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Abstract. We develop the notion of the composition of two coalgebras, which arigesailg in higher category
theory and the theory of species. We prove that the composition of tweecobalgebras is cofree and give conditions
which imply that the composition is a one-sided Hopf algebra. These comslitisld when one coalgebra is a graded
Hopf operadD and the other is a connected graded coalgebra with coalgebra rfapvie conclude by discussing
these structures for compositions with bases the vertices of multiplihedirgnasihedra, and hypercubes.
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1 Introduction

The Hopf algebras of ordered trees (Malvenuto and Reutel{&985)) and of planar binary trees (Loday
and Ronco (1998)) are cofree coalgebras that are connegteellblar maps from permutahedra to as-
sociahedra. Related polytopes include the multiplihe8tagheff (1970)) and the composihedra (Forcey
(2008b)), and it is natural to study what Hopf structures finaylaced on these objects. The map from
permutahedra to associahedra factors through the mhéiiia, and in (Forcey et al. (2010)) we used this
factorization to place Hopf structures on bi-leveled tregsich correspond to vertices of multiplihedra.

Multiplihedra form an operad module over associahedras ads to painted trees, which also corre-
spond to the vertices of the multiplihedra. In terms of padntrees, the Hopf structures of (Forcey et al.
(2010)) are related to the operad module structure. We ginethis in Section 3, defining the functorial
construction of a graded coalgeliPa C from graded coalgebrasandD. We show that this composition
of coalgebras preserves cofreeness. In Section 4, giveisufficonditions whef® is a Hopf algebra for
the composition of coalgebrd3 o C (andC o D) to be a one-sided Hopf algebra. These conditions also
guarantee that a composition is a Hopf module and a comothééra overD.

This composition arises in the theory of operads and in therthof species, as species and operads
are one-and-the-same (Aguiar and Mahajan, 2010, App. B3ebtion 4 we show that an operadof
connected graded coalgebras is automatically a Hopf adgebr

We discuss three examples related to well-known objects frategory theory and algebraic topology
and show that the Hopf algebra of simplices of (Forcey anéhgfield (2010)) is cofree as a coalgebra.
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2 Preliminaries

We work over a fixed fiel& of characteristic zero. For a graded vector spece- @, V,,, we write
|v| = n and say hasdegreen if v € V,.

2.1 Hopf algebras and cofree coalgebras

A Hopf algebraH is a unital associative algebra equipped with a coasseeiabproduct homomor-
phismA: H — H ® H and a counit homorphism: H — K which plays the role of the identity
for A. See (Montgomery (1993)) for more details. Takeuchi (195tHgwed that a graded bialgebra
H = (6D,,~¢ Hn," A, ¢) that is connectedH, = K) is a Hopf algebra.

A coalgebraC is a vector spacé equipped with a coassociative coprodidicand counit. Fore € C,
write A(c) as}_ ., ¢’ @ ¢”. Coassociativity means that

Z (C/)/ ® (C/)// ® C// _ Z C/ ® (C//)/ ® (C//)// _ ZC/ ® C// ® CW,
(e),(e") (e).(e") (e)
and the counit condition means theJ, ., e(c')c" = 3, d'e(¢”) = c.
Thecofree coalgebran a vector spacg isC(V) := P, V" with counit the projection: C(V) —
K = V®% and thedeconcatenation coproduatriting “\” for the tensor product iV ©”, we have

n

Aer\ - \en) = Y e\ \e) ® (ci\ - \en) -

=0

Observe thal is the set of primitive elements @f(1"). A coalgebre is cofreeif C ~ C(FP¢), whereP,
is the space of primitive elements©f Many coalgebras arising in combinatorics are cofree.

2.2 Cofree Hopf algebras on trees

We describe three cofree Hopf algebras built on rooted plainary treesordered treesS,,, binary trees
Yn, and(left) combst,, onn internal nodes. Sed. := J,,-, &, and define). and¢. similarly.

2.2.1 Constructions on trees

The nodes of a tree € ), form a poset. Arordered treew = w(t) is a linear extension of this node
poset oft. This linear extension is indicated by placing a permutatiothe gaps between its leaves,
which gives a bijection between ordered trees and pernontiThe map: &,, — ), sends an ordered

treew(t) to its underlying tree. The mapx: ), — €, shifts all nodes of a tree to the right branch from
the root. Set5, = )y = €, = |. Note that|&,,| = 1 forall n > 0.

3412
\>/ 2413
\>/ T binary trees), R, left combs¢,

ordered treesS, _—
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Splitting an ordered tree along the path from a leaf to the root yields an ordered fqrekere the
nodes in the forest are totally ordered) or a pair of orderegkst

251‘43 251‘43

PP (P )« ()

Write w 5 (wg, w1 ) When the ordered fore$tuy, wy) (or pair of ordered trees) is obtained by splitting
w. (Context will determine how to interpret the result.)
We maygraftan ordered forest = (wy, ..., w,) onto an ordered tree € S,,, obtaining the treej /v
as follows. First increase each labelo$o that its nodes are greater than the nodes, @nd then graft
treew; onto thei'" leaf of v. For example,
1432

if (7,v) = ((iﬁ/ I$\6(\4(>\>>/>

32

32811 751,106 94

thenw /v =

Splitting and grafting make sense for tree)in They also work fore, if, after grafting a forest of
combs onto the leaves of a comb, one applietsthe resulting planar binary tree to get a new comb.

2.2.2 Three cofree Hopf algebras

Let &Sym := @, ~, SSym,, be the graded vector space whesé graded piece has basi#,, | w €
S, }. DefineYSym and €Sym similarly. The set maps and s induce vector space mapsand «,
T(Fy) = Frw) ands(Fy) = Fy). FixX € {6,), &}, Forw € X, andv € X,,, set

Fw . FU = Z F(wo,...7wn)/vv

wl)(wo,...,wn)

the sum over all ordered forests obtained by splitiingt a multiset of» leaves. Foww € X., set

A(Fy) == Y Fuy®Fu,,

wl)(wo,wl)

the sum over all splittings ofv at one leaf. The counit is the projection onto thé'" graded piece,
spanned by the unit elemeht= F'| for the multiplication.
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Proposition 2.1 For (A, -, ) above & Sym is the Malvenuto—Reutenauer Hopf algebra of permutations,
YSym is the Loday—Ronco Hopf algebra of planar binary trees, a@stym is the divided power Hopf
algebra. Moreovers Sym — Y Sym andY Sym — ¢Sym are surjective Hopf algebra maps. O

The part of the proposition involving Sym and) Sym is found in (Aguiar and Sottile (2005, 2006));
the part involvinggSym is straightforward and we leave it to the reader.

Typically (Montgomery, 1993, Ex 5.6.8), the divided poweogH algebra is defined to bE[z] :=
span{z(™ | n > 0}, with basis vectors(™ satisfyingz(™ - z(") = ("+™)gz(mtn) 1 = 20 A(2(W)) =
Yitjen o ®20), ande(2(™) = 0 for n > 0. Anisomorphism betweek[x] and€Sym is given by
™ — F,. , wherec, is the unique comb iKt,,.

Proposition 2.2 The Hopf algebra$ Sym, Y Sym, and€Sym are cofree as coalgebras. The primitive
elements o} Sym and €Sym are indexed by trees with no nodes off the right branch froerdiot. O

The result for¢.Sym is easy. Proposition 2.2 is proven féSym and) Sym in (Aguiar and Sottile

(2005, 2006)) by performing a change of basis—fromfthedamental basi¢’, to themonomial basis
M,,—by means of Mbius inversion in a poset structure placed®nand). .

3 Constructing Cofree Compositions of Coalgebras

3.1 Cofree compositions of coalgebras

LetC andD be graded coalgebras. Form a new coalgébraD o C on the vector space

DoC = @D, wco"h. (3.1)
n>0

WhenC andD are spaces of rooted, planar trees we may interpireterms of a rule for grafting trees.

Example 3.1 Suppos&€ = D = YSym and letd x (co, ...,cn) € Yy X (y. ”+1). Defineo by attaching
the forest(cy, . . ., ¢,,) to the leaves ofl while remembering/,

\V/X(V,LV\/,Y,J —

We represent an indecomposable tensdét is= D o C as
do (CO ..... Cn) or

Thedegreeof such an element igl| + |co| + - - - + | ¢, |. Write &, for the span of elements of degree
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3.1.1 The coalgebraDoC
We define theeompositional coproduch for D o C on indecomposable tensors]df = n, put

A7) - ZZZ‘“ 62

=0 (d) (i)
|d'|=i

Thecounite : Do C — Kis given bye(do (¢o - -+ cn)) =ep(d) - [];ec(ey).
For the painted trees of Example 3.1, if hendd are elements of thE-basis, them\ (d o (cp- - - - - cn))
is the sum over all splittings— (¢, ") of ¢ into a pair of painted trees.

Theorem 3.2 (Do C, A,¢) is a coalgebra. This composition is functorialgt C — C’ and: D — D’
are morphisms of graded coalgebras, then

defines a morphism of graded coalgebgas ¢): Do C — D' o C’.

3.1.2 The cofree coalgebra Do C

Suppose that andD are graded, connected, and cofree. Then C(:), whereP; C C is its space of
primitive elements. Likewise) = C(Pp), wherePp C D is its space of primitive elements.

Theorem 3.3 If C and D are cofree coalgebras the® o C is also a cofree coalgebra. Its space of
primitive elements is spanned by indecomposible tensdaredbrm

2
5 and T (3.3)
wherev, ¢; € C andé € D,, with v, § primitive.

Example 3.4 The graded Hopf algebras of ordered tré&esym, planar tree§’Sym, and divided powers
¢Sym are all cofree, and so their compositions are cofree. We tievsurjective Hopf algebra maps

S Sym N YSym AN ESym
giving the commutative diagram of Figure 1 of nine cofreelgebras as the compositieris functorial.
3.2 Enumeration
Set€ := Do C and letC,, and E,, be the dimensions af,, and&,,, respectively.

Theorem 3.5 WhenD,, has a basis indexed by combs witlnternal nodes we have the recursion

n—1

Ey =1, andforn>0, E, =C, + ZCiEn—i—1~
=0



6 Stefan Forcey, Aaron Lauve, and Frank Sottile
G Sym o GSym

/N

GSymo YSym  YSym o GSym

SN SN

GSymo €Sym  YSymo YSym  €Sym o SSym
YSym o €Sym &Sym o Y Sym

ESym o ESym
Fig. 1: A commutative diagram of cofree compositions of coalgebras.

Proof: The first term counts elements #), of the form| o ¢. Removing the root node af from
do(cor---- ¢k) gives a pairlo (¢o) andd o (¢q--- -+ cr) with ¢ € C;, whose dimensions are enumer-
ated by the terms of the sum. O

For combs over a comld;,, = 2", for trees over a comby,, are the Catalan numbers, and for permu-
tations over a comb, we have the recursion

n—1
Ey =1, andforn>0, E, = n!+2i!En_i_1,
1=0

which beginsl, 2,5, 15, 54,235, ..., and is sequence A051295 of the OEIS (Sloane). Similarly,
Theorem 3.6 WhenD,, has a basis indexed By, then we have the recursion

n—1

Ey =1, andforn>0, E, = Co+» EE, ;.
1=0

For example, the combs over a tree are enumerated by theyltraasform of the Catalan numbers
(Forcey (2008b)). The trees over a tree are enumerated Wyatadan transform of the Catalan numbers
(Forcey (2008a)). The permutations over a tree are enuetebgtthe recursion

n—1

Ey =1, andforn >0, E, = n!+ Z EE, i1,
1=0

which beginsl, 2,6, 22,92, 428, ... and is not a recognized sequence in the OEIS (Sloane).

4 Composition of Coalgebras and Hopf Modules

We give conditions that imply a composition of coalgebraa @e-sided Hopf algebra, interpret this via
operads, and then investigate which compositions of Fige bae-sided Hopf algebras.
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4.1 Module coalgebras

Let D be a connected graded Hopf algebra with produgt, coproductAp, and unit elementp.

Amapf : £ — D of graded coalgebras iscannectioron D if £ is aD-module coalgebrg; is a map
of D-module coalgebras, arflis connected. That ig; is an associative (left or righfp-module whose
action (denoted) commutes with the coproducts, so thisg(e x d) = Ag(e) x Ap(d), fore € £ and
d € D, andthe coalgebra map is also a module map, so that fee £ andd € D we have

(f@f)Ag(e) = Ap f(e) and  f(exd) = mp (f(e)®d).

Theorem 4.1 If £ is a connection oD, then€ is also a Hopf module and a comodule algebra oeit
is also a one-sided Hopf algebra with left-sided unit:= f~!(1p) and left-sided antipode.

Proof: Supposef is a rightD-module. Define the products : £ ® £ — £ via theD-action: mg :=
*o (1® f). The one-sided unit i¢. ThenA¢ is an algebra map. Indeed, fare’ € £, we have

Ag(e-e/) = Ag(e*f(e')) = Age*ADf(e/) = Ag@*(f@f)(Agel) = Age-Agel.
As usualgg¢ is just projection ont&,. The unitl¢ is one-sided, since
e-lg = exf(lg) = ex f(f(Ip)) = exlp = e,

butle - e = 1¢ * f(e) is not necessarily equal to The antipodeS may be defined recursively to satisfy
me(S ® 1)Ag = eg¢, just as for graded bialgebras with two-sided units.

Definep: £ - £E@Dbyp:= (1® f)Ag, which gives a coaction so thétis a Hopf module and a
comodule algebra ovép. O

4.2 Operads and operad modules

Composition of coalgebras is the same product used to dgfi@eds internal to a symmetric monoidal
category (Aguiar and Mahajan, 2010, App. B)n#onoidin a category with a produetis an objectD
with a morphismy: D e D — D that is associative. Aoperadis a monoid in the category of graded sets
with an analog of the composition productiefined in Section 3.1.

The category of connected graded coalgebras is a symmairioidal category under the composition
of coalgebrase. A graded Hopf operad is a monoid in the monoidal category of connected graded
coalgebras and coalgebra maps, under the compositiongirotibat is,D is equipped with associative
composition maps

v: DoD — D, obeying Apy(a) = (v ®7) (Apop(a)) forall a e DoD.

A graded Hopf operad modulé is an operad module ovdP and a graded coassociative coalgebra
whose module action is compatible with its coproduct. Weotlerthe left and right action maps by
w:Do& — Eandy, : £EoD — &, obeying, €.9.Agpi(b) = (ur @ pr)Agopbforallb € € o D.

Example 4.2 Y Sym is an operad in the category of vector spaces. The actigrooff; o (Fy,--- - - )
grafts the trees, . . ., ¢, onto the tree and, unlike in Example 3.1, forgets which nodes of the resyilt
tree came fromt. This is associative in the appropriate sense. The samakes) Sym an operad in the
category of connected graded coalgebras, making it a griddetioperad. Finally, operads are operad
modules over themselves, 3&ym is also graded Hopf operad module.
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Remark 4.3 Our graded Hopf operads differ from those of Getzler and gonko defined a Hopf operad
to be an operad dével coalgebraswhere each componefit, is a coalgebra.

Theorem 4.4 A graded Hopf opera® is also a Hopf algebra with product
a-b = ~v0boAMa) (4.1)

whereb € D,, and A" is the iterated coproduct fror® to D2 (1),

It is possible to swap the roles afandb on the right-hand side of (4.1). Our choice agrees with the
product in) Sym and€Sym. In fact, the well-known Hopf algebra structure)a$ym and€Sym follow
from their structure as graded Hopf operads.

Lemma 4.5 If C is a graded coalgebra an® is a graded Hopf operad, theR o C is a (left) graded Hopf
operad module and o D is a (right) graded Hopf operad module.

Lemma 4.6 A graded Hopf operad module over a graded Hopf operad is alsmdule coalgebra.
Theorem 4.7 Given a coalgebra map: C — D from a connected graded coalgelifato a graded Hopf
operadD ,the mapsyo (loA): DoC — Dandyo (Aol): DoC — D give connections of.

4.3 Examples of module coalgebra connections

Eight of the nine compositions of Example 3.4 are connestmmnone or both of the facto€sandD.

Theorem 4.8 For C € {&Sym, )Y Sym,CSym}, the coalgebra compositior&o €Sym and €Sym o C
are connections o&.Sym. For C € {&Sym, Y Sym, €Sym}, the coalgebra compositiortse Y Sym and
YSym o C are connections oy Sym.

Note that®Sym o ) Sym is a connection on bot#iSym and on) Sym, which gives two distinct one-
sided Hopf algebra structures. SimilarlySym o ) Sym is a connection o)) Sym in two distinct ways
(again leading to two distinct one-sided Hopf structures).

5 Three Examples

The three underlined algebras in Example 3.4 arose prdyioualgebra, topology, and category theory.

5.1 Painted Trees

A painted binary treds a planar binary treg together with a (possibly empty) upper order ideal of its
node poset. We indicate this ideal by painting on top of agsgntation of. For example,

1,Y,Y,Vv

An A, -spaceis a topologicalH-space with a weakly associative multiplication of poiritasheff
(1963)). Maps between,,-spaces preserve the multiplicative structure only up tmdtopy. Stasheff
(1970) described these maps combinatorially using cellptexes called multiplihedra, while Board-
man and Vogt (1973) used spaces of painted trees. Both tlcespétrees and the cell complexes are
homeomorphic to convex polytope realizations of the mlittgzira as shown in (Forcey (2008a)).
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If f:(X,e) — (Y,x*) is a map ofA, -spaces, then the different ways to multiply and mapoints
of X are represented by a painted tree. Unpainted nodes areplicaliions in X, painted nodes are
multiplications inY’, and the beginning of the painting indicates tlias applied to a given point itX,

F(@) % (fbec) * f(d) v

5.1.1 Algebra structures on painted trees.

LetP,, be the poset of painted treeswinternal nodes, with partial order inherited from the idfécetion
with M,, ;1. The order onM,, ;; is studied in (Forcey et al. (2010)).

We describe the key definitions of Section 3.1 and Sectiorr £feym := Y Sym o Y Sym. In the
fundamental basi$F, | p € P. } of PSym , the counitisz(F,) = |, and the product is given by

A(Fy) = Z Fpy @ Fp,

y
p—(po,p1)

where the painting ip € P, is preserved in the splitting — (po, p1).
For example, we have

A(FW) = 1®F\V + FY®F\</ + F\?/(X)FY + FV@L

The identity map or)) Sym makesP.Sym into a connection o) Sym. By Theorem 4.1PSym is
thus also a one-sided Hopf algebray &ym-Hopf module, and & Sym-comodule algebra. The product
F, - F,in PSym as

Fy- Iy = Z F(po,pl,-<~7m)/q+ ’

v
P—(P0,P1;--+sPr)

where the painting i is preserved in the splittingpo, p1, ..., p-), andg™ signifies thaty is painted
completely before grafting. For example,

By = Fv + FV + F\V + F\y
The painted tregwith 0 nodes is a right multiplicative identity element,
Fy-Fy = Fo and  Fy-Fy = F, forgeP..

As PSym is graded and connected, it has an antipode.

Theorem 5.1 There are unit and antipode maps K — PSym and S: PSym — PSym making
PSym a one-sided Hopf algebra.

The Y Sym-Hopf module structure o®Sym from Theorem 4.1 has coaction

p(FI)) = Z FP0®Ff(P1)’

v
p—(po,p1)



10 Stefan Forcey, Aaron Lauve, and Frank Sottile

where the painting ip is preserved im, amd forgotten imp;.
Since painted trees and bi-leveled trees both index verti€ehe multiplihedra, these structures for
PSym give structures on the linear span Sym , of bi-leveled trees with at least one node.

Corollary 5.2 The) Sym action and coaction defined in (Forcey et al., 2010, SectiéhdhakeM Sym ,
into a Hopf module isomorphic to the Hopf mod@&ym. a

5.2 Composite Trees

In a forest of combs attached to a binary tree, the combs maggaced by corollae or by a positive
weightcounting the number of leaves in the comb. These all gpraposite trees

2 3 1 2
= = (5.1)

Composite trees with weights summingrte-1, CK,,, were shown to be the vertices ohadimensional
polytope, thecomposihedroyCKC(n) (Forcey (2008b)). This sequence of polytopes is used tawpete-
ize homotopy maps between strictly associative and homaiegociatived -spaces. For small values of
n, the polytope€ X (n) also appear as the commuting diagrams in enriched bicagsg&orcey (2008b)).
These diagrams appear in the definition of pseudomonoidgiéAgnd Mahajan, 2010, App. C).

5.2.1 Algebra structures on composite trees

We describe the key definitions of Section 3.1 and Sectionr £f0Sym = YSym o €Sym. In the
fundamental basi{:Fp |pe CIC.} of CKCSym, the counit iss(F},) = &y, || and the coproduct is

A(F,) = Z Fpy © 1y,

Y
p—(pPo,p1)

where the painting ip € CK. is preserved in the splitting — (po, p1).
Here is an example, written in terms of the weighted trees.

AF2:12) = LQF12+ F2QF 1124+ F21QF1 2 + F21.Q0F: + F21:0 Fu.
Fgp = ey v oy s Ryely + g o iy + iy h

For the product, Theorem 4.1 using the left module coalgabtian defined in Lemma 4.6 gives
F,-F, .= g(F,)x Fy, wherea, b € CK. ,

whereg: CKCSym — €Sym is the connection. On the indices, it sends a compositestteghe unique
comby(a) with the same number of nodesasFor the action, g(a) is splitin all ways to make a forest
of |b|4+-1 combs, which are grafted onto the leaves of the forest of sdmiy then each tree in the forest

is combed and attached to the binary treé.ilVe illustrate one term in the product. Suppose that
121

21
a= Y = \v andb = V: \y Theng(a) = V/ One way to spliy(a) gives the forest

132
(1,Y . ],Y ). Graftthis ontob to get , then comb the forest to getY” , which is \</
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Doing this for the other nine splittings gfa) gives,

Fo1 - Fi21= Fzz21+ 3F141+ Fr23+ 2F231 4+ Fa224 2F132.
Y Y 'Y 'Y 'Y 'Y Y 'Y

5.3 Composition trees

The simplest composition of Fig. 1 &Sym o €Sym, whose basis is indexed by combs over combs. If
we represent these as weighted trees as in (5.1), we seedhatwidentify combs over combs with
internal nodes as compositionsrof1. Thus we refer to these asmposition trees

3214
W@ V@ (3,2,1,4).

The coproduct is again given by splitting. Sinde3) has the four splittings,

N =ENY) (YY) (Y. (Y. e

we haveA(F3) = F1 @ Fig+ 11 @ 3+ Fla @ I + Fiz @ I

As we remarked, there are two connecti@iym o €Sym — &€Sym, using either the right or left
action of&Sym. This gives two new one-sided Hopf algebra structures onpositions. With the right
action, we have’ 3 - Fo = 2F) 13+ Fi1 22+ Fi 31, as

FV'FY:FV_FFV_‘_FV_‘_FV’ (5.3)

which may be seen by grafting the different splittings (®8)o the tre§” and coloringy.

Forcey and Springfield (2010) defined a one-sided Hopf atg&lfiym on the graded vector space
spanned by the faces of the simplices. Faces of the simptimesspond to subsets pf]. Here is an
example of the coproduct of the basis element corresportdiqd} C [4], where subsets df:] are
illustrated as circled subsets of the circled edgelessgoap nodes numbered left to right:

M@0 = O0@E D+ @80 + @I8CED + @080 + @980

Here is an example of the product

D@ D=0 - H+@e-H+@ - 0H+@- -3

Let ¢ denote the bijection between subséts- {a,b,... ¢} C [n] and compositions(S) = (a,b —
a,...,n+1—c)of n+ 1. Applying this bijection the indices of their fundamentaldes gives a linear
isomorphismp: ASym — €Sym o €Sym, which is nearly an isomorphism of one-sided Hopf algebras,
as may be seen by comparing these schematics of operatidaSym to formulas (5.2) and (5.3) in
ESym o ESym.

Theorem 5.3 The mapy is an isomorphism of coalgebras and an anti-isomorphigrtu(- b) = ¢(a) -
(b)) of one-sided algebras.

Corollary 5.4 The one-sided Hopf algebra of simplices introduced in (Egrand Springfield (2010)) is
cofree as a coalgebra.
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