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REAL ALGEBRAIC GEOMETRY FOR GEOMETRIC CONSTRAINTS

FRANK SOTTILE

Abstract. Real algebraic geometry adapts the methods and ideas from (complex) al-
gebraic geometry to study the real solutions to systems of polynomial equations and
polynomial inequalities. As it is the real solutions to such systems modeling geometric
constraints that are physically meaningful, real algebraic geometry is a core mathematical
input for geometric constraint systems.

1. Introduction

Algebraic geometry is fundamentally the study of sets, called varieties, which arise
as the common zeroes of a collection of polynomials. These include familiar objects
in analytic geometry, such as conics, plane curves, and quadratic surfaces. Combining

Figure 1. A cubic plane curve and a quadratic surface (a hyperbolic paraboloid)

intuitive geometric ideas with precise algebraic methods, algebraic geometry is equipped
with many powerful tools and ideas. These may be brought to bear on problems from
geometric constraint systems because many natural constraints, particularly prescribed
incidences, may be formulated in terms of polynomial equations.

Consider a four-bar mechanism; a quadrilateral in the plane with prescribed side lengths
a, b, c, and d, which may rotate freely at its vertices and where one edge is fixed as in
Figure 2. The points x and y are fixed at a distance a apart, the point p is constrained
to lie on the circle centered at x with radius b, the point q lies on the circle centered at y
with radius c, and we additionally require that p and q are a distance d apart. Squaring
the distance constraints gives a system of three quadratic equations whose solutions are
all positions of this four-bar mechanism.

Algebraic geometry works best over the complex numbers, because the geometry of a
complex variety is controlled by its defining equations. (For instance, the Fundamental
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Figure 2. A four-bar mechanism

Theorem of Algebra states that a univariate polynomial of degree n always has n complex
roots, counted with multiplicity.) Geometric constraint systems are manifestly real (as in
real-number) objects. For this reason, the subfield of real algebraic geometry, which is
concerned with the real solutions to systems of equations, is most relevant for geometric
constraint systems. Working over the real numbers may give quite different answers than
working over the complex numbers.

This chapter will develop some parts of real algebraic geometry that are useful for
geometric constraint systems. Its main point of view is that one should first understand
the geometry of corresponding complex variety, which we call the algebraic relaxation of
the original problem. Once this is understood, we then ask the harder question about the
subset of real solutions.

For example, x2 + y2 = 1 and x2 + y2 = −1 define isomorphic curves in the complex
plane—send (x, y) 7→ (

√
−1x,

√
−1y)—which are quite different in the real plane. Indeed,

x2 + y2 = 1 is the unit circle in R2 and x2 + y2 = −1 is the empty set. Replacing ±1 by
0 gives the pair of complex conjugate lines

x2 + y2 = (x+
√
−1y)(x−

√
−1y) = 0 ,

whose only real point is the origin (0, 0). The reason for this radically different behavior
amongst these three quadratic plane curves is that only the circle has a smooth real
point—by Theorem 5.1, when a real algebraic variety has a smooth real point, the salient
features of the underlying complex variety are captured by its real points.

2. Ideals and Varieties

The best accessible introduction to algebraic geometry is the classic book of Cox, Little,
and O’Shea [7]. Many thousands find this an indispensable reference. We assume a passing
knowledge of some aspects of the algebra of polynomials, or at least an open mind. We
work over the complex numbers, C, for now. A collection S ⊂ C[x1, . . . , xd] of polynomials
in d variables defines a variety,

V(S) := {x ∈ Cd | f(x) = 0 for all f ∈ S} .
We may add to S any of its polynomial consequences, g1f1 + · · · + gsfs where gi ∈
C[x1, . . . , xd] and fi ∈ S, without changing V(S). This set of polynomial consequences is
the ideal generated by S, and so it is no loss to assume that S is an ideal. Hilbert’s Basis
Theorem states that any ideal in C[x1, . . . , xd] is finitely generated, so it is also no loss to
assume that S is finite. We pass between these extremes when necessary.
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Dually, given a variety X ⊂ Cd (or any subset), let I(X) be the set of polynomials
which vanish on X. Any polynomial consequence of polynomials that vanish on X also
vanishes on X. Thus I(X) is an ideal in the polynomial ring C[x1, . . . , xd]. Let C[X] be
the set of functions on X that are restrictions of polynomials in C[x1, . . . , xd]. Restriction
is a surjective ring homomorphism C[x1, . . . , xd] ։ C[X] whose kernel is the ideal I(X)
of X, so that C[X] = C[x1, . . . , xd]/I(X). Call C[X] the coordinate ring of X.

To see this connection between algebra and geometry, consider the two plane curves
V(y− x2) and V(y2 − x3) of Figure 3. One is the familiar parabola, which is smooth, and

Figure 3. Plane curves V(y − x2) and V(y2 − x3)

the other the semicubical parabola or cuspidal cubic, which is singular (see § 4.2) at the
origin. Their coordinate rings are C[x, y]/〈y−x2〉 and C[x, y]/〈y2−x3〉, respectively. The
first is isomorphic to C[t], which is the coordinate ring of the line C, while the second
is not—it is isomorphic to C[t2, t3]. The isomorphisms come from the parameterizations
t 7→ (t, t2) and t 7→ (t2, t3). This illustrates another way to obtain a variety—as the image
of a polynomial map.

Thus begins the connection between geometric objects (varieties) and algebraic objects
(ideals). Although they are different objects, varieties and ideals carry the same informa-
tion. This is expressed succinctly and abstractly by stating that there is an equivalence
of categories, which is a consequence of Hilbert’s Nullstellensatz, whose finer points we
sidestep. For the user, this equivalence means that we may apply ideas and tools either
from algebra or from geometry to better understand the sets of solutions to polynomial
equations.

3. ... and Algorithms

Because the objects of algebraic geometry have finiteness properties (finite-dimensional,
finitely generated), they may be faithfully represented and manipulated on a computer.
There are two main paradigms: symbolic methods based on Gröbner bases and numerical
methods based on homotopy continuation. The first operates on the algebraic side of the
subject and the second on its geometric side.

A consequence of the Nullstellensatz is that we may recover any information about a va-
riety X from its ideal I(X). By Hilbert’s Basis Theorem, I(X) is finitely generated, so we
may represent it on a computer by a list of polynomials. We emphasize computer because
expressions for multivariate polynomials may be too large for direct human manipulation
or comprehension. Many algorithms to study a variety X through its ideal begin with
a preprocessing: a given list of generators (f1, . . . , fm) for I(X) is replaced by another
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list (g1, . . . , gs) of generators, called a Gröbner basis for I(X), with optimal algorithmic
properties. Buchberger’s Algorithm is a common method to compute a Gröbner basis.

Many algorithms to extract information from a Gröbner basis have reasonably low com-
plexity. These include algorithms that use a Gröbner basis to decide if a given polynomial
vanishes on a variety X or to determine the dimension or degree (see § 4.1 and § 4.2) of X.
Consequently, a Gröbner basis for I(X) transparently encodes much information about
X. We expect, and it is true, that computing a Gröbner basis may have high complexity
(double exponential in d in the worst case), and some computations do not terminate in
a reasonable amount of time. Nevertheless, symbolic methods based on Gröbner bases
easily compute examples of moderate size, as the worst cases appear to be rare.

Several well-maintained computer algebra packages have optimized algorithms to com-
pute Gröbner bases, extensive libraries of implemented algorithms using Gröbner bases,
and excellent documentation. Two in particular—Macaulay2 [11, 12] and Singular [8, 9]—
are freely available with dedicated communities of users and developers. Commercial
software, such as Magma, Maple, and Mathematica, also compute Gröbner bases and
implement some algorithms based on Gröbner bases. Many find SageMath [10], an open-
source software connecting different software systems together, also to be useful.

The other computational paradigm—numerical algebraic geometry—uses methods from
numerical analysis to manipulate varieties on a computer [18]. Numerical homotopy con-
tinuation is used to solve systems of polynomial equations, and Newton’s method may be
used to refine the solutions. These methods were originally developed as a tool for mech-
anism design in kinematics [15], which is closely related to geometric constraint systems.

In numerical algebraic geometry, a variety X of dimension n (see § 4.2) in Cd is repre-
sented on a computer by a witness set, which is a triple (W,S, L), where L is a general
affine plane in Cd of dimension d−n, S is a list of polynomials defining X, and W consists
of numerical approximations to the points of X ∩L (the number of which is the degree of
X, see § 4.2). Following the points of W as L varies using homotopy continuation samples
points of X, and may be used to test for membership in X. Other algorithms, including
computing intersections and the image of a variety under a polynomial map, are based on
witness sets.

Two stand-alone packages—PHCPack [22] and Bertini [3, 2]—implement the core al-
gorithms of numerical algebraic geometry, as does the Macaulay2 package NAG4M2 [14].
Both PHCPack and Bertini may be accessed from Macaulay2, Singular, or SageMath.

Each computational paradigm, symbolic and numerical, has its advantages. Symbolic
computations are exact and there are many implemented algorithms. The inexact nu-
merical computations give refinable approximations, yielding a family of well-behaved
relaxations to exact computation. Also, numerical algorithms are easily parallelized and
in some cases the results may be certified to be correct [13, 17].

4. Structure of Algebraic Varieties

Varieties and their images under polynomial maps have well-understood properties that
may be exploited to understand objects modeled by varieties. We discuss some of these
fundamental and structural properties.
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4.1. Zariski Topology. Algebraic varieties in Cd are closed subsets in the usual (clas-
sical) topology because polynomial functions are continuous. Varieties possess a second,
much coarser topology—the Zariski topology—whose value is that it provides the most
natural language for expressing many properties of varieties. The Zariski topology is de-
termined by its closed sets, which are simply the algebraic varieties, and therefore its open
sets are complements of varieties.

Closure in the Zariski topology is easily expressed: The Zariski closure U of a set U ⊂ Cd

is V(I(U)), the set of points in Cd where every polynomial that vanishes identically on
U also vanishes. A non-empty Zariski open subset U of Cd is dense in Cd in the classical
topology, and a classical open subset of Cd (e.g. a ball) is dense in the Zariski topology.
The Zariski topology of a variety X in Cd is induced from that of Cd.

We use the Zariski topology to express the analog of unique factorization of integers for
varieties. A variety X is irreducible if cannot be written as a union of proper subvarieties.
That is, if X = Y ∪Z with Y, Z subvarieties of X, then either X = Y or X = Z. A variety
X has an irredundant decomposition into irreducible subvarieties, X = X1 ∪ · · · ∪ Xm,
which is unique in that each Xi is an irreducible subvariety of X and if i 6= j, then
Xi 6⊂ Xj . We call the subvarieties X1, . . . , Xm the (irreducible) components of X.

This decomposition for a hypersurface is equivalent to the factorization of its defining
polynomial into irreducible polynomials. For the curve on the left in Figure 4 we have,

C2 C3

Figure 4. V(x3+x2y−xy−y2) and V(z−xy, xz−y2−x2+y)

x3 + x2y − xy − y2 = (x2 − y)(x+ y) ,

showing that its components are the parabola y = x2 and the line y = −x. Both
V(x3+x2y−xy−y2) and V(z−xy, xz−y2−x2+y) are curves with two components, as we
see in Figure 4.

Zariski open sets are quite large. Any nonempty Zariski open subset U of an irreducible
variety X is Zariski dense in X. Indeed, X = U∪(XrU), the union of two closed subsets.
Since X 6= X r U , we have U = X. In fact, U is dense in the classical topology, and any
subset of X that is dense in the classical topology is Zariski dense in X.

A property of an irreducible variety X is generic if the set of points where that property
holds contains a Zariski open subset ofX. Generic properties ofX hold almost everywhere
on X in a very strong sense, as the points of X where they do not hold lie in a proper
subvariety of X. A point of a variety where a generic property holds is general (with
respect to that property).
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4.2. Smooth and Singular Points. Algebraic varieties are not necessarily manifolds,
as may be seen in Figures 3 and 4. However, the set of points where a variety fails to
be a manifold is a proper subvariety. To see this, suppose that X ⊂ Cd is a variety
whose ideal I(X) has generators f1, . . . , fs. At each point x of X, the Jacobian matrix

J = (∂fi/∂xj)
j=1,...,d
i=1,...,s has rank between 0 and d. The set Xi of points of X where the rank

of J is at most i is a subvariety which is defined by the vanishing of all (i+1) × (i+1)
minors of J . If i is the smallest index such that Xi = X, so that Xi−1 ( X, then at every
point of Xsm := X rXi−1 the Jacobian has rank i. Differential geometry informs us that
Xsm is a complex manifold of dimension d−i.

When X is irreducible, Xsm is the set of smooth points of X and Xsing := X rXsm is
the singular locus of X. A point being smooth is a generic property of X. The dimension
dimX of an irreducible variety X is the dimension of Xsm. When X is reducible, its
dimension is the maximum dimension of an irreducible component. The singular locus of
a variety X always has smaller dimension than X.

For algebraic varieties, dimension has the following properties. If X and Y are subva-
rieties of Cd of dimensions m and n, respectively, then either X ∩ Y is empty or every
irreducible component of X ∩ Y has at least the expected dimension m+n−d. For a
general translate Y ′ of Y , dim(X ∩Y ′) = m+n−d. More precisely, there is a Zariski open
subset U of the group Cd ⋊ GL(d,C) of affine transformations of Cd such that if g ∈ U
then X∩gY has dimension m+n−d and is as smooth as possible in that its singular locus
is a subset of the union of Xsing ∩ gY with X ∩ gYsing.

Similarly, Bertini’s Theorem states that there is a Zariski open subset U of the set of
polynomials of a fixed degree such that for f ∈ U , X ∩V(f) has dimension dimX−1 and
is as smooth as possible. A consequence of all this is that if L is a general affine linear
subspace of dimension d− dimX, then X ∩ L is a finite set of points contained in Xsm.
The number of points is the maximal number of isolated points in any intersection of X
with an affine plane of this dimension and is called the degree of X. These facts underlie
the notion of witness set in numerical algebraic geometry from Section 3.

4.3. Maps. We often have a map ϕ : Cd → Cn given by polynomials, and we want to
understand the image of a variety X ⊂ Cd under this map. Algebraic geometry provides a
structure theory for the images of polynomial maps. We begin with an example. Consider
the hyperbolic paraboloid V(y − xz) in C3 and its projection to the xy-plane, which is a
polynomial map. This image is the union of all lines through the origin, except for the
y-axis, V(x). Figure 5 shows both the hyperbolic paraboloid and a schematic of its image
in the xy-plane. This image is (C2 r V(x)) ∪ {(0, 0)}, the union of a Zariski open subset
of C2 and the variety {(0, 0)} = V(x, y).

A set is locally closed if it is open in its closure. In the Zariski topology, locally closed
sets are Zariski open subsets of some variety. A set is constructible if it is a finite union
of locally closed sets. What we saw with the hyperbolic paraboloid is the general case.

Theorem 4.1. The image of a constructible set under a polynomial map is constructible.

Suppose that X ⊂ Cd and ϕ : Cd → Cn is a polynomial map. Then the closure ϕ(X) of

the image of X under ϕ is a variety. When X is irreducible, then so is ϕ(X). (The inverse
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Figure 5. The hyperbolic paraboloid and its image in the plane

image of a decomposition ϕ(X) = Y ∪Z under ϕ is a decomposition of X.) Theorem 4.1
then implies that ϕ(X) contains a nonempty Zariski open and therefore a Zariski dense

subset of ϕ(X). Applying this to each irreducible component of a general variety X ⊂ Cd

implies that each irreducible component of ϕ(X) has a dense open subset contained in
the image ϕ(X).

5. Real Algebraic Geometry

Real algebraic geometry predates its complex cousin, having its roots in Cartesian an-
alytic geometry in R2. Its importance for applications is evident, and applications have
driven some of its theoretical development. A comprehensive treatment of the subject
is given in the classic treatise of Bochnak, Coste, and Roy [4]. Real algebraic geometry
has long enjoyed links to computer science through fundamental questions of complexity.
There are also many specialized algorithms for treating real algebraic sets. The equally
classic book by Basu, Pollack, and Roy [1] covers this landscape of complexity and algo-
rithms.

5.1. Algebraic Relaxation. A complex variety X ⊂ Cd defined by real polynomials has
a subset X(R) := X ∩Rd of real points. Both X and (more commonly) X(R) are referred
to as real algebraic varieties. In the Introduction, we claimed that it is fruitful to study a
real algebraic variety X(R) by first understanding the complex variety X, and then asking
about X(R). We consider studying the complex variety X to be an algebraic relaxation of
the problem of studying the real variety. The fundamental reason this approach is often
successful is the following result.

Theorem 5.1. Let X ⊂ Cd be an irreducible variety defined by real polynomials. If X
has a smooth real point, then X(R) is Zariski dense in X.

To paraphrase, suppose that X ⊂ Cd is an irreducible variety defined by real polyno-
mials. If X has a smooth real point, then all algebraic and geometric information about
X is already contained in X(R), and vice-versa.

The reader may have noted that we used pictures of the real algebraic variety X(R) to
illustrate properties of the complex variety X in most of our figures. Theorem 5.1 justifies
this sleight of hand.
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A proof of Theorem 5.1 begins by noting that when X has a smooth real point, then the
set of smooth real pointsXsm(R) forms a real manifold of dimension dimX. Consequently,
the derivatives at a point of Xsm(R) of a polynomial f restricted to X are determined by
the restriction of f to Xsm(R), which implies that if a polynomial vanishes on Xsm(R),
then it vanishes on X.

The two cones V(x2+y2−z2) and V(x2+y2+z2) serve to illustrate the hypotheses of
Theorem 5.1. In C3, these cones are isomorphic to each other under the substitution
z 7→

√
−1z. In R3, the first is the familiar double cone, with real smooth points the

complement of the origin, while the other is the single isolated (and hence singular) point
{(0, 0, 0)}. We display the double cone on the left in Figure 6. On the right is the Whitney

Figure 6. Double cone and Whitney umbrella in R3

umbrella. This is the Zariski closure of the image of R2 under the map (u, v) 7→ (uv, v, u2),
and is defined by the polynomial x2−y2z. The image of R2 is the canopy of the umbrella.
Its handle is the image of the imaginary part of the u-axis of C2, the points (R

√
−1, 0).

The Whitney umbrella is singular along the z-axis, which is evident as the canopy has
self-intersection along the positive z-axis. This singularity along the negative z-axis is
implied by its having local dimension 1: were it smooth, it would have local dimension 2.

Theorem 5.1 also leads to the following cautionary example. The cubic y2 − x3 + x
is irreducible and its set of complex zeroes is a torus (with one point removed). Its set
of real zeroes has two path-connected components. Each is Zariski-dense in the complex

y

x

Figure 7. Reprise: cubic plane curve
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cubic. Thus the property x ≤ 0 which holds on the oval is not a generic property, even
though it holds on a Zariski dense subset, which is neither Zariski open or closed.

5.2. Semi-Algebraic Sets. The image of R2 in the Whitney umbrella is only its canopy,
and not the handle. More interestingly, the image under projection to the xy-plane of the
sphere V(x2 + y2 + z2 − 1) of radius 1 and center (0, 0, 0) is the unit disc {(x, y) ∈ R2 |
1−x2−y2 ≥ 0}. Similarly, by the quadratic formula, the polynomial x2+bx+c in x has
a real root if and only if b2−4c ≥ 0. Thus, if we project the surface V(x2+bx+c) to the
bc-plane, its image is {(b, c) ∈ R2 | b2−4c ≥ 0}. We illustrate these examples in Figure 8.
They show that the image of an irreducible real variety under a polynomial map need not

Figure 8. Projection of the sphere and the quadratic formula

be dense in the image variety, even though it will be dense in the Zariski topology. We
describe the image of a real variety by enlarging our notion of a real algebraic set.

A subset V of Rd is a semi-algebraic set if it is the union of sets defined by systems of
polynomial equations and polynomial inequalities. Technically, a set V is semi-algebraic
if it is given by a formula in disjunctive normal form, whose elementary formulas are of
the form f(x) = 0 or f(x) > 0, where f is a polynomial with real coefficients. This is
equivalent to V being given by a formula that involves only the logical operations ‘and’
and ‘or’ and elementary formulas f(x) = 0 and f(x) > 0. Tarski showed that the image
of a real variety under a polynomial map is a semi-algebraic set [20, 21], and Seidenberg
gave a more algebraic proof [16].

Theorem 5.2 (Tarski-Seidenberg). The image of a semi-algebraic set under a polynomial

map is a semi-algebraic set.

The astute reader will note that our definition of a semi-algebraic set was in terms of
propositional logic, and should not be surprised that Tarski was a great logician. The
Tarski-Seidenberg Theorem is known in logic as quantifier elimination: its main step is a
coordinate projection, which is equivalent to eliminating existential quantifiers.

Example 5.3. We give a simple application from rigidity theory. Let G be a graph with
n vertices V and m edges. An embedding of G into Rd is simply a map ρ : V → Rd, and
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thus the space of embeddings is identified with Rnd. The squared length of each edge
of G in an embedding ρ defines a map f : Rnd → Rm with image some set M . By the
Tarski-Seidenberg Theorem, M is a semi-algebraic set and so it contains an open subset
of the real points of its Zariski closure, M . By Sard’s Theorem, M contains a smooth
point of its Zariski closure, and thus M has an open (and dense in the classical topology)
set of smooth points. These are images of embeddings where the Jacobian of f (which is
the rigidity matrix) has maximal rank (among all embeddings). ⋄
Remark 5.4. Semi-algebraic sets are also needed to describe more general frameworks
involving cables and struts. In an embedding, the length of an edge corresponding to a
cable is bounded above by the length of that cable. If the edge corresponds to a strut,
then the length of that strut is a lower bound for the length of that edge. In either case,
inequalities are necessary to describe possible configurations. ⋄

The Tarski-Seidenberg Theorem is a structure theorem for images of real algebraic va-
rieties under polynomial maps. Much later, this existential result was refined by Collins,
who gave an effective version of quantifier elimination for semi-algebraic sets, called cylin-
drical algebraic decomposition [6]. This uses successive coordinate projections to build a
description of a semi-algebraic set as a cell complex whose cells are semi-algebraic sets.
While implemented in software [5], it suffers more than many algorithms in this subject
from the curse of complexity and is most effective in low (d . 3) dimensions. There are
however several software implementations of cylindrical algebraic decomposition. In the
worst case, the complexity of a cylindrical algebraic decomposition is doubly exponential
in d, and this is achieved for general real varieties. A focus of [1] and subsequent work
is on stable algorithms with better performance to compute different representations of a
semi-algebraic set.

5.3. Certificates. We close with the Positivestellensatz of Stengele [19], which states that
a semi-algebraic set is empty if and only if there is a certificate of its emptiness having
a particular form. A polynomial σ is a sum of squares if it may be written as a sum of
squares of polynomials with real coefficients. Such a polynomial takes only nonnegative
values on Rd. We may use semidefinite programming to determine if a polynomial is a
sum of squares.

Theorem 5.5 (Positivestellensatz). Suppose that f1, . . . , fr, g1, . . . , gs, and h are real

polynomials. Then the semi-algebraic set

(5.1) {x ∈ Rd | fi(x) = 0, i = 1, . . . , r and gj(x) ≥ 0, k = 1, . . . , s and h(x) 6= 0}
is empty if and only if there exist polynomials k1, . . . , kr, sums of squares σ0, . . . , σs, and

a positive integer n such that

(5.2) 0 = f1k1 + · · ·+ frkr + σ0 + g1σ1 + · · ·+ gsσs + h2n .

Remark 5.6. To see that (5.2) is a sufficient condition for emptiness, suppose that x lies in
the set (5.1), and then evaluate the expression (5.2) at x. The terms involving fi vanish,
those involving gj are nonnegative, and h(x)2n > 0, which is a contradiction. If h does
not appear in a description (5.1), then we take h = 1 in (5.2). ⋄



REAL ALGEBRAIC GEOMETRY FOR GEOMETRIC CONSTRAINTS 11

6. Glossary

C: Complex numbers.
I(X): The ideal of a subset X of Cd.
R: Real numbers.
V(S): Set of common zeroes of a collection S of polynomials.
X(R): The real points of a variety X defined by real polynomials.

constructible: A set that is a finite union of locally closed sets.
dimension of X: The dimension of the smooth (manifold) points of a variety X.
general: A point where a generic property holds.
generic: A property that holds on a Zariski open set.
Gröbner basis: An algorithmically optimal generating set of an ideal.
ideal: Set of polynomials closed under addition and multiplication by other polynomials.
irreducible variety: A variety that is not the union of two proper subvarieties.
real algebraic geometry: Study of real solutions to systems of polynomial equations.
real algebraic variety: A variety defined by real polynomials; its subset of real points.
semi-algebraic set: A set defined by a system of polynomial equations and inequalities.
variety: A set defined by a system of polynomial equations.
subvariety: A variety that is a subset of another.
Zariski topology: Topology whose closed sets are varieties.
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