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An inequality of Kostka numbers and Galois
groups of Schubert problems

Christopher J. Brooks†and Abraham Martı́n del Campo‡and Frank Sottile§

Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA

Abstract. We show that the Galois group of any Schubert problem involving lines in projective space contains the
alternating group. Using a criterion of Vakil and a special position argument due to Schubert, this follows from a
particular inequality among Kostka numbers of two-rowed tableaux. In most cases, an easy combinatorial injection
proves the inequality. For the remaining cases, we use that these Kostka numbers appear in tensor product decom-
positions ofsl2C-modules. Interpreting the tensor product as the action of certain commuting Toeplitz matrices and
using a spectral analysis and Fourier series rewrites the inequality as the positivity of an integral. We establish the
inequality by estimating this integral.

Résuḿe. On montre que le groupe de Galois de tout problème de Schubert concernant des droites dans l’espace
projective contient le groupe alterné. On utilisant un crit̀ere de Vakil et l’argument de position spéciale duèa Schubert,
ce ŕesultat se d́eduit d’une ińegalit́e particulìere des nombres de Kostka des tableaux ayant deux rangées. Dans la
plus part des cas, une injection combinatoriale facile montre l’inégalit́e. Pour les cas restant, on utilise le fait que
ces nombres de Kostka apparaissent dans la décomposition en produit tensoriel dessl2C-modules. En interprétant
le produit tensoriel comme l’action de certaines matrices de Toeplitz commutantent entre elles, et en utilisant de
l’analyse spectrale et les séries de Fourier, on reécrit l’inégalit́e comme la positivit́ee d’une int̀egrale. L’ińegalit́e sera
établie en estimant cette intègrale.
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Introduction
The Schubert calculus of enumerative geometry [KL72] is a method to compute the number of solutions
to Schubert problems, a class of geometric problems involving linear subspaces.One can reduce the
enumeration to combinatorics; for example, the number of solutions to a Schubert problem involving
lines is a Kostka number for a rectangular partition with twoparts.

A prototypical Schubert problem is the classical problem offour lines, which asks for the number of
lines in space that meet four given lines. To answer this, note that three general linesℓ1, ℓ2, andℓ3 lie
on a unique doubly-ruled hyperboloid, shown in Figure 1. These three lines lie in one ruling, while the
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Fig. 1: The two lines meeting four lines in space.

second ruling consists of the lines meeting the given three lines. The fourth lineℓ4 meets the hyperboloid
in two points. Through each of these points there is a line in the second ruling, and these are the two
linesm1 andm2 meeting our four given lines. In terms of Kostka numbers, theproblem of four lines
reduces to counting the number of tableaux of shapeλ = (2, 2) with content(1, 1, 1, 1). There are two
such tableaux:

1 2
3 4

1 3
2 4

Galois groups of enumerative problems are subtle invariants about which very little is known. While
they were introduced by Jordan in 1870 [Jor70], the modern theory began with Harris in 1979, who
showed that the algebraic Galois group is equal to a geometric monodromy group [Har79]. In general, we
expect the Galois group of an enumerative problem to be the full symmetric group and when it is not, the
geometric problem possesses some intrinsic structure. Harris’ result gives one approach to studying the
Galois group—by directly computing monodromy. For instance, the Galois group of the problem of four
lines is the group of permutations which are obtained by following the solutions over loops in the space
of lines ℓ1, ℓ2, ℓ3, ℓ4. Rotatingℓ4 180 degrees about the pointp (shown in Figure 1) gives a loop which
interchanges the two solution linesm1 andm2, showing that the Galois group is the full symmetric group
on two letters.

Leykin and Sottile [LS09] used numerical homotopy continuation [SW05] to compute monodromy
for manysimpleSchubert problems, showing that in each case the Galois group was the full symmetric
group. (The problem of four lines is simple.) Billey and Vakil [BV08] gave an algebraic approach based
on elimination theory to compute lower bounds for Galois groups. Vakil [Vak06b] gave a combinatorial
criterion, based on group theory, which can be used to show that a Galois group contains the alternating
group. He used this and his geometric Littlewood-Richardson rule [Vak06a] to show that the Galois group
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was at least alternating for every Schubert problem involving lines in projective spacePn for n ≤ 16.
Brooks implemented Vakil’s criterion and the geometric Littlewood-Richardson rule inpython and used
it to show that forn ≤ 40, every Schubert problem involving lines in projective space P

n has at least
alternating Galois group. Our main result is the following.

Theorem 1 The Galois group of any Schubert problem involving lines inP
n contains the alternating

group.

We prove this theorem by applying Vakil’s criterion to a special position argument of Schubert, which
reduces Theorem 1 to proving a certain inequality among Kostka numbers of two-rowed tableaux. For
most problems, the inequality follows from a combinatorialinjection of Young tableaux. For the remain-
ing problems, we work in the representation ring ofsl2C, where these Kostka numbers also occur. We
interpret the tensor product of irreduciblesl2C-modules in terms of commuting Toeplitz matrices. Us-
ing the eigenvector decomposition of the Toeplitz matrices, we express these Kostka numbers as certain
trigonometric integrals. In this way, the inequalities of Kostka numbers become inequalities of integrals,
which we establish by estimation.

Note that the generalization of Theorem 1 to arbitrary Grassmannians is false. Derksen found Schubert
problems in the Grassmannian of3-planes inP7 whose Galois groups are significantly smaller than the
full symmetric group, and Vakil generalized this to problems in the Grassmannians of2k−1 planes in
P
2n−1 whose Galois groups are not the full symmetric group for every k ≥ 2 andn ≥ 2k [Vak06b,

§3.13].

1 Preliminaries
1.1 Schubert problems of lines

Let G(1, n) be the Grassmannian of lines inn-dimensional projective spacePn, which is an algebraic
manifold of dimension2n−2. A (special)Schubert subvarietyis the set of linesXL that meet a linear
subspaceL ⊂ P

n; that is,
XL := {ℓ ∈ G(1, n) | ℓ ∩ L 6= ∅} . (1.1)

If dimL = n−1−a, thenXL has codimensiona in G(1, n). A Schubert problemasks for the lines that
meet fixed linear subspacesL1, . . . , Lm in general position, wheredimLi = n−1−ai for i = 1, . . . ,m
anda1 + · · ·+ am = 2n−2. These are the points in the intersection

XL1
∩XL2

∩ · · · ∩XLm
. (1.2)

As theLi are in general position, the intersection (1.2) is transverse and therefore zero-dimensional.
(Over fields of characteristic zero, transversality follows from Kleiman’s Transversality Theorem [Kle74]
while in positive characteristic, it is Theorem E in [Sot97].) We define theSchubert intersectionnumber
K(a1, . . . , am) to be the number of points in the intersection (1.2), which does not depend upon the choice
of generalL1, . . . , Lm. We calla• := (a1, . . . , am) thetypeof the Schubert problem (1.2).

Note that given positive positive integersa• = (a1, . . . , am) whose sum is even,K(a•) is a Schubert
intersection number inG(1, n(a•)), wheren(a•) := 1

2 (a1 + · · · + am + 2). Henceforth, a Schubert
problem will be a lista• of positive integers with even sum. It isvalid if ai ≤ n(a•)−1 (this is forced by
dimLi ≥ 0).
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The intersection numberK(a•) is a Kostka number, which is the number of Young tableaux of shape
(n(a•)−1, n(a•)−1) and content(a1, . . . , am) [Ful97, p.25]. LetK(a•) be the set of such tableaux.
These are two-rowed arrays of integers, each row of lengthn(a•)−1, such that the integers increase
weakly across each row and strictly down each column, and there areai occurrences ofi for each
i = 1, . . . ,m. For example, here are the five Young tableaux inK(2, 2, 1, 2, 3), demonstrating that
K(2, 2, 1, 2, 3) = 5.

1 1 2 2 3
4 4 5 5 5

1 1 2 2 4
3 4 5 5 5

1 1 2 3 4
2 3 5 5 5

1 1 2 4 4
2 3 5 5 5

1 1 3 4 4
2 2 5 5 5

(1.3)

1.2 Vakil’s Criterion for Galois groups of Schubert problems
In §3.4 of [Vak06b], Vakil explains how to associate a Galois group to a dominant mapW → X of
equidimensional irreducible varieties and establishes his criterion for the Galois group to contain the
alternating group. We discuss this for a Schubert problema• = (a1, . . . , am). Define

X := {(L1, . . . , Lm) | Li ⊂ P
n is a linear space of dimensionn−1−ai} ,

wheren := n(a•). Consider the incidence variety,

W := {(ℓ, L1, . . . , Lm) | (L1, . . . , Lm) ∈ X andℓ ∩ Li 6= ∅ , i = 1, . . . ,m} .
The projection mapW → G(1, n) realizesW as a fiber bundle overG(1, n) with irreducible fibers. As
G(1, n) is irreducible,W is irreducible.

Let π : W → X be the other projection; its fiber over a point(L1, . . . , Lm) ∈ X is

π−1(L1, L2, . . . , Lm) = XL1
∩XL2

∩ · · · ∩XLm
. (1.4)

Thus the mapπ : W → X contains all Schubert problems of typea•. As the general Schubert problem
is a transverse intersection containingK(a•) points,π is a dominant map of degreeK(a•). Underπ, the
fieldK(X) of rational functions onX pulls back to a subfield ofK(W ), the field of rational functions on
W , and the extensionK(W )/K(X) has degreeK(a•).

Definition 2 The Galois group of the Schubert problem of typea•, G(a•), is the Galois group of the
Galois closure of the field extensionK(W )/K(X).

This Galois groupG(a•) is a subgroup of the symmetric groupSK(a•) onK(a•) letters. We say that
G(a•) is at least alternatingif it contains the alternating groupAK(a•). Vakil’s Criterion is adapted to
classical special position arguments in enumerative geometry. First, if Z ⊂ X is a subvariety such that
Y = π−1(Z) ⊂ W is irreducible and the mapY → Z has degreeK(a•), thenY → Z has a Galois group
which is a subgroup ofG(a•). This enables us to restrict the original Schubert problem to one derived
from it through certain standard reductions.

More interesting is whenZ ⊂ X is a subvariety such thatY = π−1(Z) decomposes into two smaller
problems,Y = Y1 ∪ Y2, whereYi → Z is a Schubert problem of typea(i)• for i = 1, 2. In this situation,
monodromy ofY → Z gives a subgroupH of the productG(a

(1)
• ) × G(a

(2)
• ) which projects onto each

factor and includes intoG(a•). Then purely group-theoretic arguments imply the following.

Vakil’s Criterion. If G(a
(1)
• ) andG(a

(2)
• ) are at least alternating, and eitherK(a

(1)
• ) 6= K(a

(2)
• ) or

K(a
(1)
• ) = K(a

(2)
• ) = 1; thenG(a•) is at least alternating.
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2 Inequalities
A Schubert problema• = (a1, . . . , am) is reducedif it is valid and if ai+aj ≤ n(a•)−1 for any i < j.
Any Schubert problem is equivalent to a reduced one: Ifa• is valid, butam−1 + am > n(a•)−1, then

K(a1, . . . , am) = K(a1, . . . , am−2, am−1−1, am−1) ,

as the intersection (1.2) fora• is equal to an intersection for(a1, . . . , am−2, am−1−1, am−1). Iterating
this procedure gives an equivalent reduced Schubert problem.

Schubert [Sch86] observed that if the linear spaces are in a special position, then the Schubert prob-
lem decomposes into two smaller problems, which gives a (familiar) recursion for these Kostka numbers.
Given a reduced Schubert problema• = (a1, . . . , am), setn := n(a•). Let L1, . . . , Lm be linear sub-
spaces which are in general position inP

n, except thatLm−1 andLm span a hyperplaneΛ := Lm−1, Lm.
If a line ℓ meets bothLm−1 andLm, then either it meetsLm−1 ∩ Lm or it lies in their linear span (while
also meeting bothLm−1 andLm). This implies Schubert’s recursion for Kostka numbers

K(a1, . . . , am) = K(a1, . . . , am−2, am−1+am) + K(a1, . . . , am−2, am−1−1, am−1) . (2.1)

Observe that ifa• is reduced, then both smaller problems in (2.1) are valid. Aninduction shows that ifa•
is valid, thenK(a•) > 0.

For example, considerK(2, 2, 1, 2, 3). The first tableau in (1.3) has both 4s in its second row (along
with its 5s), while the remaining four tableaux have last column consisting of a 4 on top of a 5. If we
replace the 5s by 4s in the first tableau and erase the last column in the remaining four tableaux, we obtain

1 1 2 2 3
4 4 4 4 4

1 1 2 2
3 4 5 5

1 1 2 3
2 3 5 5

1 1 2 4
2 3 5 5

1 1 3 4
2 2 5 5

which shows thatK(2, 2, 1, 2, 3) = K(2, 2, 1, 5)+K(2, 2, 1, 1, 2). We state our key lemma. Arearrange-
mentof a Schubert problema1, . . . , am is simply a listing of the integersa1, . . . , am in some order.

Lemma 3 Every reduced Schubert problem has a rearrangement(a1, . . . , am) such that either

K(a1, . . . , am−2, am−1+am) 6= K(a1, . . . , am−2, am−1−1, am−1) , (2.2)

and both are nonzero, or else both are equal to1.

We use Lemma 3 below to prove Theorem 1, then we devote the restof the extended abstract to the
proof of this Lemma.

Proof of Theorem 1: We use the notation of Subsection 1.2 and argue by induction on m andn(a•).
Assume thata• is reduced and letZ be the set of those(L1, . . . , Lm) ∈ X such thatLm−1 andLm span
a hyperplane. Then the geometric arguments given before (2.1) imply that the pullbackπ−1(Z) → Z
decomposes as the union of two Schubert problems, one for(a1, . . . , am−2, am−1+am) and the other
for (a1, . . . , am−2, am−1−1, am−1). Therefore, Lemma 3 and our induction hypothesis, togetherwith
Vakil’s criterion, imply thatG(a•) is at least alternating. 2

While an induction shows that the only reduced Schubert problem where the two terms in (2.2) are both
1 is (1, 1, 1, 1), the inequality of Lemma 3 is not easy to prove. This is in partbecause there are no closed
formulas for the numbersK(a•), except for the casea1 = · · · = am−1 = 1 (in which caseK(a•) is
given by the hook-length formula).
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2.1 Inequality of Lemma 3 in most cases
We give an injection of sets of Young tableaux to establish Lemma 3 whenai 6= aj for somei, j.

Lemma 4 Suppose that(b1, . . . , bm, α, β, γ) is a reduced Schubert problem whereα ≤ β ≤ γ with
α < γ. Then

K(b1, . . . , bm, α, β + γ) < K(b1, . . . , bm, γ, β + α) . (2.3)

To see that this implies Lemma 3 in the case whenai 6= aj , for somei, j, we apply Schubert’s recursion
to obtain two different expressions forK(b1, . . . , bm, α, β, γ),

K(b1, . . . , bm, α, β+γ) + K(b1, . . . , bm, α, β−1, γ−1)

= K(b1, . . . , bm, γ, β + α) + K(b1, . . . , bm, γ, β−1, α−1) .

By the inequality (2.3), at least one of these expressions involves unequal terms. Since all four terms are
from valid Schubert problems, none is zero, and this impliesLemma 3 when not allai are identical. 2

Proof of Lemma 4: We establish the inequality (2.3) via a combinatorial injection

ι : K(b1, . . . , bm, α, β + γ) −֒→ K(b1, . . . , bm, γ, β + α) ,

which is not surjective.
Let T be a tableau inK(b1, . . . , bm, α, β + γ) and letA be its sub-tableau consisting of the entries

1, . . . ,m. Then the skew tableauT \A has a bloc of(m+1)’s of lengtha at the end of its first row, and its
second row consists of a bloc of(m+1)’s of lengthα−a, followed by a bloc of(m+2)’s of lengthβ+γ.
Form the tableauι(T ) by changing the last row ofT \ A to a bloc of(m + 1)’s of lengthγ−a followed
by a bloc of(m+ 2)’s of lengthβ+α. Sincea ≤ α < γ, this map is well-defined.

T =
a

α−a β+γ
A 7−→

a

γ−a β+α
A = ι(T ) .

To see thatι is not surjective, setb• := (b1, . . . , bm, γ−α−1, β−1), which is a valid Schubert problem.
HenceK(b•) 6= 0 andK(b•) 6= ∅. For anyT ∈ K(b•), we may addα+1 columns to its end consisting of
am+1 above am+2 to obtain a tableauT ′ ∈ K(b1, . . . , bm, γ, β + α). AsT ′ has more thanα (m+1)s
in its first row, it cannot be in the image of the injectionι, which completes the proof of the lemma.2

3 Kostka numbers as integrals
Kostka numbers of two-rowed tableaux appear as the coefficients in the decomposition of the tensor
products of irreduciblesl2C-modules. LetVa be the irreducible module ofsl2C with highest weighta.
Given a Schubert problema• = (a1, . . . , am), the Kostka numberK(a•) is the multiplicity of the trivial
sl2C-moduleV0 in the tensor productVa1

⊗ · · · ⊗ Vam
.

The representation ringR of sl2C is the free abelian group on the isomorphism classes[Va] of irre-
ducible modules, modulo the relations[Va] + [Vb]− [Va ⊕ Vb]. Setting[Va] · [Vb] := [Va ⊗ Vb] makesR
into a ring. Writingea := [Va], multiplication byea is a linear operatorMa onR,

Ma(eb) := ea · eb = eb+a+eb+a−2 + · · ·+ e|b−a| , (3.1)
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by the Clebsch-Gordan formula. In the basis{ea}, the operatorMa is represented by an infinite Toeplitz
matrix with entries0 and1 given by the formula (3.1). For instance, we have

M2 =



















0 0 1 0 0 0 0
0 1 0 1 0 0 0
1 0 1 0 1 0 0 · · ·
0 1 0 1 0 1 0
0 0 1 0 1 0 1

...
. . .



















, M3 =



















0 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0
0 1 0 1 0 1 0 0 · · ·
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

...
. ..



















.

SinceR is a commutative ring, the operators{Ma | a ≥ 0} commute. They have an easily described
system of joint eigenvectors and eigenvalues, which may be verified using the identity2 sinα · sinβ =
cos(α−β)− cos(α+β), and noting that the resulting sums are telescoping.

Proposition 5 For each0 ≤ θ ≤ π and integera ≥ 0, set

v(θ) := (sin θ, sin 2θ, . . . , sin(j+1)θ, . . .)⊤ =
∑

j

sin(j+1)θ · ej ,

λa(θ) :=
sin(a+1)θ

sin θ
.

Thenv(θ) is an eigenvector ofMa with eigenvalueλa(θ).

These eigenvectors form a complete system of eigenvectors.

Proposition 6 For anya = 0, 1, 2, . . ., we have

ej =
2

π

∫ π

0

sin (j+1)θ v(θ) dθ .

It follows that for anya ≥ 1, we have

Ma(e0) =
2

π

∫ π

0

λa(θ) sin θ v(θ) dθ .

A consequence of Proposition 6 is an integral formula for theKostka numbers.

Theorem 7 Leta• = (a1, . . . , am) be any valid Schubert problem. Then

K(a•) =
2

π

∫ π

0

(

m
∏

i=1

λai
(θ)

)

sin2 θ dθ . (3.2)

3.1 Inequality of Lemma 3 in the remaining case
We complete the proof of Theorem 1 by establishing the inequality in Lemma 3 for those Schubert prob-
lems not covered in Lemma 4. For these, every condition is thesame, soa• = (a, a, . . . , a) =: am.

If a = 1, then we may use the hook-length formula. The Kostka numberK(1n, b), wheren + b = 2c
is even, is the number of Young tableaux of shape(c, c− b), which is

K(1n, b) :=
n!(b+1)

(c−b)!(c+1)!
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Whenm = 2n is even, the inequality of Lemma 3 is thatK(12n−2) 6= K(12n−2, 2). We compute

K(12n−2) =
(2n− 2)!(1)

n!(n+ 1)!
and K(12n−2, 2) =

(2n− 2)!(3)

(n− 2)!(n+ 1)!

and so

K(12n−2, 2)/K(12n−2) = 3
n!(n+1)!

(n−2)!(n+1)!
= 3

n−1

n+1
6= 1 ,

whenn > 2, but whenn = 2 both Kostka numbers are1, which proves the inequality of Lemma 3 when
eachai = 1.

We now suppose thata• = (am+2) wherea > 1 andm · a is even. Table 1 shows that whena = 2
andm ≤ 16, the inequality of Lemma 3 holds. However, the sign ofK(2m, 4)−K(2m, 1, 1) changes at

Tab. 1: The inequality (2.2) for the casea• = (2m+2)

m K(2m, 4) K(2m, 1, 1) Difference

0 0 1 −1
1 0 1 −1
2 1 2 −1
3 2 4 −2
4 6 9 −3
5 15 21 −6
6 40 51 −11
7 105 127 −22
8 280 323 −43
9 750 835 −85
10 2025 2188 −163
11 5500 5798 −298
12 15026 15511 −485
13 41262 41835 −573
14 113841 113634 207
15 315420 310572 4848
16 877320 853467 23853

m = 14. In fact, we have the following lemma.

Lemma 8 For all m ≥ 1, we haveK(2m, 4) 6= K(2m, 1, 1). If m < 14 thenK(2m, 4) < K(2m, 1, 1)
and ifm ≥ 14, thenK(2m, 4) > K(2m, 1, 1).

The remaining casesa ≥ 3 have a more uniform behavior.

Lemma 9 For a ≥ 3 and for allm ≥ 2 we have

K(am, 2a) < K(am, (a−1)2) . (3.3)

We omit the proof of Lemma 9 from this extended abstract, but include a proof of Lemma 8.
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3.2 Proof of Lemma 8

By the computations in Table 1, we only need to show thatK(2m, 4) − K(2m, 1, 1) > 0 for m ≥ 14.
Using (3.2), we have

K(2m, 4)−K(2m, 1, 1) =
2

π

∫ π

0

λ2(θ)
m
(

λ4(θ) − λ1(θ)
2
)

sin2 θ dθ

=
2

π

∫ π

0

λ2(θ)
m
(

sin 5θ sin θ − sin2 2θ
)

dθ

=
2

π

∫ π

0

λ2(θ)
m 1

2

(

2 cos 4θ − cos 6θ − 1
)

dθ

=
1

π

∫ π

0

λ2(θ)
m
(

2 cos 4θ − cos 6θ − 1
)

dθ .

The integrandf(θ) of the last integral is symmetric aboutθ = π/2 in that f(θ) = f(π − θ). Thus, it
suffices to prove that ifm ≥ 14, then

∫ π

2

0

λ2(θ)
m(2 cos 4θ − cos 6θ − 1) dθ > 0 . (3.4)

To simplify our notation, set

F (θ) := 2 cos 4θ − cos 6θ − 1 and λ(θ) := λ2(θ) = 1 + 2 cos 2θ .

We display these functions and the integrand in (3.4) form = 8 in Figure 2.

π
2

π
4

−3

−2

−1

1

2

F (θ)

π
2

π
4

−1

1

2

3

λ(θ)

π
2

π
4

−300

−200

−100

100

λ(θ)8F (θ)

Fig. 2: The functionsF (θ), λ(θ), andλ(θ)8F (θ).

In the interval[0, π
2 ], the zeroes ofF occur at0, π

12 , and 5π
12 , andλ vanishes atπ3 . Both functions are

positive on[0, π
12 ], and so
∫ π

2

0

λm(θ)F (θ) dθ ≥
∫ π

12

0

λm(θ)F (θ) dθ −
∫ π

2

π

12

∣

∣λm(θ)F (θ)
∣

∣ dθ . (3.5)
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We show the positivity of (3.4) by showing that the right handside of (3.5) is positive form ≥ 14. This
is equivalent to the following inequality,

∫ π

12

0

λm(θ)F (θ) dθ >

∫ π

3

π

12

∣

∣λm(θ)F (θ)
∣

∣ dθ +

∫ π

2

π

3

∣

∣λm(θ)F (θ)
∣

∣ dθ . (3.6)

The functionλ(θ) is monotone decreasing in the interval[0, π
2 ], and it vanishes atπ3 , so the maximum

of |λ(θ)| on this interval is|λ(π2 )| = 1. Also, |F (θ)| ≤ 4 for all θ ∈ [0, π
2 ]. Thus we estimate the last

integral in (3.6),
∫ π

2

π

3

∣

∣λm(θ)F (θ)
∣

∣ dθ ≤
∫ π

2

π

3

1 · 4 dθ =
2π

3
.

It is therefore enough to show that
∫ π

12

0

λm(θ)F (θ) dθ >

∫ π

3

π

12

∣

∣λm(θ)F (θ)
∣

∣ dθ +
2π

3
, (3.7)

for m ≥ 14. We establish (3.7) by induction onm ≥ 14. This inequality holds form = 14, as the left
hand side is

∫ π

12

0

λ14(θ)F (θ) dθ =
69

4
π +

26374

7

√
3 +

1679543168

255255
≈ 13159.9

whereas the right hand side is
∫ π

3

π

12

∣

∣λ14(θ)F (θ)
∣

∣ dθ +
2π

3
=

63052312

17017

√
3− 613

12
π +

1679543168

255255
≈ 12837.1

Suppose now that the inequality (3.7) holds for somem ≥ 14.
As λ( π

12 ) = 1 +
√
3 andλ is decreasing in[0, π

2 ], we haveλ(θ) ≥ 1 +
√
3 for θ ∈ [0, π

12 ]. Thus
∫ π

12

0

λm+1(θ)F (θ) dθ ≥
∫ π

12

0

(

1+
√
3
)

· λm(θ)F (θ) dθ. (3.8)

Similarly, whenθ ∈ [ π12 ,
π
2 ] we have that|λ(θ)| ≤ 1+

√
3, asλ(π2 ) = −1. Therefore,

∫ π

3

π

12

∣

∣λm+1(θ)F (θ)
∣

∣ dθ ≤
∫ π

3

π

12

(

1+
√
3
)

·
∣

∣λm(θ)F (θ)
∣

∣ dθ. (3.9)

From the induction hypothesis and equations (3.8) , and (3.9), we obtain

∫ π

12

0

λm+1(θ)F (θ) dθ ≥
∫ π

12

0

(

1+
√
3
)

·
∣

∣λm(θ)F (θ)
∣

∣ dθ

>

∫ π

3

π

12

(

1+
√
3
)

·
∣

∣λm(θ)F (θ)
∣

∣ dθ + (1+
√
3) · 2π

3

>

∫ π

3

π

12

∣

∣λm+1(θ)F (θ)
∣

∣ dθ +
2π

3
. (3.10)

This completes the proof of Lemma 8.
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