FPSAC 2012, Nagoya, Japan DMTCS proc.(subm.), by the authors, 1-12

An inequality of Kostka numbers and Galois
groups of Schubert problems

Christopher J. Brookand Abraham Mafh del Campéand Frank Sottile

Department of Mathematics, Texas A&M University, College Station, TAF3868, USA

Abstract. We show that the Galois group of any Schubert problem involving linesajegtive space contains the
alternating group. Using a criterion of Vakil and a special position argnirdee to Schubert, this follows from a
particular inequality among Kostka numbers of two-rowed tableaux. Ist weses, an easy combinatorial injection
proves the inequality. For the remaining cases, we use that these Kostlk&rs appear in tensor product decom-
positions ofsloC-modules. Interpreting the tensor product as the action of certain ctingritoeplitz matrices and
using a spectral analysis and Fourier series rewrites the inequality asgttigify of an integral. We establish the
inequality by estimating this integral.

Résune. On montre que le groupe de Galois de tout peoid de Schubert concernant des droites dans I'espace
projective contient le groupe alté&gnOn utilisant un crére de Vakil et 'argument de position&gale dueéx Schubert,
ce tésultat se @duit d’'une iregalig particulere des nombres de Kostka des tableaux ayant deukeandans la
plus part des cas, une injection combinatoriale facile montrédati€. Pour les cas restant, on utilise le fait que
ces nombres de Kostka apparaissent dan&tamiposition en produit tensoriel dgsC-modules. En intergtant

le produit tensoriel comme l'action de certaines matrices de Toeplitz ceamtemt entre elles, et en utilisant de
I'analyse spectrale et legéses de Fourier, on éerit I'inégalieé comme la positivéie d’'une inégrale. Liregali€ sera
établie en estimant cette égrale.

Keywords: Kostka numbers, Galois groups, Schubert calculus, Schubertigarie

Introduction

The Schubert calculus of enumerative geometry [KL72] is #hobto compute the number of solutions
to Schubert problemsa class of geometric problems involving linear subspadese can reduce the
enumeration to combinatorics; for example, the number bftems to a Schubert problem involving
lines is a Kostka number for a rectangular partition with {veots.

A prototypical Schubert problem is the classical problenfiooir lines, which asks for the number of
lines in space that meet four given lines. To answer this twdt three general lings, /5, and/; lie
on a unique doubly-ruled hyperboloid, shown in Figure 1. Sehthree lines lie in one ruling, while the
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Fig. 1: The two lines meeting four lines in space.

second ruling consists of the lines meeting the given thnes] The fourth ling, meets the hyperboloid
in two points. Through each of these points there is a lindéngecond ruling, and these are the two
lines m; andmsy meeting our four given lines. In terms of Kostka numbers,gheblem of four lines
reduces to counting the number of tableaux of shape (2, 2) with content(1,1,1,1). There are two
such tableaux:

1]2 1]3
3[4 2[4

Galois groups of enumerative problems are subtle invariabbut which very little is known. While
they were introduced by Jordan in 1870 [Jor70], the modeeorthbegan with Harris in 1979, who
showed that the algebraic Galois group is equal to a gecrmatrnodromy group [Har79]. In general, we
expect the Galois group of an enumerative problem to be thsyfitnmetric group and when it is not, the
geometric problem possesses some intrinsic structureisHegsult gives one approach to studying the
Galois group—by directly computing monodromy. For instaribe Galois group of the problem of four
lines is the group of permutations which are obtained byWithg the solutions over loops in the space
of lines/y, (5, /3, ¢,. Rotatingl, 180 degrees about the poim{shown in Figure 1) gives a loop which
interchanges the two solution lines;, andm., showing that the Galois group is the full symmetric group
on two letters.

Leykin and Sottile [LS09] used numerical homotopy contimra[SWO05] to compute monodromy
for manysimpleSchubert problems, showing that in each case the Galoipgras the full symmetric
group. (The problem of four lines is simple.) Billey and VdldV08] gave an algebraic approach based
on elimination theory to compute lower bounds for Galoisug® Vakil [Vak06b] gave a combinatorial
criterion, based on group theory, which can be used to shatetiGalois group contains the alternating
group. He used this and his geometric Littlewood-Richandsie [Vak06a] to show that the Galois group
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was at least alternating for every Schubert problem innghlines in projective spadé™ for n < 16.
Brooks implemented Vakil's criterion and the geometridleitvood-Richardson rule ipyt hon and used
it to show that forn < 40, every Schubert problem involving lines in projective sp&¢ has at least
alternating Galois group. Our main result is the following.

Theorem 1 The Galois group of any Schubert problem involving line®incontains the alternating
group.

We prove this theorem by applying Vakil's criterion to a sipéposition argument of Schubert, which
reduces Theorem 1 to proving a certain inequality amongk&ostimbers of two-rowed tableaux. For
most problems, the inequality follows from a combinatonigéction of Young tableaux. For the remain-
ing problems, we work in the representation rings6fC, where these Kostka numbers also occur. We
interpret the tensor product of irreducitde C-modules in terms of commuting Toeplitz matrices. Us-
ing the eigenvector decomposition of the Toeplitz matriees express these Kostka numbers as certain
trigonometric integrals. In this way, the inequalities af#tka numbers become inequalities of integrals,
which we establish by estimation.

Note that the generalization of Theorem 1 to arbitrary Gras®ians is false. Derksen found Schubert
problems in the Grassmannian ®planes inP” whose Galois groups are significantly smaller than the
full symmetric group, and Vakil generalized this to probtem the Grassmannians Bk—1 planes in
P2"—1 whose Galois groups are not the full symmetric group forever> 2 andn > 2k [Vak06b,
§3.13].

1 Preliminaries
1.1 Schubert problems of lines

Let G(1,n) be the Grassmannian of linesindimensional projective spad®*, which is an algebraic
manifold of dimensioren—2. A (special)Schubert subvarielig the set of linesX;, that meet a linear
subspacéd. C P"; that is,

X, = {eG(l,n) | {NL+o}. (1.1)

If dim L = n—1—a, thenX, has codimension in G(1,n). A Schubert problerasks for the lines that
meet fixed linear subspacés, ..., L,, in general position, wheréim L., = n—1—a; fori =1,...,m
anda; + - - - + a,, = 2n—2. These are the points in the intersection

X, NXp,N---NXg (12)

As the L; are in general position, the intersection (1.2) is transveand therefore zero-dimensional.
(Over fields of characteristic zero, transversality fokdinom Kleiman'’s Transversality Theorem [Kle74]
while in positive characteristic, it is Theorem E in [Sot97AVe define theSchubert intersectionumber
K(ay,...,a,)tobethe number of points in the intersection (1.2), whicasioot depend upon the choice
of generalLq, ..., L,,. We calla, := (a1, ..., a,,) thetypeof the Schubert problem (1.2).

Note that given positive positive integets = (ay, ..., a,,) whose sum is everi{ (a,) is a Schubert
intersection number ifz(1,n(al)), wheren(a.) := 3(ay + -+ + an + 2). Henceforth, a Schubert
problem will be a listu, Of positive integers with even sum. Itiglidif a; < n(ae)—1 (this is forced by
dim L; > 0).
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The intersection numbek (a,) is a Kostka number, which is the number of Young tableaux apsh
(n(ae)—1,n(as)—1) and contentfay,...,a,) [Ful97, p.25]. Letl(a,) be the set of such tableaux.
These are two-rowed arrays of integers, each row of lengify)—1, such that the integers increase
Weakly across each row and strictly down each column, angktheea; occurrences of for each
i = 1,...,m. For example, here are the five Young tableauxi®, 2, 1,2, 3), demonstrating that
K(2,2, 1 > ,3) = 5.

1i1j2{2) 3] [1]1]2]2)4f [1L]1]23]4f [1]1]2]4]4] [1]1][3]|4
41415]5[5] |13]4[5]5[5]12]|3[5]5]5] [2]3|5]5]5][2]2]5]5

[ ED

(1.3)

1.2 Vakil's Criterion for Galois groups of Schubert problems

In §3.4 of [Vak06b], Vakil explains how to associate a Galoisugr@o a dominant mapl’ — X of
equidimensional irreducible varieties and establisheschiterion for the Galois group to contain the
alternating group. We discuss this for a Schubert prohlgm: (a4, ..., a,,). Define

X := {(Ly,...,Lm) | L; C P"is alinear space of dimension-1—a;},
wheren := n(a,). Consider the incidence variety,
W o ={,L1,...,Lp) | (L1,...,Ly) € Xand¢NL, #2,i=1,...,m}.

The projection mapl — G(1,n) realizesW as a fiber bundle ovek(1,n) with irreducible fibers. As
G(1,n) is irreducible, W is irreducible.
Let7: W — X be the other projection; its fiber over a poidt;, ..., L,,) € X is

7 YLy, Lo, ..., Lp) = Xp, N X, N---NXp, . (1.4)

Thus the mapr: W — X contains all Schubert problems of typg. As the general Schubert problem
is a transverse intersection containiida, ) points,r is a dominant map of degrd€(a,). Underr, the
field K(X') of rational functions orX pulls back to a subfield d& (1), the field of rational functions on
W, and the extensioK (W) /K(X) has degreé (a.).

Definition 2 The Galois group of the Schubert problem of type G(a.), is the Galois group of the
Galois closure of the field extensi&(1V) /K(X).

This Galois group+(a,) is a subgroup of the symmetric grodix ,,) on K (a.) letters. We say that
G(a,) is at least alternatinif it contains the alternating groud k., ). Vakil’s Criterion is adapted to
classical special position arguments in enumerative gaggmeeirst, if Z C X is a subvariety such that
Y = 7~1(Z) c Wisirreducible and the mag — Z has degre& (a, ), thenY” — Z has a Galois group
which is a subgroup of7(a,). This enables us to restrict the original Schubert problemre derived
from it through certain standard reductions.

More interesting is whel C X is a subvariety such that = 7—!(Z) decomposes into two smaller

problemsY = Y; UY>, whereY; — Z is a Schubert problem of typﬂi) fori = 1, 2. In this situation,

monodromy ofY” — Z gives a subgroup! of the produch(aEl)) X G(a£2)) which projects onto each
factor and includes int6:(a, ). Then purely group-theoretic arguments imply the follogvin

Vakil's Criterion. If G(aﬂl)) and G(a (2)) are at least alternating, and enheﬁ((a. ) # K( )
K(a(.l)) = K(a (2)) = 1;thenG(a.) is at least alternating.
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2 Inequalities

A Schubert problena, = (a1, ...,a,,) is reducedf it is valid and if a;+a; < n(a,)—1 foranyi < j.
Any Schubert problem is equivalent to a reduced one; i valid, buta,, 1 + a,, > n(as)—1, then

K(ai,...,am) = K(a1,...,4m-2, Gm-1—1,a;,—1),

as the intersection (1.2) far, is equal to an intersection fdu, . .., a;,—2, am—1—1,a,,—1). Iterating
this procedure gives an equivalent reduced Schubert proble

Schubert [Sch86] observed that if the linear spaces are peeaia position, then the Schubert prob-
lem decomposes into two smaller problems, which gives ailfanrecursion for these Kostka numbers.
Given a reduced Schubert problem = (a1, ..., an), setn := n(a.). Let Ly, ..., L,, be linear sub-
spaces which are in general positiorPih, except that.,,,_; andL,, span a hyperplang := L,,,_1, L,,.
If a line £ meets both.,,,_, andL,,, then either it meet&,,,_1 N L,,, or it lies in their linear span (while
also meeting botli,, | andL,,). This implies Schubert’s recursion for Kostka numbers

K(ai,...,am) = K(a1,...,am-2, @m-1+am) + K(ar,...,am-2, ¢pm—1—1,am—1). (2.1)

Observe that ifi, is reduced, then both smaller problems in (2.1) are validindinction shows that ifi,
is valid, thenK (as) > 0.

For example, considek’ (2,2, 1,2,3). The first tableau in (1.3) has both 4s in its second row (along
with its 5s), while the remaining four tableaux have lastuooh consisting of a 4 on top of a 5. If we
replace the 5s by 4s in the first tableau and erase the laghondtuthe remaining four tableaux, we obtain

1(1]12]2]|3 1(11212) [1|21]2])3] [1]1]2]4] [1|1]|3]4
41414]1 4| 4 34|55 [2]3[5]5] |12][3]|5]5|] [2]2]5]5

which shows thak( (2,2, 1,2,3) = K(2,2,1,5)+ K(2,2,1, 1, 2). We state our key lemma. Aearrange-
mentof a Schubert problem;, . .., a,, is simply a listing of the integers,, . .., a,, in some order.

Lemma 3 Every reduced Schubert problem has a rearrangenent . ., a,,,) such that either
K(alv ey -2, amfl"_am) 7& K(ala ceey m—2, amfl_]-v am_]-) ) (22)
and both are nonzero, or else both are equal to

We use Lemma 3 below to prove Theorem 1, then we devote thefrést extended abstract to the
proof of this Lemma.

Proof of Theorem 1: We use the notation of Subsection 1.2 and argue by inductiom @ndn(a. ).
Assume that, is reduced and lef be the set of thosél,, ..., L,,) € X such thatL,,,_; andL,,, span
a hyperplane. Then the geometric arguments given befotg i@ply that the pullbackr—!(Z) — Z
decomposes as the union of two Schubert problems, ong:for. ., a,,—2, a,,—1+a,,) and the other
for (ai,...,am—2, am-1—1,a,—1). Therefore, Lemma 3 and our induction hypothesis, togetfir
Vakil’s criterion, imply thatG(a. ) is at least alternating. O

While an induction shows that the only reduced Schubert prolsthere the two terms in (2.2) are both
lis(1,1,1,1), the inequality of Lemma 3 is not easy to prove. This is in padause there are no closed
formulas for the number& (a, ), except for the case; = --- = a,,—1 = 1 (in which caseK (a,) is
given by the hook-length formula).
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2.1 Inequality of Lemma 3 in most cases
We give an injection of sets of Young tableaux to establisimire 3 wheru; # a; for somez, j.

Lemma 4 Suppose thatby,...,b,,a,[,7) is a reduced Schubert problem where< 5 < ~ with
a <. Then
K(bla"‘7bm7 04,5"‘7) < K(bla"'7bm7 73ﬁ+a) . (23)

To see that this implies Lemma 3 in the case whe# «;, for somei, j, we apply Schubert’s recursion
to obtain two different expressions f&f(by, . .., by, @, 8,7),

K(bla"'7bm7 O[,B—f—’}/) + K(b17"'7bm7 Oé,,B—l,’V_l)
= K(b,....,bpm, v, 8+a) + K(b1,...,bm, v,6-1,a—1).

By the inequality (2.3), at least one of these expressior@vas unequal terms. Since all four terms are
from valid Schubert problems, none is zero, and this implem®ma 3 when not al; are identical. O

Proof of Lemma 4: We establish the inequality (2.3) via a combinatorial itipaT
v Kb, ybm, a,8+7) — K(b1,...,b;m, 7,8+ ),

which is not surjective.

Let T be a tableau ikC(by, ..., b, a, 8 + ) and letA be its sub-tableau consisting of the entries
1,...,m. Then the skew tabledl\ A has a bloc ofm+1)’s of lengtha at the end of its first row, and its
second row consists of a bloc h4-1)’s of lengtha—a, followed by a bloc ofm+2)’s of length3+~.
Form the tableau(7") by changing the last row df \ A to a bloc of(m + 1)’s of lengthy—a followed
by a bloc of(m + 2)'s of lengthS+«. Sincea < « < +, this map is well-defined.

| a
|a—a| B+ — 4 | y—a | B+a = uT).

T=| 4 |a

To see that is not surjective, sét, := (b1,...,b,,y—a—1, —1), which is a valid Schubert problem.
HenceK (b,) # 0 andC(be) # @. For anyT' € K(b, ), we may addx+1 columns to its end consisting of
am+1 above an+2 to obtain a tableall” € K(by,...,bm, 7,8+ «). AT’ has more than (m—+1)s
in its first row, it cannot be in the image of the injectigrwhich completes the proof of the lemma. O

3 Kostka numbers as integrals

Kostka numbers of two-rowed tableaux appear as the coeificie@ the decomposition of the tensor
products of irreduciblel; C-modules. Let/, be the irreducible module afl,C with highest weighta.
Given a Schubert problemy, = (a1, ..., a,,), the Kostka numbeK (a, ) is the multiplicity of the trivial
sloC-moduleVj in the tensor produdt,, ® --- @V, .

The representation ring of sl>,C is the free abelian group on the isomorphism clagsgkof irre-
ducible modules, modulo the relatiofig,] + [Vi] — [V, @ V3]. Setting[V,] - [V}] := [Vo, ® V3] makesR
into a ring. Writinge,, := [V, ], multiplication bye, is a linear operatoi/, on R,

Ma(ey) := e, € = €pratepia2o+t - - +e€p_g, (3.1)
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by the Clebsch-Gordan formula. In the bagis }, the operatoiM/,, is represented by an infinite Toeplitz
matrix with entrie) and1 given by the formula (3.1). For instance, we have

0010000 00010000
0101000 00101000
1010100 010107100

My=10101010 ) Ms=1101010T10
0010101 01010101

Since R is a commutative ring, the operatofd/, | « > 0} commute. They have an easily described
system of joint eigenvectors and eigenvalues, which mayeified using the identit@ sina - sin 8 =
cos(a—p3) — cos(a+0), and noting that the resulting sums are telescoping.

Proposition 5 For each0 < # < 7 and integera > 0, set

v(0) = (sinf,sin26,... sin(j+1)0,...)" = E sin(j+1)6 - e,
J
sin(a+1)0
Aa(0) = ———.
() sin 0

Thenv(6) is an eigenvector af/, with eigenvalue\, (9).
These eigenvectors form a complete system of eigenvectors.
Proposition 6 For anya = 0,1,2,..., we have
2 us
e = — / sin (j+1)0 v(6) do .
T Jo

It follows that for anya > 1, we have
2 s
M, (eg) = f/ Ao (6)sin@v(0)do .
T Jo

A consequence of Proposition 6 is an integral formula folkbstka numbers.

Theorem 7 Leta, = (ay,...,a,,) be any valid Schubert problem. Then

K(as) = i/oﬂ (ﬁ/\ai(a)> sin? @ de . (3.2)
i=1

3.1 Inequality of Lemma 3 in the remaining case

We complete the proof of Theorem 1 by establishing the inktgua Lemma 3 for those Schubert prob-
lems not covered in Lemma 4. For these, every condition isdéinee, s@, = (a,a,...,a) =: a™.

If a = 1, then we may use the hook-length formula. The Kostka numib@f, b), wheren + b = 2¢
is even, is the number of Young tableaux of shépe — b), which is

n!(b+1)

KA%0 = ey
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Whenm = 2n is even, the inequality of Lemma 3 is th&t(1?"~2) # K (12"~2,2). We compute
an—2y _ (2n—2)!(1) 2n—2 _ (2n-2)I3)
KO™) = Timer & KUY = o= gin
and so (1)t )
2n—2 2n—2y _ ni(nt+1)! _ o™
K™ 2)/KA7) = 3(n—2)!(n+1)! B 3n+1 7L

whenn > 2, but whenn = 2 both Kostka numbers are which proves the inequality of Lemma 3 when
eacha; = 1.

We now suppose that, = (a™*2) wherea > 1 andm - a is even. Table 1 shows that when= 2
andm < 16, the inequality of Lemma 3 holds. However, the signigf2™, 4) — K (2™, 1,1) changes at

Tab. 1: The inequality (2.2) for the casa = (2™1?)
[m | K(2™,4) | K(2™,1,1) | Difference |

0 0 1 -1

1 0 1 -1

2 1 2 -1

3 2 4 -2

4 6 9 -3

5 15 21 —6

6 40 51 —11
7 105 127 —22
8 280 323 —43
9 750 835 -85
10 2025 2188 —163
11 5500 5798 —298
12 15026 15511 —485
13 41262 41835 —573
14 || 113841 113634 207
15| 315420 310572 4848
16 || 877320 853467 23853

m = 14. In fact, we have the following lemma.
Lemma 8 For all m > 1, we haveK (2"™,4) # K(2™,1,1). If m < 14thenK(2™,4) < K(2™,1,1)
and ifm > 14, thenK (2™,4) > K(2™,1,1).
The remaining cases> 3 have a more uniform behavior.
Lemma 9 For ¢ > 3 and for allm > 2 we have
K(a™, 2a) < K(a™, (a—1)?). (3.3)

We omit the proof of Lemma 9 from this extended abstract, fcitide a proof of Lemma 8.
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3.2 Proof of Lemma 8

By the computations in Table 1, we only need to show #i#&™,4) — K(2™,1,1) > 0 for m > 14.
Using (3.2), we have

K(2™,4) - K(2™,1,1) = 3/7r A2(0)™ (Aa(0) — A1(0)?) sin® 6 df
™ Jo

2 s
==z / A2(0)™ (sin560 sin@ — sin®26) do
0

™
2 (7 1
= 7/ A2(6)™ = (2 cos 46 — cos 60 — 1) df
i 0 2

1 s

= 7/ A2(0)™(2cos 46 — cos 66 — 1) df .

T Jo
The integrandf(9) of the last integral is symmetric abofit= 7 /2 in that f(#) = f(m — 6). Thus, it
suffices to prove that ifn > 14, then

™

/2 A2(6)™(2cos 460 — cos66 — 1)df > 0. (3.4)
0
To simplify our notation, set
F(0) := 2cos46 — cos 66 — 1 and  A(0) :=Xy(0) = 1+2cos26.
We display these functions and the integrand in (3.4)io& 8 in Figure 2.

3 —
100 +
2 R I | I T—
f ; ; 1
1 3
1+ —100 +
—200 +
| | | | |
T T T T T
! 2 300 +
e A(O)3F(6)

Fig. 2: The functionsF' (), A(6), andA(0)®F(6).

In the interval[0, 3], the zeroes of” occur at0, 75, and 3%

L ' 120 127
positive on[0, 5], and so

and) vanishes at. Both functions are

/g AT(0)F(6) do > / AH(0)F(6) do — /g IX™(0)F(8) | db . (3.5)
0 Jo st

12
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We show the positivity of (3.4) by showing that the right hade of (3.5) is positive forn > 14. This
is equivalent to the following inequality,

/ N"(O)F(0)do > /g |IA™(O)F(0) | do + / |A™(0)F(0) | db . (3.6)
0 o

™

12 3
The function\(¢) is monotone decreasing in the intery@l 7], and it vanishes &%, so the maximum
of [A(#)| on this interval isA(F)| = 1. Also, |[F()| < 4 forall § € [0, 7]. Thus we estimate the last
integral in (3.6),

/2 I\ (0)F(0)] do < / 1-4d = 2?”
It is therefore enough to show that
/12 NT(O)F(0)df > / X () F(6) | do + %ﬂ (3.7)
0 .

12

for m > 14. We establish (3.7) by induction on > 14. This inequality holds foin = 14, as the left
hand side is

I\J‘:‘

1 69 26374 1679543168
MY OF0)d = — ~ 13159.
/0 (0)F(0) T V3 + SEEonE 3159.9

whereas the right hand side is

™

/§ 2T 63052312\[_ 613 1679543168
3

AYOF0)do + =— = = ~ 12837.1
(N6 F(6) [ b+ 17017 12" 255955 83

Suppose now that the inequality (3.7) holds for some 14.
As \(%) =1+ /3 and\ is decreasing if0, 3], we have(d) > 1+ /3 for 6 € [0, 55]. Thus

™

/0 xn+1(9)F(9)d92/0 (1+3) - Xm(0)F () do. (3.8)

Similarly, whené € [, 2] we have that\(0)| < 1++/3, asA(%) = —1. Therefore,

I
12

/g XL (O)F(0) | dO < / (1+V3) - A @) F () | do. (3.9)

From the induction hypothesis and equations (3.8) , and,(@®obtain

™

/ NGV F(0) dO > /7 (1:+V3) - [\ (0)F () | av

0 0

@l

> /L (1+\/§) : |)\m(9)F(9)|d9+(1+\/§).2§

12

> / XL (0)F(9) | df + 2?” (3.10)

This completes the proof of Lemma 8.
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