
BULLETIN (New Series) OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0273-0979(XX)0000-0

Toric varieties, by David A. Cox, John B. Little, and Henry K. Schenck, Graduate
Studies in Mathematics, vol. 124, American Mathematical Society, Providence, RI,
2011, xxiv+841 pp., $95, ISBN: 978-0-8218-4819-7

Algebraic Geometry is a deep subject of remarkable power that originated in
the study of concrete objects, as it is concerned with the geometry of solutions
to polynomial equations. It is this interplay between theoretical abstraction and
tangible examples that gives the subject relevance and a reach into other areas
of mathematics and its applications. There is no better subdiscipline of algebraic
geometry than that of toric varieties for observing the application of its ideas and
methods on a wide variety of explicit geometric objects.

While toric varieties have been around as long as algebraic geometry—the fa-
miliar Cartesian plane and the projective plane are both toric varieties as is the
parabola y = x2—the subject of toric varieties began with the foundational paper
of Demazure [5]. Toric varieties arose as a byproduct of his main interest, groups
of rational automorphisms of kn (k a field) that contain a split torus, (k∗)n. These
groups turn out to be automorphism groups of smooth toric varieties, which De-
mazure defined and classified as schemes over Z. These are obtained by adding
certain points at infinity to a split torus, and the classification involved objects
from geometric combinatorics called éventails (fans en anglais) encoding the added
points. Fans are certain collections of cones in Z

n, with each cone corresponding
to an orbit of (k∗)n in the toric variety, and this correspondence is contravariant.
For example, the Cartesian k2 and projective P

2(k) planes are compactifications of
the torus (k∗)2 encoded by the following fans.

In both, the origin corresponds to the dense torus (k∗)2, the horizontal and vertical
rays to the (open) x- and y-axes, respectively, and the positive quadrant to the
point x = y = 0. In the fan on the right for P

2(k), the diagonal ray corresponds
to the line at infinity with the two adjacent regions to the points at infinity on the
x- and y-axes. These are smooth because the first vectors on the rays of each cone
(origin, ray, or region) are parts of a basis for Z2.

These ideas were revisited by Kempf, Knudsen, Mumford and Saint-Donat [11]
and Miyake and Oda [14]. Both sets of authors considered normal (not just smooth)
varieties X over a field (hereafter the complex numbers, C) containing a torus
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(C∗)n on which the action of the torus on itself extends to X. As before, these
normal equivariant compactifications (toric varieties) are classified by arbitrary
fans Σ in Z

n (not just smooth fans). A consequence of this classification was a rich
class of algebraic varieties—toric varieties—whose structure could be understood
completely in terms of the geometry and combinatorics of the corresponding fans.
For example, if each cone in the fan σ is simplicial (the first vectors on each of its
rays are linearly independent), then the associated toric variety XΣ is an orbifold.
Also, XΣ is compact if the union of the cones in Σ is Zn.

A toric variety XΣ can be embedded into projective space if and only if its fan Σ
is the domain of a piecewise linear convex function in which each cone is a region of
linearity with a different linear function for each maximal cone. A given projective
embedding corresponds to a polytope P with integer vertices (lattice polytope)
whose normal fan is Σ. That is, the cones of Σ are the outer normal vectors to the
faces of P . Consider the normal fan to the cube. The rays are normal to the facets
of the cube, the sectors between the rays are normal to the edges, and the orthants
are normal to the vertices.

This determination of projective embeddings shows that all toric surfaces are quasi-
projective and gives many easy examples of non-projective algebraic varieties, as it
is a very strong restriction on a fan to be the normal fan to a lattice polytope. For
example, consider the following decomposition of the 3× 3 square in Z

2.

There is no piecewise linear convex function on the square whose maximal regions of
linearity are exactly the triangles and the central square. If there were, then adding
an affine function, we may assume that it is constant on the central square, and
then the convex function must be decreasing moving clockwise from each vertex,
which is impossible outside of Escher woodcuts. This is the intersection at z = 1
of a fan in Z

3 that gives a non-projective three-dimensional toric variety.
The usefulness of toric varieties goes beyond the plethora of accessible exam-

ples afforded by this classification. An important variant are varieties in affine
or projective space that are parameterized by monomials, which are also called
toric varieties. An integer vector α ∈ Z

n is the exponent of a Laurent monomial
xα = xα1

1
· · ·xαn

n
, for x ∈ (C∗)n. A finite collection A ⊂ Z

n of integer vectors gives
a map ϕA : (C∗)n → C

A,

(1) ϕA(x) = (xα | α ∈ A) .
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(We use elements of A as indices.) The closure of the image of ϕA in either affine
space C

A or projective space P(CA) is the toric variety XA. This is an equivariant
compactification of the torus (C∗)n as before. For example, if A = {1, 2} so that
ϕA(t) = (t, t2) then XA is the parabola y = x2, and if A = {2, 3} so that ϕA(t) =
(t2, t3) then XA is the semicubical parabola y2 = x3 (also called the cuspidal cubic).

This second notion of a toric variety via monomial parameterization is distinct
from the first notion of toric varieties associated to fans in Z

n. Indeed, the toric
variety XA comes with an embedding into affine or projective space, while toric
varieties associated to fans have no preferred embedding (or none at all). More
fundamentally, XA need not be normal—due to its cusp, the semicubical parabola
is not a normal variety.

Monomial parameterizations are the reason that toric varieties figure promi-
nently in the study of subvarieties of (C∗)n defined by Laurent polynomials

(2) f1(x) = f2(x) = · · · = fr(x) = 0 .

A Laurent polynomial f with support A is a linear combination

(3) f(x) =
∑

α∈A

cαx
α cα ∈ C

∗ ,

of monomials from A. Its set of zeros (f(x) = 0) is either a nonlinear subset of
(C∗)n or (via the map ϕA) a section of the toric variety XA by the hyperplane

0 =
∑

α∈A

cαzα .

where {zα | α ∈ A} are coordinates on P(CA).
A useful invariant of a Laurent polynomial (3) is its Newton polytope, which

is the convex hull of the set A of its exponent vectors, and which controls much
of the geometry of the associated toric variety, XA. Bernstein, Khovanskii, and
Kushnirenko showed that Newton polytopes of the polynomials fi in (2) control
the geometry of the subvariety when the polynomials were generic. For example,
Bernstein [1] showed that when r = n so that (2) is a system of polynomials with
finitely many solutions, the number of solutions in (C∗)n is the mixed volume
of the Newton polytopes, and Khovanskii expressed the Euler characteristic of a
hypersurface in (C∗)n defined by a polynomial f in terms of the volume of the
Newton polytope of f . These results may be obtained using the toric variety XA.
Danilov wrote the first survey on toric varieties [4], and it contained further results
linking toric varieties to polytopes such as using the Riemann-Roch Theorem to
enumerate lattice points in polytopes. We are indebted to Miles Reid, who coined
the elegant term ‘toric variety’ when translating Danilov’s survey into English.

A milestone in this early history was Stanley’s proof of the McMullen conjec-
ture [15], using the hard Lefschetz Theorem in the cohomology of an associated
toric variety. The simplest enumerative invariants of a d-dimensional polytope P

are its face numbers f0, . . . , fd where fi counts the number of i-dimensional faces of
P . McMullen had given a list of inequalities on the fi when P is simplicial (all faces
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are simplices) and conjectured that they were necessary and sufficient for there to
be a polytope with those face numbers. Billera and Lee proved sufficiency using
a construction. Stanley showed necessity, first observing that P may be assumed
to be a lattice polytope. The cones over the faces of P form a complete simpli-
cial fan Σ in Z

d that is the normal fan of the polytope dual to P . This implies
that the associated toric variety XΣ is a projective orbifold, and Stanley showed
that the McMullen inequalities follow from Poincaré duality and the hard Lefschetz
Theorem, both of which hold for XΣ.

By the mid 1990’s, toric varieties had entered the consciousness if not the toolkit
of many in algebraic geometry and related fields. One reason was noted by Fulton,
who remarked that “toric varieties have proved a remarkably fertile testing ground
for general theories”, including resolution of singularities, classification of higher
dimensional varieties, Hodge theory, Riemann-Roch theorems, intersection theory,
general cohomology theories, and vanishing theorems. Another was the publica-
tion of several influential books on toric varieties including the mature books of
Oda [13] in 1988 and Fulton [8] in 1993 (in which the above quotation appeared).
These books were written for algebraic geometers, and with their publication, toric
varieties became a path into the subject.

Other books of that period included that of Ewald [7] in 1996, which treated
both toric varieties and geometric combinatorics and was aimed at those outside of
algebraic geometry. The seminal book of Gel′fand, Kapranov, and Zelevinsky [9]
in 1994 systematically treated the nonnormal affine toric varieties given by mono-
mial parameterization (1), and introduced toric degenerations and secondary fans.
Sturmfels’s lecture notes [16] of 1996 also had a deep influence, emphasizing links
to commutative algebra and geometric combinatorics through toric ideals (ideals
of toric varieties given by monomial parameterization (1)), their relation to toric
degenerations and Gröbner bases, and their role in some applications including
integer programming and statistical inference.

The former and latter books championed different versions of toric varieties—
normal toric varieties from fans for algebraic geometry and affine toric varieties
parameterized by monomials for combinatorics, commutative algebra, and applica-
tions. Alluding to the authors, these have been cheekily referred to as “Fultonian”
and “Sturmfellian” toric varieties, respectively.

Since that period, ideas and techniques from toric varieties have penetrated
deeply into algebraic geometry, commutative algebra, combinatorics, and related
fields. While this is due in part to those books, it has also been driven by new ideas
and fields that have since arisen. For example, it was realized (almost simultane-
ously by several authors) that toric varieties are symplectic or geometric invariant
theory quotients of affine space by a torus. Among the consequences is the exis-
tence of a universal homogeneous coordinate ring of a toric variety, called its Cox
ring. Toric varieties appeared in work studying mirror symmetry from theoretical
physics, which then introduced new ideas and methods into the subject. The new
field of tropical geometry is intimately connected to the world of toric varieties, as
its objects are combinatorial shadows of subvarieties of a torus (K∗)n, where K is
typically a valued field.

Just as toric varieties have proven fruitful for the development of pure math-
ematics as fundamental objects and for testing general theories, they are playing
the same role in many emerging applications of algebraic geometry. This is seen
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not only for integer programming in [16], but also for solutions to systems of poly-
nomial equations [3], geometric modeling [10], coding theory [12], and algebraic
statistics [6].

Their phenomenal development in the past two decades created a need for a
comprehensive treatise on toric varieties. This need has been fulfilled by the ency-
clopedic book under review, Toric varieties, by Cox, Little, and Schenck.

This book begins with a careful development of three distinct types of toric vari-
eties, treating in turn affine toric varieties parameterized by monomials, projective
toric varieties corresponding to lattice polytopes, and normal toric varieties cor-
responding to fans. The remaining six chapters of Part I treat the fundamental
algebraic geometry of toric varieties, including divisors, line bundles and sheaves,
the Cox ring, and sheaf cohomology. Part II is populated with more advanced topics
on toric varieties, including Riemann-Roch theorems, geometric invariant theory,
and the secondary fan. Appendices on the history of toric varieties, computational
methods for toric varieties, and spectral sequences round out the text.

While its sheer size (over 800 pages) is intimidating, this book is best taken in
manageable pieces. For example, the first three chapters and a selection of the
later material make an excellent introductory course for either algebraic geometers
or those with a more varied background. The book is accessible and self-contained,
presenting significant background material. It is also a source for most things toric
and consequently is a valuable reference. With its engaging and inviting writing,
this will surely join other books (such as [2] by Cox, Little, and O’Shea) as an
enduring classic that will occupy the shelves of those working in algebraic geometry,
related fields, and applications.
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5. Michel Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann.
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