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CONVEX HULL OF TWO CIRCLES IN R3

EVAN D. NASH, ATA FIRAT PIR, FRANK SOTTILE, AND LI YING

ABSTRACT. We describe convex hulls of the simplest compact space curves, reducible quartics con-

sisting of two circles. When the circles do not meet in complex projective space, their algebraic

boundary contains an irrational ruled surface of degree eight whose ruling forms a genus one curve.

We classify which curves arise, classify the face lattices of the convex hulls and determine which are

spectrahedra. We also discuss an approach to these convex hulls using projective duality.

1. INTRODUCTION

Convex algebraic geometry studies convex hulls of semialgebraic sets [15]. The convex hull of

finitely many points, a zero-dimensional variety, is a polytope [8, 24]. Polytopes have finitely many

faces, which are themselves polytopes. The boundary of the convex hull of a higher-dimensional

algebraic set typically has infinitely many faces which lie in algebraic families. Ranestad and Sturm-

fels [13] described this boundary using projective duality and secant varieties. For a general space

curve, the boundary consists of finitely many two-dimensional faces supported on tritangent planes

and a scroll of line segments, called the edge surface. These segments are stationary bisecants,

which join two points of the curve whose tangents meet.

We study convex hulls of the simplest nontrivial compact space curves, those which are the union

of two circles lying in distinct planes. Zero-dimensional faces of such a convex hull are extreme

points on the circles. One-dimensional faces are stationary bisecants. It may have two-dimensional

faces coming from the planes of the circles. It may have finitely many nonexposed faces, either

points of one circle whose tangent meets the other circle, or certain tangent stationary bisecants.

Fig. 1 shows some of this diversity. In the convex hull on the left, the discs of both circles are faces,

FIGURE 1. Some convex hulls of two circles.

and every face is exposed. In the oloid in the middle, the discs lie in the interior, an arc of each circle

is extreme, and the endpoints of the arcs are nonexposed. In the convex hull on the right, there are
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two nonexposed stationary bisecants lying on its two-dimensional face, which is the convex hull of

one circle and the point where the other circle is tangent to the plane of the first.

These objects have been studied before. Paul Schatz discovered and patented the oloid in 1929 [16],

this is the convex hull of two congruent circles in orthogonal planes, each passing through the center

of the other. It has found industrial uses [2], and is a well-known toy. A curve in R
3 may roll along

its edge surface. When rolling, the oloid develops its entire surface and has area equal to that of the

sphere [3] with equator one of the circles of the oloid. Other special cases of the convex hull of two

circles have been studied from these perspectives [5, 10].

This paper had its origins in Subsection 4.1 of [13], which claimed that the edge surface for a

general pair of circles is composed of cylinders. We show that this is only the case when the two

circles either meet in two points or are mutually tangent—in all other cases, the edge surface has

higher degree and it is an irrational surface of degree eight when the circles are disjoint in CP3.

This is related to Problem 3 on Convexity in [21], on the convex hull of three ellipsoids in R
3.

An algorithm was presented in [6] (see the video [7]), using projective duality. We sketch this in

Section 5, and also apply duality to the convex hull of two circles.

In Section 2, we recall some aspects of convexity and convex algebraic geometry, and show that

the convex hull of two circles is the projection of a spectrahedron. We study the edge surface and

the edge curve of stationary bisecants of complex conics C1,C2 ⊂ CP3 in Section 3. We show that

the edge curve is a reduced curve of bidegree (2,2) in C1 ×C2 and, if C1 ∩C2 = /0 and neither circle

is tangent to the plane of the other, then the edge surface has degree eight. We also classify which

curves of bidegree (2,2) arise as edge curves to two conics. All possibilities occur, except a rational

curve with a cusp singularity and a maximally reducible curve.

In Section 4, we classify the possible arrangements of two circles lying in different planes in terms

that are relevant for their convex hulls. We determine the face lattice and the real edge curve of each

type, and show that these convex hulls are spectrahedra only when the circles lie on a quadratic

cone.

2. CONVEX ALGEBRAIC GEOMETRY

We review some fundamental aspects of convexity and convex algebraic geometry, summarize

our results about convex hulls of pairs of circles and their edge curves, and show that any such

convex hull is the projection of a spectrahedron.

The convex hull of a subset S ⊂ Rd is

conv(S) :=
ß n∑

i=1

λisi | s1, . . . ,sn ∈ S , 0 ≤ λi , and 1 =
n∑

i=1

λi

™
.

A set K is convex if it equals its convex hull. A point p ∈ K is extreme if K 6= conv(K r {p}). A

compact convex set is the convex hull of its extreme points.

A convex subset F of a convex set K is a face if F contains the endpoints of any line segment in K

whose interior meets F . A supporting hyperplane Π is one that meets K with K lying in one of the

half-spaces of Rd defined by Π. A supporting hyperplane Π supports a face F of K if F ⊂ K ∩Π,

and it exposes F if F = K ∩Π.

Not all faces of a convex set are exposed. The boundary of the convex hull of two coplanar circles

in Fig. 2 consists of one arc on each circle and two bitangent segments. An endpoint p of an arc is
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not exposed. The only line supporting p is the tangent to the circle at p, and this line also supports

the adjoining bitangent.

p

FIGURE 2. Convex hull of coplanar circles.

A fundamental problem from convex optimization is to describe the faces of a convex set, de-

termining which are exposed, as well as their lattice of inclusions (the face lattice). For more on

convex geometry, see [1].

Convex algebraic geometry is the marriage of classical convexity with real algebraic geometry.

A real algebraic variety X is an algebraic variety defined over R. If X is irreducible and contains a

smooth real point, then its real points are Zariski-dense in X , so it is often no loss to consider only the

real points. Conversely, many aspects of a real algebraic variety are best understood in terms of its

complex points. Studying the complex algebraic geometry aspects of a question from real algebraic

geometry is its algebraic relaxation. This relaxation enables the use of powerful techniques from

complex algebraic geometry to address the original question.

As the real numbers are ordered, we also consider semialgebraic sets, which are defined by poly-

nomial inequalities. By the Tarski–Seidenberg Theorem on quantifier elimination [19, 22], the class

of semialgebraic sets is closed under projections and under images of polynomial maps. A closed

semialgebraic set is basic if it is a finite intersection of sets of the form {x | f (x) ≥ 0}, for f a

polynomial.

Motivating questions about convex algebraic geometry were raised in [15]. A fundamental convex

semialgebraic set is the cone of positive semidefinite matrices (the PSD cone). These are symmetric

matrices with nonnegative eigenvalues. The boundary of the PSD cone is (a connected component

of) the determinant hypersurface and every face is exposed. A spectrahedron is an affine section L∩
PSD of this cone. Write Aº0 to indicate that A ∈ PSD. Parameterizing L shows that a spectrahedron

is defined by a linear matrix inequality,

{x ∈ R
m | A0 + x1A1 + · · ·+ xmAm º 0} ,

where A0, . . . ,Am are real symmetric matrices.

Images of spectrahedra under linear maps are spectrahedral shadows. Semidefinite programming

provides efficient methods to optimize linear objective functions over spectrahedra and their shad-

ows, and a fundamental question is to determine if a given convex semialgebraic set may be realized

as a spectrahedron or as a spectrahedral shadow, and to give such a realization. Scheiderer showed

that the convex hull of a curve is a spectrahedral shadow [17], and recently showed that there are

many convex semialgebraic sets which are not spectrahedra or their shadows [18].

Since the optimizer of a linear objective function lies in the boundary, convex algebraic geometry

also seeks to understand the boundary of a convex semialgebraic set. This includes determining

its faces and their inclusions, as well as the Zariski closure of the boundary, called the algebraic

boundary. This was studied for rational curves [20, 23] and for curves in R3 by Ranestad and
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Sturmfels [14]. They showed that the algebraic boundary of a space curve C consists of finitely

many tritangent planes and a ruled edge surface composed of stationary bisecant lines. A stationary

bisecant is a secant x,y to C (x,y ∈ C) such that the tangent lines TxC and TyC to C at x and y

meet. For a general irreducible space curve of degree d and genus g, the edge surface has degree

2(d−3)(d+g−1) [11, 14].

For example, suppose that C is a general space quartic (see [11, Rem. 5.5] or [14, Ex. 2.3]). This

is the complete intersection of two real quadrics P and Q, and has genus one by the adjunction

formula [9, Ex. V.1.5.2]. Its edge surface has degree 2(4−3)(4+1−1) = 8 and is the union of four

cones. In the pencil of quadrics that contain C, sP+ tQ for [s, t]∈ P1, four are singular and are given

by the roots of det(sP+ tQ). Here, the quadratic forms P,Q are expressed as symmetric matrices.

Each singular quadric is a cone and each line on that cone is a stationary bisecant of C. A general

point of C lies on four stationary bisecants, one for each cone.

The union of two circles in different planes is also a space quartic, but it is not in general a

complete intersection (the complex points of a complete intersection are connected). We therefore

expect a different answer than for general space quartics. We give a taste of that which is to come.

Theorem 2.1. Let C1 and C2 be circles in R
3 lying in different planes. Their convex hull is a

spectrahedron if and only if the scheme C1∩C2 has length 2. When the complex points of the circles

are disjoint and neither is tangent to the plane of the other, the edge surface is irreducible and has

degree eight. Its rulings are parameterized by a smooth curve of genus one in C1 ×C2. A general

point of C1 ∪C2 lies on two stationary bisecants.

Proof. This is proven in Lemma 3.1, and in Theorems 3.3, 3.5 and 4.8. ¤

3. STATIONARY BISECANTS TO TWO COMPLEX CONICS

We study stationary bisecants and edge surfaces in the algebraic relaxation of our problem of two

circles, replacing circles in R3 by smooth conics in P3 = CP3.

A conic C in P3 spans a plane. Let C1 and C2 be conics spanning different planes, Π1 and Π2,

respectively. A stationary bisecant is spanned by points p ∈C1 and q ∈C2 with p 6= q whose tangent

lines TpC1 and TqC2 meet. Set ℓ := Π1 ∩Π2.

Lemma 3.1. A point p ∈C1 lies on two stationary bisecants unless the tangent line TpC1 meets C2.

If the tangent line meets C2, then it is the unique stationary bisecant through p unless p ∈C2 or TpC1

lies in the plane Π2 of C2. When TpC1 ⊂ Π2, the pencil of lines in Π2 through p are all stationary

bisecants.

Proof. See Fig. 3 for reference. Consider the tangent line TpC1 for p ∈C1. Either

(i) TpC1 6⊂ Π2 or (ii) TpC1 ⊂ Π2 .

In case (i), let q be the point where TpC1 meets Π2. There are further cases. When q 6∈ C2, there

are two tangents to C2 that meet q, and the lines through p and each point of tangency (r,s in Fig. 3)

give two stationary bisecants through p. If q ∈C2 and p 6= q, then the tangent line TpC1 is the only

stationary bisecant through p.

In case (ii), the tangent line TpC1 meets every tangent to C2, and every line in Π2 through p

(except TpC2 if p ∈ C2) meets C2 and is therefore a stationary bisecant. If p ∈ C2, then the tangent

line TpC2 is a limit of such lines. ¤
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FIGURE 3. Stationary bisecants.

Remark 3.2. When C1 is tangent to the plane Π2 at a point p, the pencil of lines in Π2 through p

are degenerate stationary bisecants. When p 6∈ C2, a general line in the pencil meets C2 twice so

that the map from C2 to this pencil has degree two.

Lines that meet C1 and C2 in distinct points are given by points (p,q) ∈C1 ×C2 with p 6= q. The

edge curve E is the Zariski closure of the set of points (p,q) such that p,q is a stationary bisecant.

As a smooth conic is isomorphic to P1, the edge curve is a curve in P1×P1. Subvarieties of products

of projective spaces have a multidegree (see [4, § 2]). For a curve C in P
1 ×P

1, this becomes its

bidegree (a,b), where a is the number of points in the intersection of C with P1 ×{q} for q general

and b the number of points in the intersection of C with {p}×P1 for p general. As P1 ×{q} has

bidegree (0,1) and {p}×P1 bidegree (1,0), the intersection pairing on curves in P1×P1, expressed

in terms of bidegree, is

(1) (a,b) · (c,d) = ad +bc ∈ Z .

A curve of bidegree (a,b) is defined in homogeneous coordinates ([s : t], [u : v]) for P1 ×P1 by a

bihomogeneous polynomial that has degree a in s, t and b in u,v.

Theorem 3.3. The edge curve E has bidegree (2,2).

Proof. In the projection to C1, two points of E map to a general point p ∈C1, by Lemma 3.1. Thus

the intersection number of E with {p}×C2 is 2 and vice-versa for C1 ×{q}, for general q ∈ C2.

Consequently, E has bidegree (2,2).
We compute the defining equation of E to give a second proof. This begins with a parameteriza-

tion of the conics. Let fi,0, . . . , fi,3 ∈ H0(P1,O(2)) for i = 1,2 be two quadruples of homogeneous

quadrics that each span H0(P1,O(2)). Each quadruple gives a map fi : P1 → P3 whose image is a

conic Ci. The plane Πi of Ci is defined by the linear relation among fi,0, . . . , fi,3, and we assume that

Π1 6= Π2.

In coordinates, if [s : t] ∈ P1, then the image

fi[s : t] = [ fi,0(s, t) : fi,1(s, t) : fi,2(s, t) : fi,3(s, t)]

is the corresponding point of Ci. Its tangent line is spanned by ∂s fi and ∂t fi, where ∂x := ∂
∂x

, as

s∂s f + t∂t f = 2 f , for a homogeneous quadric f . The points f1[s : t] and f2[u : v] span a stationary
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bisecant when their tangents meet. Equivalently, when

(2) E(s, t,u,v) := det

à
∂s f1,0 ∂s f1,1 ∂s f1,2 ∂s f1,3

∂t f1,0 ∂t f1,1 ∂t f1,2 ∂t f1,3

∂u f2,0 ∂u f2,1 ∂u f2,2 ∂u f2,3

∂v f2,0 ∂v f2,1 ∂v f2,2 ∂v f2,3

í

= 0 .

As the first two rows have bidegree (1,0) and the second two have bidegree (0,1), this form

E(s, t,u,v) has bidegree (2,2). ¤

Example 3.4. Suppose that C1 and C2 are the unlinked unit circles where C1 is centered at the

origin and lies in the xy-plane and C2 is centered at (3,0,0) and lies in the xz-plane. If we choose

homogeneous coordinates [X0 : X1 : X2 : X3] for P3 where (x,y,z) = 1
X0
(X1,X2,X3), then these admit

parametrizations

[s : t] 7−→ [s2 + t2 : s2 − t2 : 2st : 0] and [u : v] 7−→ [u2 + v2 : 2u2 +4v2 : 0 : 2uv] .

Dividing the determinant (2) by −16 gives the equation for the edge curve E,

s2u2 − 3s2v2 − 3t2u2 + 5t2v2 ,

which is irreducible. We draw E below in the window |s/t|, |u/v| ≤ 5 in RP1 ×RP1.

(3)

The Zariski closure of the union of all stationary bisecants is the ruled edge surface E . By

Lemma 3.1, a general point of one of the conics lies on two stationary bisecants. Therefore, each

conic is a curve of self-intersections of E , and the multiplicity of E at a general point of a conic is

2.

Theorem 3.5. The edge surface E has degree eight when C1 ∩C2 = /0 and neither is tangent to the

plane of the other.

Proof. The line ℓ = Π1 ∩Π2 meets each conic in two points and therefore meets E in at least four

points. Any other point r ∈ ℓ∩E lies on a stationary bisecant m between a point p of C1 and a point

q of C2. As p,r ∈ Π1, we have m ⊂ Π1, and similarly m ⊂ Π2. Thus m = ℓ, but ℓ is not a stationary

bisecant, a contradiction.

Each of the four points of ℓ∩ E has multiplicity two on E by Lemma 3.1 and the observation

preceding the statement of the theorem. Thus, E has degree eight.

We give a second proof. Let m be a general line that meets E transversally. The points of m∩E

lie on stationary bisecants that meet m. We count these using intersection theory. Let M ⊂C1 ×C2

be the curve whose points are pairs (p,q) such that the secant line spanned by p and q meets m.

Stationary bisecants that meet m are points of intersection of M and the edge curve E. We compute

the bidegree of M.

Fix a point p ∈ C1 with p 6∈ Π2. Secant lines through p rule the cone over C2 with vertex p. As

this cone meets m in two points, we have deg(M∩{p}×C2) = 2. The symmetric argument with a
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point of C2 shows that M has bidegree (2,2). By (1), M meets E in (2,2) · (2,2) = 4+4 = 8 points.

This proves the theorem. ¤

The arguments in this proof using intersection theory are similar to arguments used in the contri-

butions [4, 12] in this volume.

Remark 3.6. Each irreducible component C of the edge curve E gives an algebraic family of sta-

tionary bisecants and an irreducible component C of the edge surface E . If C has bidegree (a,b),
then the corresponding component C of E has degree at most (2,2) · (a,b) = 2(a+b). This is not

an equality when the intersection M ∩E has a basepoint or when the general point of C contains

two stationary bisecants. This occurs when one circle is tangent to the plane of the other and there

are one or more components of degenerate stationary bisecants.

Example 3.7. The real points of the edge curve (3) of Example 3.4 had two connected components

(the picture showed a patch of RP1 ×RP1). Thus, the set of real points of the edge surface has two

components. Stationary bisecants corresponding to the oval in the center of (3) lie along the convex

hull, which shown on the left below. The others bound a nonconvex set that lies inside the convex

hull. We display it in an expanded view on the right below.

The planes of the circles meet in the x-axis. For sufficiently small ε > 0, the line defined by y= z= ε
meets E transversally. Near each point of a circle lying on the x-axis it meets E in two points, one

for each of the two families of stationary bisecants passing through the nearby arc of the circle.

These eight points are real.

A curve of bidegree (2,2) on P1 ×P1 has arithmetic genus one, by the adjunction formula [9,

Ex. V.1.5.2]. If smooth, then it is an irrational genus one curve. Another way to see this is that

the projection to a P1 factor is two-to-one, except over the branch points, of which there are four,

counted with multiplicity. Indeed, writing its defining equation as a quadratic form in the variables

(u,v) for the second P1 factor, its coefficients are quadratic forms in the variables s, t of the first P1.

The projection to the first has branch points where the discriminant vanishes, which is a quartic form.

By elementary topology, a double cover of CP1 with four branch points has Euler characteristic zero,

again implying that it has genus one.

Lemma 3.8. For every set S of four points of C1, there is a conic C2 such that the projection to C1

of the edge curve is branched over S.

Proof. Let p be the point of intersection of two of the tangents to C1 at points of S and q be the point

of intersection of the other two tangents (see Fig. 4). Since the tangent TsC1 at any point s ∈ S meets

C2 (in one of the points p or q), Lemma 3.1 implies this is the unique stationary bisecant involving

the point s. Thus, the points of S are branch points of the projection to C1 of the edge curve. ¤
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FIGURE 4. Conic giving specified branch points.

Remark 3.9. There are three families of conics C2 giving an edge curve branched over S. These

correspond to the three partitions of S into two parts of size two. Each partition determines two

points p,q on the plane Π1 of C1 where the tangent lines at the points in each part meet. The

corresponding family is the collection of conics C2 that meet Π1 transversally in p and q.

If both C1 and S ⊂C1 are real and we choose an affine R3 containing the points p and q, then we

may choose C2 to be a circle.

The isomorphism class of a complex smooth genus one curve is determined by its j-invariant [9,

§ IV.4]. This may be computed from the branch points S of any degree two map to P1. Explicitly, if

we choose coordinates on P1 so that the branch points S are {0,1,λ ,∞}, then the j-invariant is

28 ·
(λ 2 −λ +1)3

λ 2(λ −1)2
.

We have the following corollary of Lemma 3.8.

Theorem 3.10. For every conic C1 and every J ∈C, there is a conic C2 such that the edge curve has

j-invariant J. When C1 and S ⊂C1 are real, C2 may be a circle.

We now classify the possible edge curves E to a pair of conics C1 and C2 lying in distinct planes

Π1 and Π2. By Lemma 3.12, every component of E is reduced. If E = F ∪G is reducible, then we

have that (2,2) = bidegree(F)+ bidegree(G). Thus, the bidegrees of the components of E form a

partition of (2,2). If E is irreducible, then either it is smooth of genus one or singular of arithmetic

genus one and hence rational. Any curve of bidegree (1,a) or (a,1) is rational. Table 1 gives the

different possibilities, along with pictures of a real curve.

Theorem 3.11. All types of (2,2)-curves of Table 1 occur as the edge curve of a pair of conics

C1,C2 lying in distinct planes except a curve with a cusp and a reducible curve 2(1,0)+2(0,1) with

four components.

For existence, see Tables 2, 3 and 4, which display edge curves of two circles in all possible

configurations. We rule out edge curves with a cusp and reducible edge curves of type 2(1,0)+
2(0,1). We first analyze the singularities of edge curves.

Lemma 3.12. The edge curve E is reduced. A point (p,q) ∈ C1 ×C2 is a singular point of E only

if p = q or TpC1 ⊂ Π2 or TqC2 ⊂ Π1. There are five possibilities for p,q and the tangents, up to

interchanging the conics C1 and C2.

(i) p = q and the tangent to each conic at p does not lie in the plane of the other.
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smooth (generic) nodal rational cuspidal 2(1,0)+2(0,1)

2(1,1) (2,1)+(0,1) (2,1)+(0,1) (1,1)+(0,1) (1,1)+(0,1)
+(1,0) +(1,0)

TABLE 1. Types of (2,2)-curves.

(ii) p = q with TpC1 ⊂ Π2, but TqC2 6⊂ Π1.

(iii) p = q with both TpC1 ⊂ Π2 and TqC2 ⊂ Π1.

(iv) p 6= q and TpC1 ⊂ Π2, but TqC2 6⊂ Π1. Then p ∈ TqC2 is a stationary bisecant.

(v) p 6= q and TpC1 = TqC2 is Π1 ∩Π2, and is a stationary bisecant.

Proof. Let (p,q) ∈C1 ×C2 be a point on a curve E of bidegree (2,2). If the fiber of E in one of the

projections from (p,q), say to C2, has exactly two points, then E is smooth at (p,q). Indeed, as E is

a (2,2) curve, E ∩ (C1×{q}) is either C1×{q} or one double or two simple points, and if two, then

E is smooth at each point.

Consequently, there are three possibilities for points of E in the fibers of the projections to C1 and

C2 containing a singular point (p,q). Either

(1) (p,q) is the only point of E in both fibers,

(2) (p,q) is the only point in one fiber and the other fiber is a component of E, or

(3) both fibers are components of E.

In Case 2, E has at least one component with either linear bidegree (1,0) or (0,1), and in Case 3, it

has at least one component with each linear bidegree.

Now let E be the edge curve, which is smooth at any point (p,q) where there is another point in

one of the two fibers of projections to Ci. Lemma 3.1 implies that there are two points in E over a

general point of either conic, so every component of E is smooth at a generic point and therefore E

is reduced. By Lemma 3.1 and the analysis above, a point (p,q) ∈ E is singular if and only if both

tangents meet the other conic for otherwise there is a second point in one of the fibers.

If TpC1 ⊂ Π2, then every line in Π2 through p is a stationary bisecant, so E contains {p}×C2,

which has bidegree (1,0). If TqC2 ⊂ Π1, then as before E contains C1 ×{q}, which has bidegree

(0,1). If neither occurs, but E is singular at (p,q), then we are in Case (i). When p = q and we

are not in Case (i), then, up to interchanging the indices 1 and 2, we are in either Case (ii) or (iii).
When p 6= q, so that one circle is tangent to the plane of the other, then we are in either Case (iv) or

(v). ¤
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of Theorem 3.11. We need only to rule out that the edge curve E has type 2(1,0)+2(0,1) or has a

cusp. By Lemma 3.12, E has a component {p}×C2 of bidegree (1,0) exactly when C1 is tangent

to the plane Π2 at the point p. Since Π1 6= Π2, there is at most one such point of tangency on C1,

so E has at most one component of bidegree (1,0) and the same is true for a component of bidegree

(0,1). Thus the type 2(1,0)+2(0,1) cannot occur for an edge curve.

We show that if (p,q) ∈ E is a singular point in Case (i) of Lemma 3.12, then E has a node at

(p,q), ruling out a cusp and completing the proof.

Suppose that p = q and the tangents to each conic at p do not lie in the plane of the other. Choose

coordinates x,y,z,w for P3 so that Π1 is the plane z = 0, Π2 is the plane x = 0, TpC1 is the line

y = z = 0, TpC2 is x = y = 0, and p = [0 : 0 : 0 : 1]. Then we may choose parametrizations near p for

C1 and C2 of the form

(4)
C1 : s 7−→ [s+as2 : bs2 : 0 : 1+ cs+ds2 ]

C2 : u 7−→ [0 : βu2 : u+αu2 : 1+ γu+δu2 ] ,

for some a,b,c,d,α,β ,γ,δ ∈ C where bβ 6= 0. The edge curve is defined by

(5) det

á
s+as2 bs2 0 1+ cs+ds2

1+2as 2bs 0 c+2ds

0 βu2 u+αu2 1+ γu+δu2

0 2βu 1+2αu γ +2δu

ë

= (β (ac−d)−b(αγ −δ ))s2u2 −2bαs2u+2aβ su2 +βu2 −bs2 .

Indeed, the matrix has rows f1(s), f ′1(s), f2(u), f ′2(u), where fi is the parameterization of Ci (4). The

determinant vanishes when the tangent to C1 at f1(s) meets the tangent to C2 at f2(u). The terms of

lowest order in (5), βu2 − bs2, have distinct linear factors when bβ 6= 0. Thus E has a node when

s = u = 0, which is (p, p). ¤

4. CONVEX HULL OF TWO CIRCLES IN R3

We classify the relative positions of two circles in R3 and show that the combinatorial type of the

face lattice of their convex hull depends only upon their relative position. This relative position is

determined by the combinatorial type of the face lattice and the real geometry of the edge curve. We

use this classification to determine when the convex hull of two circles is a spectrahedron.

Let C1,C2 be circles in R3 lying in distinct planes Π1 and Π2, respectively. The intersection

C1 ∩Π2 in CP3 is either two real points, two complex conjugate points, or C1 is tangent to Π2 at

a single real point. Let m1 be the number of real points in this intersection, and the same for m2.

Order the circles so that m1 ≥ m2, and call [m1,m2] the intersection type of the pair of circles.

The configuration of the circles is determined by the order of their points along the line ℓ := Π1∩
Π2 ⊂ R3. For example, C1 and C2 have order type (1,2,1,2) along ℓ when they have intersection

type [2,2] and meet ℓ in distinct points which alternate. If C1 ∩C2 6= /0, then we write S for that

shared point. For example, if C1 meets ℓ in two real points with C2 tangent to ℓ at one, then this pair

has order type (1,S). The intersection type may be recovered from the order type.

A further distinction is necessary for intersection type [0,0], when both circles meet ℓ in two

complex conjugate points. In CP3 either C1 ∩C2 = /0 or C1 ∩ ℓ=C2 ∩ ℓ. Write /0 for the order type
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in the first case and (2c) in the second. By Lemma 3.12, the edge curve is smooth in order type /0

and singular in order type (2c).

Lemma 4.1. There are fifteen possible order types of two circles in R3.

Proof. See Tables 2, 3, and 4 for the order types of circles and their convex hulls.

The possible intersection types are [0,0], [1,0], [1,1], [2,0], [2,1], and [2,2]. For [0,0], we noted

two order types, and intersection types [1,0] and [2,0] each admit one order type, namely (1) and

(1,1), respectively.

For [1,1], each circle Ci is tangent to ℓ at a point pi. Either p1 6= p2 or p1 = p2, so there are two

order types, (1,2) and (S).
For [2,1], the line ℓ is secant to circle C1 and C2 is tangent to ℓ at a point p2. Either p2 is in the

exterior of C1 or it lies on C1 or it is interior to C1. These give three order types ℓ, (1,1,2), (1,S),
and (1,2,1), respectively.

Finally, for [2,2] there are three order types when all four point are distinct, (1,1,2,2), (1,2,1,2),
and (1,2,2,1). When one point is shared, we have (1,2,S) or (1,S,2). Finally, both points may be

shared, giving (S,S). ¤

[0,0] /0 [2,0] (1,1) [2,2] (1,2,2,1)

[2,2] (1,1,2,2) [2,2] (1,2,1,2) [2,2] (1,S,2)

TABLE 2. Some convex hulls, intersection and order types, and edge curves.
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[2,2] (1,2,S) [2,2] (S,S) [0,0] (2c)

TABLE 3. More convex hulls, intersection and order types, and edge curves.

The order type of the circles determines the combinatorial type of the face lattice of their convex

hull K. Describing the face lattice means identifying all (families of) faces of K, their incidence

relations, and which are exposed/not exposed. Throughout, Di is the disc of the circle Ci. We invite

the reader to peruse our gallery in Tables 2, 3, and 4 while reading this classification. Our main

result is the following.

Theorem 4.2. The order type of C1,C2 determines the combinatorial type of the face lattice of

K, as summarized in Table 5. There are eleven distinct combinatorial types of face lattice. The

combinatorial type of the face lattice, together with the real algebraic geometry of its edge curve,

determines the order type.

We determine the face lattice for each order type. Some general statements are given in prelim-

inary results which precede our proof of Theorem 4.2. The statements are asymmetric, with the

symmetric statement obtained by interchanging 1 and 2. We first study the section κ1 := K ∩Π1 of

K, which contains D1.

Lemma 4.3. κ1 = conv(C1,C2 ∩Π1).

Proof. As Di = conv(Ci), K = conv(D1,D2). Therefore a point x ∈ K is a convex combination

λy+µz (λ ,µ ≥ 0 with λ +µ = 1) of points y ∈ D1 and z ∈ D2. If x ∈ κ1 ⊂ Π1, then as y ∈ Π1, we

must have that z ∈ D2 ∩Π1 = conv(C2 ∩Π1). ¤

Corollary 4.4. If C2 ∩Π1 ⊂ D1, then we have κ1 = D1. Otherwise, κ1 is the convex hull of D1 and

the one or two points of C2 ∩Π1 exterior to D1. A point p ∈C1 is an extreme point of κ1 if and only

if C1 and C2 ∩Π1 lie on the same side of TpC1. An extreme point p ∈C1 of κ1 is not exposed if and

only if TpC1 meets C2r{p}. Extreme points of κ1 are extreme points of K and nonexposed points of

κ1 are nonexposed in K. Finally, κ1 is a face of K if and only if m2 ≤ 1.

Proof. The first two statements follow from Lemma 4.3. The next two about extreme points p of κ1

follow as TpC1 is the only possible supporting line to κ1 at p. The next, about extreme points of K

and its section κ1, follows by Lemma 4.3, and the last is immediate as C2 lies on one side of Π1 if

and only if |C2 ∩Π1|< 2. ¤
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[2,1] (1,2,1) [2,1] (1,S) [2,1] (1,1,2)

[1,0] (1) [1,1] (1,2) [1,1] (S)

TABLE 4. More convex hulls, intersection and order types, and edge curves.

By Lemma 3.1, a general point p ∈C1 lies on two stationary bisecants. If p ∈ K is extreme, then

these may support one-dimensional bisecant faces of K. We determine the bisecant faces meeting

most extreme points. Any plane supporting an extreme point p ∈C1 contains TpC1. If such a plane

does not meet C2, then p is exposed.

Lemma 4.5. Let p ∈ K be an extreme point of K. If TpC1 neither meets C2 nor lies in Π2, then p is

exposed. Such a point p lies on one bisecant face if m2 ≤ 1 and two if m2 = 2. When there are two,

one is on each side of Π1.

Proof. Let p ∈ C1 be an extreme point of K such that TpC1 neither meets C2 nor lies in Π2. By

Corollary 4.4, C1 and C2 ∩Π1 lie on the same side of TpC1 in Π1. In the pencil RP1 of planes con-

taining TpC1, those meeting K form an interval I containing Π1 and an interval γ of planes meeting

C2. Each endpoint of γ is a plane containing a stationary bisecant through p. Our assumptions on p
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and TpC1 imply that I 6= RP1, so that p is exposed. If m2 ≤ 1, then Π1 is one endpoint of I and the

other is an endpoint of γ , otherwise the endpoints of I are the endpoints of γ and Π1 is an interior

point, which proves the lemma. ¤

Remark 4.6. Corollary 4.4 identifies the 2-faces, extreme points, and some nonexposed points of

K. Lemma 4.5 identifies most exposed points and bisecant edges. The rest of the face lattice is

determined in the proof of Theorem 4.2. We first understand the boundary of each section κi =
K ∩Πi. Fig. 5 shows the possibilities when κi is not the disc Di. There, q1 and q2 are points of the

Di

p1

p2

q1

(a)

Di

p1

p2 q1

q2

(b)

q1 q2

p4 p3

p1 p2

Di

(c)

FIGURE 5. Some possible slices κi.

other circle on the boundary of κi and points p j are nonexposed points of Ci as Tp j
Ci meets q1 or q2.

The line segment between q1 and q2 is where the disc of the second circle meets Πi.

of Theorem 4.2. We give separate arguments for each order type.

Order type /0. By Corollary 4.4, both discs are faces of K, and every point of the circles is extreme.

By Lemma 4.5, all points of the circles are exposed, and each point lies on exactly one bisecant face.

The same description holds for order type (2c). As the edge curve for order type /0 is smooth and

of genus 1, while that for order type (2c) is singular, the edge curve distinguishes these two order

types.

Order type (1,1). Since m1 = 2 and m2 = 0, D1 is the only 2-face. The section κ2 is similar to

Fig. 5 (b), so the extreme points on C2 form an arc ṗ1, p2 whose endpoints are not exposed, each

lying on one bisecant edge. The interior points of ṗ1, p2 are exposed by Lemma 4.5 and each lies

on two bisecant edges. Similarly, every point of C1 is exposed and lies on one bisecant edge.

The same description holds for order type (1,2,1). Its edge curve is singular, while order type

(1,1) has a smooth edge curve.

Order type (1,2,2,1). Since m1 = m2 = 2, K has no 2-faces. Since C2 meets the interior of D1,

Corollary 4.4 implies that every point of C1 is extreme and C2 has two intervals of extreme points.

The four endpoints are not exposed and each lies on one bisecant edge. By Lemma 4.5, every point

of C1 and of the interior of the arcs on C2 is exposed and lies on two bisecant edges.

Order type (1,1,2,2). By Corollary 4.4, K has no 2-faces and each circle has one arc of extreme

points, as the sections κi are similar to Fig. 5 (a). As before, each endpoint of an arc is not exposed

and lies on one bisecant edge, and each interior point of an arc is exposed and lies on two bisecant

edges.

The same description holds for order types (1,2,1,2) and (1,S,2). The edge curve in type

(1,1,2,2) has two real components as seen in Example 3.7, while for type (1,2,1,2) there is one

real component, and both are smooth. For type (1,S,2), the edge curve is singular at the shared

point.
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Order type (1,2,S). Again, K has no 2-faces. All points of C1 are extreme and C2 has an arc

of extreme points whose endpoints are not exposed and each lies on one bisecant edge. Also, all

interior points of that arc and of C1—except possibly the shared point p—are exposed and lie on

two bisecant edges. The tangents TpC1 and TpC2 span a plane exposing p and p lies on no bisecant

edges.

Order type (S,S). There are no 2-faces and as in type (1,2,S) every point of the circles is extreme,

and the nonshared points are exposed and each lies on two bisecant edges. Each shared point is

exposed by the plane spanned by the two tangents at that point and neither shared point lies on a

bisecant edge.

Order type (1,S). The only 2-face is D1. Every point of C1 is extreme and C2 has an arc ṗ1, p2

of extreme points with one endpoint, say p1, the shared point where C2 is tangent to Π1. Neither

endpoint is exposed and p2 lies on one bisecant edge (the bisecant Tp1
C2 meets the interior of D1).

By Lemma 4.5, every point of C1 except p1 lies on one bisecant edge and every interior point of

ṗ1, p2 lies on two bisecant edges, and all of these are exposed.

Order type (1,1,2). The only 2-face is κ1 and its shape is as in Fig 5 (a) with the vertex q1 where

D2 is tangent to Π1. There is an arc ṗ1, p2 of extreme points of C1 whose endpoints are not exposed

with each lying on a bisecant edge pi,q1. The section κ2 has the same shape and C2 has an arc q̇1,q2

of extreme points with neither endpoint exposed. The point q2 lies on one bisecant edge along Tq2
C2

and q1 lies on two bisecant edges pi,q1. Neither of the edges pi,q1 is exposed as Π1 is the only

supporting plane of K containing either edge. Finally, by Lemma 4.5, interior points of the arcs are

exposed, with those from ṗ1, p2 lying on one bisecant edge and those from q̇1,q2 lying on two.

In the order types of the last row of Table 4, the circle C2 is tangent to Π1 at a point q1 and the

tangent Tq1
C2 does not meet the interior of D1. In the pencil of planes containing Tq1

C2, Π1 and Π2

are the endpoints of an interval of planes meeting KrTq1
C2 and of an interval of planes that meet K

only in Tq1
C2∩K. Thus, both sections κ1 and κ2 are 2-faces of K and the face Tq1

C2∩K is exposed.

Order type (1). Here, m1 = 1 and m2 = 0. The 2-face κ2 has the same shape as in order type

(1,1,2). The description of the points and bisecant edges meeting C2 is also the same. By Lemma 4.5

and the preceding observation, every point of C1 is exposed, and all lie on a unique bisecant edge

except q1, which lies on the two nonexposed bisecant edges pi,q1.

Order type (1,2). This is the most complicated. Each circle is tangent to the plane of the other,

sharing a tangent line, and the description is symmetric in the indices 1 and 2. The 2-faces are

the sections κ1 and κ2, with the description for each is nearly the same as for κ1 in order type

(1,1,2). The exception is the bisecant edge p1,q1 lying along the shared tangent. This is exposed,

but neither endpoint is exposed. It is also isolated from the other bisecant edges, which form a

continuous family.

Order type (S). The two circles are mutually tangent at a point p. The 2-faces are D1 and D2, every

point of either circle is extreme, including p, and each (except for p) lies on one bisecant edge. ¤

Table 5 summarizes the face lattices by order type. In it, when mi = 1, pi is the point were Ci is

tangent to the plane of the other circle.

By Theorem 2.1, the convex hull K is a spectrahedral shadow. We use our classification to de-

scribe when K is a spectrahedron.
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Order Type 0-faces 1-faces 2-faces

/0 Points on C1 ∪C2 One family parameterized by C1 D1, D2

(1,1)
Points on C1 and points

on an arc of C2
One family parameterized by C1 D1

(1,2,2,1)
Points on C1 and points

on two arcs of C2
Two families parameterized by C1 None

(1,1,2,2)
Points on an arc of C1

and an arc of C2

One family parameterized by a

2-fold branched cover of an arc
None

(1,2,1,2) Same as order type (1,1,2,2)

(1,S,2) Same as order type (1,1,2,2)

(1,2,S)
Points on C1 and

an arc of C2

Two families parameterized

by C1 rC2
None

(S,S) Points on C1 ∪C2
Four families with two parameterized

by each arc C1 rC2
None

(2c) Same as order type /0

(1,S)
Points on C1 and

an arc of C2

One family parameterized

by C1 rC2
D1

(1,1,2)
Points on an arc of C1

and an arc of C2

One family parameterized by

the arc of C1
conv(D1, p2)

(1,2,1) Same as order type (1,1)

(1)
Points on C1 and

an arc of C2

One family parameterized by

the arc on C2

D1,

conv(D2, p1)

(1,2)
Points on an arc of C1

and an arc of C2

One family parameterized by either

arc, and an isolated bisecant p1, p2

conv(D1, p2),
conv(D2, p1)

(S) Points on C1 ∪C2
One family parameterized by either

circle except the common point
D1, D2

TABLE 5. Face lattices.

Lemma 4.7. Let C1,C2 ∈ P
3 be conics in distinct planes Π1 and Π2. If C1 ∩Π2 =C2 ∩Π1, then C1

and C2 lie on a pencil of quadrics.

Proof. Since C1,C2 lie on the singular quadric Π1∪Π2, we need only find a second quadric contain-

ing them. Choose coordinates [x : y : z : w] for P3 so that Π1 is defined by w = 0 and Π2 by z = 0.

Then C1 and C2 are given by homogeneous quadratic polynomials f (x,y,z) = 0 and g(x,y,w) = 0.

Since C1 ∩Π2 = Π1 ∩C2, the forms f (x,y,0) and g(x,y,0) define the same scheme, so they are pro-

portional. Scaling g if necessary, we may assume that f (x,y,0) = g(x,y,0). Define h(x,y,z,w) to be
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f (x,y,z)+ g(x,y,w)− f (x,y,0). It follows that h(x,y,z,0) = f (x,y,z) and h(x,y,0,w) = g(x,y,w),
and thus C1 and C2 lie on the quadric defined by h. ¤

Theorem 4.8. The convex hull of two circles C1 and C2 lying in distinct planes in R3 is a spectra-

hedron only if they have order type (SS) or (2c) or (S).

Proof. We have that C1 ∩Π2 =C2 ∩Π1 in P3 if and only if the circles have order type (SS) or (2c)
or (S). By Lemma 4.7, C1 and C2 lie on a pencil Q1 + tQ2 of quadrics. Following Example 2.3

in [14], this pencil of quadrics contains singular quadrics given by the real roots of det(Q1 + tQ2).
Such a singular quadric is given by the determinant of a 2×2 matrix polynomial Ax+By+Cz+D,

and the block diagonal matrix with blocks A, B, C, and D represents conv(C) as a spectrahedron.

By Corollary 4.4, K has a nonexposed face when a tangent line to one circle meets the other

circle in a different point. This occurs for all the remaining order types of the circles C1 and C2,

except type /0 where C1∩C2 = /0 in P3. In this case, the edge curve is irreducible with two connected

real components and the edge surface meets the interior of conv(C) (as there are internal stationary

bisecants). Thus, conv(C) is not a basic semialgebraic set and thus not a spectrahedron. ¤

5. CONVEX HULLS THROUGH DUALITY

We sketch an alternative approach to studying the convex hull K of two circles that uses projective

duality. This is inspired by the paper [6] and accompanying video [7] that explains a solution to the

problem of determining the convex hull of three ellipsoids in R3.

Points Π̌ of the dual projective space P̌
3 correspond to planes Π of the primal space P

3. A line

ℓ̌ represents the pencil of planes containing a fixed line ℓ ⊂ P3, and a plane ǒ represents the net of

planes incident on a point o ∈ P
3. The dual Č ⊂ P̌

3 of a conic C ⊂ P
3 is the set of planes that contain

a line tangent to C.

Lemma 5.1. The dual Č to a conic C is a quadratic cone in P̌3 with vertex Π̌ corresponding to the

plane Π of C.

Proof. The pencil of planes containing the tangent line TpC to C is a line lying on Č that meets Π̌

as TpC ⊂ Π. Thus, Č is a cone in P̌3 with vertex Π̌. Let o ∈ P3 be any point that is not on Π. Then

the curve ǒ∩Č is the set of planes through o that contain a tangent line TpC to C. As there are two

such planes that contain a general line ℓ through o—ℓ meets two tangents to C—the curve ǒ∩Č is a

conic in ǒ and Č is the cone over that conic with vertex Π̌. ¤

Let C1,C2 be circles in R3 ⊂ RP3 lying in distinct planes Π1,Π2 and let K be the convex hull

of C1 ∪C2. Let o be any point in the interior of K. We will consider the hyperplane ǒ ⊂ ŘP
3

to

be the hyperplane at infinity and set Ř3 := ŘP
3
r ǒ. This is an affine space that contains every

hyperplane supporting K as well as all those disjoint from K, as every hyperplane incident on o

meets the interior of K. It also contains the point ∞̌ corresponding to the hyperplane at infinity in

RP3.

For i = 1,2, let Či be the cone in Ř3 dual to the conic Ci. If o ∈ Πi, then the vertex Π̌i of Či lies at

infinity (Π̌i ∈ ǒ) and Či is a cylinder. Neither dual cone contains the point ∞̌. Let Ǩ be the closure

of the component of Ř3 rČ1 rČ2 containing ∞̌.
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Proposition 5.2. Points Π̌ in the interior of Ǩ are exactly those whose corresponding hyperplane Π
is disjoint from K. Points of the boundary of Ǩ correspond to supporting hyperplanes of K, and Ǩ

is convex and bounded.

We present an elementary proof of this standard result about convex sets in Rd .

Proof. Choose coordinates (x,y,z) for R3 so that o = (0,0,0) is the origin. An affine hyperplane is

defined by the vanishing of an affine form Λ := ax+by+cz+d, whose coefficients [a : b : c : d] give

homogeneous coordinates for ŘP
3
. In these coordinates, ∞̌ is the point [0 : 0 : 0 : 1], ǒ has equation

d = 0, and the points of the affine Ř
3 have coordinates [a : b : c : 1], so that ∞̌ is the origin in Ř

3.

Let v = (α,β ,γ) ∈ R3 r{(0,0,0)} and consider the linear map Λv : R3 → R,

Λv(x,y,z) := αx+βy+ γz .

Since Λ−1
v (0) is a plane containing the origin o, Λv(K) is a closed interval [ε,δ ] with 0 in its interior,

so that ε < 0 < δ . Thus, the points

Λv,t : [tα : tβ : tγ : 1] for − 1
δ < t <−1

ε

of ŘP
3

are exactly the hyperplanes in RP3 parallel to Λ−1
v (0) that are disjoint from K as Λv,t(K)⊂

(0,∞) for − 1
δ < t <−1

ε .

All other planes parallel to Λ−1
v (0) meet K, with Λv,−1/δ and Λv,−1/ε the hyperplanes in this

family that support K. These supporting hyperplanes necessarily lie on Č1 ∪Č2. Hence, the interior

of Ǩ is exactly the set of all hyperplanes disjoint from K and its boundary is exactly the set of

hyperplanes supporting K.

As o lies in the interior of K, there is a closed ball centered at o of radius 1/ρ contained in the

interior of K. For any unit vector v, the numbers ε,δ defined by Λv(K) = [ε,δ ] satisfy |1/ε|, |1/δ |<
ρ . Thus, the coordinates of points [α : β : γ : 1] in Ǩ satisfy ‖(α,β ,γ)‖ < ρ , proving that Ǩ is

bounded.

Let Λ = [a : b : c : 1] and Λ′ = [a′ : b′ : c′ : 1] be points of Ǩ. Then Λ(K),Λ′(K) ⊂ [0,∞). Since

[0,∞) is convex, for every t ∈ [0,1], if Λt := tΛ+(1− t)Λ′, then Λt(K)⊂ [0,∞) and so Λt ∈ Ǩ. This

proves that Ǩ is convex. ¤

Points in the boundary (∂K) of Ǩ are hyperplanes supporting K, and faces of Ǩ correspond

to exposed faces of K. For example, Π̌i ∈ ∂ Ǩ if and only if the plane Πi of Ci supports a two-

dimensional face of K. Points of the curve in ∂ Ǩ where the cones Č1 and Č2 meet correspond to

stationary bisecants, and line segments in the ruling of Či lying in ∂ Ǩ correspond to the exposed

points of Ci in K. This may be seen in Fig. 6, which shows the dual bodies to the convex hulls of

Fig. 1. For these, the origin o is the midpoint of the segment joining the centers of the circles.

The intersection of two cones on the left has cone points corresponding to the planes of the discs

in the boundary of the convex set on the left in Fig. 1. In the center is the dual of the oloid. The

origin o is in the interior of the discs of the circles, so both cones Či are elliptical cylinders. On the

right is the intersection of a cone with a horizontal cylinder meeting its vertex. The cylinder is dual

to the vertical circle in the rightmost convex set in Fig. 1. The vertex is the 2-dimensional face, and

the two branches of the intersection curve at the vertex of the cone have limit the two nonexposed

stationary bisecants.
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FIGURE 6. Duals to convex hulls.

In [6], the authors sketch an exact algorithm (beautifully explained in [7]) to compute the convex

hull of three ellipsoids P, Q, and R in R3. Their approach inspired the previous discussion.

If the origin o lies in the interior of an ellipsoid P, then its dual P̌ is also an ellipsoid. If o lies

on P, then its dual is a paraboloid and ∞̌ lies in the convex component of its complement. If o is

exterior to P, then its dual is a hyperboloid of two sheets, and one of the convex components of its

complement contains ∞̌.

Choosing an origin o in the interior of the convex hull K of P∪Q∪R as in Proposition 5.2, Ǩ

is a bounded convex set that is the closure of the region in the complement of the duals containing

the origin ∞̌. The video [7] describes the algorithm to compute K when the origin o lies in the

interior of all three ellipsoids. In that case, the dual Ǩ of the convex hull of the three ellipsoids is

the intersection of the three dual ellipsoids P̌∩ Q̌∩ Ř. Computing Ǩ requires the computation of

the curves where two dual ellipsoids intersect, and points where three dual ellipsoids meet, and then

decomposing the dual ellipsoids along these curves into patches.

This analysis gives three types of points in the boundary of Ǩ.

(1) Points common to all three dual ellipsoids. These give tritangent planes in ∂K.

(2) Points on curves given by the pairwise intersection of dual ellipsoids. They are bitangent

planes and give bitangent edges. These form 1-dimensional families of 1-faces in ∂K.

(3) Points on a single dual ellipsoid. These are tangent planes to an ellipsoid at a point of K,

and give a two-dimensional family of exposed points of K coming from the corresponding

ellipsoid.

As we see in Fig. 6, the dual Ǩ eloquently displays information about the exposed faces of K, but

information about the nonexposed faces is less clear in Ǩ.
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