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Abstract—Rational Bézier functions are widely used as
mapping functions in surface reparameterization, finite element
analysis, image warping and morphing. The injectivity (one-to-
one property) of a mapping function is typically necessary for
these applications. Toric B́ezier patches are generalizations of
classical patches (triangular, tensor product) which are defined
on the convex hull of a set of integer lattice points. We give
a geometric condition on the control points that we show is
equivalent to the injectivity of every 2D toric Bézier patch with
those control points for all possible choices of weights. This
condition refines that of Craciun, et al., which only implied
injectivity on the interior of a patch.
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I. I NTRODUCTION

Mapping functions play an important role in computer
graphics, computer aided geometric design (CAGD), finite
element analysis (FEA) and some related areas. The injec-
tivity of mapping functions, that is, the absence of self-
intersection, is crucial in image warping and morphing [11],
free form deformation [1], surface reparameterization, and so
on. Many authors have investigated conditions which imply
injectivity. Goodman and Unsworth [7] proposed a sufficient
condition for the injectivity of a 2D B́ezier function. For
the control points of am × n tensor product patch, their
condition involves2m(m+1)+2n(n+1) linear inequalities.
For image morphing, Choi and Lee [1] presented a sufficient
condition for the injectivity of 2D and 3D uniform cubic B-
spline functions. Their condition provides a single bound
for the displacements of control points that guarantees the
injectivity of the cubic B-spline function. Floater [6] studies
a sufficient condition for injectivity of convex combination
mappings over triangulations.

Fig. 1 displays rational plane cubic Bézier curves with
their control polygons (bold lines). The curve in Fig. 1(a)
has no points of self-intersection. The curve in Fig. 1(b)
has one point of self-intersection, which may be removed
by varying the weights as shown in Fig. 1(c). The control
polygon of the first curve is in convex position, so there
are no positive weights for which the resulting Bézier curve
has self-intersection. For the other control polygon thereare
weights (e.g. Fig. 1(b)) such that the resulting Bézier curve

has a point of self-intersection. The cited works provide
conditions which imply no self-intersection. Our purpose
is different: We give conditions on the control points for
2D patches which are equivalent to there being no self-
intersection for any choice of positive weights.

The basic units in the geometric modeling of sur-
faces are rational B́ezier simplices and tensor product
patches. Krasauskas [8] introduced toric Bézier patches as
a natural extension of classical rational patches and their
higher-dimensional generalizations, the Bézier simploids by
DeRose, et al. [4]. The theory of toric patches is based
upon real toric varieties from algebraic geometry [9], and
they provide a general framework in which to pose many
questions concerning classical rational patches.

To study dynamical systems arising from chemical reac-
tion networks, Craciun et al. [3] prove an injectivity theorem
for certain maps. This was adapted in [2] to give a geometric
condition on a set of control points which implies that the
resulting toric B́ezier patch has no self-intersection, for any
choice of positive weights. That result contains a minor flaw
in that it only guarantees injectivity in the interior of a patch.
We correct that flaw, at least for 2D patches, showing that the
condition from [2] plus the mild additional hypothesis that
the vertices correspond to distinct control points is equivalent
to injectivity for every choice of positive weights.

In Section 2, we introduce toric B́ezier patches as gen-
eralizations of the classical rational patches. In Section3
we explain our condition and sketch its equivalence to the
injectivity of every 2D patch with a given set of control
points, for all possible weights. More details, including
examples of the geometric arguments of Lemma 3.5 and
Corollaries 3.6 and 3.7 will be added in the complete version
of this paper. We conclude some remarks on how to check
this condition, argue that it is in fact quite natural, and
interpret it in terms of piecewise linear maps.

While our main interest is in establishing a criteria valid
in 3D, and in fact in all dimensions, we currently do not
know how to add hypotheses to the condition of [2] so that
the result will be equivalent to injectivity for any choice of
weights in 3D.
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Figure 1. Cubic B́ezier curves.

II. TORIC BÉZIER PATCHES

Let A ⊂ Z
2 be any finite set of integerlattice points.

Its convex hull∆A is a polygon whose vertices are lattice
points. This polygon is also defined by itsedge inequalities,

∆A = {(x, y) ∈ R
2 | 0 ≤ hi(x, y) , i = 1, . . . , ℓ},

wherehi(x) = aix + biy + ci are linear polynomials with
integer coefficients and(ai, bi) is relatively prime.

For each integer lattice pointa ∈ A, Krasauskas [8]
defined thetoric Bernstein polynomial

βa(x) := h1(x)
h1(a)h2(x)

h2(a) · · ·hℓ(x)
hℓ(a), (1)

These toric Bernstein polynomials are non-negative on∆A,
and the collection of allβa has no common zeroes in∆A.

Let RA
> be R

|A|
> with coordinates(wa ∈ R> | a ∈ A)

indexed by elements ofA.
Definition 2.1: Let A ⊂ Z

2 be a finite set. A toric B́ezier
patch associated withA requires an assignmentf : A → R

d

(d = 2, 3) of control pointsand a choice of weightsw ∈ R
A
>.

The toric Bézier patchFw : ∆A → R
d is the function

Fw(x) = FA,f,w(x) :=

∑

a∈A waf(a)βa(x)
∑

a∈A waβa(x)
, (2)

written Fw asA andf are understood.
The degree of a toric B́ezier patch is encoded in its

domain, differing from the classical patches as developed
in [5]. These two types of patches share many properties,
which is explained in [8], [9]. Two properties in particular
are important for us.

One is the convex hull property, that the image of∆A

underFw is contained in the convex hull of the control points
f(A) with Fw(b) = f(b) if b is a vertex of∆A, and the
other is the boundary property, that the restriction ofFw

to an edgeδ of ∆A is a rational B́ezier curve, defined by
control points and weights corresponding to lattice pointsof
δ.

The boundary property may be seen directly by consider-
ing the restriction to an edge. For the convex hull property,
note that aswaβa(x) is nonnegative,Fw(x) is a convex
combination of the control points, and ifb is a vertex,
thenβa(b) is zero unlessa = b. Since the toric Bernstein
polynomials are strictly positive on the interior of∆ (and

those corresponding to an edgeδ are strictly positive on the
interior of δ), we may deduce a little more.

Proposition 2.2:The image of the interior of∆ lies
strictly in the interior of the convex hull of the control points
f(A), and the image of the interior of an edgeδ lies strictly
within the interior of the convex hull off(δ ∩ A).

Toric Bézier patches include the classical Bézier patches
and some multi-sided patches such as Warren’s polygonal
surface [10] which is a reparameterized toric Bézier surface.

Example 2.3 (Tensor product patches):Let m,n be pos-
itive integers. LetA be the integer points in them × n
rectangleA := {(i, j) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}. Then the
corresponding toric Bernstein polynomials (1) are

β(i,j)(x, y) := xi(m− x)m−iyj(n− y)n−j , (3)

and the toric B́ezier patch (2) (with weightswi,j =
(

m
i

)(

n
j

)

)
is the rational tensor product Bézier patch of bidegree(m,n)
after the simple reparameterizations = x/m, t = y/n.

Example 2.4 (Triangular B́ezier patches):Let m be a
positive integer andA be the integer points in the triangle
with vertices (0, 0), (m, 0), and (0,m), A := {(i, j) |
0 ≤ i, j, 0 ≤ m − i, j}. The corresponding Bernstein
polynomials (1) are

βi,j(x, y) = xiyj(m− x− y)m−i−j .

Then the toric B́ezier patch (2) (with weightswi,j =
m!

i!j!(m−i−j)! ) is the rational B́ezier triangle of degreem after
the simple reparameterizations = x/m, t = y/m.

III. I NJECTIVITY OF 2D TORIC BÉZIER PATCHES

Given a finite setA ⊂ Z
2 and a choicef : A → R

2 of
control points, we consider the injectivity of toric Bézier
patches as mapping functionsFw : ∆A 7→ R

2 (2), for all
choicesw ∈ R

A
> of positive weights.

Affinely independent pointsa0,a1,a2 determine an ori-
entation via the ordered basisa1−a0,a2−a0 of R2.

Definition 3.1: A choicef : A → R
2 of control points is

weakly compatibleif
1) There are affinely independent pointsa0,a1,a2 of A

such thatf(a0), f(a1), f(a2) is also affinely indepen-
dent, and

2) For any affinely independent pointsa′0,a
′
1,a

′
2 of

A with the same orientation asa0,a1,a2, if



f(a′0), f(a
′
1), f(a

′
2) is also affinely independent, then

it has the same orientation asf(a0), f(a1), f(a2).

Fig. 2 shows three sets of labeled points, indicating
assignments between them. The assignment between the first
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Figure 2. Weak compatibility.

two sets is weakly compatible, but neither assignment to the
third set is weakly compatible.

We state Theorem 3.5 of [2] forR2, which is their main
result on injectivity of toric B́ezier functions (it holds in any
dimension). Write∆◦

A for the interior of∆A.
Theorem 3.2:The mapFw : ∆◦

A 7→ R
2 is injective for

all w ∈ R
A
> if and only if the assignmentf : A → R

2 is
weakly compatible.

In [2], the authors incorrectly stated this result asFw is
injective on all of∆A, even though their proof was only
valid for the interior of the convex hull. Their proof showed
that Fw has no critical points in the interior, which shows
that it is an open map on∆◦

A.
This is the best possible result with these hypotheses:

Consider a bilinear patch where two control points coincide.
Specifically, letA = {(0, 0), (0, 1), (1, 0), (1, 1)} and sup-
pose that the control points are{(0, 0), (0, 1), (1, 0)}, where
f(a) = a, except thatf(1, 1) = (1, 0). This assignment of
control points is weakly compatible, butFw collapses the
edge between(1, 0) and (1, 1) to the point(1, 0).

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Fw−−−→

(0, 0)

(0, 1)

(1, 0)

This example shows that more hypotheses are needed to
ensure thatFw is injective on∆A, and those hypotheses
should imply that faces of∆A are not collapsed. In fact,
this is the only additional hypothesis needed.

Definition 3.3: A choicef : A → R
2 of control points is

compatibleif it is weakly compatible, and no two vertices
have the same image underf .

We state our main result.
Theorem 3.4:The mapFw : ∆A 7→ R

2 is injective for
all w ∈ R

A
> if and only if the assignmentf : A → R

2 is
compatible.

If a ∈ A is a vertex of∆A, then Fw(a) = f(a).
Theorem 3.2, together with this observation, shows that
if Fw is injective for all w ∈ R

A
>, then f : A → R

2 is
compatible.

For the other implication, suppose thatf : A → R
2 is

compatible. We show that the assumption thatFw is not
injective leads to a contradiction.

We first make several observations about the relative
positions of the pointsf(a) for a ∈ A which are im-
plied by compatibility. Composing with a reflection of
R

2 if necessary, we may assume that ifa0,a1,a2 and
f(a0), f(a1), f(a2) are both affinely independent, then they
induce the same orientation onR2.

Let δ be an edge of∆A. There is some triple of points
d,d′,a of A with f(d), f(d′), f(a) affinely independent
whered,d′ ∈ δ and a 6∈ δ. Indeed, if there are no such
triples, then every point off(A) lies on every line segment
between two distinct points off(δ ∩A), which implies that
the points off(δ ∩ A) are collinear and the line they span
containsf(A), which contradicts the first condition for weak
compatibility of Definition 3.1. This argument requires that
there be at least two distinct points off(δ ∩ A), which
follows as the endpoints ofδ (which are vertices of∆A)
are mapped to different points underf .

Suppose that we list the pointsd0,d1, . . . ,dm of δ ∩ A
so that ifa ∈ A \ δ, andi < j, thendi,dj ,a are positively
oriented. Then eitherf(di), f(dj), f(a) are collinear or pos-
itively oriented. Since there must be at least one such triple
with f(di), f(dj), f(a) affinely independent, we deduce the
following.

Lemma 3.5:Every control pointf(A \ δ) lies in the
intersection of closed halfspaces

{x ∈ R2 | f(di), f(dj), x are positively oriented}

for i < j with f(di) 6= f(dj), and this intersection has a
nonempty relative interior.

Corollary 3.6: For every edgeδ of ∆A and everyb ∈
A \ δ, the control pointf(b) does not lie in the relative
interior of the convex hull off(δ ∩ A).

To see this, note that the intersection of halfspaces of
Lemma 3.5 is either interior or exterior to the convex hull
of f(δ ∩ A), and if it is exterior, then it is separated from
the relative interior of the convex hull by a line. If there is
an edgeδ so that this intersection lies in the interior of the
convex hull off(δ∩A), let δ′ be a different edge. Then the
positions of the points ofδ ∩ A relative to the intersection
of halfspaces forδ′ leads to a contradiction.

Corollary 3.7: If f : A → R
2 is compatible, then the

restriction ofFw to any edgeδ of ∆A is injective.
To see this, fix an edgeδ and consider the intersection of

halfspaces of Lemma 3.5. This intersection is exterior to the
convex hull off(δ ∩ A) and so consists of an unbounded
polyhedron,P . Consider the orthogonal projectionπ : R2 →
R along an unbounded direction ofP . Then the mapπ ◦
f : δ ∩ A → R is a weakly compatible choice of control
points for δ ∩ A, and so the mapπ ◦ Fw restricted to the
edgeδ is injective, by Theorem 3.2. But this implies that
the restriction ofFw to δ is injective.



Proof of Theorem 3.4:We suppose thatf : A → R
2 is

compatible and thatFw is not injective. Letx, y ∈ ∆A be
distinct points withFw(x) = Fw(y).

First, neitherx nor y can be a point of∆◦
A. To see this,

suppose thatx ∈ ∆◦
A and letV be a neighborhood ofx

in ∆A whose closure does not containy. ThenFw(V ) is
an open set containingFw(x) = Fw(y), so F−1

w (V ) \ V
contains an open subsetU of y in ∆A. But then points of
U ∩ ∆◦

A are mapped byFw to points ofFw(V ), and so
Fw is not injective on the interior of∆, which contradicts
Theorem 3.2, as the choicef of control points is weakly
compatible.

Thus x and y are points of some edges of∆A. They
cannot be points of the same edgeδ, for then the restriction
of Fw to δ is not injective, contradicting Corollary 3.7. Thus
they are points of different edges,x ∈ δ and y ∈ δ′ with
δ 6= δ′. We cannot have one of them be an interior point of
its edge, for then the relative interiors of the convex hullsof
f(δ ∩ A) andf(δ′ ∩ A) meet, contradicting Corollary 3.6.

The only possibility left is thatx and y are vertices of
∆, but thenFw(x) = f(x) andFw(y) = f(y), which are
different, as the choicef was compatible.

Remark 3.8:By definition, to check weak compatibility
for 2D patches, it suffices to check determinants for each
triple of points ofA and the corresponding control points,
giving a simple(#(A))3 algorithm. The complexity may be
reduced if we start from a triangulation of∆A, or with care-
ful bookkeeping. Such triangulations can be obtained from
control nets for tensor product patches or Bézier triagles. We
will treat the complexity of checking weak compatibility in
the complete version of this extended abstract.

Mapping functions that are weakly compatible exist; for
example the identity assignment of control points is weakly
compatible. A designer may choose weakly compatible
control points for aesthetic or other reasons. For example,
if only a few control points are moved such as in image
warping, morphing, or reparameterization, then the control
points may be weakly compatible by design, or else only a
few determinants need to be computed.

For any triagulation ofA, the assignment of control points
induces a piecewise linear map to the image. This piecewise
linear map is injective (except possibly collapsing an interior
simplex) for every such triangulation if and only if the
assignment of control points is weakly compatible.

IV. CONCLUSIONS

In this paper, we study the injectivity of toric Bézier
patch geometrically. We present a simple condition on a set
of control points which implies that the resulting 2D toric
Bézier patch is injective, for any choice of positive weights.
For higher dimension, the best result remains Theorem 3.2
by Craciun et al. in [2] (Theorem 3.5 in [2]). We plan to
continue this investigation of injectivity for 3D and higher
dimensions in a future publication.
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