PIERT’'S FORMULA VIA EXPLICIT RATIONAL EQUIVALENCE
FRANK SOTTILE

ABSTRACT. Pieri’s formula describes the intersection product of a Schubert cycle by
a special Schubert cycle on a Grassmannian. We present a new geometric proof,
exhibiting an explicit chain of rational equivalences from a suitable sum of distinct
Schubert cycles to the intersection of a Schubert cycle with a special Schubert cycle.
The geometry of these rational equivalences indicates a link to a combinatorial proof
of Pieri’s formula using Schensted insertion.

1. INTRODUCTION

Pieri’s formula asserts that the product of a Schubert class and a special Schubert class
is a sum of certain other Schubert classes, each with coefficient 1. This determines the
multiplicative structure of the Chow ring of a Grassmann variety. Pieri’s formula also
arises in algebra, combinatorics, and representation theory, and has several proofs these
contexts [13, p. 73|[6, p. 463][5, p. 24]. Among the geometric proofs, perhaps the most
vivid uses linear algebra to compute a triple intersection of Schubert varieties (cf. [9][7,
p. 203][5, §9.4]) and then invokes (Poincaré) duality. Interestingly, Hodge [9] does not
deduce Pieri’s formula from this triple intersection, but rather gives an inductive proof
based upon certain deformations in the Grassmannian. Laksov [12] uses Giambelli’s
formula and intersection-theoretic maps (a substitute for Hodge’s deformations) in his
inductive proof and Hiller [8] uses Borel’s characteristic map and the Chevalley [3]
formula. Recently, Pragacz and Ratajski [15, 16, 17, 18] have developed an approach
valid for all G/P’s, (G a classical algebraic group, and P a maximal parabolic) using
Borel’s characteristic map and divided differences [2, 4]. This is summarized in [14].

We present, a new geometric proof of Pieri’s formula, explicitly describing a sequence
of deformations (inducing rational equivalence) that transform a general intersection
of a Schubert variety with a special Schubert variety into a union of distinct Schubert
varieties. This gives an understanding of the structure of rational equivalence on Grass-
mann varieties in terms of the combinatorics of the Bruhat order of the Schubert cellular
decomposition. This proof enables one to determine some enumerative problems [24,
§5] (those involving at most five Schubert varieties where at least three are special
Schubert varieties) without reference to a Chow or cohomology ring, the traditional tool
in enumerative geometry. Moreover, these deformations show that these enumerative
problems may be solved over the real numbers [24]. The geometry of these deformations
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is quite interesting and their form parallels a combinatorial proof of Pieri’s formula [5,
p. 24] using Schensted insertion [21].

Their explicit nature leads to homotopy continuation algorithms [1] for finding nu-
merical solutions to enumerative problems involving any number of special Schubert
conditions [10].

Let G,,V be the Grassmannian of m-dimensional subspaces of an n-dimensional vec-
tor space V over a field k. A decreasing sequence a of lengthm (n > a; > --- > a,;, > 1)
and a complete flag F] in V together determine a Schubert subvariety Q. F, of G,,V.
Special Schubert varieties €27, are those Schubert varieties given by the single condition
that an m-plane intersect a given linear subspace L non-trivially. For any subscheme X
of G,,V, let [X] be its cycle class in the Chow ring of G,,V. Pieri’s formula asserts

(1) [QWE]- ] = ) [Q,E],

the sum over all sequences v with 71 > oy > 9 > -+ > ¥, > ay, wWhere Yy — i is
equal to the codimension b of Q7. (L necessarily has codimension m+b—11in V.) Let
a x b denote this set of sequences. One may deduce Pieri’s formula as follows (cf. [5,
§ 9.4]): Let E, be a flag in general position with respect to F, and L, and define ~*
by 7§ := n+1— yn414. By (Poincaré) duality, Pieri’s formula is equivalent to the
statement that

(2) QB ([ )20 E

is either a transverse intersection consisting of a single point or is empty, depending
upon whether or not v € a * b.

Indeed, QuF Qe E = 0 unless a; < ; for each j. If also b = > 7; — «j, then
there exists a subspace C' of dimension m +b — > "*, max{0,v; — ;1 + 1} such that if
H e Q,F (N QE, then H C C. Hence (2) is empty unless LNC # 0 and so v; < a;_1,
hence v € axb. Moreover, in that case, C = C1®---®Cy, and H € Q,F [, E, implies
that dim H N C; = 1. Since L N C' is spanned by the vector f; @ fo @ --- @ f,, where
fi € C;, the intersection (2) is the singleton (fi, fo,..., fm). Examining local equations
shows the intersection is transverse. Similar ideas lead to a proof of a Pieri-type formula
for the flag manifold [22].

In contrast, Hodge [9] deforms the cycle Q,F (€, into a sum A+ B of cycles, where
A C {H € G,k"lv € H} ~ G, k"', with v € k", and B comes from a cycle
B' C G,,k"'. He shows that both A and B’ have the form Q. F'(Qr and completes
the proof by induction.

For our proof, let ChowG,,V be the Chow variety of G,,V, let Y,; be the cycle
Z%a*b Q0 F, and let G C ChowG,,V be the set of cycles Q,F ()€, for all L of a fixed
dimension such that the intersection is generically transverse. We describe a partial
compactification of G in ChowG,,V with b + 1 rational strata, each an orbit of the
Borel subgroup of GL(V') stabilizing F,, hence consisting of isomorphic cycles. The 0th
stratum is dense in G and cycles in the ith stratum have components Xz indexed by
B € a i, where Xz is a subvariety of {2gF,. Passing from one stratum to the next,
each component Xz deforms into some components of cycles in the next stratum. The
‘history’ of each component €2, F, of Y, ; through this process gives a chain in the Bruhat
order of Schubert varieties, recording which component at each stage gave rise to {2, F.
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This leads to the following interpretation of Pieri’s formula: The sum in (1) is over a
certain set of chains in the Bruhat order which begin at «, with the chain ending at
7 recording the history of the cycle 2, F in the sequence of deformations. In §4, we
show how this is similar to a combinatorial proof of Pieri’s formula based on Schensted
insertion.

A chain in the Bruhat order is a standard skew tableau [5, 19]. Thus the Littlewood-
Richardson rule for multiplying two Schubert classes has an interpretation as a sum
over certain chains in the Bruhat order. A (as yet unknown) geometric proof of the
Littlewood-Richardson rule for Grassmannians should provide an explanation for this,
similar to what we give here for Pieri’s formula.

Kleiman [11] proves that in characteristic zero, general subvarieties of a Grassmannian
intersect generically transversally and gives a counterexample in positive characteristic.
In §2, we work over an arbitrary field and give a precise determination (Theorem 2.4) of
when a special Schubert variety meets a fixed Schubert variety generically transversally,
and describe the components of such an intersection. The geometry of these compo-
nents is interesting: while not an intersection of Schubert varieties, each component is
‘birationally fibred’ over such an intersection, with Schubert variety fibres. Such cy-
cles are the key to our proof of Pieri’s formula in §3; they are the components of the
intermediate cycles in the deformations used to establish Pieri’s formula.

2. GEOMETRY OF PIERI-TYPE INTERSECTIONS

2.1. Grassmann and Schubert varieties. Let k£ be a fixed, but arbitrary, field and
m < n positive integers. For sets U C W let W — U be their set-theoretic difference.
Let V ~ k™ be an n-dimensional vector space over k and G,,V be the Grassmannian of
m-planes in V. A complete flag F, in V is a sequence of subspaces

O:Fn+1CFnC"'CFQCF1:V

of V where dim F; = n+1—j. Let (S) denote the linear span of a subset S of V. We let
([::L]) be the set of all m-element subsets of [n] := {1,2,...,n}, considered as decreasing
sequences « of length m: n > a; > ay > --- > «a,;, > 1. A complete flag F, and a
sequence « € ([”]) together determine a Schubert (sub)variety of G,V

m

QF = {HeG,V|dmHNF,; >j 1<j<mj}.

This variety has codimension || := > «; — 4. For example, let F, be a complete flag in
k'°. The Schubert subvariety Qgs31 E, of G4k is

{H|dimH N Es > 1, dimH N E5 > 2, dim H N E3 > 3}.

A special Schubert variety consists of all m-planes H which intersect a single subspace
Fo+s in the flag non-trivially, that is, €245 m—1,...21F. We use a compact notation for
special Schubert varieties. Let L := F}, ,, a subspace of dimension n +1 —m — s, and
define

Qp = Qm+s,m—1,...,2,1E-

Two subvarieties meet generically transversally if they intersect transversally along
a dense subset of every component of their intersection. They meet improperly if the



codimension of their (non-empty) intersection is less than the sum of their codimensions.
A subspace L meets a flag F, properly if it meets each subspace F; properly.

To simplify some assertions and formulae, we adopt the convention that if v is a
decreasing sequence of length m with v, > n, then Q,F = (. Similarly, if the di-
mension of a subspace is asserted to be negative, we intend that subspace to be {0}.
Also, dim{0} = —oco. We sometimes make no distinction between a subvariety and its
fundamental cycle.

Let o € (™) and r be a positive integer. Define a *r C (")) to be the set of those
B € ([Zl]) with 1 > a1 > By > -+ > B > ay and |B| = ||+ 7. If 8 € a*r, set
j(a, B) == min{i| 5; > «;}, the first index 7 where §; differs from ;. For 1 < j < m, let
87 be the Kronecker delta, the sequence with a 1 in the jth position and 0’s elsewhere.

2.2. The cycle Xg(j, F,L). Central to the geometry of Pieri-type intersections are
the components, Xg(j, £, L), of reducible intersections. These subvarieties are also
components of cycles intermediate in deformations we use to establish Pieri’s formula.
Let 5 € ([:z]), 1 < j < m be an integer, F, a flag, and L a linear subspace in V. Define

Xp(j,E,L) == {H € QE |dimHN F5,NL>1},
a subvariety of QgF () Qp.

2.3. Example. We illustrate this notion in G4.'°. First note that
Q8631E = {H | dlmHnEg Z ]_, dim H N Eﬁ Z 2, and dlmHﬂEg Z 3}

Suppose A C k'° has codimension 5 = 4 + 2 — 1 (hence dimension 5) so that 2, has
codimension 2 in G4k'°. Then

X8631(2,E1,A) = {H € CQgg31 E. ‘ dmHNEsNA> 1}

This has dimension 0,13, 14,15, or 16 depending upon whether dim Fg N A is 0,1, 2, 3,
or > 4. (This is determined by considering the condition that a 2-dimensional subspace
(‘HN Eg’) of Eg meet AN Fg.) Since the expected dimension of Qgg31F, (2 is 14,
X8631 (2, E:, A) isa proper subvariety of Q8631E ﬂ QA if dim EsﬂA S 1 and QgﬁglE: ﬂ QA
has excess intersection if dim Fg N A > 3.

The following theorem generalizes these observations, giving precise conditions on
L and F which determine whether Q,F (€ is improper, generically transverse, or
irreducible. Moreover, it computes the components of the intersection in the crucial
case of a generically transverse intersection with the maximal number of irreducible
components.

2.4. Theorem. Let o € ([:l]), s >0, F be a complete flagin'V, and L € Gpy1_pm—sV.
(1) If, for some 1 < j <m,dimF,, NL>n+2—o0a;—j—s and Fy; N L # {0},
then Qo F (Qy, is improper. Otherwise, it is generically transverse.
(2) Suppose dimF,, "L =n+2—oa; —j— s for each 1 < j < m. Let M, be any
flag satisfying Mo, = Fo, and Mo, 41 D (Fo,_,, Fo; N L), for 1 < j < m. Then
Qo F, meets Q, generically transversally, and

WE(% = ) Xs(i(e, 8), M., L).

Beaxl
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(3) Suppose dim F,, N L <n+2—a; —j— s for each 1 < j <m and F,, meets
L properly, so that dimF, NL =n+2— a, —m —s. Then Q,F Qg is
irreducible.

Note that n + 2 — a; — j — s, the critical dimension for F,, N L in this theorem,
exceeds the expected dimension of n + 2 — a; — m — s by m — j. Thus, it is not
necessary that F and L meet properly for Q,F (€ to be generically transverse or
even irreducible. However, it is necessary that F, _ and L meet properly. Also, as
the relative position of F, and L becomes more degenerate, the intersection Q,F () r
‘branches’ into components, one for each j such that dimF,, NL=n+2—a; — j — s,
and it will attain excess intersection if dim Fo,, "L > n+2 —a; — j — s, for even one j.

2.5. Remark. In the situation of Theorem 2.4(2), if § € a* 1 and j(a,8) = 1, then
B = a+ 6. Suppose further that M,, N L = M,,,,. Then

Xﬂ(laMoaL) = Qa+551Mo = Qﬂ—l—(s—l)JlMﬂ

so we have
WE(% = D QienpaM, + Y Xp(i(en ), M., L).
BEaxl BeEaxl
j(a,B)=1 J(a,B)>1

We prove Theorem 2.4 in §2.11. First, we study the varieties Xz(j, F],L). Let § €

([:;]), F, be a complete flag, and 1 < j < m an integer. The rational map from QgF to
G, Fp, given by H — H N Fp, is defined on the dense locus in Qg F, of those H where
dim H N Fg, = j. The closure of the graph of this map is the variety

QOLE = {(H,K) € OpF x G;Fs, |K C H and dimK N Fy, > i, 1<i < j}.

In Lemma 2.7, we show that the projection to G;Fj, realizes ﬁ;F as a fibre bundle
with base and fibres themselves Schubert varieties. Let p be the projection to {23F and
7 the projection to G;Fp,. For K C V, let F /K be the image of the flag F in V/K.
Let F|g, be the flag

F,C--- CF/ng CF/jJ.

and f|; € (["Hj_ﬂj]) the sequence
Br—Bi+1>--> i1 —Bi+1>1=(8));
Unraveling this definition shows (F|g;)(s|,), = Fj;, for i < j.
2.6. Example. Let (H,K) € Qg F,. Then dimH N By > 3, K C H N Eg has
dimension 2, and dimK N Eg > 1. If dimH N Eg = 2, so H is in the ‘big cell’ of

Qge31 F., then K = H N Fg and H determines K uniquely. Also, any K € GyFj such
that dim K N Fg > 1 may arise in this way, which shows

~2
T (98631E1> = Qg = Q3 (B C--- C Eg) = 98631|2E.‘6,

We also see that o 5 "o
1 . 3
ESx ™ dlm(?“?) = b



which shows H/K € Q3 (E,/K).

2.7. Lemma. Let 3 € ([;‘l]), E be a flag, and 1 < 5 < m. Then p is an isomorphism

over the dense subset {H € QpF [ dimH N Fg, = j}. Also, m exhibits (NZ;F as a
fibre bundle with base Qg F|s, whose fibre over K € Qg . F|p, is the Schubert variety
Qi1 pm B/ K C Gy jV/K. Moreover, each fibre of m meets the locus where p is an
isomorphism.

Proof: We describe the fibres of 7. Note that Schubert varieties have a dual description:

H € OgF, <= dim

<m-—i, forl<i<m.
HnNFg — -

If K € Qg F|s;, then K C Fg, C Fp,, for i > j. Thus (E/K)ﬂi = Fy, /K, for i > j.
Hence, if H is in the fibre over K, then H € QgF and K C H, so

di H/K _ di H <  for i< i<
lmH/Kﬂ(F,’/K)ﬂi = lmHﬂng_m 1, for j <i<m.

Thus H/K € Qﬂj+1---ﬁmE/K- The reverse implication is similar and the remaining
assertions follow easily from the definitions. pr

Reformulating the definition of Xz(j, ), L) in these terms gives a useful characteri-
zation:

2.8. Corollary. X(j,E,L) = p(w‘l(Qﬂ|jE|5j ﬂQFﬂjnL)).
Since the fibres of m meet the locus where p is an isomorphism, the map
b W_I(Qﬂ\j};”ﬂj ﬂ QngﬁL) — Xﬂ(]a Ea L)

is proper and birational. Thus, while X3(j, £/, L) is neither a Schubert variety nor
an intersection of Schubert varieties, it is ‘birationally fibred’ over an intersection of
Schubert varieties with Schubert variety fibres, and hence is intermediate between these
extremes.

2.9. Tangent spaces to Schubert varieties. Let H € G,V and K € G, _,,V be
complementary subspaces, so H N K = {0}. The open set U C G,V of those H' with
H' N K = {0} is identified with Hom(H, K) by ¢ € Hom(H, K) — I'y, the graph of
¢ in H® K = V. Thus we identify Ty G,,V, the tangent space of G,V at H, with
Hom(H,V/H), as K is canonically isomorphic to V/H. The intersection of a Schubert
variety €2, F containing H with this open set U can be used to determine whether 2, F,
is smooth at H and its tangent space at H. This gives the following description: If
H € G,V and dim H N Fy,; = j for 1 < j < m, then Q,F is smooth at H and

TuQuF, = {¢ € Hom(H,V/H)|$(H N Fy,) C (Fo,+H)/H, 1< j <m}.

Similarly, if H € G,,,V, L € G411 m sV, and dim H N L = 1, then €y is smooth at H
and the tangent space of €1y, at H is

TS = {¢ € Hom(H,V/H)|¢(HNL) C (L+H)/H}.
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Let P be the subgroup of GL(V) stabilizing the partial flag F,,, C F,, C --- C F,_.
The orbit P - L' consists of those L with dimF,; N L = dim Fy,; N L' for 1 < j < m,
Similarly, L € P- L' if dimF,, NL>dimF, NL' for 1 <j<m. If P-L = P-L then
Qo ENQrL = QuF Q. Thus P-orbits on G,y 1_m_sV determine the isomorphism
type of Pieri-type intersections.

2.10. Lemma. Suppose that L, L' € G, ;1_y_sV with L € P-L'. Then
(1) dim Q. F Q2 > dim Q, F Q-
(2) If QuF () is generically transverse, then Q. F, (1 is generically transverse.
(3) If QuF (U is generically transverse and irreducible, then Q. F, (Qr: is gener-
ically transverse and irreducible.

Proof: Let ¢ : P! — P- I/ be a map with ¥(0) = L and ¢(P') N (P - L') # (. Then
Qo F, (N Q) is isomorphic to Q,F (s, for any ¢t € ¢~ '(P - L'). The lemma follows
by considering the subvariety of P! x G,,V whose fibre over ¢t € P! is Qo F () Q). r

2.11. Proof of Theorem 2.4: Let a € ([:l]), s > 0, F be a complete flag, and L €
Gny1-m—sV. The conditions on L in statement (2), that dim Fiy, N\L =n+2—a;—j—s
for each j, determine a P-orbit, which is the closure of any P-orbit P - L', where
dimF, N L' <n+2-aqa;—j— s for each j. Thus (2) and Lemma 2.10(2) together
imply that if dim F,,, "L < n+2—a; — j — s for each j, then Q,F ()€ is generically
transverse, proving the second part of (1).

For the first part of (1), suppose dim Fi,, N\L > n+2—a;—j—sandlet L' := F,, NL #
{0}. Then L' has codimension at most j + s — 1 in Fy;. Hence Q| F|q; (2 # 0 and
so has codimension in Qa‘jF,|aj at most that of {27/ in G;Fy,, which is at most s — 1.
Thus

Xa(ja E: L) = p(’]T_l(Qa|jE|aj n QL’))
which has codimension less than s in Q. F = p(m " (Q; F|a;)). Hence Qo F My is
improper, as Xo(j, i, L) C QuE (), proving (1).

We make a computation before proceeding with the rest of the proof. Suppose
dimFajﬂL <n+2-oj—j—sforl <j<mandF, "L ¢ F,, ,. Then
there exists H € Qo F (€ withdimH NF,, =jfor1 <j<m,dimHNL =1, and
HNL ¢ F,,_,: Inductively choose linearly independent vectors f; € Fy;, for 1 <j <m
as follows. Let f; € F,, —{0}. Then for 1 < j < m suppose that fi,..., f;_1 have been
chosen. Since

dim F, N (L, f1,---, fj1) < n+2—aj—j—s+(j—1) < dimF,,

we can select a vector f; in

Fa]’ _FOL]‘ m(Lafla"'afjfl> _Fajfl-

Let f, € F,NL—F, ,,and set H := (fi,..., fm). Then H € Q,F (N, dim H N
Fo,=jfor1<j<m,dmHNL=1and HNL ¢ F,, _,. Let X}, be the set of all
such H. For H € X,

TuQaF (T = {6 € TyQaF |$(HNL) C (Fu,, N L+ H)/H}.



This has codimension in TyQ, F, equal to dim(F,,, + H) —dim(F,, NL+ H) = s. Thus
Qo F and €2, meet transversally along X,,.

We show (2). Suppose dim F,, N L =n +2 — a; — s for each 1 < j <m. Let M, be
any flag satisfying

Mo, =F,,  and M1 D (Fay,, Fa, NL), j=1,...,m.

Let H € Q,F (1€z. Then there is some 1 < j <m with HNLNF,, ¢ F,,_,. Since
dim HNF,,_, > j—1, we have dim H N (Fy,_,, F,; N L) > j and so dim HN M, 1 > j.
Thus H € Qu 5 M, if a + 6 € ([::L]) But this is the case, as o; +1 < «;_1, for
otherwise dimensional considerations imply that LN F,, = LN F,, , C F,, ;. Let
B :=a+d € axl. Then j(a,8) = j and H € Xp(j(o, 8), M., L), since H €
QpM, and dim H N L N Mg, > 1. Conversely, if 8 € a 1, then QgM, C Q,F, so
Xs(j(e, B),M,,L) C Qo F, (). This shows

QaE nQL = Z Xﬁ(j(a,ﬁ),M”L).

Beaxl

We claim this intersection is generically transverse. Let 8 € a1 and j := j(a, f).
Then Xg(j, M,, L) has an open subset X7 consisting of those H with dimH N F,, =1
for1<i<m,dimHNL=1,and HNL C Fo;, but HNL 7 Fo; 1. As with X, above,
X7 is nonempty, so it is a dense open subset of Xp(j, M,, L). For H € X7,

TuQaF (\TuSu = {6 € TuQ0WE |¢(HNL) C (LNF,, + H)/H}.
Since dim(Fy, + H) —dim(LN Fy, + H) = s, this has codimension s in Ty, F,, showing
that Q. F) and € meet transversally along X7, a dense subset of Xs(j(c, 8), M., L).

By Lemma 2.10(3), it suffices to prove a special case of (3):

(3)" If Fy,, meets L properly, and for 1 < j <m, dim F,,NL =n+2—a;—j—(s+1),
then Qo F (Qy is irreducible.

These conditions imply F,, N L ¢ F, _,. In the notation of §2.5,let L' :== F, _, N L,
E':=FE|q4, ,, and ¢ := a/,,_1. Consider

Xo(m—1,F,L) = p(r " (QE' ().
For j <m —1,

dmF, NL' = n+2—-a;—j—(s+1)
= dimF,,_,+2-0;—j—(s+1),

so L' and F' satisfy the conditions of (2) for the pair o/,s + 1. Thus QuF'(Qr is
generically transverse, which implies that X,(m — 1, F, L) has codimension s + 1 in
Q. F, and hence is a proper subvariety of Q,F (Qr — Xo(m — 1, E,L). Since X, is
dense in Q,F, (Qr — Xo(m — 1, F, L), this establishes (3)'. pr
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3. CONSTRUCTION OF EXPLICIT RATIONAL EQUIVALENCES

Theorem 2.4 shows that for L in a dense subset of G,;1 ., 4V, the intersection
Q. F Qg is generically transverse and irreducible. We use Theorem 2.4(2) to study
such a cycle as L ‘moves out of’ this set, ultimately deforming it into the cycle > °_ ., 2, F.
3.1. Families and Chow varieties. Suppose & C (P! —{0}) x G,V has equidimen-
sional fibres over P! —{0}. Then its Zariski closure ¥ in P! x G,,,V has equidimensional
fibres over P!. Denote the fibre of ¥ over 0 by lim;_,o ¥;, where %, is the fibre of ¥ over
t € P! — {0}. The association of a point ¢ of P! to the fundamental cycle of the fibre
Y, determines a morphism P' — ChowG,,,V. Moreover, if ¥ is defined over k, then so
is the map P' — ChowG,,V (]20], §L.9).

3.2. The cycle Y, ,(F,L). In §2.2, we defined the components X3(j, F, L) of the cycles
intermediate between Q,F (Q; and Zvea*b (0, F. Here, we define the intermediate
cycles, Y, ,(F, L), which are parameterized by subspaces L in certain Schubert cells
Ua,sF of Gpiiom—sV. Let Uy F be the set of those L € Gy 1-p—sV such that

(1) F,,NL =F,, +s, and

(2) Foy "L = F,,41 N L, and has dimension n+2 —a; —j — s, for 1 < j < m.

These conditions are consistent and determine dim F; N L for 1 <4 < n. For example,
(32) C¥j<’i<C¥j_1 =4 dlmEﬂL:dlmE-i-l—_]—(S—l)

Thus U, sF, is a single Schubert cell of G411 ,sV. Specifically, U, F, is the dense
cell of QgF,, where 8 € (nH[f]mﬂ) is defined as follows: If oy < n + 1 — s, then
B=[n]—a—{a1+1,...,a1+s—1}. Otherwise, 3 is the smallest n+1—m — s integers
in [n] — a.

For 5 € a *r, recall that j(«, 8) = min{i |o; < B;}. If L € U, (F,, define the cycle

Yor(E,L) = > QpuennE + > Xa(j(e, B), E, L).

Beaxr Beaxr
i(a,p)=1 j(a,B)>1

Let GosrF. C ChowGy,V be the set of these cycles Y, (E,L) for L € U, F,. Since
Ua,sF is a Schubert cell, G, ;. F. is an orbit of the Borel subgroup stabilizing F, and
hence is rational.

3.3. Example. The cell Ugss; o F, C G5k consists of those A with

(1) Eyp C A, so EsN A = EygN A has dimension 1,
(2) EsN A = EgN A has dimension 3,

(3) EsN A = E,;NA has dimension 4, and

(4) A C Es.

In this case, the sequence (dim(E; NA)); is (5544332111). Hence, for A € Ugszi 2 E,,
Yessi,1(E,A) = Quosni B + Xse31(2, B, A) + Xgsa1(3, B, A) + Xgsa2(4, E, A)
= QusE [ ).



The second line is a consequence of Remark 2.5. To see the first, suppose H €
Qgs31 E, [ Q4, then H N A meets a unique largest of Eg C Es C E3 C E;, which gives
four cases:

(1) HNAC Eg. Hence E10 C Hso He€ 910531E1.

(2) HNA meets E5 — Eg. Thus HNA meets Fg— Fg, so dim HN Eg > 2 and HN Ej
meets A, hence H € Xgg31(2, F,, A).

(3) HN A meets E5— E5. Thus HNA meets E;— E5, so dim HNE,; > 3 and HNE,
meets A, hence H € Xg541(3, E,, A).

(4) HN A meets E; — E3. Thus HN A meets F; — E3, so H C E; hence H €
Xss32(4, E,, ).

3.4. Remark. Suppose L € U, F,, then by Remark 2.5,

WE% = ) Qpueevall + Y. Xs(i(e, 8), E, L)

Beaxl BEaxl
i(a,8)=1 j(a,8)>1
= Ya,l(Ea L)

The following lemma parameterizes our explicit rational equivalences. It is identical
to Lemma 6.1 of [23].

3.5. Lemma. Let | < n and let M, be a complete flag in M ~ k*. Suppose Ly is a
hyperplane containing M; but not M;,_,. Then there exists a pencil of hyperplanes Ly,
fort € P, such that if t # 0, then L, contains M; but not M,_, and, for eachi <1—1,
the family of codimension 1+ 1 planes induced by M; N Ly fort # 0 has fibre M;, 1 over
0.

Proof: Let ey, ..., e, be abasis of M such that M; := (e;,...,e,) and Lo, = (e1,...,€ 2, M)).
Define

L, = <Ml,t6]’ +€j1 ‘ 1<5<1— 2).
Fort #0and 1 <i<I[—-1, M;NL, = (M,tej +ej1|i < j <1—2)and so has
dimension n — 4. The fibre of this family at t = 0 is (M}, ej41 |1 < j <1 —2) = M;y4.
r

In §3.10, we prove the following theorem.

3.6. Theorem. Let a € ([:;]), s,r be positive integers and F, a flag in V. Let M €
Ua,s—1 F, and define M, to be the flag in M consisting of the subspaces in F, N M.

Let L, C M be any hyperplane containing F,, s but not Fy, s 1. Suppose Ly is the
family of hyperplanes of M given by Lemma 3.5. Then

(1) Fort#0, Ly € U, F.
(2) %E% Ya,r (Ea Lt) = Ya,r—|—1(Ea M)

In the invocation of Lemma 3.5 in this theorem, we have a = n + 2 — m — s and
l=a; —m+2,so that M; = F,,, .
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3.7. Example. Let ey,..., ey be a basis for k'° and suppose E; = (ej,...,e19). Then
let
M = (e, e4,€6,€7,€9,€10) € Usszi,1F,.
Set Ao := (€3, €4, €6, €7, €19), and, for t € P!, define
Ay = (tes + ey, tey + g, teg + €7, ter + eg, €10).
For ¢ 75 0, At S U853172E:. We Compute limt_m }/8531,1(E: y At), which is
Quossi B + P_I)%XBGZ’)I (2, E, A\y) + 11_{% Xgsa1(3, E., Ay) + %i_I)%X8532(4, E,Ay).

For t # 0, consider the component

X8631(2aE1aAt) = {H - QSG?)IE: | dlmH n E6 n At Z ]_}
When t # 0, {K € QgF, | dim K N A; > 1} is irreducible. To describe this as ¢t — 0,
let A := limy_,0(Ay N Eg) = (er,e9,€10). Then {K € QgE, | dim K N A > 1} has two
components:

{K C <)\,E8> = E7} = Qg7E and {K | K D) )\ N Eg = Eg} = Q96E1.

Thus, since

Xso31(2, B, Ay) = p(n'({K € QsE, | dimK N A, > 1})),

we see that
%i_%ngsm(?,E,At) = Qgr1 B, + Q31 E,.

Similarly,
%i_{% Xgsa1(3, E, Ny) = Qgear B, + Qosui E,
%i_{% Xgszo(4, B, Ny) = QssaoE, + Qseo B, + Qoszo E,.

These Schubert varieties, plus 219531 E, , are the summands of Ygs31,2(E,, M) = 2768531*2 QO E,
which proves
li = .
tl_I)% YE;531,1(E.a At) Z Q’yE
YE8531%2
Since Ygss1,1(E., At) = Qss31 E, [, this proves this instance of Pieri’s formula.

3.8. Theorem. [Pieri’s Formula] Let o € ([77;]), E be a complete flag in V, and
K € Gui1-msV be a subspace which meets F, properly. Then the cycle QuF () Qk, a
generically transverse intersection, is rationally equivalent to Q,F. Thus, in the
Chow ring A*G,,,V of G,,,V,

[E]-[Qx] = ) [QE]

yEaxb

YEQxb

Moreover, let G C ChowG,,V be the set of cycles arising as generically transverse
intersections of the form Q. F (Qk for K € Guy1_m—sV. Then one may give b+ 1
explicit rational deformations inducing this rational equivalence, where the cycles at the
ith stage are of the form Y, (F, M), with M € Uy 41 F,, and all are within G.

Hodge [9] also described deformations of Q,F [k into a sum of distinct Schubert
cycles. However, these are not contained the Zariski closure of G, and there could be as



many as max{m,n — m} deformations. Theorem 3.8 uses fewer (b < max{m,n — m})
deformations and the structure of the deformations reflects the Bruhat order on Schubert
cells.

3.9. Proof of Pieri’s formula using Theorem 3.6. Let b > 0, and « € ([::L]) For
1 <3 <b let U; := a,b—l—l—iE and G; = ga,b_H_i’iE. Let Uy C Gn+1_m_bV be the
(dense) set of those L which meet F,, properly and for 1 < j < m, dimF,, N L <
n+2—a; —j—b. By Theorem 2.4, if L € Gyy1_pn—sV, then Q,F ()€ is generically
transverse and irreducible if and only if L € U,. Let Gy C ChowG,,V be the set of
cycles Q. F (), for L € U,.

Let L € U, and consider the cycle Y, ,(F, L) € Gy:

Yoo(E,L) = > QE + Y Xs(j(e,B),E, L).
BEaxb BEaxb
J(e,B)=1 j(e,f)>1
We claim Y, ,(F, L) = Zﬁ@*b QgF,, the cycle Y, F, of the Introduction. It suffices to
show Xg(j(a, B), E, L) = QgF, for § € axb with j(a, ) > 1. Suppose j = j(a, 5) > 1,
then

X5(j, B, L) = p(r™(p, Els, [ Qyyz)-

By Formula (3.2), dimFg, N L = dimFp, —j+ 1, as o; < f; < a; 1 and s =
1. So QFﬂjnL = G;Fp,, since any j-plane in Fp, meets Fpg, N L non-trivially. Thus
X3(j(e, B), F, L) = QgF,, by the definition of p and 7 in §2.5.

Let G C ChowG,,V be the set of all cycles Q,F N Qp, where L € G, 11,V and
the intersection is generically transverse. Then by Theorem 2.4 and Remark 3.4, both
Go and G, are subsets of G. Arguing as in the proof of Lemma 2.10 shows G C G.
Theorem 3.6 implies G; C G;_; for 2 < i < b, so in particular, Yool € Gy C G. Since
Go, and hence G, is rational, Y, ,F, is rationally equivalent to any cycle in G, including
Qo F N Qk, proving Pieri’s formula.

More explicitly, one may construct a sequence of parameterized rational curves ¢; :
P! — G for 1 < i < b witnessing this rational equivalence. For 2 < i < b, select
subspaces M; € U; and pencils L;,; of hyperplanes of M; by downward induction on ¢ as
follows: Choose M, € Uy. Given M; € Uj;, let L;; be a pencil of hyperplanes of M; as
in Theorem 3.6, let M;_; := L; o, and continue. Then for each 7, if ¢ # 0, L;; € U;_;.
Define ¥; C P! x G,V to be the family whose fibre over t € P! — {0} is the variety
Yaio1(E, Liy)-

Let ¢ : P! — Uy = Gui1-m—sV be a map with (0) = M, := Ly, ¥(c0) = K,
and ¢y 1(Up) = P! — {0}. Let ¥; C P! x G,V be the family whose fibre over ¢ € P!
is Qo F [ Qy), a generically transverse intersection which is irreducible for ¢ # 0, by
Theorem 2.4. Then for 1 < i < b, 3; C P! x G,,,V is a family with equidimensional
generically reduced fibres over P!.

For 1 < i < b, let ¢; : P' — G, 1 be the map associated to the family ¥;, as in §3.1.
Then ¢;(0) = ¢;11(c0) € G; and ¢;(t) € G;_1 for t # 0, by Theorem 3.6. Thus these
parameterized rational curves give a chain of rational equivalences between Q,F [k
and Ya,bE- r'
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Let B € axrand vy € ax(r+1). If y € Bx1 with j(a,7) = j(8,7), write 8 <4 7.
For example, if o = 8531 and = 8631 € a * 1, then those v € o % 2 with g <, 7y are
9631 and 8731. Note these index the summands of lim;_,o Xgg31(2, E,, A;) in the example
following Theorem 3.6.

3.10. Proof of Theorem 3.6. Let ¢ # 0. Recall that L; contains the subspace Fy, s
of M,, but not Fy,, ;1. Since M € Uy 41 F, we have F,, "M = F,, 451, but F, NL; =
Fy. 45, thus F; N Ly is a hyperplane of F; N M for any ¢ < aq. Then L, € U, F,, for
t#0, as

(1) Fou N Ly = Fy 4s.

(2) For 1 <j <m, FouNM = Fo; ;1N M. So Fo; N Ly = Fy, 41 N L. Moreover,

dim F,, N Ly =dim F,,, "M — 1, whichisn+2 —a; —j — s.
Suppose t # 0 and recall that

Yar(FoL) = Y. Qpuna B + Y, Xp(i(e, B), E, Ly).
BEaxr BEaxr
J(e,B)=1 J(a,B8)>1
This defines a family ¥ C (P! — {0}) x G,V with equidimensional (actually isomor-
phic) fibres over P! — {0}. We establish Theorem 3.6, showing the fibre of ¥ at 0 is
Yort1(E, M) by examining each component of Y, .(E, L;) separately, then assembling
the result.
Let 5 € axr. Consider a component of Y, ,(F, L;) in the first summand, so j(a, ) =
1. Then 7 := B+4" is the unique sequence satisfying 8 <, 7. In this case, Qgrs—no B =
Qv+(s—2)61 F.
Now consider a component in the second sum, so j = j(a, ) > 1. Let ' := f|;,
E':=FE|g,, and L} := F N L;. For t # 0, Corollary 2.8 gives

Xs(j(e B), E, L) = p(n (U E' () y))-
As a; < B; < aj_y, dim L} = dim Fp; + 1 — j — (s — 1), by formula (3.2). For 1 <4 < j,
Bi = a; and so dim L N F, = n+2 — f; — i — s. Thus, by Theorem 2.4(3), Qg ' Qy;
is generically transverse and irreducible. We study the ‘limit’ of these cycles as t — 0,
in the sense of §3.1. Define L' := lim; o Lj = limy ;o Fjg, N Ly, which is F, .1 N M, by
Lemma 3.5. Then
(1) FeyNL'=F, NM=F, s 1.
(2) For 1 < i < j, Fg, N L' = Fp, .1 N L'. This follows for i« = j because we have
L' C Fp;41 C Fp, and for ¢ < j, because 8; = oy and Fy, " M = Fo, 11 N M.
Moreover, for 1 < i <j, dimFs NL =n+2—-F —i—(s—1).
Thus L' € Uy s_1F' so Qp F' () Q1 is generically transverse, by Theorem 2.4(1). So,

] ) = -1  E! ’
lim X5 (j (e, ), £, L) = p(n~"(QE'[|Qw))-
But (Fj, ,, Fs, N L) C Fg,1, since L' € Ug 51 F'. By Remark 2.5,

QE'(w = Y Qieoek + Y X,(G(6,7),E,L).

vy €B x1 ~v' e 1
J(B =1 (B ")>1



And so lim;_,o X3(j (o, ), E, L) is the cycle
S b Qe e BN+ 3D p(r (X (G5 A), E L),

7 €B'x1 7 €B'*1
JB' =1 J(B')>1
We simplify this expression, beginning with the first sum. Let v € §' % 1 satisfy
j(B,7") = 1. Then by Lemma 2.7, p(n~"(Qy4(s—o)n F)) equals Q4 (_o5 F, where
v := B+ §' is the unique sequence with 3 <, v and j(a,v) = 1.
Consider terms in the second sum, those for which ' € §'x1 with j(5',7') > 1. Then
p(r (X, (j(B,7"), E', L)) is the subvariety of QgF, consisting of those H such that
there ex1sts K C H withdimK = j, K € Q F/', and dlmKﬂF’ NL >1.

GRS
Let v := 8 + 67¥) the unique sequence with 8 <, v and j(a, ) = 5(8,7).
Then, as vjw,y) > ﬁj, the definition of E' implies F’( , = i © Fp. 1. Since
IR
L' = Fg. 41 N M, we see that I, NL =F, NM. Thus if
.7 B A" 7 (a,)
H e p(r™ ' (Xy(§(68,7), E', L)),

then H € Q,F and dimHNF,  ~NM>1,s0 He€ X,(j(a,7), K, M). The reverse
inclusion,
X, (i(,7), E, M) C p(n™ (Xy(5(6 ), E', L)),
is similar.
This shows that lim; o X(j (e, 8), F., L;) is the cycle

(3.10) > QuepnE + Y X,((en9), E, L).

B=ay B=<ay
jlay)=1 Jlayy)>1

The sets {7 | B <a 7} for B € a *r partition the set o * (r + 1). Thus

11_{% Ya,T(E7 L) = Z QW+(872)51 E + Z X (e, 7), B, M),
yEax(r+1) vyEax(r+1)
Jeyy)=1 Jlayy)>1

which is Y, .11 (F, M). r

4. LINK TO SCHENSTED INSERTION

The set ([::L]) has a partial order, called the Bruhat order: o < f if and only if
QgF C QuF,. Combinatorially, thisis a < fif oy < ; for 1 <7 < m.

We interpret the behavior of the components Xz(j(c, 8)F, L) of the intermediate
cycles Y, i—1(F, L) in our proof of Pieri’s formula (§3.9) as the branching of a certain
subtree of ([m”]) with root «. This tree arises similarly in a combinatorial proof of Pieri’s
formula for Schur polynomials using Schensted insertion [5, p. 24]. We assume familiarity
with the notions of Young tableaux and Schensted insertion as found in [5, 19]. To
simplify this discussion, assume further that n > oy + b.

Each rational equivalence of §3.9 is induced by a family 3; over P! with generic
fibre in G;_; and special fibre in G;. The components of cycles in G;_; are indexed by
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B € ax(i—1), with fth component Qg 4145 F, if j(a, 8) = 1, and Xg(j(e, ), E, L)
otherwise. In passing to G; via ¢;, the component (3, 4145 F. is unchanged, but
reindexed: €2, s F, where v := 8 + ' is the unique sequence in o * i with 8 <, 7.
By equation (3.10), the other components become

Z Qi £+ Z Xy (i (e, 7), B, M;).
'ﬂ'<a'7 ./3'<a'y
i(a)=1 Jla)>1
Thus the component of the generic fibre of 3; indexed by 8 € a* (i — 1) becomes a sum
of components indexed by {y € a*xi|f <, 7} at the special fibre.

This suggest defining a tree 7,; whose branching represents the ‘branching’ of com-
ponents of Yy, 1(F, L) in these deformations. Let 7o, C ([:j) be the tree with vertex
set | J{ax*i|0 < i < b} and covering relation 3 <, . This is a tree as a1 is partitioned
by the sets {v| 8 <, 7} for B € ax* (i —1).

For a decreasing m-sequence «, let A(«) be the partition (o —m, o —m—+1, ..., pm—
1). The association o «— A(«) gives an order isomorphism between the set of decreas-
ing m-sequences and the set of partitions of length at most m. This transfers notions
for sequences into corresponding notions for partitions.

To a (semi-standard) Young tableau 7" with entries among 1, ..., m, associate a mono-
mial 7 in the variables 1,z . . ., Z,,: The exponent of z; in 7 is the number of occur-
rences of 7 in T". This exponent vector is called the content of T'. The Schur polynomial
sy is Y.z, the sum over all tableaux T of shape A. There is surjective homomorphism
from the algebra of Schur polynomials to the Chow ring of G,V defined by:

Sy — [Q.F] if A Z.A(a) for some « € (["m])
0 otherwise
Special Schur polynomials are indexed by partitions (b,0,...,0) with a single row.

Schensted insertion gives a combinatorial proof of Pieri’s formula, providing a content-
preserving bijection between the set of pairs (S,T) of tableaux where S has shape A
and T has shape (b,0,...,0) and the set of all tableaux whose shape is in A % b: Insert
the reading word of 7" into S. The resulting tableau has shape p € A * b.

Consider the tableau S of shape A\(8531) = 421.

3[4]4]
4

NS

Schensted insertion of 1,2,3, respectively, 4 into S gives the following tableaux:

1[3]4]4] 2[2]4]4] 2[3]3]4] 2[3]4]4]4]
214 33 3]4]4a 34
3 4]4 (4] (4]

If we insert the sequences 12,13, 14, 23,24, 33, 34, and 44 in to S, we obtain all possible
sequences of shapes. This may be displayed as a tree of tableaux, where the edges are



labeled by the integer inserted:

1]2]4]4] [1]3]3]4] [1][3]4]4]4] [2]2]3]4] [2]2]4]4]4] [2]3]3]3] [2]3]3]4]4] [2]3]4]4]4]4]
2(3 2]4]4 204 3|34 3[3 3lalal4] [3]4]4 34
3[4 3] 3] 4]4 44 4] 4] 4]
14] 4 14]
3[4]4[4]

NES

Converting the shapes into sequences, we obtain the tree 7gs31 2:

8542 8632 9532 8641 9541 8731 9631 10531

VARV VA

8532 8541 8631 9531
1 2| 3 f
8531

This is exactly the branching of components in the example in §§3.3 and 3.7.

Let A = A% AL,..., A\’ = 1 be the sequence of shapes resulting from the insertion of
successive entries of T" into S. Since T is a single row, it is a property of the insertion
algorithm that A\’ <, A\**!, and so this sequence is a chain in the tree 7.

The totality of these insertions for all such pairs of tableaux gives all chains in 7g.
Thus the ‘branching’ of shapes during Schensted insertion is identical to the branching
of components in the rational equivalences of §3.9. We feel this relation to combinatorics
is one of the more intriguing aspects of our proof of Pieri’s formula and that similar
ideas may yield a geometric proof of the Littlewood-Richardson rule.
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