68.25.7.134. Observe that |α| = |w(α)|.

Schubert varieties given by permutations w(α) have a form which we exploit to reduce

the number of equations and variables in (4.6). By (4.2), if α ∈
(

[n]
a

)

where a ∈ a•, then

Xw(α,a•)F• = {Va• ∈ Fℓ(a•, V ) | Va ∈ XαF•} .
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In particular, we have

Va• ∈ Xw(α,a•)F• ⇐⇒ (Va)
⊥ ∈ Xα⊥F⊥

• .

Remark 4.7. Suppose that one permutation in Theorem 4.6, say wi, has the form w(α, a•)

for α ∈
(

[n]
a

)

with a ∈ a•. Then we may replace the factor Nwi by the space of n× (n−a)-
matrices Nα and the ith set of equations in (4.6) by

(MaΦ
s)(Φi)−1N = 0a×(n−a) ,

where N ∈ Nα. This uses dim a• − a(n−a) fewer equations and variables. ⋄

Remark 4.8. Suppose that two of the permutations have this form, say wi = w(α, a•) and

wj = w(β, a•) for α, β ∈
(

[n]
a

)

with a ∈ a•. There is a matrix Φ so that F i
• = R•(Φ) and

F j
• = R•(w0Φ) are the pair of opposite flags associated to Φ. In Theorem 4.6 we can

replace the factors Nwi × Nwj by the factor N β
α and the equations indexed by i and j

in (4.6) by the equations

(MaΦ
s) · (Φ−1N) = 0a×(n−a) ,

where N ∈ N β
α . This uses 2 dim a• − a(n−a) fewer equations and variables. ⋄

Remark 4.9. If some permutation wi has |wi| = 1, then it has the form w(α, a•) where

α ∈
(

[n]
a

)

satisfies |α| = 1 so that α = . Write w( , a, a•) or w( , a) for this permutation.
We may remove the factor Nwi and replace the ith set of equations in (4.6) with the single
determinantal equation

det

(

MaF
s

Φi
n−a

)

= 0 .

This uses dim a• − 1 fewer equations and variables. ⋄

Remark 4.10. We generalize Remark 4.7. Let b• ( a• and suppose that v ∈ W b• . Write
w(v, a•) ∈ W a• for the longest permutation in W a• that lies in the coset vWb• . Then
|w(v, a•)| = |v|, or more precisely dim a• − ℓ(w(v, a•)) = dim b• − ℓ(v). For example, if
n = 8, a• = (2 < 4 < 5) and v = 68257134 ∈ W (2<5), then w(v, a•) = 68.57.2.134. Also, if
v = 47681235 ∈ W (2<4), then w(v, a•) = 47.68.5.123, and if v = 34685127 ∈ W (4<5), then
w(v, a•) = 68.34.5.127.

A flag Va• ∈ Xw(v,a•)F• if and only if the subflag Vb• consisting of the subspaces with
dimensions in b• lies in the Schubert variety XvF• of Fℓ(b•, V ). In this case we have that

Va• ∈ Xw(v,a•)F• ⇐⇒ (Vb•)
⊥ ∈ Xw0vw0F

⊥
• ⊂ Fℓ(br•, V

∗) .

If one of the permutations wi in Theorem 4.6 has the form w(v, a•) for v ∈ W b• , then
we may replace the set Nwi of matrices parametrizing Xw0wiw0

F⊥
• by the set of matrices

Nv parametrizing Xw0vw0F
⊥
• ⊂ Fℓ(br•, V

∗), and the ith set of equations in (4.6) by

(MΦs)(Φi)−1N = 0b• ,

for N ∈ Nv. This uses dim a• − dim b• fewer equations and variables. ⋄
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Example 4.11. Suppose n = 8 and a• = (2 < 4 < 5). Note that

dim a• = 2(8−2) + (4−2)(8−4) + (5−4)(8−5) = 23 .

Using (w)m to indicate that w is repeated m times, consider the Schubert problem,

48573126 , (78453126)2 , (68574123)2 , (78465123)3 , 47385126 ,

with 128 solutions. The first permutation is w(v) where v = 48.357.126 ∈ W (2<5), the
next two are w(α) where α = (3, 4, 6, 7, 8), the next two are w( , 2), and the next three
are w( , 4). Only the last permutation does not reduce to a smaller flag manifold.

By Theorem 4.6, this has a formulation as a square system of 8 · 23 = 184 bilinear
equations and variables.

However, we may use the reduction of Remark 4.10 with the first permutation to use
2 = dim a• − dim b• fewer equations, then the reduction of Remark 4.8 with the second
and third permutations to use 2 · dim a• − 5(8 − 5) = 31 fewer equations, and then
the reduction of Remark 4.9 on the next five permutations to use 5(23−1) = 110 fewer
equations, and thereby obtain a square system with 184 − 2 − 31 − 110 = 41 variables,
36 bilinear equations, and 5 determinantal equations involving 2 quadratic determinants
and 3 quartic determinants.

We used Bertini [2] to solve a random real instance of this Schubert problem with the
square formulation of 41 variables. This consumed about 2.95 gigaHertz-days of processing
power to calculate 128 approximate solutions, and the output suggests that 42 solutions
are real flags while the other 86 are nonreal. As in Example 3.5, this computation may
be done in parallel efficiently.

We used rational arithmetic in alphaCertified [13] to prove that the 128 solutions
given by Bertini are approximate solutions to the computed instance, and that they
correspond to distinct solutions. As in Example 3.5, available theorems guarantee that
we found approximations for every solution to the instance. We also verified that 42
of the approximate solutions correspond to real solutions. This calculation took 1.78
gigaHertz-hours of processing time. This computation may also be done efficiently in
parallel. Details for these computations and those in Example 3.5 may be found at
http://www.unk.edu/academics/math/_files/primal-dual.html. ⋄

References

[1] D. Armentano, Complexity of path-following methods for the eigenvalue problem, Found. Comput.
Math. 14 (2014), no. 2, 185–236.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler, Bertini: Software for numerical
algebraic geometry, Available at bertini.nd.edu. DOI: dx.doi.org/10.7274/R0H41PB5.

[3] C. Beltrán and A. Leykin, Certified numerical homotopy tracking, Exp. Math. 21 (2012), no. 1,
69–83.

[4] C. Beltrán and A. Leykin, Robust certified numerical homotopy tracking, Found. Comput. Math.
13 (2013), no. 2, 253–295.

[5] L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and real computation, Springer-Verlag,
New York, 1998, With a foreword by Richard M. Karp.

[6] J.-P. Dedieu and M. Shub, Multihomogeneous newton methods, Math. Comp. 69 (2000), no. 231,
1071–1098.

http://www.unk.edu/academics/math/_files/primal-dual.html


20 JONATHAN D. HAUENSTEIN, NICKOLAS HEIN, FRANK SOTTILE

[7] A. Eremenko and A. Gabrielov, Rational functions with real critical points and the B. and M. Shapiro
conjecture in real enumerative geometry, Ann. of Math. (2) 155 (2002), no. 1, 105–129.

[8] W. Fulton, Young tableaux, London Mathematical Society Students Texts, 35, Cambridge University
Press, Cambridge, 1997.
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