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THE HORN RECURSION FOR SCHUR P - AND Q- FUNCTIONS:

EXTENDED ABSTRACT

KEVIN PURBHOO AND FRANK SOTTILE

Abstract. A consequence of work of Klyachko and of Knutson-Tao is the Horn recursion
to determine when a Littlewood-Richardson coefficient is non-zero. Briefly, a Littlewood-
Richardson coefficient is non-zero if and only if it satisfies a collection of Horn inequalities
which are indexed by smaller non-zero Littlewood-Richardson coefficients. There are
similar Littlewood-Richardson numbers for Schur P - and Q- functions. Using a mixture
of combinatorics of root systems, combinatorial linear algebra in Lie algebras, and the
geometry of certain cominuscule flag varieties, we give Horn recursions to determine when
these other Littlewood-Richardson numbers are non-zero. Our inequalities come from
the usual Littlewood-Richardson numbers, and while we give two very different Horn
recursions, they have the same sets of solutions. Another combinatorial by-product of
this work is a new Horn-type recursion for the usual Littlewood-Richardson coefficients.

Introduction

The Littlewood-Richardson numbers aλ
µ,ν for partitions λ, µ, ν are important in many

areas of mathematics. For example, they are the structure constants of several related
rings with distinguished bases: the ring of symmetric functions with its basis of Schur
functions, the representation ring of sln with its basis of irreducible highest weight mod-
ules, the external representation ring of the tower of symmetric groups with its basis of
irreducible modules, and the cohomology ring of the Grassmannian with its basis of Schu-
bert classes [Ful97, Mac95, Sta99]. The combinatorics of Littlewood-Richardson numbers
are extremely interesting and now we have many formulas for them, including the orig-
inal Littlewood-Richardson formula [LR34]. Despite this deep and prolonged interest in
Littlewood-Richardson numbers, one of the most fundamental questions about them was
not asked until about a decade ago:

When is aλ
µ,ν non-zero?

This question came from (of all places) a problem in linear algebra concerning the
possible eigenvalues of a sum of hermitian matrices. The answer to this problem is given
by the Horn inequalities: the eigenvalues which can and do occur are the solutions to a
set of linear inequalities, and the inequalities themselves come from non-negative integral
eigenvalues solving this problem for smaller matrices.

The same inequalities answer our question about Littlewood-Richardson numbers. A
Littlewood-Richardson number aλ

µ,ν is non-zero if and only if the triple of partitions (λ, µ, ν)
satisfy certain linear inequalities, and the inequalities themselves come from triples index-
ing smaller non-zero Littlewood-Richardson coefficients. This description is a consequence
of work of Klyachko [Kly98] which linked eigenvalues of sums of hermitian matrices, high-
est weight modules of sln, and the Schubert calculus for Grassmannians, and then Knutson
and Tao’s proof [KT99] of Zelevinsky’s Saturation Conjecture [Zel99]. This work implies
Horn’s Conjecture [Hor62] about the eigenvalues of sums of Hermitian matrices. These re-
sults have wide implications in mathematics (see the surveys [Ful98, Ful00]) and have raised
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many new and evocative questions. For example, the Horn inequalities give the answer to
questions in several different realms of mathematics (representation theory, combinatorics,
Schubert calculus, eigenvalues), but it was initially mysterious why any one of these ques-
tions should have a recursive answer, as the proofs travelled through so many other parts
of mathematics.

Another question, which was the point de départ for the results we describe here, is the
following: are there related numbers whose non-vanishing has a similar recursive answer?
Our main result is a recursive answer for the non-vanishing of the analogs of Littlewood-
Richardson coefficients for Schur P -functions, and the same for Schur Q-functions. We give
one set of inequalities which determine non-vanishing for the P -functions and a different set
of inequalities for the Q-functions. Because each Schur P -function is a non-zero multiple
of a corresponding Schur Q-function, a Littlewood-Richardson number for P -functions is
non-zero if and only if the corresponding number for Q-functions is non-zero, and thus our
two sets of inequalities have the same sets of solutions.

Another consequence of our work is a new set of recursive Horn-type inequalities for the
ordinary Littlewood-Richardson numbers aλ

µ,ν . While these new inequalities are clearly
related to the ordinary Horn inequalities, they are definitely quite different. (We explain
this below.)

Before we define some of these objects and give the different recursions, we remark that
our results were proved using a mixture of the combinatorics of root systems, combinatorial
linear algebra in Lie algebras, and the geometry of certain cominuscule flag varieties G/P .
Cominuscule flag varieties are (almost all of) the flag varieties whose geometrically defined
Bruhat order (which is the Bruhat order on the cosets W/WP of the Weyl groups) is a
distributive lattice.

The alert reader will notice that these inequalities for Schur P - and Q-functions are not
strictly recursive because they are indexed by ordinary Littlewood-Richardson numbers
which are non-zero. The reason for the term recursive is that the inequalities stem from a
geometric recursion among all cominuscule flag varieties which is not evident from viewing
only the subclass corresponding to, say the Schur Q-functions.

This abstract does not dwell on the geometry, but rather on the fascinating combinatorial
consequences of these recursions. The last section of this extended abstract does however
give a broad view of some of the key geometric ideas which underly our recursion. The
results here are proved in the forthcoming preprint by the authors, “The recursive nature
of the cominuscule Schubert calculus”.

1. The classical Horn recursion

For more details and definitions concerning the various flavors of Schur functions that
arise here, we recommend the book of Macdonald [Mac95]. Schur functions Sλ are symmet-
ric functions indexed by partitions λ, which are weakly decreasing sequences of nonnegative
integers, λ : λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. The Schur function Sλ is homogeneous of degree
|λ| := λ1 + · · ·+λn. Schur functions form a basis for the Z-algebra of symmetric functions.
Thus there are integral Littlewood-Richardson numbers aλ

µ,ν defined by the identity

Sµ · Sν =
∑

λ

aλ
µ,ν Sλ .

Homogeneity gives the necessary relation |λ| = |µ| + |ν| for aλ
µ,ν 6= 0.

A partition λ is represented by its diagram, which is a left-justified array of boxes in the
positive quadrant with λi boxes in row i. Thus

(4, 2, 1) ↔
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Partitions are partially ordered by the inclusion of their diagrams. Let n × m be the
rectangular partition with n parts, each of size m.

For λ ⊂ n × m (λ1 ≤ m and λn+1 = 0), define λc to be the partition obtained from
the set-theoretic difference n × m − λ of diagrams (placing λ in the upper right corner of
n × m). Thus we have

λc
λ

m

n .

The Horn-type inequalities we give are naturally stated in terms of symmetric Little-

wood-Richardson numbers. For λ, µ, ν ⊂ n × m, define

aλ,µ,ν := Coefficient of Sn×m in SλSµSν

= Coefficient of Sλc in SµSν = aλc

µ,ν .

We say that a triple of partitions λ, µ, ν ⊂ n × m is feasible if aλ,µ,ν 6= 0. This convenient
terminology comes from geometry.

Definition 1. Suppose that λ ⊂ n × m and α ⊂ r × (n − r), where 0 < r < n. Define

In(α) := {n − r + 1 − α1, n − r + 2 − α2, . . . , n − αr} .

Draw λ in the upper right corner of the n×m rectangle, and number the rows Cartesian-
style. Define |λ|α to be the number of boxes that remain in λ after crossing out the rows
indexed by In(α).

Example 2. Suppose that n = 7, m = 8, and r = 3, and we have λ = 8654310 and
α = 311. Then the set I7(α) is

{7 − 3 + 1 − 3, 7 − 3 + 2 − 1, 7 − 3 + 3 − 1} = {2, 5, 6} .

If we place λ in the upper-right corner of the rectangle 7×8 and cross out the rows indexed
by I7(α),

1
2
3
4
5
6
7

we count the dots • to see that |λ|α = 15.

Theorem 3 (Classical Horn Recursion: Klyachko [Kly98], Knutson-Tao [KT99]).
A triple λ, µ, ν ⊂ n × m is feasible if and only if |λ| + |µ| + |ν| = nm, and

|λ|α + |µ|β + |ν|γ ≤ (n − r)m

for all feasible triples α, β, γ ⊂ r × (n − r) and for all 0 < r < n.

The first condition, |λ| + |µ| + |ν| = nm, is due to homogeneity.

2. Symmetric Horn recursion

Since replacing a partition λ by its conjugate λt (interchanging rows with columns)
induces an involution on the algebra of symmetric functions, there is a version of the
Horn recursion where one crosses out columns instead of rows. It turns out that there are
necessary inequalities obtained by crossing out both rows and columns, including possibly
a different number of each. The cominuscule recursion reveals a sufficient subset of these.
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Definition 4. Let 0 < r < min{n,m} and suppose that λ ⊂ n × m, α ⊂ r × (n − r), and
we have another partition α′ ⊂ r × (m − r). Define In(α) as before, and set

Im(α′) := {m − r + 1 − α′

1, m − r + 2 − α′

2, . . . , m − α′

r} .

Draw λ in the upper right corner of the n×m rectangle and cross out the rows indexed by
In(α) and the columns indexed by Im(α′). Define |λ|α,α′ to be the number of boxes that
remain in λ.

Example 5. We use the same data as in Example 2, and set α′ = 410. Then

I8(α
′) = {8 − 3 + 1 − 4, 8 − 3 + 2 − 1, 8 − 3 + 3 − 0} = {2, 6, 8} .

If we now cross out the rows indexed by I7(α) and the columns indexed by I8(α
′),

1 2 3 4 5 6 7 8

we count the dots • to see that |λ|α,α′ = 8.

Theorem 6 (Symmetric Horn Recursion).
A triple λ, µ, ν ⊂ n × m is feasible if and only if |λ| + |µ| + |ν| = nm, and

|λ|α,α′ + |µ|β,β′ + |ν|γ,γ′ ≤ (m − r)(n − r)

for all pairs of feasible triples α, β, γ ⊂ r × (n − r) and α′, β′, γ′ ⊂ r × (m − r) and for all

0 < r < min{m,n}.

3. Schur P - and Q- functions

The algebra of symmetric functions has a natural odd subalgebra which comes from its
structure as a combinatorial Hopf algebra [ABS06]. This algebra was first studied by Schur
in the context of the theory of projective representations of the symmetric group. This
odd subalgebra has a pair of distinguished bases, the Schur P -functions and the Schur

Q-functions. They are indexed by strict partitions, which are strictly decreasing sequences
of positive integers λ : λ1 > λ2 > · · · > λk > 0. They are proportional: Qλ = 2kPλ, where
λ has k parts.

We have Littlewood-Richardson coefficients cλ
µ,ν and dλ

µ,ν indexed by triples of strict
partitions and defined by the identities

Qµ · Qν =
∑

λ

cλ
µ,ν Qλ and Pµ · Pν =

∑

λ

dλ
µ,ν Pλ .

Combinatorial formulas for these numbers were given in work of Worley [Wor84], Sagan [Sag87],
and Stembridge [Ste89].

Let
n
: n > n−1 > · · · > 2 > 1 be the strict partition of staircase shape. Then λ ⊂

n

if λ1 ≤ n. If λ ⊂
n
, define λc to be the partition obtained from the set-theoretic difference

n
− λ of diagrams (placing λ in the upper right corner of

n
). Thus we have

λc

λ
n
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As before, the Horn-type inequalities are naturally stated in terms of symmetric Little-
wood-Richardson numbers. For λ, µ, ν ⊂

n
, define

cλ,µ,ν := Coefficient of Q
n

in QλQµQν

= Coefficient of Qλc in QµQν = cλc

µ,ν .

A triple of strict partitions λ, µ, ν ⊂ n × m is feasible if cλ,µ,ν 6= 0.
We similarly define symmetric Littlewood-Richardson numbers dλ,µ,ν for the Schur P -

functions. Since the two bases are proportional, the corresponding coefficients are as well.
In particular the sets of triples λ, µ, ν for which the corresponding coefficients are feasible
are the same. Nevertheless, we give two very different sets of inequalities which determine
the feasibility of these numbers, arising from the different geometric origins of Schur Q-
functions and Schur P -functions.

Definition 7. Let 0 < r < n and suppose that λ ⊂
n

is a strict partition and α ⊂
r × (n − r) is an ordinary partition. Draw λ in the upper right corner of the staircase

n
. Number the inner corners 1, 2, . . . , n and, for each number in In(α), cross out the row

and column emanating from that inner corner. Then let [λ]α be the number of boxes that
remain in λ.

Definition 8. Let 0 < r < n+1 and suppose that λ ⊂
n

is a strict partition and
α ⊂ r × (n+1−r) is an ordinary partition. Draw λ in the upper right corner of the
staircase

n
. Number the outer corners 1, 2, . . . , n, n+1 and for each number in In+1(α),

cross out the row and column emanating from the corresponding outer corner. Then let
{λ}α be the number of boxes that remain in λ.

Example 9. For example, suppose that n = 8 and r = 4, we have λ = 8643 and α = 4220.
Then

I8(α) = {8 − 4 + 1 − 4, 8 − 4 + 2 − 2, 8 − 4 + 3 − 2, 8 − 4 + 4 − 0} = {1, 4, 5, 8} ,

I9(α) = {9 − 4 + 1 − 4, 9 − 4 + 2 − 2, 9 − 4 + 3 − 2, 9 − 4 + 4 − 0} = {2, 5, 6, 9} .

and if we place λ in the upper-right corner of the rectangle
8

and cross out the rows
and columns emanating from the inner corners indexed by I8(α), we see that [λ]α = 6. If
we instead cross out the rows and columns emanating from the outer corners indexed by
I9(α), we see that {λ}α = 5. The two diagrams are shown in Figure 1, on the left and
right, respectively.

1
2

3
4

5
6

7
8

[λ]α = 6

1
2

3
4

5
6

7
8

9

{λ}α = 5

Figure 1. Computation of [λ]α = 6 and of {λ}α = 5

Note that the homogeneity of the multiplication of Schur P -functions and Schur Q-
functions implies that

(1) |λ| + |µ| + |ν| =
∣

∣

n

∣

∣ =

(

n + 1

2

)

,
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is necessary for a triple λ, µ, ν ⊂
n

to be feasible.

Theorem 10 (Horn recursion for Schur P - and Q-functions).
A triple λ, µ, ν ⊂

n
of strict partitions is feasible if and only if one of the following

two equivalent conditions hold:

(1) The homogeneity condition (1) holds, and for all feasible α, β, γ ⊂ r × (n − r) and all

0 < r < n, we have

[λ]α + [µ]β + [ν]γ ≤

(

n + 1 − r

2

)

,

or else

(2) The homogeneity condition (1) holds, and for all feasible α, β, γ ⊂ r × (n + 1− r) and

all 0 < r < n + 1 with r even, we have

{λ}α + {µ}β + {ν}γ ≤

(

n + 1 − r

2

)

.

4. Remarks on the geometry of the proof

We first give some general idea of the ingredients in our proof, and then explain a little
bit of the relation of this geometry to the combinatorics given here.

A flag manifold G/P (G is a reductive algebraic group and P is a parabolic subgroup)
has a Bruhat decomposition into Schubert cells indexed by cosets W/WP , where W is
the Weyl group of G and WP that of P . The closures of the Schubert cells are the
Schubert varieties, and cohomology classes associated to them (Schubert classes) form bases
for the cohomology ring of G/P . Standard results in geometry show that the structure
constants (generalized Littlewood-Richardson numbers) are the number of points in triple
intersections of general translates of Schubert varieties (and hence are non-negative).

If a structure constant is non-zero, then any triple intersection of corresponding Schu-
bert varieties (not just a general intersection) is non-empty, and general intersections are
transverse. Conversely, if a structure constant is zero, then any corresponding general
intersection is empty, and a non-empty intersection is never transverse. The key idea is to
replace the difficult question on non-emptiness of a general intersection of Schubert vari-
eties by the easier question of the transversality of a (not completely general) intersection.
This was used by one of us to show transversality of intersections in the Grassmannian of
lines [Sot97], but its use to study the Horn problem is due to Belkale [Bel02], who first
gave a geometric proof of the Horn recursion for the Grassmannian.

This idea transfers the analysis from the flag manifold G/P to its tangent space TpG/P
at a given point p. In fact, all of our diagrams are just pictures of the root-space decompo-
sitions of TpG/P for the corresponding varieties. In our proof, we consider three Schubert
varieties which contain the point p, and then move them independently by the stabilizer P
of p so that they are otherwise general. If it is possible to move the three tangent spaces
inside of TpG/P so that they meet transversally, then the triple is feasible, and if not, then
it is not.

This explains where cominuscule flag manifolds come in. The maximal reductive, or
Levi, subgroup L of the parabolic group P acts on the tangent space TpG/P to G/P at
that point. Our arguments (moving the tangent spaces to Schubert varieties around by
elements of L) require that L act on TpG/P with finitely many orbits, and this is one
characterization of cominuscule flag manifolds G/P .

It also explains why there is a recursion. The argument requires us to consider the
stabilizer Q in L of a certain linear subspace of TpG/P—the tangent space to an orbit of
L through a general point of the intersection of general translates of the tangents to the
three Schubert varieties. Then the Schubert calculus inside of the smaller flag manifold



HORN RECURSION FOR SCHUR P - AND Q- FUNCTIONS 7

L/Q is used to analyze the transversality of that triple intersection. Fortunately, the flag
manifold L/Q is itself cominuscule, which is the source of our recursion.

We briefly illustrate these comments on the three flag manifolds that arose in this ex-
tended abstract.

4.1. The classical Grassmannian. Let Gr(n,m+n) be the Grassmannian of n-planes
in m + n space. The general linear group GL(m + n, C) acts on Gr(n,m+n). If H ∈
Gr(n,m+n) then THGr(n,m+n) may be identified with the set of n by m matrices (more
precisely with Hom(H, Cm+n/H)). The Levi subgroup is the group GL(n, C) × GL(m, C)
which acts linearly on the rows and columns of n by m matrices. The orbits of this group
are simply matrices of a fixed rank, r, and the subgroup Q is the stabilizer of a pair
(K,K ′), where K ⊂ H and K ′ ⊂ C

m+n/H both have dimension r. This explains why
in Definition 4, the number of rows crossed out equals the number of columns crossed
out. The smaller cominuscule flag variety L/Q is the product of two Grassmannians,
Gr(r, n) × Gr(r,m).

The Schubert varieties of Gr(n,m+n) are indexed by partitions λ which fit in the n×m
rectangle, and its cohomology ring is the algebra of Schur functions with these restricted
indices.

4.2. The Lagrangian Grassmannian. Fix a non-degenerate alternating bilinear (sym-
plectic) form on C

2n. Let LG(n) be the set of maximal isotropic (Lagrangian) subspaces
in C

2n, each of which has dimension n. This is the quotient of the symplectic group by the
parabolic subgroup corresponding to the long root, LG(n) = Sp(2n, C)/P0.

Since H ∈ LG(n) is isotropic the symplectic form identifies C
2n/H with the dual of H,

and THLG(n) is identified with the space of quadratic forms on H. The Levi subgroup is
the general linear group GL(H). Identifying H with C

n, the Levi becomes GL(n, C) and
THLG(n) is the set of n×n symmetric matrices. (Symmetric matrices are parametrized by
their weakly lower triangular parts, which correspond to the staircase shape

n
where the

order of the columns has been reversed.) The general linear group acts simultaneously on
the rows and columns of symmetric matrices. The orbits are simply symmetric matrices
of a fixed rank, r, and the subgroup Q is the stabilizer of the null space of such a matrix.
The smaller cominuscule flag variety L/Q is the Grassmannian G(r, n).

The Schubert varieties of LG(n) are indexed by strict partitions λ which fit inside the
staircase

n
, and its cohomology ring is the algebra of Schur Q-functions with these

restricted indices.

4.3. The Orthogonal Grassmannian. Fix a non-degenerate symmetric bilinear form
on C

2n+2. The set of maximal isotropic subspaces (each of which has dimension n + 1) of
C

2n+2 has two isomorphic components. Let OG(n + 1) be one of these components. This
is the quotient of the even orthogonal group by a parabolic subgroup P corresponding to
one of the roots at the fork in the Dynkin diagram, OG(n + 1) = SO(2n + 2, C)/P .

If H ∈ OG(n+1) is isotropic, then THOG(n+1) is identified with the space of alternating
forms on H. The Levi subgroup is the general linear group GL(H). Identifying H with
C

n+1, then the Levi becomes GL(n+1, C) and THOG(n+1) is the set of (n+1)×(n+1) anti-
symmetric matrices. (Anti-symmetric matrices are parametrized by their lower triangular
parts, and these strictly lower triangular matrices correspond to the staircase shape where
the order of the columns has been reversed.) The general linear group acts simultaneously
on the rows and columns of anti-symmetric matrices. The orbits are simply anti-symmetric
matrices of a fixed rank. However, and this comes from the details of the proof and the
roots of SO(2n + 2, C), the subgroup Q is the stabilizer of an even-dimensional subspace
of H. The smaller cominuscule flag variety L/Q is the Grassmannian G(r, n + 1), where r
is even.
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The Schubert varieties of OG(n+1) are indexed by strict partitions λ which fit inside
the staircase

n
, and its cohomology ring is the algebra of Schur P -functions with these

restricted indices.
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