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Abstract. We study bivariate splines over partitions defined by arcs of irreducible
algebraic curves, which we call semialgebraic splines. Such splines were first considered
by Wang, Chui, and Stiller. We compute the dimension of the space of semialgebraic
splines in two extreme cases when the cell decomposition has a single interior vertex. If
the forms defining the edges span a two-dimensional space of forms of degree n, then we
compute the dimension of the spline space in every degree. In the other extreme, the
curves have distinct slopes at the central vertex and do not simultaneously vanish at any
other point. In this case we give a formula for the dimension of the spline space in large
degree and bound how large the degree must be for the formula to be correct. We also
study the dimension of the spline space in the case of a single interior vertex in some
examples where the curves do not satisfy either extreme. The results are derived using
commutative and homological algebra.

1. Introduction

A multivariate spline is a function on a domain in Rn that is piecewise a polynomial
with respect to a cell decomposition ∆ of the domain. A fundamental question is to
describe the vector space of splines on ∆ that have a given smoothness and whose poly-
nomial constituents have at most a fixed degree. Traditionally, ∆ is a simplicial [23] or
polyhedral [21] complex. However, even in finite elements and isogeometric analysis it is
useful to consider splines on more general cell decompositions, where some line segments
are replaced by arcs [8]. This occurs when modeling nonlinear features such as circles and
cylinders [14]. We consider the case when ∆ is a planar complex whose cells are bounded
by arcs of algebraic curves. We will call splines on ∆ semialgebraic splines, as the cells
are semialgebraic sets.

Semialgebraic splines were first studied by Wang and Chui [6, 24, 25], who observed that
smoothness is equivalent to the usual existence of smoothing cofactors across ‘edges’ (arcs
of algebraic curves) satisfying conformality conditions at each vertex. Building on this
observation, Stiller [22] used tools from algebraic geometry to determine the dimensions
of spline spaces in some cases when ∆ has a single interior vertex. When ∆ is a polyhedral
complex, classical spline spaces were recast in terms of graded modules and homological
algebra by Billera [1], who developed this with Rose [2, 3]. Further foundational work by
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Schenck and Stillman may be found in [19, 20]. We translate this homological machinery
to semialgebraic splines and give the first step in a general treatment of the dimensions of
bivariate semialgebraic spline spaces. That is, we study semialgebraic splines when ∆ has
a single interior vertex. This was also considered by Stiller [22], but we invoke hypotheses
that are complementary to and less restrictive than his (see Remark 4.6). We have found
no systematic study of semi-algebraic spline spaces since Stiller’s paper. Wang and Zhu
have studied the zero-locus of semi-algebraic splines [26], these ‘piecewise semi-algebraic
varieties’ are simply semi-algebraic sets.

Our main contributions in the case of a single interior vertex are two-fold. Suppose that
the forms defining the interior algebraic curves all have degree n (where n is a positive
integer), and they span only a two-dimensional subspace of the forms of degree n. In this
case we compute the dimension of the spline space in any degree (Corollary 3.6). Now
consider the ‘generic’ case when the forms defining the interior algebraic curves have any
prescribed degree, but they have no other common zeros in the complex projective plane,
P2(C). In this case we compute a polynomial of degree two in the variable d (d being
the degree of a spline), the Hilbert polynomial, which gives the dimension of the spline
space for d ≫ 0 (Corollary 4.2). We also give a bound on how large d must be for this
polynomial to give the dimension of the spline space (Corollary 5.10). Since the general
bound may be far from optimal, we give a much tighter bound in the case of three interior
curves (Proposition 5.12).

In Section 2, we fix our notation, give background on spline modules, and present
some examples. In Section 3, the forms defining the curves all have degree n and span
a two-dimensional vector space, so that they intersect in n2 points in P

2(C) (counting
multiplicities). In Section 4, the curves are smooth at the unique interior vertex υ of
∆ and their only common zero in P 2(C) is υ. In Section 5 we address the question of
how large the degree must be for the formula of Corollary 4.2 to hold using the notion
of Castelnuovo-Mumford regularity. We also expand on work of Stiller [22], showing how
results from the algebraic theory of linkage can be used to evaluate the dimension of the
spline space in low degree in some instances. We close with Section 6 where we give
examples that suggest extensions of this work when ∆ has a single interior vertex.

2. Spline Modules

Billera [1] introduced methods from homological algebra into the study of splines. This
was refined by Billera and Rose [2, 3] and by Schenck and Stillman [19, 20], who viewed
spaces of splines as homogeneous summands of graded modules over the polynomial ring,
so that the dimension of spline spaces is given by the Hilbert function of the module.
We fix our notation and make the straightforward observation that this homological ap-
proach carries over to semialgebraic splines, in the same spirit as Wang’s observation
that smoothing cofactors and conformality conditions for polyhedral splines carry over to
semialgebraic splines [24, 25]. For more complete background, we recommend § 8.3 of [7].
Background concerning free resolutions and modules may be found in [7] or [11].

Let ∆ be a finite cell complex in the plane R2, whose 1-cells are arcs of irreducible real
algebraic curves. We call the 2-cells of ∆, faces, the 1-cells, edges, and 0-cells, vertices.



SEMIALGEBRAIC SPLINES 3

We assume that each vertex and edge of ∆ lies in the boundary of some face (it is pure),
that it is connected, and that it is hereditary: for any faces σ, σ′ sharing a vertex υ, there
is a sequence σ = σ0, σ1 . . . , σn = σ′ of faces containing υ such that each pair σi−1, σi for
i = 1, . . . , n shares an edge. Write |∆| ⊂ R2 for the support of ∆. We assume that |∆| is
contractible and require that each connected component of the intersection of two cells of
∆ is a cell of ∆. Write ∆◦

i for the set of i-cells of ∆ that lie in the interior of |∆|. Every
face σ of ∆ inherits the orientation of R2 and we fix an orientation of each edge τ ∈ ∆◦

1.
Fig. 1 shows a cell complex with one interior vertex, three interior edges (oriented

inwards) and three faces. Placing that vertex at the origin, |∆| is the unit disc, and its

Figure 1. Cell complex with one interior vertex.

edges (in clockwise order) lie along the negative y-axis, the circle of radius 1 centered at
(0, 1), and the circle of radius

√
2 centered at (1,−1).

Let R be a ring. A chain complex C is a sequence C0, C1, . . . , Cn of R-modules with
R-module maps ∂i : Ci → Ci−1, whose compositions vanish, ∂i−1 ◦ ∂i = 0, so that the
kernel of ∂i−1 contains the image of ∂i. (Here, C−1 = Cn+1 = 0.) The homology of C is
the sequence of R-modules Hi(C) := kernel(∂i−1)/ image(∂i), for i = 0, . . . , n.

Let R(∆) be the chain complex whose ith module has a basis given by the cells of ∆◦
i

and whose maps are induced by the boundary maps on the cells. For the cell complex
∆ of Fig. 1, R(∆) is R3 → R3 → R. Since the interior cells subdivide |∆| with its
boundary removed, the homology of the chain complex R(∆) is the relative homology
Hi(|∆|, ∂|∆|;R). This always vanishes when i = 0. If |∆| is connected and contractible,
then we also have that H1(R(∆)) = 0 and H2(R(∆)) = R.

For integers r, d ≥ 0, let C̃r
d(∆) be the real vector space of functions f on |∆| which

have continuous rth order partial derivatives and whose restriction to each face σ of ∆ is

a polynomial fσ of degree at most d. By [24] (see also [3, Cor. 1.3]), elements f ∈ C̃r
d(∆)

are lists (fσ | σ ∈ ∆2) of polynomials such that if τ ∈ ∆◦
1 is an interior edge with defining

equation gτ (x, y) = 0 that borders the two-dimensional faces σ, σ′, then gr+1
τ divides the

difference fσ − fσ′ . (The quotient is the smoothing cofactor at τ .)
Fig. 2 displays the graphs of two splines on the complex ∆ of Fig. 1. The spline on the

left lies in C̃0
3(∆) and that on the right lies in C̃1

6(∆). These are splines on ∆ of the lowest
degree for the given smoothness that are not the restriction of a single polynomial.

Billera and Rose [2] observed that homogenizing spline spaces enables a global homolog-
ical approach to computing them. Let S := R[x, y, z] be the homogeneous coordinate ring
of P2(R). Write 〈G1, . . . , Gt〉 for the ideal of S generated by polynomials G1, . . . , Gt ∈ S.
Let Cr

d(∆) be the vector space of lists (Fσ | σ ∈ ∆2) of homogeneous forms in S of degree



4 M. DIPASQUALE, F. SOTTILE, AND L. SUN

Figure 2. Graphs of splines.

d such that if fσ := Fσ(x, y, 1) is the dehomogenization of Fσ, then (fσ | σ ∈ ∆2) ∈ C̃r
d(∆).

Define Cr(∆) :=
⊕

d C
r
d(∆) to be the direct sum of these homogenized spline spaces. Call

Cr(∆) the spline module. It is a graded module of the graded ring S.

Lemma 2.1. The spline module Cr(∆) is finitely generated. It is the kernel of the map

(1) S∆2 ≃
⊕

σ∈∆2

S
∂−−−→

⊕

τ∈∆◦

1

S/〈Gr+1
τ 〉 ,

where Gτ is the homogeneous form defining the edge τ and if F = (Fσ | σ ∈ ∆2) ∈ S∆2

and τ ∈ ∆◦
1, then the τ -component of ∂F is the difference Fσ−Fσ′, where τ is a component

of the intersection σ ∩ σ′ and its the orientation agrees with that induced from σ, but is
opposite to that induced from σ′.

Let M =
⊕

d Md be a finitely generated graded S-module. The Hilbert function of M
records the dimensions of its graded pieces, HF (M,d) := dimR Md. There is an integer
d0 ≥ 0 such that if d > d0, then the Hilbert function is a polynomial, called the Hilbert

polynomial of M , HP(M,d) [11]. The postulation number of M is the minimal such d0,
the greatest integer at which the Hilbert function and Hilbert polynomial disagree. The
reason for these definitions is that the problem of computing the dimensions dimCr

d(∆)
of the spline spaces is equivalent to computing the Hilbert function of the spline module
Cr(∆), which equals its Hilbert polynomial for d > d0.

Table 1 gives the Hilbert function and Hilbert polynomial of Cr(∆) for r = 0, . . . , 3,
where ∆ is the cell complex of Fig. 1. The polynomials may be verified using Theorem 4.2.
Its last row is the Hilbert function/polynomial of R[x, y, z], these are splines that are
restrictions of polynomials on R2. The only splines in degrees less than 3r + 3 are such
restrictions. The last column is the postulation number.

For τ ∈ ∆◦
1, define J(τ) := 〈Gr+1

τ 〉, the principal ideal generated by Gr+1
τ and for

υ ∈ ∆◦
0, define J(υ) to be the ideal generated by all J(τ) where τ is incident on υ. Let
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Table 1. Hilbert function and polynomial of Cr(∆).

r\d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Polynomial d0
0 1 3 6 13 23 36 52 71 93 118 146 177 211 248 3

2
d2−1

2
d+1 1

1 1 3 6 10 15 21 30 44 61 81 104 130 159 191 3
2
d2−11

2
d+9 5

2 1 3 6 10 15 21 28 36 45 57 73 94 118 145 3
2
d2−21

2
d+28 9

3 1 3 6 10 15 21 28 36 45 55 66 78 93 111 3
2
d2−31

2
d+57 13

(
d+2
2

)
1 3 6 10 15 21 28 36 45 55 66 78 91 105 1

2
d2 + 1

2
d 0

J1 and J0 be the direct sums of these ideals,

J1 :=
⊕

τ∈∆◦

1

J(τ) and J0 :=
⊕

υ∈∆◦

0

J(υ) .

Then J : J1
∂1−→ J0 is a complex of S-modules, with ∂1 the obvious map. This is a

subcomplex of the chain complex S := S(∆) that computes the homology of the pair
H∗(|∆|, ∂|∆|;S). We have the short exact sequence of complexes of S-modules,

(2) 0 −→ J −→ S −→ S/J −→ 0 ,

where S/J is the quotient complex,

0 −→
⊕

σ∈∆2

S
∂2−−→

⊕

τ∈∆◦

1

S/J(τ)
∂1−−→

⊕

υ∈∆◦

0

S/J(υ) −→ 0.

Observe that Cr(∆) is the kernel of ∂2. That is, Cr(∆) = H2(S/J ). The short exact
sequence (2) gives the long exact sequence in homology (note that H2(J ) = 0).

0 → H2(S) → H2(S/J ) → H1(J ) → H1(S)
→ H1(S/J ) → H0(J ) → H0(S) → H0(S/J ) → 0 .

Proposition 2.2. We have H0(S/J ) = 0. If the support |∆| of ∆ is contractible, then

H1(S/J ) ≃ H0(J ) and Cr(∆) ≃ S ⊕ H1(J ), with the factor of S the splines that are

restrictions of polynomials.

If there is a unique interior vertex υ, then 0 = H1(S/J ) = H0(J ) and H1(J ) is the

module of syzygies on the list of forms (Gr+1
τ | τ ∈ ∆◦

1).

Proof. Since S is the complex S(∆), H0(S) = 0 so that H0(S/J ) = 0. If |∆| is con-
tractible, then H1(S) = 0 and H2(S) = S. Thus the remaining long exact sequence splits
into sequences of lengths 2 and 3. The first gives H1(S/J ) ≃ H0(J ) and the second is

0 −→ S −→ Cr(∆) −→ H1(J ) −→ 0 ,

giving the direct sum decomposition Cr(∆) ≃ S⊕H1(J ), as the first map has a splitting
(Fσ | σ ∈ ∆2) 7→ Fσ0

given by any σ0 ∈ ∆2. The kernel H2(S) of the map ∂2 of S is the
submodule of splines that are restrictions of polynomials.

Lastly, if there is a unique interior vertex υ, then the forms {Gr+1
τ | τ ∈ ∆◦

1} generate
J(υ). Thus H0(J ) = 0 and the complex J is the first step in the resolution of the
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ideal J(υ) given the generators (Gr+1
τ | τ ∈ ∆◦

1). It follows that H1(J ) is the module of
syzygies (or relations) on the forms (Gr+1

τ | τ ∈ ∆◦
1). When J(υ) is minimally generated

by (Gr+1
τ | τ ∈ ∆◦

1), then H1(J ) ≃ syz(J(υ)). ¤

Write φ2 for the number of faces of ∆, φ1 for the number of interior edges, and φ0 for
the number of interior vertices, and for an interior edge τ ∈ ∆◦

1, let nτ be the degree of
the form Gτ defining τ .

Corollary 2.3. Suppose that the support |∆| of ∆ is contractible. Then for r and d,

(3) dimCr
d(∆) = (φ2−φ1)

(
d+2
2

)
+

∑

τ∈∆◦

1

(
d−(r+1)nτ+2

2

)
+

∑

υ∈∆◦

0

dim(S/J(υ))d+dimH0(J )d .

When ∆ has a unique interior vertex υ, we have

(4) dimCr
d(∆) =

∑

τ∈∆◦

1

(
d−(r+1)nτ+2

2

)
+ dim(S/J(υ))d .

For d ≫ 0, dim(S/J(υ))d is the degree of the scheme defined by J(υ).

Remark 2.4. If I ⊂ S is a homogeneous ideal so that HP (S/I, d) = µ for some µ ∈ Z>0

(equivalently dim(S/I)d = µ for d ≫ 0), then µ is called the multiplicity of I, or the
degree of the scheme defined by I.

Formula (4) is [22, Cor. 3.2], which is for mixed splines (see Remark 2.5). Recall that
S(−a) is the free S-module with one generator of degree a.

Proof. From the complex S/J , we have

HF (H2(S/J ), d) − HF (H1(S/J ), d) + HF (H0(S/J ), d) =

HF ((S/J )2, d) − HF ((S/J )1, d) + HF ((S/J )0, d) .

As |∆| is contractible, H0(S/J ) = 0 and H1(S/J ) ≃ H0(J ). Since (S/J )2 ≃ S∆2 , its
Hilbert function is φ2

(
d+2
2

)
. From the sum of short exact sequences defining (S/J )1,

⊕

τ∈∆◦

1

(
S(−(r+1)nτ )

·Gr+1
τ−−−−→ S −→ S/〈Gr+1

τ 〉 = S/J(τ)
)
,

we have that
HF ((S/J )1, d) = φ1

(
d+2
2

)
−

∑

τ∈∆◦

1

(
d−(r+1)nτ+2

2

)
.

As Cr(∆) = H2(S/J ), and (S/J )0 =
⊕

υ∈∆0
S/J(υ), this implies formula (3).

When ∆ has a unique interior vertex υ, H0(J ) = 0 and φ2 = φ1, giving (4). ¤

Remark 2.5. This formalism extends to the case of mixed splines as studied in [9, 10,
15, 22]. For each edge τ ∈ ∆0

1 let α(τ) be a nonnegative integer. Then Cα(∆) denotes the

splines (Fσ | σ ∈ ∆2) on ∆ where if τ is an edge common to both σ and σ′, then G
α(τ)+1
τ

divides the difference Fσ − Fσ′ . This is the kernel of the map of graded modules
⊕

σ∈∆2

S
∂2−−→

⊕

τ∈∆◦

1

S/〈Gα(τ)+1
τ 〉 .
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This formalism extends as well to splines over cell complexes ∆ of any dimension whose
cells are semialgebraic sets. We leave the corresponding statements to the reader.

3. Semialgebraic splines with a single vertex I

We consider the first nontrivial case of semialgebraic splines—when the complex ∆ has
a single interior vertex υ and the forms defining the edges incident on υ form a pencil.
That is, the forms Gτ span a two-dimensional subspace in the space of all forms of degree
n vanishing at υ. This is always the case when the edges are line segments with at least
two distinct slopes (so that the polynomials Gτ are linear forms). We determine the
Hilbert polynomial of the spline module, showing that the multiplicity (see Remark 2.4)
of the scheme S/J(υ) is n2 times the multiplicity of the scheme S/I, where I is an ideal
generated by powers of linear forms vanishing at υ. This has a simple form, which we
give in Corollary 3.4.

This shows that the Hilbert polynomial of the spline module does not depend upon the
real (as in real-number) geometry of the curves underlying the edges τ—it is independent
of whether or not the curves are singular at υ or at any other point, and whether or not
the other points at which they meet are real, complex, or at infinity.

Suppose that L1, . . . , Ls are linear forms in R[x, y] defining distinct lines through the
origin, so that they are pairwise coprime, and let I be the ideal generated by the powers
Lr+1
1 , . . . , Lr+1

s . Observe that any t ≤ r+2 of these powers are linearly independent (r+2
is the dimension of the space of forms of degree r+1). Recall that S/I has a unique (up
to change of basis) minimal free resolution of the form

F• : 0 −→ Fδ
ψδ−−→ Fδ−1

ψδ−1−−−−→ · · · ψ1−−→ S

with coker ψ1 = S/I and where the free module Fi equals
⊕

j S(−aij). The index δ of

the last nonzero free module is the projective dimension of S/I. By the Hilbert Syzygy
Theorem [11, Cor. 19.7], the projective dimension of an ideal in a polynomial ring is
bounded above by the number of variables (in our case, three). The Castelnuovo-Mumford

regularity (henceforth regularity) of S/I is the number maxi,j{aij − i}.
We use the following results of Schenck and Stillman [19], describing the minimal free

resolution and regularity of an ideal of powers of linear forms in two variables.

Proposition 3.1 ([19], Thm. 3.1). Let I = 〈Lr+1
1 , . . . , Lr+1

t 〉 be an ideal minimally gener-

ated by the given powers of linear forms L1, . . . , Lt ∈ R := R[x, y] with t > 1. A minimal

free resolution of R/I is given by

(5) R(−r−1−a)s1 ⊕R(−r−2−a)s2 −→ R(−r−1)t −→ R ,

where we have s1 := (t−1)a+t−r−2 and s2 := r+1−(t−1)a with a := ⌊ r+1
t−1

⌋ ≥ 1.

If m is the remainder of r+1 divided by t−1, then s1 = t−1−m > 0 and s2 = m ≥ 0.
Hence I always has syzygies of degree r+1+a.

Corollary 3.2 ([19], Cor. 3.4). The regularity of R/I is r+⌈ r+1
t−1

⌉ − 1.
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Remark 3.3. As R/I is a finite-length module, the highest degree of a nonzero element
in R/I equals the regularity of R/I [12, Cor. 4.4]. It follows from Corollary 3.2 that I
contains all monomials of degree at least r+⌈ r+1

t−1
⌉, and thus the ideal IS ⊂ S contains all

monomials of S where the degree in x, y is at least r+⌈ r+1
t−1

⌉.
Tensoring the minimal free resolution (5) of R/I with S gives a minimal free resolution

of IS (as S is a flat R-module). Taking Euler-Poincaré characteristic gives a formula for
the multiplicity of the scheme defined by IS, which is the Hilbert polynomial of S/IS,

s1
(
d−(r+1+a)+2

2

)
+ s2

(
d−(r+2+a)+2

2

)
− t

(
d−(r+1)+2

2

)
+

(
d+2
2

)
.

This simplifies nicely.

Corollary 3.4. The multiplicity of the scheme defined by I is
(
a+r+2

2

)
− t

(
a+1
2

)
.

3.1. Curves in a pencil. Now we suppose that G1, . . . , GN are forms of degree n that
underlie the edges of ∆, all of which are incident on the point υ = [0 : 0 : 1]. Suppose
that these forms define s distinct algebraic curves, that G1 and G2 are relatively prime,
and each form Gi lies in the linear span of G1 and G2, so the curves lie in a pencil.

Proposition 3.5. Set t := min{s, r+2}, and suppose that G1, . . . , Gt define distinct

curves. Then the ideal J := 〈Gr+1
i | i = 1, . . . , N〉 is minimally generated by Gr+1

1 , . . . , Gr+1
t .

Set a := ⌊ r+1
t−1

⌋. A minimal free resolution of S/J is given by

(6) S((−r−1−a)n)s1 ⊕ S((−r−2−a)n)s2 −→ S((−r−1)n)t −→ S ,

where s1 := (t−1)a+t−r−2 and s2 := r+1−(t−1)a.

Proof. Since the forms G1 and G2 are relatively prime, they form a regular sequence. In
this situation, Hartshorne [17] showed that the map ϕ : T := R[u1, u2] → S defined by
ui 7→ Gi for i = 1, 2 is an injection, and that S is flat as a T -module.

Let L1, . . . , LN be the linear forms in T such that ϕ(Li) = Gi for i = 1, . . . , N and let
I := ϕ−1(J), which is the ideal 〈Lr+1

1 , . . . , Lr+1
N 〉. As s of the Gi define distinct curves,

the corresponding s linear forms are pairwise relatively prime, and their powers generate
I. Then t = min{s, r+2} of these powers are linearly independent and thus are minimal
generators of the ideal I. As G1, . . . , Gt are distinct, the powers L

r+1
1 , . . . , Lr+1

t minimally
generate I. Since ϕ is injective and ϕ(T ) = R[G1, G2] contains the generators of J , we
conclude that J is minimally generated by Gr+1

1 , . . . , Gr+1
t .

Applying ϕ to the exact sequence (5) and extending scalars to S gives the sequence (6)
of free S-modules. The degrees change, as ϕ is a map of graded rings only if deg(ui) =
deg(Gi) = n. The sequence remains exact, as S is flat over ϕ(T ), and so it is a resolution
of S/J . It remains minimal, as no map has a component of degree zero. ¤

Corollary 3.6. Let J, n,N, a, t, s1, s2 be as in Proposition 3.5. The spline module Cr(∆)
is free as an S-module. More precisely,

Cr(∆) ≃ S ⊕ S(−(r + 1)n)N−t ⊕ S(−(r + 1 + a)n)s1 ⊕ S(−(r + 2 + a)n)s2 .

Its Hilbert function is

dimCr
d(∆) =

(
d+2
2

)
+ (N−t)

(
d−(r+1)n+2

2

)
+ s1

(
d−(r+1+a)n+2

2

)
+ s2

(
d−(r+2+a)n+2

2

)
.
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The multiplicity of the scheme defined by J equals n2
((

a+r+2
2

)
− t

(
a+1
2

))
. The Hilbert

polynomial for the spline module is

N
(
d−(r+1)n+2

2

)
+ n2

((
a+r+2

2

)
− t

(
a+1
2

))
,

where we consider these binomial coefficients as polynomials in d. The postulation number

is (r + 1 + ⌈ r+1
t−1

⌉)n− 3.

Proof. By Proposition 2.2, Cr(∆) ≃ S ⊕H1(J ) and H1(J ) is the module of syzygies on
{Gr+1

1 , . . . , Gr+1
N }. Let these be ordered so that {Gr+1

1 , . . . , Gr+1
t } minimally generate J ,

while each Gr+1
t+i for i = 1, . . . , N−t is a linear combination of {Gr+1

1 , . . . , Gr+1
t }. Then

H1(J ) ≃ S(−(r+1)n)N−t ⊕ syz(J(υ)) ,

with a copy of S(−(r+1)n) encoding the expression of Gt+i in terms of the minimal gen-
erators of J . The module syz(J(υ)) is the leftmost module in the minimal free resolution
of S/J(υ) given in Proposition 3.5. It is free because J(υ) has projective dimension two.
The structure of Cr(∆) as a free S-module follows. We deduce the Hilbert function and
polynomial from this. The postulation number d0 is the largest integer which is less than
at least one of the roots of the polynomials appearing as numerators in the binomial
coefficients in the expression defining the Hilbert function, hence

d0 =

{
(r + 1 + a)n− 3 if s2 = 0
(r + 2 + a)n− 3 otherwise

,

which is the same as (r + 1 + ⌈ r+1
t−1

⌉)n− 3. ¤

Observe that the multiplicity of the scheme defined by J is the product of the multi-
plicity, n2 of the scheme defined by 〈G1, . . . , GN〉 = 〈G1, G2〉 and the multiplicity of the
scheme defined by powers of linear forms as in Corollary 3.4.

Remark 3.7. The Hilbert function of the spline module Cr(∆) when the forms underlying
the edges lie in a pencil depends only on the numerical invariants N, s, r, n and not on
the geometry in R2 of the curves underlying the edges. We illustrate this remark by
considering several cases when n = 2 so that the edges are conics that lie in a pencil.

LetG1, G2, G3 ∈ R[x, y, z] be nonproportional quadratic forms withG3 ∈ J := 〈G1, G2〉,
so that the three lie in a pencil, and suppose also that they vanish at υ = [0 : 0 : 1]. Then
J defines a zero-dimensional subscheme of CP2 of multiplicity four. The Gi are real, so
there are several possibilities for the scheme defined by J in R2 (where z 6= 0). Fig. 3
shows four cell complexes ∆ with |∆| the unit disc having three faces and three edges
defined by the quadratic forms G1, G2, and G3 in R2. Their spline modules all have the
same Hilbert function and polynomial, which is displayed in Table 2.

Starting from the upper left and moving clockwise in Fig. 3, we first have G1 := x2 −
6xy + y2 − 2xz + 6yz, G2 = x2 + 6xy + y2 − 2xz − 6yz, and G3 = 5G1 + 4G2. These
vanish at the four real points [0 : 0 : 1], [0 : 2 : 1], and [1 : ±1 : 1]. Next, we have
G1 = x2+xy+y2−2xz, G2 = x2+xy−2xz+2yz, and G3 = 3G1+2G2. These vanish at
the two real points [0 : 0 : 1], [2 : 0 : 1], and the two complex points [2 : ±2

√
−1 : 1]. For

the third, we have G1 = 2x2 + xy− 2y2 − 4xz+3yz, G2 = x2 +4xy− y2 − 2xz− 2yz, and
G3 = 6G1 − 5G2. These vanish at the points [0 : 0 : 1], [2 : 0 : 1], and [1 : 1 : 1], sharing
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Table 2. Hilbert function and polynomial of three conics in a pencil.

r\d 0 1 2 3 4 5 6 7 8 9 10 11 12 13 Polynomial

0 1 3 7 13 22 34 49 67 88 112 139 169 202 238 3
2
d2 − 3

2
d+ 4

1 1 3 6 10 15 21 30 42 57 75 96 120 147 177 3
2
d2 − 15

2
d+ 21

2 1 3 6 10 15 21 28 36 46 58 73 91 112 136 3
2
d2 − 27

2
d+ 58

3 1 3 6 10 15 21 28 36 45 55 66 78 93 111 3
2
d2 − 39

2
d+ 111

4 1 3 6 10 15 21 28 36 45 55 66 78 91 105 3
2
d2 − 51

2
d+ 184

G1

G2

G3

G1

G2 G3

G1

G2G3

G1

G2

G3

Figure 3. (clockwise from upper left) Four real points, two real and two
complex points, two real and one double point, and two real double points.

a common vertical tangent at the third point, which has multiplicity two. For our last
pencil, let G1 = x2 + y2 − 2xz, G2 = x2 + 3y2 − 2xz, and G3 = 4G1 − 3G2. These vanish
only at the points [0 : 0 : 1] and [2 : 0 : 1], and share common vertical tangents at those
points, each of which has multiplicity two.

4. Semialgebraic splines with a single vertex II

Suppose that the complex ∆ has a single interior vertex υ, but the forms defining the
edges incident on υ are far from lying in a pencil in that they have no other common
zeroes in P2(C). We further suppose that the edge forms are smooth at υ with distinct
tangent directions. Under these assumptions, we determine the Hilbert polynomial of the
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spline module by showing that the multiplicities of the schemes S/J(υ) and S/I are equal,
where I is generated by powers of the forms defining the tangents at υ.

Suppose that υ = [0 : 0 : 1] ∈ P2(R) and there are N interior edges incident on υ,
defined by forms G1, . . . , GN , of degrees n1, . . . , nN with [0 : 0 : 1] their only common
zero. Expand each form Gi as a polynomial in z,

Gi =

ni∑

k=1

zni−kGi,k ,

where Gi,k ∈ R[x, y] has degree k. Write Li := Gi,1 for the coefficient of zni−1 in Gi, which
is nonzero as Gi is smooth at υ. For an integer r ≥ 0, let J := J(υ) be the ideal generated
by Gr+1

1 , . . . , Gr+1
N and I be the ideal generated by Lr+1

1 , . . . , Lr+1
N .

Theorem 4.1. When L1, . . . , LN are distinct, the schemes S/J and S/I have the same

Hilbert polynomial and degree.

We prove this in two steps. In Subsection 4.1 we show that when r is small, these
schemes coincide. In Subsection 4.2 we use toric degenerations to show that when r is
large, the Hilbert polynomials are equal.

Corollary 4.2. For d ≫ 0,

dimCr
d(∆) =

N∑

i=1

(
d−(r+1)ni+2

2

)
+

(
r+a+2

2

)
− t

(
a+1
2

)
,

where t := min{N, r + 2} and a := ⌊ r+1
t−1

⌋.

Proof. It is equivalent to show that the Hilbert polynomial of Cr(∆) is
∑N

i=1

(
d−(r+1)ni+2

2

)
+(

r+a+2
2

)
−t

(
a+1
2

)
. This expression for the Hilbert polynomial follows from Corollary 2.3. ¤

Remark 4.3. We address how large d must be in the statement of Corollary 4.2 in
Section 5.

4.1. Low powers. Let G1, . . . , GN , L1, . . . , LN , I, and J be as above. Suppose that I
is minimally generated by t of the powers Lr+1

i . We show that S/J and S/I define the
same scheme when 2t ≥ r + 3. Let m := 〈x, y, z〉 be the irrelevant ideal. Recall that the
saturation (J : m∞) of the ideal J at m is {f | ∃k with m

kf ⊂ J}. This defines the same
projective scheme as does J .

Lemma 4.4. If 2t ≥ r+3, then I = (J : m∞).

Corollary 4.5. If 2t ≥ r+3, then S/I and S/J define the same scheme.

Proof of Lemma 4.4. We first show that J ⊂ I. Recall that deg(Gi) = ni. If we expand
the form Gr+1

i of degree ni(r+1) as a polynomial in decreasing powers of z, we obtain

Gr+1
i = z(ni−1)(r+1)Lr+1

i +

(ni−1)(r+1)∑

k=1

z(ni−1)(r+1)−kKi,r+1+k ,
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where Ki,a ∈ R[x, y] is homogeneous of degree a. Since this degree is at least r+2 and our
hypothesis implies that 2 ≥ (r+1)/(t−1), this degree is at least r+⌈ r+1

t−1
⌉. By Remark 3.3,

these polynomials Ki,a lie in I. Since Lr+1
i ∈ I, we have that Gr+1

i ∈ I, and so J ⊂ I.
As υ is the only zero of J , to show that I = (J : m∞), we only need to show that the

localizations at υ of S/I and S/J are equal. We assume that the forms have been ordered
so that Lr+1

1 , . . . , Lr+1
t are minimal generators of I. Let J ′ ⊂ J be the ideal generated by

Gr+1
1 , . . . , Gr+1

t . It suffices to show that S/J ′ and S/I have the same localization at υ.
Since J ′ ⊂ J ⊂ I, there are forms Ai,j ∈ S = R[x, y, z] such that

(7) Gr+1
i =

t∑

j=1

Ai,jL
r+1
j ,

for each i = 1, . . . , t. To show that the localizations agree, we show that the matrix A is
invertible in the localization S〈x,y〉 of S at υ, as 〈x, y〉 defines the point υ.

Each form Ai,j has degree (ni−1)(r+1). Let A
(ni−1)(r+1)−k
i,j denote the coefficient of

zk in the expansion of Ai,j as a polynomial in z. The highest power of z appearing
in (7) is (ni−1)(r+1). If we equate the coefficients of z(ni−1)(r+1) in (7) (recalling that
Gi = zni−1Li + · · · ), we obtain

Lr+1
i =

t∑

j=1

A0
i,jL

r+1
j .

As these powers Lr+1
1 , . . . , Lr+1

t are linearly independent, the matrix A0
i,j is the identity.

In particular, the entries of the matrix A that have a pure power of z are exactly the
diagonal entries. Thus its determinant has the form z(−t+

∑
i ni)(r+1) + g, where g ∈ 〈x, y〉,

which implies that A is invertible in the local ring S〈x,y〉. ¤

Remark 4.6. Lemma 4.4 indicates how our results are complementary to Stiller’s results
in [22]. His most general results in [22, § 4] require that the minimal generators of J(υ),
which have degree ni(r+1), are also minimal generators of the saturation of J(υ) (denoted
IX in [22]). This assumption is also made in [18]. Our assumptions that the edge forms
are smooth at υ and that J(υ) is supported only at υ will imply that, to the contrary, the
saturation of J(υ) is generated in degrees close to r+1.

Remark 4.7. The complex ∆ on the left below has edges defined by the three homoge-
neous quadrics on the right.

G1

G2G3

G1 = xz + x2 + xy + y2

G2 = 2yz + x2 + xy + 2y2

G3 = 3
2
(x+ y)z + x2 + xy + 3y2
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Here L1 = x, L2 = y, and L3 = x + y and the hypotheses of Lemma 4.4 hold for r ≤ 3,
hence (

〈Gr+1
1 , Gr+1

2 , Gr+1
3 〉 : m

∞
)

= 〈Lr+1
1 , Lr+1

2 , Lr+1
3 〉 ,

for r = 0, . . . , 3. However, for r = 4, we do not have the containment

〈G5
1, G

5
2, G

5
3〉 ⊂ 〈L5

1, L
5
2, L

5
3〉 .

If we set J := 〈G5
1, G

5
2, G

5
3〉, then

(J : m
∞) = 〈5x4y + 10x3y2 + 10x2y3 + 5xy4 − y5, x5 − y5, y6, xy5, 5x2y4 + y5z〉 .

Each generator of (J : m∞) is in 〈L5
1, L

5
2, L

5
3〉 except for the polynomial 5x2y4 + y5z.

4.2. Distinct tangents. The results of Subsection 4.1 imply Theorem 4.1 when r is
small relative to N . By Remark 4.7, we cannot have (J : m∞) = I in general, so other
arguments are needed. We use toric degenerations to show that the schemes S/J and S/I
have the same Hilbert polynomial. We start with the following simple lemma.

Lemma 4.8. Suppose that I is an ideal of S defining a scheme supported at [0 : 0 : 1].
Then (I : m∞) = (I : z∞).

Proof. We always have (I : m∞) ⊂ (I : z∞). Since the only zero of I is [0 : 0 : 1], there is
a k > 0 such that 〈x, y〉k ⊂ I. Let f ∈ (I : z∞) so that there is some ℓ > 0 with fzℓ ∈ I.
Let xaybzc be a monomial of degree at least k + ℓ. Then either a + b ≥ k or c ≥ ℓ. In
either case, fxaybzc ∈ I, and so f ∈ (I : mk) ⊂ (I : m∞), which completes the proof. ¤

We recall the notion of initial degeneration of an ideal, which is explained in [11, § 15].
Given an integer vector ω = (ω1, ω2, ω3) ∈ Z3, a monomial xaybzc of S has a weight
aω1 + bω2 + cω3. For a polynomial F ∈ S, let inωF be the sum of terms of F whose
monomials have the largest weight with respect to ω among all terms of F . The initial
ideal of an ideal I of S with respect to ω is

inωI := 〈inωF | F ∈ I〉 .
The utility of this definition is that there is a flat degeneration of the scheme defined by
I into the scheme defined by inωI. Consequently, S/I and S/inωI have the same Hilbert
function. This flat degeneration is induced by the torus action on S where τ ∈ C× acts
on a monomial xaybzc by τ−(aω1+bω2+cω3)xaybzc, and is called a toric degeneration.

We now fix the weight vector ω := (0, 0, 1), so that inωF consists of the terms of F
with the highest power of z. Let G1, . . . , GN be forms in S whose only common zero is
[0 : 0 : 1], so that the radical of J := 〈G1, . . . , GN〉 is 〈x, y〉. For each i, let ci be the
highest power of z occurring in Gi and define Fi ∈ R[x, y] to be the coefficient of zci in
Gi, so that zciFi = inωGi. Set I := 〈F1, . . . , FN〉.
Lemma 4.9. If inωJ ⊂ I, then S/J and S/I have the same Hilbert polynomial.

Proof. We first observe that 〈x, y〉 is the radical of inωJ . Since
√
J = 〈x, y〉, there is some

k with 〈x, y〉k ⊂ J . As 〈x, y〉k is a monomial ideal, we have that inω〈x, y〉k = 〈x, y〉k and
hence 〈x, y〉k ⊂ inωJ , which shows that

√
inωJ = 〈x, y〉.

Since inωGi = zc1Fi, we have I ⊂ (inωJ : z
∞). By Lemma 4.8, (inωJ : z∞) =

(inωJ : m
∞), so we have that I ⊂ (inωJ : m

∞).
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As I is defined by polynomials in x and y, if zcf ∈ I, then f ∈ I, so that I is saturated
with respect to m = 〈x, y, z〉. Saturating the inclusion inωJ ⊂ I gives (inωJ : m

∞) ⊂ I.
Thus (inωJ : m

∞) = I and S/I and S/inωJ have the same Hilbert polynomial. The lemma
follows as S/inωJ and S/J have the same Hilbert polynomial, by flatness. ¤

We need to have that inωJ ⊂ I to apply Lemma 4.9. By construction, the initial forms
inωGi = zciFi of the generators of J lie in I. To show that inωJ ⊂ I, we must understand
what happens when there is cancellation of these initial forms, which may be accomplished
by understanding the syzygies of I

To that end, suppose that F1, . . . , FN are minimal generators for I. Write a1i for the
degree of Fi. An ideal I ⊂ S is Cohen-Macaulay if the codimension of S/I is equal to

its projective dimension. The ring R[x, y]/I has finite length (since
√
I = 〈x, y〉), so I

has projective dimension two, which does not change if I is considered as an ideal of
S. Since I has codimension two, it is Cohen-Macaulay and a structure theorem due to
Hilbert-Burch [11, Thm. 20.15] says that S/I has a minimal free resolution of the form,

(8) 0 −→
N−1⊕

i=1

S(−a2j) −→
N⊕

i=1

S(−a1j) −→ S −→ 0 .

Lemma 4.10. Given I, J and F1, . . . , FN as above, if maxs,t |a2s−a2t| ≤ 2, then inωJ ⊂ I.

Example 4.11. The condition on the second syzygies is necessary. Indeed, suppose that

J := 〈 y6 + x5z , 2x2y4 + x4yz , x6 + y5z〉 ,
so I = 〈x5, x4y, y5〉 and

√
J = 〈x, y〉. The minimal free resolution of S/I has the form

S(−6)⊕ S(−9) −→ S(−5)3 −→ S −→ S/I ,

so the condition on the second syzygies of Lemma 4.10 does not hold. Notice that

2x3y4−y7 = x(2x2y4+x4yz)−y(y6+x5z)

is in the ideal inωJ but not in the ideal I. Using Macaulay2 [16], we compute that the
multiplicity of S/J is 20, while that of the scheme S/I is 21.

Proof of Lemma 4.10. Let F ∈ J be a homogeneous form of degree d. We will show that
inωF ∈ I. Write F in terms of the generators of J ,

F =
N∑

i=1

HiGi ,

where H1, . . . , HN ∈ S.
Suppose that degGi = ni. Expanding Gi as a polynomial in z gives

Gi =

ci∑

k=0

zkgi,ni−k ,

where gi,ni−k ∈ R[x, y] has degree ni−k and ci is the highest power of z occurring in Gi.
Note that Fi = gi,ni−ci and that a1i = ni − ci in the Hilbert-Burch resolution (8).
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Let γi be the highest power of z that occurs in Hi and note that the degree ηi of Hi is
d−ni. Expand Hi as a polynomial in z,

Hi =

γi∑

k=0

zkhi,ηi−k ,

where hi,ηi−k ∈ R[x, y] has degree ηi − k.
If we expand F as a polynomial in z, we have

F :=

µ∑

k=0

zkfd−k ,

where fd−k ∈ R[x, y] has degree d− k and µ is the maximum of ci + γi. Then

inωF = zmfd−m , where m := max{k | fd−k 6= 0} ≤ µ .

Suppose that the forms are numbered so that for i = 1, . . . , p we have µ = ci + γi, but
if i > p, then µ > ci + γi. Then the coefficient fd−µ of zµ in F is

(9) fd−µ =

p∑

i=1

hi,ηi−γigi,ni−ci .

Since gi,ni−ci = Fi lies in I, if we have fd−µ 6= 0, then inωF ∈ I as desired.
Suppose on the contrary that fd−µ = 0. Since I is minimally generated by F1, . . . , FN ,

the sum in (9) is a syzygy of the ideal I. Then the degree d−µ of the sum (9) is at least
one of the degrees a2s in the Hilbert-Burch resolution (8). Let am2 be the minimum of the
a2s and aM2 be the maximum. Then am2 ≤ d−µ, and so every term fd−k for k < µ in the
expansion of F with respect to z has degree at least am2 + 1 (recall that fd−µ = 0).

However, the regularity of S/I is aM2 − 2, so that I contains every monomial in x, y of
degree at least aM2 − 1. As |a2s − a2t| ≤ 2, we have aM2 ≤ am2 +2, and so aM2 − 1 ≤ am2 +1,
so that every term fd−k with k < µ in the expansion of F lies in I, which implies that
F ∈ I and in particular inωF ∈ I, completing the proof. ¤

Let G1, . . . , GN ∈ S be forms of the same degree n with [0 : 0 : 1] their only common
zero such that their linear terms L1, . . . , LN at [0 : 0 : 1] are distinct and nonzero.

Proof of Theorem 4.1. For any r ≥ 0, let J be the ideal generated by Gr+1
1 , . . . , Gr+1

N and
let I be the ideal generated by the powers Lr+1

1 , . . . , Lr+1
N of linear forms. These powers

of linear forms are distinct and they are linearly independent if and only if N ≤ r + 2.
Suppose first that N > r+2. Then I is generated by t = r+2 of these powers. In this

case, 2t = 2r + 4 > r + 3 and the theorem follows by Corollary 4.5.
If instead N ≤ r+2, then I is minimally generated by these powers. By Proposition 3.1

the second syzygies of I differ by at most one, so the hypotheses of Lemma 4.10 hold and
inωJ ⊂ I. But then Lemma 4.9 implies the statement of the theorem. ¤

Remark 4.12. Extensions of Theorem 4.1 and Corollary 4.2 to mixed smoothness (where
varying orders of continuity are imposed across interior edges) require a minimal free
resolution for an ideal generated by arbitrary powers of linear forms in two variables.
This is provided by Geramita and Schenck in [15]. Note that the condition on second



16 M. DIPASQUALE, F. SOTTILE, AND L. SUN

syzygies needed in Lemma 4.10 is satisfied for ideals generated by arbitrary powers of
linear forms. We leave the details as an exercise for the interested reader.

Remark 4.13. When the hypotheses of Lemma 4.10 hold, we may determine the multi-
plicity of S/J(υ). We cannot relax the condition on distinct tangents (see Example 6.1),
however the forms may have controlled singularities at υ. For instance, if each form has
at worst a cusp singularity at υ, then the ideal I defining the tangent cone is generated
by (possibly different) powers of linear forms, similar to Remark 4.12. As long as the
underlying linear forms are distinct, Lemma 4.10 computes the multiplicity of S/J(υ).

5. Hilbert Function and Regularity

Suppose that the cell complex ∆ has a single interior vertex, υ, and that the forms
defining its edges are smooth at υ with distinct tangents as in Section 4. The formula
of Corollary 4.2 for the Hilbert polynomial of the spline module Cr(∆) only gives the
dimension of Cr

d(∆) when d exceeds the postulation number of the spline module. By
Corollary 2.3 (4), the dimension of Cr

d(∆) differs from an explicit polynomial by the
dimension of (S/J(υ))d, which is the Hilbert function of S/J(υ). We study the entire
Hilbert function in some cases and give bounds on the postulation number of S/J(υ)
using (Castelnuovo-Mumford) regularity.

5.1. Hilbert Function. Stiller used Max Noether’s ‘AF + BG Theorem’ to compute
the Hilbert function of S/J(υ) in a special case [22, Thm. 4.9] (see Example 6.2). As
explained by Eisenbud, Green, and Harris, [13], one generalization of Max Noether’s
theorem leads to linkage. We use linkage to study the Hilbert function of S/J(υ) in
some cases. We will only consider the case when ∆ has three edges defined by pairwise
coprime forms G1, G2, G3 of degrees n1, n2, n3 as in Fig. 1. Set J(υ) = 〈Gr+1

1 , Gr+1
2 , Gr+1

3 〉,
K := 〈Gr+1

1 , Gr+1
2 〉, K ′ := (K : Gr+1

3 ), and assume Gr+1
3 /∈ K so that K ′ 6= S.

Lemma 5.1. The ideal K ′ is Cohen-Macaulay of codimension two.

Proof. We use that an ideal I ⊂ S is Cohen-Macaulay of codimension k if and only if
Ext i(S/I, S) = 0 for i 6= k (see [11, Pro. 18.4,Co. 19.15]). Now, since K ⊂ K ′ and K has
codimension two, K ′ has codimension at least two, so Ext i(S/K ′, S) = 0 for i < 2 [11,
Prop. 18.4]. The short exact sequence

0 −→ S/K ′ ·G3−−−→ S/K −→ S/J(v) −→ 0 ,

yields a long exact sequence in Ext , by which we see the map Ext3(S/K, S) → Ext3(S/K ′, S)
is surjective. Since Ext3(S/K, S) = 0 (as S/K is Cohen-Macaulay of codimension two),
Ext3(S/K ′, S) = 0 as well. It follows that Ext2(S/K ′, S) is the only nonvanishing Ext

term for S/K ′, so K ′ must be Cohen-Macaulay of codimension two. ¤

Set K ′′ := (K : K ′). Since K ′ is codimension two and Cohen-Macaulay, so is K ′′ [11,
Thm. 21.23], and (K : K ′′) = K ′. The ideals K ′, K ′′ are said to be linked. There is a
particularly nice relationship between the Hilbert functions of K ′ and K ′′.
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Proposition 5.2. [13, Thm. CB7] Let K,K ′, K ′′ be as above and set s = n1(r + 1) +
n2(r + 1)− 3. Then

dim (K ′/K)d = mult (S/K ′′) − dim (S/K ′′)s−d ,

where dim(S/K ′′)s−d is zero for d > s.

We show how this proposition may be used when r = 0. In what follows, we use the
convention that

(
A
B

)
= 0 when A < B.

Proposition 5.3. Suppose that K = 〈G1, G2〉 defines a scheme Γ of n1n2 distinct points

in P2(C) and that G3 vanishes at υ but not any other point of Γ. Then

dim (S/J(υ))d =

{
dim(S/K)d − dim(S/K)d−n3

d ≤ n1 + n2 + n3 − 3
1 d ≥ n1 + n2 + n3 − 2.

Also, dim (S/K)d − dim (S/K)d−n3
is equal to

(
d+2
2

)
−

( 3∑

i=1

(
d+2−ni

2

))
+

( ∑

1≤i<j≤3

(
d+2−ni−nj

2

))
−

(
d+2−n1−n2−n3

2

)
.

Proof. As the points of Γ are distinct, K is the (radical) ideal of all polynomials vanishing
on Γ. Since G3 only vanishes at υ, the ideal K ′ := (K : G3) is the ideal of Γr {υ}. Thus
K ′′ = (K : K ′) is the ideal of υ, so that K ′′ = 〈x, y〉. By Proposition 5.2,

dim(K ′/K)d = 1− dim(S/K ′′)n1+n2−3−d =

{
0 d ≤ n1 + n2 − 3
1 d > n1 + n2 − 3

.

The ideal K ′ is related to J(υ) = 〈G1, G2, G3〉 via the multiplication sequence

(10) 0 → S(−n3)/K
′ ·G3−−−→ S/K → S/J(υ) → 0 .

Using (10), the tautological short exact sequence

0 → K ′/K → S/K → S/K ′ → 0 ,

and taking Euler-Poincaré characteristic yields

dim (S/J(υ))d = dim (S/K)d − dim (S/K)d−n3
+ dim (K ′/K)d−n3

.

Observing that dim(S/K)d = n1n2 for d ≥ n1+n2−2 yields the first claim. The expression
for dim(S/K)d − dim(S/K)d−n3

follows from

dim(S/K)d =
(
d+2
2

)
−

(
d+2−n1

2

)
−

(
d+2−n2

2

)
+

(
d+2−n1−n2

2

)
. ¤

Remark 5.4. The hypotheses of Proposition 5.3 can be weakened to assume that G1, G2

define a complete intersection scheme Γ ⊂ P2(C) in which υ is a reduced point and G3

vanishes only at υ ∈ Γ. This does not change the conclusion.

Corollary 5.5. Suppose that ∆ consists of three arcs of degrees n1, n2, n3 defined by

three irreducible polynomials G1, G2, G3 meeting at the single interior point υ. Suppose
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furthermore that K = 〈G1, G2〉 defines a set Γ of n1n2 distinct points in P2(C) and that

G3 vanishes at υ but not any other point of Γ. Then

dimC0
d(∆) =





(
d+2
2

)
+

∑

1≤i<j≤3

(
d+2−ni−nj

2

)
d ≤ n1 + n2 + n3 − 3

1 +
3∑

i=1

(
d+2−ni

2

)
d ≥ n1 + n2 + n3 − 2.

Proof. This follows from Proposition 5.3 and Corollary 2.3. The absence of the term(
d+2−n1−n2−n3

2

)
is because it vanishes when d ≤ n1 + n2 + n3 − 3. ¤

Example 5.6. Suppose ∆ has three interior edges defined by irreducible cubicsG1, G2, G3,
so that G1, G2 vanish simultaneously at a set X of nine distinct points and G3 vanishes
at the central vertex υ but no other point of X. From Corollary 5.5,

dimC0
d(∆) =

{ (
d+2
2

)
+ 3

(
d−4
2

)
d ≤ 6

1 + 3
(
d−1
2

)
d ≥ 7.

These dimensions are recorded in the following table.

d 0 1 2 3 4 5 ≥ 6

dimC0
d(∆) 1 3 6 10 15 21 3

2
d2 − 9

2
d+ 4

.

Remark 5.7. The computation dim(S/J(υ))6 = 1 has a hidden application of the classi-
cal Cayley-Bacharach theorem; namely that dim(K ′/K)3 = 0. This statement says that
any cubic vanishing on eight of the nine points defined by K must also vanish on the ninth
point. Proposition 5.2 generalizes this classical result.

5.2. Regularity. As determining the Hilbert function of S/J(υ) is difficult, we turn now
to bounding its postulation number. This is controlled by the regularity of S/J(υ).

Proposition 5.8 ([12], Thm. 4.2). The Hilbert function dim(S/J(υ))d agrees with the

Hilbert polynomial for d ≥ reg(S/J(υ))+ 1. Thus, the postulation number of S/J(υ) is at
most the regularity of S/J(υ).

The regularity of quotients S/I for some ideal I has been studied intensively. One of
the tightest general bounds applicable to our situation is due to Chardin and Fall [5].

Proposition 5.9. [5, Cor. 0.2] Let S be a polynomial ring in three variables and I an

ideal generated in degree at most n satisfying dim(S/I) ≤ 1. Then reg(S/I) ≤ 3(n− 1).

Corollary 5.10. Suppose ∆ has a single interior vertex υ and N edges defined by forms

G1, . . . , GN of degrees n1 ≤ · · · ≤ nN = n, meeting smoothly at υ with distinct tangents.

Set t = min{N, r + 2} and a = ⌊ r+1
t−1

⌋. Then

dimCr
d(∆) =

N∑

i=1

(
d−ni(r+1)+2

2

)
+
(
r+a+2

2

)
− t

(
a+1
2

)

for d ≥ 3n(r + 1)− 2.
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Proof. This follows from Corollary 4.2, Proposition 5.8, and Proposition 5.9. ¤

The bound in Corollary 5.10 is not optimal (see Table 3). We derive a tighter bound
when ∆ has three edges defined by forms G1, G2, G3 of degrees n1, n2, n3 meeting at a
single interior vertex υ, as in Fig. 1. We take υ to be the point [0 : 0 : 1] with ideal
〈x, y〉. Then J(υ) := 〈Gr+1

1 , Gr+1
2 , Gr+1

3 〉. Even in this simple case determining the Hilbert
function is difficult. (See also [18], where three-generated ideals in C[x, y, z] are studied
in the context of plane Cremona maps.)

Our regularity bound is a translation of [18, Thm. 1.2]. We use local cohomology. Let
m = 〈x, y, z〉. The zeroth local cohomology of an S-module M is

H0
m
(M) := {m ∈ M | mkm = 0 for some k ≥ 0}.

If I is an ideal of S, then H0
m
(S/I) = (I : m∞)/I.

For i > 0, the local cohomology functors H i
m
( ) for i > 0 are the right derived functors

of H0
m
( ). If M → I is an injective resolution of M then H i

m
(M) := H i(H0

m
(I)), the ith

cohomology of the complex H0
m
(I). For more on local cohomology, see [12, App. 1]. If M

is graded and finitely generated, then H i
m
(M) is graded and Artinian in that H i

m
(M)d = 0

for d ≫ 0. Also H i
m
(M) 6= 0 only for the range depth(M) ≤ i ≤ dim(M) [12, Prop. A1.16].

These are important since reg(M) may be identified using local cohomology.

Proposition 5.11. [12, Thm 4.3] If M is a finitely generated graded S-module, then

reg(M) is the smallest integer d satisfying:

(1) H0
m
(M)d 6= 0, and

(2) H i
m
(M)i+d−1 = 0 for all i > 0.

Let (S/I)∗ be the graded dual of S/I, in degree −d it is the dual vector space to
(S/I)d. Given a graded S-module M of finite length, α(M) is the lowest degree of a
nonzero homogeneous component of M and Ω(M) is the highest degree.

Proposition 5.12. Let G1, G2, G3 be forms of degrees 1 ≤ n1 ≤ n2 ≤ n3, with n3 ≥ 2
whose only common zero in P2 is υ. Then

reg(S/J(υ)) ≤ (n1+n2+n3−1)(r+1)− 3.

If 2t ≥ r+3 and n1 > 1, with t as in the statement of Lemma 4.4, then equality holds.

Proof. Let J = J(υ). We show first that Ω(H0
m
(S/J)) ≤ (n1+n2+n3−1)(r+1) − 3, with

equality if 2t ≥ r + 3. This bound will follow from [4, Lem. 5.8].
Specializing the second part of [4, Lem. 5.8] to the case i = 0 gives

H0
m
(S/J)((n1+n2+n3)(r+1)−3) ∼= H0

m
(S/J)∗ ,

where the (n1+n2+n3)(r+1)−3 in parentheses denotes a graded shift of H0
m
(S/J).

Using the identification H0
m
(S/J) = (J : m∞)/J , this yields

(
(J : m∞)/J

)
((n1+n2+n3)(r+1)−3) ∼= ((J : m∞)/J)∗ .

This implies that

α((J : m∞)/J) − (n1+n2+n3)(r+1)+3 = −Ω((J : m∞)/J) ,
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so

α((J : m∞)/J) + Ω((J : m∞)/J) = (n1+n2+n3)(r+1)−3 .

Compare this to the first statement of [18, Thm. 1.2]. As J is 〈x, y〉-primary, (J : m∞) =
(J : z∞). Since no pure power of z appears in any of the forms G1, G2, G3 (they all vanish
at [0 : 0 : 1]), the maximum power of z in Gr+1

i is (ni−1)(r+1). Hence α((J : z∞)/J) ≥
r + 1, so

Ω ((J : m∞)/J) = (n1+n2+n3)(r+1)−3 − α (J : m∞/J)

≤ (n1+n2+n3)(r+1)−3 − (r+1)

= (n1+n2+n3−1)(r+1)−3 .

Hence Ω(H0
m
(S/J)) ≤ (n1 + n2 + n3 − 1)(r + 1) − 3, as desired. If 2t ≥ r+3, then

Lemma 4.4 shows that (J : m∞) = 〈Lr+1
1 , Lr+1

2 , Lr+1
3 〉, hence α((J : m∞)/J) = r + 1 and

Ω(H0
m
(S/J)) = (n1+n2+n3−1)(r+1)−3.

Now we show that Ω(H1
m
(S/J)) ≤ (n1 + n2)(r+ 1)− 4. Compare this statement to the

second part of [18, Thm. 1.2]. By local duality [12, Thm. A1.9],

H1
m
(S/J) ∼= Ext2(S/J, S(−3))∗ .

Hence Ω(H1
m
(S/J)) = −α(Ext2(S/J, S(−3))). Now let I = 〈Gr+1

1 , Gr+1
2 〉 ⊂ J . Then I is

a complete intersection, so S/I has a minimal free resolution of the form

0 −→ S(−a− b) −→ S(−a)⊕ S(−b) −→ S,

where a = deg(Gr+1
1 ) = n1(r + 1) and b = deg(Gr+1

2 ) = n2(r + 1). In particular,
Ext2(S/I, S) ∼= S(a + b)/I. Let γ = Gr+1

3 and set c = deg(γ) = n3(r + 1). We have
a short exact sequence

0 −→ S(−c)/(I : γ)
·γ−−→ S/I −→ S/J −→ 0 .

Since codim(S/(I : γ)) ≥ 2, the long exact sequence in Ext yields

0 −→ Ext2(S/J, S) −→ Ext2(S/I, S)
·γ−−→ Ext2(S/(I : γ), S) −→ · · · ,

hence Ext2(S/J, S) is the kernel of the map given by multiplication by γ on Ext2(S/I, S).
Since Ext2(S/I, S) ∼= S(a+ b)/I, we have

Ext2(S/J, S) ∼=
(
(I : γ)/I

)
(a+ b) ,

where the a + b in parentheses represents a degree shift. Since γ /∈ I, it follows that
I : γ is generated in degrees ≥ 1, hence α(Ext2(S/J, S)) ≥ −a − b + 1. It follows that
Ω(H1

m
(S/J)) = −α(Ext2(S/J, S(−3))) ≤ a+ b− 4.

Now, by Proposition 5.11,

reg(S/I) = max{Ω(H0
m
(S/I)),Ω(H1

m
(S/I)) + 1}

≤ max{(n1 + n2 + n3 − 1)(r + 1)− 3, (n1 + n2)(r + 1)− 3}
= (n1 + n2 + n3 − 1)(r + 1)− 3 ,

as we assume n1, n2, n3 are all at least one. Equality holds if 2t ≥ r + 3. ¤



SEMIALGEBRAIC SPLINES 21

Corollary 5.13. If ∆ has three edges defined by forms G1, G2, G3 of degrees n1, n2, n3

meeting smoothly with distinct tangents at a single interior vertex, then

dimCr
d(∆) =

3∑

i=1

(
d−ni(r+1)+2

2

)
+
(
r+a+2

2

)
− t

(
a+1
2

)

for d ≥ (n1 + n2 + n3 − 1)(r + 1)− 2, where t = min{3, r + 2} and a = ⌊ r+1
t−1

⌋.
Proof. This follows from Corollary 4.2, Proposition 5.12, and Proposition 5.8. ¤

Example 5.14. For the cell complex of Fig. 1, whose Hilbert function, polynomial, and
postulation number are shown in Table 1, Table 3 shows how the bounds on the postulation
number in Corollary 5.10 and Corollary 5.13 compare with the actual postulation number,
d0. This indicates that for r small, we should expect the bound in Corollary 5.13 to be
close to exact, while the bound in Corollary 5.10 may be quite far off.

Table 3. Comparing bounds with the postulation number in Example 5.14.

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

d0 1 5 9 13 17 20 24 28 32 35 39 43 47 50 54

Cor. 5.13 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57

Cor. 5.10 4 10 16 22 28 34 40 46 52 58 64 70 76 82 88

6. Examples

We illustrate some limitations and possible extensions of our results for cell complexes
∆ with a single interior vertex υ. In Section 3, we determined the Hilbert function of
the spline module when the curves defining the edges of ∆ lie in a pencil. As noted in
Remark 3.7, this Hilbert function does not depend upon the geometry of the curves in
that pencil, only on their number and degree. In Section 4, we determined the Hilbert
polynomial of the spline module in nearly the opposite case—when the curves vanish
simultaneously only at the vertex υ and they have distinct tangents at υ.

Our first example is from [7]—three curves of different degrees, but only two tangents at
υ. In the remaining examples, the curves are three conics defining schemes of multiplicity
three and two (intermediate between the cases of Sections 3 and 4). We show that the
Hilbert polynomial of the spline module depends upon the geometry of the curves.

Example 6.1. This example appears in [7, § 8.3, Exer. 13]. Let ∆ consist of portions of
the three curves G1 = yz − x2, G2 = xz + y2, and G3 = yz2 − x3 in the unit disc in R2

where z 6= 0 meeting at the origin as in Fig. 4. We have J(υ) = 〈Gr+1
1 , Gr+1

2 , Gr+1
3 〉 and

Cr(∆) ∼= S ⊕ syz(J(υ)) by Proposition 2.2.
The tangents of G1, G2, G3 at (0, 0) are L1 = y, L2 = x, and L3 = y. Let I =

〈Lr+1
1 , Lr+1

2 , Lr+1
3 〉 = 〈xr+1, yr+1〉. Since the tangents are not distinct, we cannot use

Theorem 4.1 to compute the multiplicity of the scheme S/J(υ). However, if r ≤ 1,
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G1
G2

G3

Figure 4. Complex ∆ in Example 6.1.

then the schemes S/I and S/J(υ) have the same multiplicity by Corollary 4.5. Using
Corollary 2.3,

HP(Cr(∆), d) = 2
(
d−2(r+1)

2

)
+
(
d−3(r+1)

2

)
+ (r+1)2 ,

if r ≤ 1. For r ≥ 2, we replace Gr+1
3 by Gr+1

3 −zr+1Gr+1
1 , which has leading term x2yrz2r+1

in z. Set I ′ := 〈xr+1, x2yr, yr+1〉. The minimal free resolution of S/I ′ has the form

(11) 0 −→ S(−2r − 1)⊕ S(−r − 3) −→ S3 −→ S .

The ideal I ′ is generated by the leading forms of Gr+1
1 Gr+1

2 , and Gr+1
3 −zr+1Gr+1

1 , which
generate J(υ). By Lemmas 4.9 and 4.10, S/J(υ) has the same Hilbert polynomial as S/I ′

when 2 ≤ r ≤ 4. Using Corollary 2.3,

HP(Cr(∆), d) = 2
(
d−2(r+1)

2

)
+
(
d−3(r+1)

2

)
+ HP(S/J(υ), d)

= 2
(
d−2(r+1)

2

)
+
(
d−3(r+1)

2

)
+ HP(S/I ′, d)

= 2
(
d−2(r+1)

2

)
+
(
d−3(r+1)

2

)
+ (2 + r + r2) ,

where the final equality follows from the minimal free resolution of I ′ (11).
If r > 4, the techniques of this paper will not suffice to compute HP(Cr(∆), d). Com-

putations in Macaulay2 show that the saturation of inω(J(υ)) is I ′ = 〈xr+1, x2yr, yr+1〉
for r = 5, where ω = (0, 0, 1). This cannot be concluded from Lemma 4.10 since the
condition on second syzygies fails. Further computations in Macaulay2 show

(
inω(J(υ)) : m

∞
)

= 〈xr+1, yr+1, x2yr, x6yr−1〉
for r = 6, 7, 8, 9. For r = 10,

(
inω(J(υ)) : m

∞
)

= 〈xr+1, yr+1, x2yr, x6yr−1, x10yr−2〉 ,
indicating a growth in the number of generators of the saturation (inω(J(υ)) : m

∞). See
Table 4. For r ≥ 5 different techniques will be needed to compute HP(Cr(∆), d). The
column headed d0 gives the postulation number (computed only through r = 5). The
final column is the regularity bound from Corollary 5.13.

Example 6.2. Suppose that G1, G2, and G3 are conics underlying the edges of a cell
complex ∆ with a single vertex υ that do not lie in a pencil, but simultaneously vanish
in at least another point. By Corollary 2.3 (4), the Hilbert function of Cr(∆) is

HF (Cr(∆), d) = 3
(
d−2r
2

)
+ dim(S/J(υ))d .
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Table 4. Table for cell complex ∆ in Example 6.1.

r sat(inω(J(υ))) HP(Cr(∆), d) HP(S/J(υ), d) d0 6(r+1)−3

0 〈x, y〉 3
2
d2 − 5

2
d+ 2 1 3 3

1 〈x2, y2〉 3
2
d2 − 19

2
d+ 20 4 9 9

2 〈x3, y3, x2y2〉 3
2
d2 − 33

2
d+ 56 8 15 15

3 〈x4, y4, x2y3〉 3
2
d2 − 47

2
d+ 111 14 21 21

4 〈x5, y5, x2y4〉 3
2
d2 − 61

2
d+ 185 22 27 27

5 〈x6, y6, x2y5〉 3
2
d2 − 75

2
d+ 278 32 32 33

6 〈x7, y7, x2y6, x6y5〉 3
2
d2 − 89

2
d+ 389 43 39

7 〈x8, y8, x2y7, x6y6〉 3
2
d2 − 103

2
d+ 519 56 45

8 〈x9, y9, x2y8, x6y7〉 3
2
d2 − 117

2
d+ 668 71 51

9 〈x10, y10, x2y9, x6y8〉 3
2
d2 − 131

2
d+ 836 88 57

10 〈x11, y11, x2y10, x6y9, x10y8〉 3
2
d2 − 145

2
d+ 1022 106 63

We compute the Hilbert functions of S/J(υ) for different choices of three conics. Stiller [22,
Thm. 4.9] did this when r = 0 and when the conics define 1, 2, or 3 simple points.

We first consider three cases where the conics define a scheme of multiplicity three,
consisting of the three points υ = [0 : 0 : 1], [2 : 0 : 1], and [1 : −1 : 1]. The first triple is
A := 2x2+2xy+y2−4xz−3y, B := x2−xy+y2−2xz+yz, and C := x2−8xy−y2−2xz+6yz.
Their curves have distinct tangents at each of three points. The next triple is A, D :=
x2 + 4xy − y2 − 2xz − 6yz, and E := x2 − 3xy − y2 − 2xz + yz. The curves of D and E
are tangent at [1 : −1 : 1]. The third triple is D, E, and F := 2x2+5xy+ y2− 4xz− 6yz.
The curves of F and D are also tangent at the point [2 : 0 : 1]. We display the resulting
cell complexes in the affine plane R2 with z 6= 0 in Fig. 5.

A

B

C

(I)

A

D

E

(II)

F

D

E

(III)

Figure 5. Three conics defining three points.

Table 5 gives the Hilbert functions of S/J(υ) for d ≤ 18 and r ≤ 4 for each of these
triples. While the Hilbert functions agree for r = 0 (as shown by Stiller [22, Thm. 4.9]),
they differ for all larger r in both the postulation number and Hilbert polynomial.
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Table 5. Hilbert functions of S/J(υ) for cell complexes of Fig. 5.

I d

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 3 6 10 12 12 10 9 9 9 9 9 9 9 9 9 9 9 9
2 1 3 6 10 15 21 25 27 27 25 21 21 21 21 21 21 21 21 21
3 1 3 6 10 15 21 28 36 42 46 48 48 46 42 36 36 36 36 36
4 1 3 6 10 15 21 28 36 45 55 63 69 73 75 75 73 69 63 57

II d

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 3 6 10 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10
2 1 3 6 10 15 21 25 27 27 25 22 22 22 22 22 22 22 22 22
3 1 3 6 10 15 21 28 36 42 46 48 48 46 42 38 38 38 38 38
4 1 3 6 10 15 21 28 36 45 55 63 69 73 75 75 73 69 63 60

III d

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1 1 3 6 10 12 12 11 11 11 11 11 11 11 11 11 11 11 11 11
2 1 3 6 10 15 21 25 27 27 25 23 23 23 23 23 23 23 23 23
3 1 3 6 10 15 21 28 36 42 46 48 48 46 42 40 40 40 40 40
4 1 3 6 10 15 21 28 36 45 55 63 69 73 75 75 73 69 63 63

We find similar behavior when the three quadrics define a scheme of multiplicity two,
for us the points [0 : 0 : 1] and [2 : 0 : 1]. Let A := x2 + xy + y2 − 2xz, B :=
2x2+xy+2y2−4xz−2yz, C := x2+xy+2y2−2xz+6yz, andD := x2−xy−2y2−2xz+2yz.
Then 〈A,B,C〉 and 〈A,B,D〉 both define the same scheme consisting of those two reduced
points. They have distinct tangents at [0 : 0 : 1], and A, B, and C have distinct tangents
at [2 : 0 : 1], but B and D are tangent at [2 : 0 : 1]. Fig. 6 shows the resulting cell

A

B
C

(I)

A

BD

(II)

Figure 6. Three conics defining two points.
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complexes and the underlying curves. Table 6 shows the Hilbert functions of S/J(υ).

Table 6. Hilbert functions of S/J(υ) for three quadrics defining two points.

I d

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 3 6 10 12 12 10 7 6 6 6 6 6 6 6 6 6 6
2 1 3 6 10 15 21 25 27 27 25 21 16 14 14 14 14 14 14
3 1 3 6 10 15 21 28 36 42 46 48 48 46 42 36 29 25 24

II d

r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0 1 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 1 3 6 10 12 12 10 7 7 7 7 7 7 7 7 7 7 7
2 1 3 6 10 15 21 25 27 27 25 21 16 15 15 15 15 15 15
3 1 3 6 10 15 21 28 36 42 46 48 48 46 42 36 29 26 26

Remark 6.3. The multiplicity of a zero-dimensional scheme is the sum of its local mul-
tiplicities at each point of its support. For S/J(υ), this is

mult(S/J(υ)) =
∑

ν∈supp(S/J(υ))

multν(S/J(υ)),

where multν(S/J(υ)) is the vector space dimension of the local ring (S/J(υ))mν
with mν

the maximal ideal of the point ν. This is the multiplicity of the tangent cone of S/J(υ)
at ν (see [11, § 5.4]). Thus we should expect that we can read off the multiplicity of
the schemes in Example 6.2 as sums of local multiplicities which depend only on the
geometry of the tangent cones at points in the support of S/J(υ). This is indeed the
case; to see this, we write the multiplicites of Tables 5 and 6 as sums of the multiplicity
in Corollary 3.4 and the multiplicity in Table 4. Call the multiplicity in Corollary 3.4 the
generic multiplicity; by Theorem 4.1 this is the multiplicity of S/J(υ) when tangents are
distinct.

In Table 5, note that if the tangents of the edge forms at all points in the support of
S/J(υ) are distinct, then the multiplicity of S/J(υ) is thrice the generic multiplicity. If
the tangents of edge forms are distinct at two points of support but two tangents coincide
at the third point, then the geometry at the third point is the same as in Example 6.1.
The multiplicity of S/J(υ) is twice the generic multiplicity plus the multiplicity given in
Table 4. If tangents of edge forms are distinct at one point but two tangents coincide at
both other points, then the multiplicity of S/J(υ) is the generic multiplicity plus twice
the multiplicity given in Table 4. The same observations can be made in Table 6.
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