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Abstract. We develop the notion of the composition of two coalgebras, which arises naturally in higher category
theory and the theory of species. We prove that the composition of two cofree coalgebras is cofree and give conditions
which imply that the composition is a one-sided Hopf algebra. These conditions hold when one coalgebra is a graded
Hopf operadD and the other is a connected graded coalgebra with coalgebra map toD. We conclude by discussing
these structures for compositions with bases the vertices of multiplihedra, composihedra, and hypercubes.
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1 Introduction
The Hopf algebras of ordered trees (Malvenuto and Reutenauer (1995)) and of planar binary trees (Loday
and Ronco (1998)) are cofree coalgebras that are connected by cellular maps from permutahedra to as-
sociahedra. Related polytopes include the multiplihedra (Stasheff (1970)) and the composihedra (Forcey
(2008b)), and it is natural to study what Hopf structures maybe placed on these objects. The map from
permutahedra to associahedra factors through the multiplihedra, and in (Forcey et al. (2010)) we used this
factorization to place Hopf structures on bi-leveled trees, which correspond to vertices of multiplihedra.

Multiplihedra form an operad module over associahedra. This leads to painted trees, which also corre-
spond to the vertices of the multiplihedra. In terms of painted trees, the Hopf structures of (Forcey et al.
(2010)) are related to the operad module structure. We generalize this in Section 3, defining the functorial
construction of a graded coalgebraD◦C from graded coalgebrasC andD. We show that this composition
of coalgebras preserves cofreeness. In Section 4, give sufficient conditions whenD is a Hopf algebra for
the composition of coalgebrasD ◦ C (andC ◦ D) to be a one-sided Hopf algebra. These conditions also
guarantee that a composition is a Hopf module and a comodule algebra overD.

This composition arises in the theory of operads and in the theory of species, as species and operads
are one-and-the-same (Aguiar and Mahajan, 2010, App. B). InSection 4 we show that an operadD of
connected graded coalgebras is automatically a Hopf algebra.

We discuss three examples related to well-known objects from category theory and algebraic topology
and show that the Hopf algebra of simplices of (Forcey and Springfield (2010)) is cofree as a coalgebra.
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2 Preliminaries
We work over a fixed fieldK of characteristic zero. For a graded vector spaceV =

⊕

n Vn, we write
|v| = n and sayv hasdegreen if v ∈ Vn.

2.1 Hopf algebras and cofree coalgebras
A Hopf algebraH is a unital associative algebra equipped with a coassociative coproduct homomor-
phism∆: H → H ⊗ H and a counit homorphismε : H → K which plays the role of the identity
for ∆. See (Montgomery (1993)) for more details. Takeuchi (1971)showed that a graded bialgebra
H = (

⊕

n≥0Hn, ·,∆, ε) that is connected (H0 = K) is a Hopf algebra.
A coalgebraC is a vector spaceC equipped with a coassociative coproduct∆ and counitε. Forc ∈ C,

write∆(c) as
∑

(c) c
′ ⊗ c′′. Coassociativity means that

∑

(c),(c′)

(c′)′ ⊗ (c′)′′ ⊗ c′′ =
∑

(c),(c′′)

c′ ⊗ (c′′)′ ⊗ (c′′)′′ =
∑

(c)

c′ ⊗ c′′ ⊗ c′′′ ,

and the counit condition means that
∑

(c) ε(c
′)c′′ =

∑

(c) c
′ε(c′′) = c.

Thecofree coalgebraon a vector spaceV isC(V ) :=
⊕

n≥0 V
⊗n with counit the projectionε : C(V )→

K = V ⊗0 and thedeconcatenation coproduct: writing “\” for the tensor product inV ⊗n, we have

∆(c1\ · · · \cn) =
n
∑

i=0

(c1\ · · · \ci)⊗ (ci+1\ · · · \cn) .

Observe thatV is the set of primitive elements ofC(V ). A coalgebraC is cofreeif C ≃ C(PC), wherePC

is the space of primitive elements ofC. Many coalgebras arising in combinatorics are cofree.

2.2 Cofree Hopf algebras on trees
We describe three cofree Hopf algebras built on rooted planar binary trees:ordered treesSn, binary trees
Yn, and(left) combsCn onn internal nodes. SetS· :=

⋃

n≥0 Sn and defineY· andC· similarly.

2.2.1 Constructions on trees
The nodes of a treet ∈ Yn form a poset. Anordered treew = w(t) is a linear extension of this node
poset oft. This linear extension is indicated by placing a permutation in the gaps between its leaves,
which gives a bijection between ordered trees and permutations. The mapτ : Sn → Yn sends an ordered
treew(t) to its underlying treet. The mapκ : Yn → Cn shifts all nodes of a tree to the right branch from
the root. SetS0 = Y0 = C0 = . Note that|Cn| = 1 for all n ≥ 0.

ordered treesS·

3 4 1 2

2 4 1 3

1 4 2 3

-
τ

-

binary treesY· -
κ

-

left combsC·
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Splitting an ordered treew along the path from a leaf to the root yields an ordered forest(where the
nodes in the forest are totally ordered) or a pair of ordered trees,

2 5 1 4 3?

;

2 5 1 4 3?

g

−−→

( 2 5 1

,

4 3
)

or

( 2 3 1

,

2 1
)

.

Write w
g

→ (w0, w1) when the ordered forest(w0, w1) (or pair of ordered trees) is obtained by splitting
w. (Context will determine how to interpret the result.)

We maygraft an ordered forest~w = (w0, . . . , wn) onto an ordered treev ∈ Sn, obtaining the tree~w/v
as follows. First increase each label ofv so that its nodes are greater than the nodes of~w, and then graft
treewi onto theith leaf ofv. For example,

if (~w, v) =

(

(

3 2

, ,

7 5 1

,
6

,
4

)

,

1 4 3 2
)

,

then ~w/v =

3 2

8 11

7 5 1

10

6

9

4

=

3 2 8 11 7 5 1 10 6 9 4

.

Splitting and grafting make sense for trees inY·. They also work forC· if, after grafting a forest of
combs onto the leaves of a comb, one applieesκ to the resulting planar binary tree to get a new comb.

2.2.2 Three cofree Hopf algebras
Let SSym :=

⊕

n≥0 SSymn be the graded vector space whosenth graded piece has basis{Fw | w ∈
Sn}. DefineYSym andCSym similarly. The set mapsτ andκ induce vector space mapsτ andκ,
τ (Fw) = Fτ(w) andκ(Ft) = Fκ(t). Fix X ∈ {S,Y,C}. Forw ∈ X· andv ∈ Xn, set

Fw · Fv :=
∑

w
g

→(w0,...,wn)

F(w0,...,wn)/v ,

the sum over all ordered forests obtained by splittingw at a multiset ofn leaves. Forw ∈ X·, set

∆(Fw) :=
∑

w
g

→(w0,w1)

Fw0
⊗ Fw1

,

the sum over all splittings ofw at one leaf. The counitε is the projection onto the0th graded piece,
spanned by the unit element1 = F for the multiplication.
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Proposition 2.1 For (∆, ·, ε) above,SSym is the Malvenuto–Reutenauer Hopf algebra of permutations,
YSym is the Loday–Ronco Hopf algebra of planar binary trees, andCSym is the divided power Hopf
algebra. Moreover,SSym

τ

−→ YSym andYSym
κ

−→ CSym are surjective Hopf algebra maps. 2

The part of the proposition involvingSSym andYSym is found in (Aguiar and Sottile (2005, 2006));
the part involvingCSym is straightforward and we leave it to the reader.

Typically (Montgomery, 1993, Ex 5.6.8), the divided power Hopf algebra is defined to beK[x] :=
span{x(n) | n ≥ 0}, with basis vectorsx(n) satisfyingx(m) ·x(n) =

(

m+n
n

)

x(m+n), 1 = x(0), ∆(x(n)) =
∑

i+j=n x
(i) ⊗ x(j), andε(x(n)) = 0 for n > 0. An isomorphism betweenK[x] andCSym is given by

x(n) 7→ Fcn , wherecn is the unique comb inCn.

Proposition 2.2 The Hopf algebrasSSym, YSym, andCSym are cofree as coalgebras. The primitive
elements ofYSym andCSym are indexed by trees with no nodes off the right branch from the root. 2

The result forCSym is easy. Proposition 2.2 is proven forSSym andYSym in (Aguiar and Sottile
(2005, 2006)) by performing a change of basis—from thefundamental basisFw to themonomial basis
Mw—by means of M̈obius inversion in a poset structure placed onS· andY·.

3 Constructing Cofree Compositions of Coalgebras

3.1 Cofree compositions of coalgebras

Let C andD be graded coalgebras. Form a new coalgebraE = D ◦ C on the vector space

D ◦ C :=
⊕

n≥0

Dn ⊗ C
⊗(n+1) . (3.1)

WhenC andD are spaces of rooted, planar trees we may interpret◦ in terms of a rule for grafting trees.

Example 3.1 SupposeC = D = YSym and letd× (c0, . . . , cn) ∈ Yn×
(

Y·n+1
)

. Define◦ by attaching
the forest(c0, . . . , cn) to the leaves ofd while rememberingd,

×

(

, , , ,

)

◦
7−→

We represent an indecomposable tensor inE := D ◦ C as

d ◦ (c0· · · · ·cn) or
c0· · · · ·cn

d
.

Thedegreeof such an element is|d|+ |c0|+ · · ·+ |cn|. Write En for the span of elements of degreen.
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3.1.1 The coalgebra D ◦ C

We define thecompositional coproduct∆ for D ◦ C on indecomposable tensors: if|d| = n, put

∆
(c0· · · · ·cn

d

)

=
n
∑

i=0

∑

(d)
|d′|=i

∑

(ci)

c0· · · · ·ci−1·c
′
i

d′
⊗
c′′i ·ci+1· · · · ·cn

d′′
. (3.2)

Thecounitε : D ◦ C → K is given byε(d ◦ (c0· · · · ·cn)) = εD(d) ·
∏

j εC(cj).
For the painted trees of Example 3.1, if theci andd are elements of theF -basis, then∆(d ◦ (c0· · · · ·cn))

is the sum over all splittingst
g

→ (t′, t′′) of t into a pair of painted trees.

Theorem 3.2 (D ◦ C,∆, ε) is a coalgebra. This composition is functorial, ifϕ : C → C′ andψ : D → D′

are morphisms of graded coalgebras, then

c0· · · · ·cn
d

7−→
ϕ(c0)· · · · ·ϕ(cn)

ψ(d)

defines a morphism of graded coalgebrasϕ ◦ ψ : D ◦ C → D′ ◦ C′.

3.1.2 The cofree coalgebra D ◦ C

Suppose thatC andD are graded, connected, and cofree. ThenC = C(PC), wherePC ⊂ C is its space of
primitive elements. Likewise,D = C(PD), wherePD ⊂ D is its space of primitive elements.

Theorem 3.3 If C andD are cofree coalgebras thenD ◦ C is also a cofree coalgebra. Its space of
primitive elements is spanned by indecomposible tensors ofthe form

1·c1· · · · ·cn−1·1

δ
and

γ

1
, (3.3)

whereγ, ci ∈ C andδ ∈ Dn with γ, δ primitive.

Example 3.4 The graded Hopf algebras of ordered treesSSym, planar treesYSym, and divided powers
CSym are all cofree, and so their compositions are cofree. We havethe surjective Hopf algebra maps

SSym
τ

−−→ YSym
κ

−−→ CSym

giving the commutative diagram of Figure 1 of nine cofree coalgebras as the composition◦ is functorial.

3.2 Enumeration

SetE := D ◦ C and letCn andEn be the dimensions ofCn andEn, respectively.

Theorem 3.5 WhenDn has a basis indexed by combs withn internal nodes we have the recursion

E0 = 1 , and for n > 0, En = Cn +

n−1
∑

i=0

CiEn−i−1 .
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SSym ◦SSym

�
�	

@
@R

SSym ◦ YSym YSym ◦SSym

@
@R

�
�	

�
�	

@
@R

SSym ◦ CSym CSym ◦SSymYSym ◦ YSym

@
@R

�
�	

@
@R

�
�	

YSym ◦ CSym CSym ◦ YSym

@
@R

�
�	

CSym ◦ CSym

Fig. 1: A commutative diagram of cofree compositions of coalgebras.

Proof: The first term counts elements inEn of the form ◦ c. Removing the root node ofd from
d ◦ (c0· · · · ·ck) gives a pair ◦ (c0) andd′ ◦ (c1· · · · ·ck) with c0 ∈ Ci, whose dimensions are enumer-
ated by the terms of the sum. 2

For combs over a comb,En = 2n, for trees over a comb,En are the Catalan numbers, and for permu-
tations over a comb, we have the recursion

E0 = 1 , and for n > 0, En = n! +
n−1
∑

i=0

i!En−i−1 ,

which begins1, 2, 5, 15, 54, 235, . . . , and is sequence A051295 of the OEIS (Sloane). Similarly,

Theorem 3.6 WhenDn has a basis indexed byYn then we have the recursion

E0 = 1 , and for n > 0, En = Cn +
n−1
∑

i=0

EiEn−i−1 .

For example, the combs over a tree are enumerated by the binary transform of the Catalan numbers
(Forcey (2008b)). The trees over a tree are enumerated by theCatalan transform of the Catalan numbers
(Forcey (2008a)). The permutations over a tree are enumerated by the recursion

E0 = 1 , and for n > 0, En = n! +

n−1
∑

i=0

EiEn−i−1 ,

which begins1, 2, 6, 22, 92, 428, . . . and is not a recognized sequence in the OEIS (Sloane).

4 Composition of Coalgebras and Hopf Modules
We give conditions that imply a composition of coalgebras isa one-sided Hopf algebra, interpret this via
operads, and then investigate which compositions of Fig. 1 are one-sided Hopf algebras.
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4.1 Module coalgebras
LetD be a connected graded Hopf algebra with productmD, coproduct∆D, and unit element1D.

A mapf : E → D of graded coalgebras is aconnectiononD if E is aD–module coalgebra,f is a map
of D-module coalgebras, andE is connected. That is,E is an associative (left or right)D-module whose
action (denoted⋆) commutes with the coproducts, so that∆E(e ⋆ d) = ∆E(e) ⋆ ∆D(d), for e ∈ E and
d ∈ D, and the coalgebra mapf is also a module map, so that fore ∈ E andd ∈ D we have

(f ⊗ f)∆E(e) = ∆D f(e) and f(e ⋆ d) = mD (f(e)⊗ d) .

Theorem 4.1 If E is a connection onD, thenE is also a Hopf module and a comodule algebra overD. It
is also a one-sided Hopf algebra with left-sided unit1E := f−1(1D) and left-sided antipode.

Proof: SupposeE is a rightD-module. Define the productmE : E ⊗ E → E via theD-action:mE :=
⋆ ◦ (1⊗ f). The one-sided unit is1E . Then∆E is an algebra map. Indeed, fore, e′ ∈ E , we have

∆E(e · e
′) = ∆E(e ⋆ f(e

′)) = ∆Ee ⋆∆Df(e
′) = ∆Ee ⋆ (f ⊗ f)(∆Ee

′) = ∆Ee ·∆Ee
′ .

As usual,εE is just projection ontoE0. The unit1E is one-sided, since

e · 1E = e ⋆ f(1E) = e ⋆ f(f−1(1D)) = e ⋆ 1D = e ,

but1E · e = 1E ⋆ f(e) is not necessarily equal toe. The antipodeS may be defined recursively to satisfy
mE(S ⊗ 1)∆E = εE , just as for graded bialgebras with two-sided units.

Defineρ : E → E ⊗ D by ρ := (1 ⊗ f)∆E , which gives a coaction so thatE is a Hopf module and a
comodule algebra overD. 2

4.2 Operads and operad modules
Composition of coalgebras is the same product used to define operads internal to a symmetric monoidal
category (Aguiar and Mahajan, 2010, App. B). Amonoidin a category with a product• is an objectD
with a morphismγ : D •D → D that is associative. Anoperadis a monoid in the category of graded sets
with an analog of the composition product◦ defined in Section 3.1.

The category of connected graded coalgebras is a symmetric monoidal category under the composition
of coalgebras,◦. A graded Hopf operadD is a monoid in the monoidal category of connected graded
coalgebras and coalgebra maps, under the composition product. That is,D is equipped with associative
composition maps

γ : D ◦ D → D, obeying ∆Dγ(a) = (γ ⊗ γ) (∆D◦D(a)) for all a ∈ D ◦ D .

A graded Hopf operad moduleE is an operad module overD and a graded coassociative coalgebra
whose module action is compatible with its coproduct. We denote the left and right action maps by
µl : D ◦ E → E andµr : E ◦ D → E , obeying, e.g.,∆Eµr(b) = (µr ⊗ µr)∆E◦Db for all b ∈ E ◦ D.

Example 4.2 YSym is an operad in the category of vector spaces. The action ofγ onFt ◦ (Ft0 · · · · ·Ftn)
grafts the treest0, . . . , tn onto the treet and, unlike in Example 3.1, forgets which nodes of the resulting
tree came fromt. This is associative in the appropriate sense. The sameγ makesYSym an operad in the
category of connected graded coalgebras, making it a gradedHopf operad. Finally, operads are operad
modules over themselves, soYSym is also graded Hopf operad module.
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Remark 4.3 Our graded Hopf operads differ from those of Getzler and Jones, who defined a Hopf operad
to be an operad oflevel coalgebras, where each componentDn is a coalgebra.

Theorem 4.4 A graded Hopf operadD is also a Hopf algebra with product

a · b := γ(b⊗∆(n)a) (4.1)

whereb ∈ Dn and∆(n) is the iterated coproduct fromD toD⊗(n+1).

It is possible to swap the roles ofa andb on the right-hand side of (4.1). Our choice agrees with the
product inYSym andCSym. In fact, the well-known Hopf algebra structures ofYSym andCSym follow
from their structure as graded Hopf operads.

Lemma 4.5 If C is a graded coalgebra andD is a graded Hopf operad, thenD◦C is a (left) graded Hopf
operad module andC ◦ D is a (right) graded Hopf operad module.

Lemma 4.6 A graded Hopf operad module over a graded Hopf operad is also amodule coalgebra.

Theorem 4.7 Given a coalgebra mapλ : C → D from a connected graded coalgebraD to a graded Hopf
operadD , the mapsγ ◦ (1 ◦ λ) : D ◦ C → D andγ ◦ (λ ◦ 1) : D ◦ C → D give connections onD.

4.3 Examples of module coalgebra connections
Eight of the nine compositions of Example 3.4 are connections on one or both of the factorsC andD.

Theorem 4.8 For C ∈ {SSym,YSym,CSym}, the coalgebra compositionsC ◦ CSym andCSym ◦ C
are connections onCSym. For C ∈ {SSym,YSym,CSym}, the coalgebra compositionsC ◦ YSym and
YSym ◦ C are connections onYSym.

Note thatCSym ◦ YSym is a connection on bothCSym and onYSym, which gives two distinct one-
sided Hopf algebra structures. Similarly,YSym ◦ YSym is a connection onYSym in two distinct ways
(again leading to two distinct one-sided Hopf structures).

5 Three Examples
The three underlined algebras in Example 3.4 arose previously in algebra, topology, and category theory.

5.1 Painted Trees
A painted binary treeis a planar binary treet, together with a (possibly empty) upper order ideal of its
node poset. We indicate this ideal by painting on top of a representation oft. For example,

, , , , .

An An-spaceis a topologicalH-space with a weakly associative multiplication of points (Stasheff
(1963)). Maps betweenAn-spaces preserve the multiplicative structure only up to homotopy. Stasheff
(1970) described these maps combinatorially using cell complexes called multiplihedra, while Board-
man and Vogt (1973) used spaces of painted trees. Both the spaces of trees and the cell complexes are
homeomorphic to convex polytope realizations of the multiplihedra as shown in (Forcey (2008a)).
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If f : (X, •) → (Y, ∗) is a map ofAn-spaces, then the different ways to multiply and mapn points
of X are represented by a painted tree. Unpainted nodes are multiplications inX, painted nodes are
multiplications inY , and the beginning of the painting indicates thatf is applied to a given point inX,

f(a) ∗

(

f(b • c) ∗ f(d)
)

←→ .

5.1.1 Algebra structures on painted trees.
LetPn be the poset of painted trees onn internal nodes, with partial order inherited from the identification
withMn+1. The order onMn+1 is studied in (Forcey et al. (2010)).

We describe the key definitions of Section 3.1 and Section 4 for PSym := YSym ◦ YSym. In the
fundamental basis

{

Fp | p ∈ P·
}

of PSym , the counit isε(Fp) = δ0,|p|, and the product is given by

∆(Fp) =
∑

p
g

→(p0,p1)

Fp0
⊗ Fp1

,

where the painting inp ∈ Pn is preserved in the splittingp
g

→ (p0, p1).
For example, we have

∆(F ) = 1⊗ F + F ⊗ F + F ⊗ F + F ⊗ 1 .

The identity map onYSym makesPSym into a connection onYSym. By Theorem 4.1,PSym is
thus also a one-sided Hopf algebra, aYSym-Hopf module, and aYSym-comodule algebra. The product
Fp · Fq in PSym as

Fp · Fq =
∑

p
g

→(p0,p1,...,pr)

F(p0,p1,...,pr)/q+ ,

where the painting inp is preserved in the splitting(p0, p1, . . . , pr), andq+ signifies thatq is painted
completely before grafting. For example,

F · F = F + F + F + F .

The painted treewith 0 nodes is a right multiplicative identity element,

F · Fq = Fq+ and Fq · F = Fq for q ∈ P· .
AsPSym is graded and connected, it has an antipode.

Theorem 5.1 There are unit and antipode mapsµ : K → PSym and S : PSym → PSym making
PSym a one-sided Hopf algebra.

TheYSym-Hopf module structure onPSym from Theorem 4.1 has coaction

ρ(Fp) =
∑

p
g

→(p0,p1)

Fp0
⊗ Ff(p1) ,
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where the painting inp is preserved inp0 amd forgotten inp1.
Since painted trees and bi-leveled trees both index vertices of the multiplihedra, these structures for

PSym give structures on the linear spanMSym+ of bi-leveled trees with at least one node.

Corollary 5.2 TheYSym action and coaction defined in (Forcey et al., 2010, Section 4.1) makeMSym+

into a Hopf module isomorphic to the Hopf modulePSym. 2

5.2 Composite Trees
In a forest of combs attached to a binary tree, the combs may bereplaced by corollae or by a positive
weightcounting the number of leaves in the comb. These all givecomposite trees.

= =

2 3 1 2

(5.1)

Composite trees with weights summing ton+1, CKn, were shown to be the vertices of an-dimensional
polytope, thecomposihedron, CK(n) (Forcey (2008b)). This sequence of polytopes is used to parameter-
ize homotopy maps between strictly associative and homotopy associativeH-spaces. For small values of
n, the polytopesCK(n) also appear as the commuting diagrams in enriched bicategories (Forcey (2008b)).
These diagrams appear in the definition of pseudomonoids (Aguiar and Mahajan, 2010, App. C).

5.2.1 Algebra structures on composite trees
We describe the key definitions of Section 3.1 and Section 4 for CKSym := YSym ◦ CSym. In the
fundamental basis

{

Fp | p ∈ CK·
}

of CKSym, the counit isε(Fp) = δ0,|p| and the coproduct is

∆(Fp) =
∑

p
g

→(p0,p1)

Fp0
⊗ Fp1

,

where the painting inp ∈ CK· is preserved in the splittingp
g

→ (p0, p1).
Here is an example, written in terms of the weighted trees.

∆(F 2 1 2) = F1 ⊗ F 2 1 2 + F2 ⊗ F 1 1 2 + F 2 1⊗ F 1 2 + F 2 1 1⊗ F2 + F 2 1 2⊗ F1 .

For the product, Theorem 4.1 using the left module coalgebraaction defined in Lemma 4.6 gives

Fa · Fb := g(Fa) ⋆ Fb , wherea, b ∈ CK· ,
whereg : CKSym → CSym is the connection. On the indices, it sends a composite treea to the unique
combg(a) with the same number of nodes asa. For the action⋆, g(a) is split in all ways to make a forest
of |b|+1 combs, which are grafted onto the leaves of the forest of combs in b, then each tree in the forest
is combed and attached to the binary tree inb. We illustrate one term in the product. Suppose that

a =
2 1

= andb =

1 2 1

= . Theng(a) = . One way to splitg(a) gives the forest

(

, , ,
)

. Graft this ontob to get , then comb the forest to get , which is

1 3 2

.



Cofree compositions of coalgebras 11

Doing this for the other nine splittings ofg(a) gives,

F 2 1 · F 1 2 1 = F 3 2 1 + 3F 1 4 1 + F 1 2 3 + 2F 2 3 1 + F 2 2 2 + 2F 1 3 2.

5.3 Composition trees
The simplest composition of Fig. 1 isCSym ◦ CSym, whose basis is indexed by combs over combs. If
we represent these as weighted trees as in (5.1), we see that we may identify combs over combs withn
internal nodes as compositions ofn+1. Thus we refer to these ascomposition trees.

⇐⇒
3 2 1 4

⇐⇒ (3, 2, 1, 4) .

The coproduct is again given by splitting. Since(1, 3) has the four splittings,

g

−−→
(

,
)

,
(

,
)

,
(

,
)

,
(

,
)

, (5.2)

we have∆(F1,3) = F1 ⊗ F1,3 + F1,1 ⊗ F3 + F1,2 ⊗ F2 + F1,3 ⊗ F1.
As we remarked, there are two connectionsCSym ◦ CSym → CSym, using either the right or left

action ofCSym. This gives two new one-sided Hopf algebra structures on compositions. With the right
action, we haveF1,3 · F2 = 2F1,1,3 + F1,2,2 + F1,3,1, as

F · F = F + F + F + F , (5.3)

which may be seen by grafting the different splittings (5.2)onto the tree and coloring .
Forcey and Springfield (2010) defined a one-sided Hopf algebra ∆Sym on the graded vector space

spanned by the faces of the simplices. Faces of the simplicescorrespond to subsets of[n]. Here is an
example of the coproduct of the basis element correspondingto {1} ⊂ [4], where subsets of[n] are
illustrated as circled subsets of the circled edgeless graph onn nodes numbered left to right:

∆ = ⊗ + ⊗ + ⊗ + ⊗ + ⊗

Here is an example of the product

· = + + + .

Let ϕ denote the bijection between subsetsS = {a, b, . . . c} ⊂ [n] and compositionsϕ(S) = (a, b −
a, . . . , n + 1 − c) of n + 1. Applying this bijection the indices of their fundamental bases gives a linear
isomorphismϕ : ∆Sym

∼
−→ CSym ◦CSym, which is nearly an isomorphism of one-sided Hopf algebras,

as may be seen by comparing these schematics of operations in∆Sym to formulas (5.2) and (5.3) in
CSym ◦ CSym.

Theorem 5.3 The mapϕ is an isomorphism of coalgebras and an anti-isomorphism (ϕ(a · b) = ϕ(a) ·
ϕ(b)) of one-sided algebras.

Corollary 5.4 The one-sided Hopf algebra of simplices introduced in (Forcey and Springfield (2010)) is
cofree as a coalgebra.
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