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A PIERI-TYPE FORMULA FOR ISOTROPIC FLAG MANIFOLDS

NANTEL BERGERON AND FRANK SOTTILE

ABSTRACT. We give the formula for multiplying a Schubert class on an odd
orthogonal or symplectic flag manifold by a special Schubert class pulled back
from the Grassmannian of maximal isotropic subspaces. This is also the for-
mula for multiplying a type B (respectively, type C) Schubert polynomial by
the Schur P-polynomial p., (respectively, the Schur @-polynomial ¢,,). Geo-
metric constructions and intermediate results allow us to ultimately deduce
this formula from formulas for the classical flag manifold. These intermediate
results are concerned with the Bruhat order of the infinite Coxeter group Boo,
identities of the structure constants for the Schubert basis of cohomology, and
intersections of Schubert varieties. We show most of these identities follow
from the Pieri-type formula, and our analysis leads to a new partial order on
the Coxeter group Boo and formulas for many of these structure constants.
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2 NANTEL BERGERON AND FRANK SOTTILE

INTRODUCTION

The cohomology of a flag manifold G/B has an integral basis of Schubert classes
&, indexed by elements w of the Weyl group of G. Consequently, there are integral
structure constants ¢, [17, p. 103] defined by the identity

Gu-6y = ) ¥, 6,.

The constant ¢y, is non-negative as it is the number of points in a suitable triple
intersection of Schubert varieties. There exist algorithms for computing these num-
bers ¢?,: The algebraic structure of these rings is known [9] with respect to a
monomial basis, and there are methods (Schubert polynomials) for expressing the
S, in terms of this basis [6, 7, 11, 14, 16, 22, 31]. These algorithms do not show the
non-negativity of the c,. When &, is a hypersurface Schubert class, the c¥, are
either 0, 1, or 2, by Chevalley’s formula [10], which determines the ring structure
of the cohomology of G/B with respect to the Schubert basis. It remains an open
problem to give a closed or bijective formula for the rest of these constants. The
cy,, are expected to count certain chains in the Bruhat order of the Weyl group
(see [3] and the references therein).

Of particular interest are Pieri-type formulas which describe the constants c¥,
when &, is a special Schubert class pulled back from a Grassmannian projection
(G/P, P maximal parabolic), as these determine the ring structure with respect to
the Schubert basis for the cohomology of G/P when P is any parabolic subgroup.
Pieri-type formulas for Grassmannians of classical groups are known. When G =
SL,C, this is the classical Pieri formula, and for other groups G these formulas are
due to Boe and Hiller [8] and to Pragacz and Ratajski [28, 29, 30]. A goal of this
paper is to begin extending these results to all parabolic subgroups P.

When G is SL,C, a Pieri-type formula for multiplication by a special Schubert
class was described [22] in terms of the Weyl group element wu~!. A formula
in terms of chains in the Bruhat order was conjectured [1], given geometric [32],
algebraic [25] and combinatorial [20] proofs. Our main results are the analogous
formulas when G is Sp,,,C or S0s,41C and &, is a special Schubert class pulled
back from a Grassmannian of maximal isotropic subspaces. These are common
generalizations of the Pieri-type formulas for SL,,C, Chevalley’s formula, and the
formula of Boe and Hiller.

Our proof uses results on the Bruhat order, identities of these structure con-
stants, a decomposition of intersections of Schubert varieties, and formulas in the
cohomology of the SL, C-flag manifold to explicitly determine a triple intersection
of Schubert varieties. This shows the coefficients in the Pieri-type formula are the
intersection number of a linear space with a collection of quadrics and hence are
either 0 or a power of 2. Some intermediate results, including a fundamental iden-
tity and some additional identities of the structure constants, are deduced from
constructions on SL,C-flag manifolds [3]. This analysis leads to other results, in-
cluding a new partial order on the infinite Coxeter group Bo,. We show how the
Pieri-type formula implies our fundamental identity, and use the identities to ex-
press many structure constants in terms of the Littlewood-Richardson coefficients
for the multiplication of Schur P- (or (-) functions [34].
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1. STATEMENT OF RESULTS

Schubert classes in the cohomology of the flag manifolds SOs,+1C/B and Sp,,,C/B
form integral bases indexed by elements of the Weyl group B,,. We represent B,
as the group of permutations w of {-n,...,—2,-1,1,...,n} satisfying w(—a) =
—w(a) for 1 < a < n. Let B, denote the Schubert class indexed by w € B,
in H*(502,4+1C/B) and €, that in H*(Sp,,C/B). The degree of these classes is
2 - £(w), where the length ¢(w) of w is

#Ho<i<j<n|w@®>w@} + Y |w@).
1>0>w()
For an integer 4, let 7 denote —i. For each 1 < m < n, define v,, € B, by
mM=vn(1) <0< v,(2) < - <uvp(n).

This indexes a (maximal isotropic) special Schubert class in either cohomology ring,
written as pp, := B,,, and g, := &,, . We first state the Pieri-type formula for the
products By, - pn and €, - g, in terms of chains in the Bruhat order on B,. For
this, we need some definitions.

Definition 1.1. The 0-Bruhat order <o on B,, is defined recursively as follows:
u <o w Is a cover in the 0-Bruhat order if and only if
(1) L(u) +1 = £L(w), and
(2) utw is a reflection of the form (7, i) or (3, j)(7, i) for some 0 < i < j < n.
With these definitions, we may state Chevalley’s formula [10] for multiplication
by p1 and ¢;.

By - P = Z B
u<ow
(1.1)
Cu-qn = Z X(u_l’w)cw ’
u<ow

where x(u~'w) is the number of transpositions in the reflection = w (1 or 2).

We enrich the 0-Bruhat order in two complementary ways. Write the two types
of covers in the 0-Bruhat order as u <¢ (8, 8)u and u < (B, @)(a, f)u where 0 <
a < B < n. (Observe that these reflections act on the left, on the values of u, while
those in Definition 1.1(2) act on the right, on the positions of u.) The labeled 0-
Bruhat réseau is a labeled directed multigraph with vertex set B, and labeled edges
between covers in the 0-Bruhat order given by the following rule: If u <¢ (3, 8)u,
then a single edge is drawn with label 8. If u < (3, @)(c, B)u, then two edges are
drawn with respective labels @ and 3. Thus if u<qw, then x(u~'w) counts the edges
from u to w in this 0-Bruhat réseau. The labeled 0-Bruhat order is obtained from
this réseau by removing edges with negative integer labels. With this definition,
the coefficient of %,, given by the Chevalley formula (1.1) is the number of chains
from u to w in the 0-Bruhat order, and the coefficient of &, similarly counts chains
in the 0-Bruhat réseau.

Given a (saturated) chain +y in either of these structures, let end(y) denote the
endpoint of . A peak in a chain v is an index i € {2,...,m—1} with a;_1 < a; >
a;+1, where a1, as, ..., an is the sequence of edge labels in . A descent is an index
i < m with a; > a;41 and an ascent is an index ¢ < m with a; < a;y1.
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Theorem A. (Pieri-type formula) Let u € B,, and m > 0.
(1) (Odd-orthogonal Pieri-type formula) We have

B *Pm = Z %end('y) )

the sum over all chains ~y in the labeled 0-Bruhat order of B,, which begin
at u, have length m, and have no peaks.
(2) (Symplectic Pieri-type formula) There are two equivalent formulae

Cu m = Z Q:end(’y) ’

either (a) the sum over all chains v in the labeled 0-Bruhat réseau of By,
which begin at u, have length m, and have no descents, or (b) the same
sum, except with no ascents.

Theorem A shows that the coefficient bY  of B, in 9B, - p, counts certain
chains in the Bruhat order (likewise for the coefficient ¢¥, ). It generalizes both
Chevalley’s formula (1.1) and the Pieri-type formula for SL,C/B, which is ex-
pressed in [1, 32] as a sum of certain labeled chains in the Bruhat order on the
symmetric group S, with no ascents/no descents. The duality of these two formu-
las, one in terms of peaks for an order, and the other in terms of descents/ascents
for an enriched structure on that order has connections to Stembridge’s theory of
enriched P-partitions [35], where peak and descent sets play a complementary role.
These relations are explored in [2], which extends the theory developed in [4] to the

ordered structures of this manuscript.

Example 1.2. Represent permutations w € By by their values w(1)w(2)w(3)w(4).
Consider the products B,57, - p3 and €,37, - g3. Figure 1 shows the part of the
0-Bruhat réseau of height 3 above 2314 in B,. (Erase edges with negative labels to

by'3 0 1 1 1 1
u3 0 1 1 1 2
w 3214 | 4213 | 3124 1234 1243
2 T 3 1 4
/29N | _ _
2“03/\&/ %
3214 1324 1234
3 3/
NN S
2314 1324
2 J_
2314

FIiGure 1. Chains above 2314.

obtain its analog in the 0-Bruhat order.) The entries in the first row of the table
count the peakless chains in the 0-Bruhat order, so by Theorem A(1), we have

Bty P3 = Baors + Byizy + Brozs + Brogs -
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The entries in its second row count the chains with no descents in the 0-Bruhat
réseau. Thus, by Theorem A(2), we have

Catan " D3 = Cqoq3 + C3134 + ooz + 2€ 575 -

Note also that the numbers of chains with no descents and chains with no ascents
are equal.

If )\ is a strict partition (decreasing integral sequence n > A1 > Ao > --- >
Ar > 0), then X determines a unique Grassmannian permutation v(A) € B,, where
v(@) =X fori <kand0<wv(k+1) <---<wv(n). If k=1and \; = m, then v,, =
v(A). The Schubert classes Py := B,(x) and @y := &y, are pullbacks of Schubert
classes from the Grassmannians of maximal isotropic subspaces S0s,+1C/Py and
Sp5,C/ Py, where Py is the maximal parabolic associated to the simple root of
exceptional length. Formulas for products of these P- and @Q-classes are known [34]
as these classes are specializations of Schur P- and @Q-functions [18, 27].

Our proof of Theorem A uses identities among the structure constants %, and
c?, defined by the following formulas

By Py o= Y by By, and  C,-Qx = D ¥, &,y

If u,w,v(\) € By, then these constants do not depend upon n.

Iterating Chevalley’s formula (1.1) shows that if either of b, or ¢, is non-zero,
then 4 <o w and £(w) — £(u) equals |A|, the sum of the parts of A\. In fact the
constant b?, determines and is determined by the constant ¢,: Let s(w) count
the sign changes ({i | i > 0 > w(i)}) in w. Then the map €, — 2*(*)B,, embeds
H*(Sp,,,C/B) into H*(505,,1C/B). Thus it suffices to work in H*(Sp,,,C/B).
This is fortunate, as a key geometric result, Theorem 3.5, holds only for Sp,, C/B.

Let f¥ count the saturated chains in the interval [u,w]o and g¥ count the sat-
urated chains in the réseau [u, w]o. Iterating Chevalley’s formula (1.1) with u = e,
the identity permutation, we obtain the following expressions

W= YRR amd @ = Y g0
|A|l=m [A|l=m

Multiplying the first expression by 9, and collecting the coefficients of 2B, in the

resulting expansion (likewise for the second expression) gives the following propo-

sition.

Proposition 1.3. Let u,w € B,,. Then
fo = > Wby and gy = > g,

[A=£(w)—&(u) [A|=¢(w)—£(u)

Theorem A and Proposition 1.3 show a close connection between chains in the
0-Bruhat order/réseau and the structure constants b, and c¢,. This justifies an
elucidation of the basic properties of the 0-Bruhat order and réseau, which we do
in Sections 2 and 6. These structures have a remarkable property and there are
related fundamental identities among the structure constants.
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1

Theorem B. Suppose u <¢g w and x <g z in B, with wu™"' = zz~'. Then

(1) The map v = vu 'z induces an isomorphism of labeled intervals in both
the 0-Bruhat order and the 0-Bruhat réseau [u,w]o — [z, 2]o-
(2) For any strict partition A,

j— w 4

w z —
uA T Yz and Cux = Cza-

We prove a strengthening of Theorem B(1) in Section 2.2 using combinatorial
methods. Theorem B(2) is a consequence of a geometric result (Theorem 3.3)
proven in Section 4. Both parts of Theorem B are key to our proof of the Pieri-type
formula. By Theorem 8.1(3), the Pieri-type formula and Theorem B(1) together
imply Theorem B(2).

Let ¢ € B,. By Theorem B(1), we may define n < ( if there is a u € B,
with 4 <o nu <o (u and also define £({) := £(Cu) — £(u) whenever u <o (u.
Then (B, <) is a graded partial order with rank function £(-), which we call the
Lagrangian order. We transfer the labeling from the 0-Bruhat order to obtain the
labeled Lagrangian order. In the same fashion, we transfer the labeling and multiple
edges of the 0-Bruhat réseau to (B, <), obtaining the (labeled) Lagrangian réseau.
By the identity of Theorem B(2), we may define b5 := b5% and ¢}, := ¢&% for any
u € B, with v <o Cu and |A| = L(().

¢ — &7

These coefficients satisfy one obvious identity, ¢; = ¢3 , as ¢, = ¢20%, , and
wolwe = (¢, where wy € B, is the longest element. They also satisfy two non-
obvious identities, which we now describe. Let p € B,, be the permutation defined
by p(i) =i —1—mn for 1 < i < n. Then p is the element with largest rank in

(Bn,=<). Let v € B, be defined by v(1) =2,v(2) =3,...,v(n) = 1.

Theorem C. For any ( € B,,

(1) £(C) = L(plp) and for any strict partition X, we have bg\ = b"/{cp and
S = PSP
A A

(2) Ifa-((a) > O for all a, then L() = L(Y(y™") and for any strict partition
A, we have b, = B} and &§ = &7 .

This is a consequence of a geometric result, Theorem 3.4, proven in Section 5.
These identities are the analogs of the cyclic shift identity (Theorem H) of [3],
which was generalized by Postnikov [26] to the quantum cohomology of the SL,
flag manifold.

Our last major result is a reformulation of Theorem A in terms of the permu-
tation wu . For ¢ € By, let supp(¢) := {a > 0| {(a) # a}, the support of . A
permutation ( € B, is reducible if it has a non-trivial factorization { = n - £ with
L(¢) = L(n) + L(&) where n and £ have disjoint supports (1-& = £-71). We say that
such a product 7 - £ is disjoint. Permutations w € B,, have unique factorizations
into disjoint irreducible permutations.

For a permutation ¢ € B, define 6(¢) =1 if a-{(a) > 0 for all a, and §({) =0
otherwise. In Section 6, we show that if ¢ is irreducible, then £({) > #supp(¢) —
d(¢). If we have equality, then, as a permutation in Sy, ¢ has 1+ 6(¢) cycles.

Definition 1.4. If every irreducible factor n of { satisfies L(n) = #supp(n) —(n),
then we say that ¢ is minimal. That is, its length is minimal given its support.
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If ¢ € B,, is minimal, then set
e(c) .— o#{irreducible factors of C}fl7

X(C) — 2#{irreducible factors n of ¢ with §(n) = 1}

If ¢ is not minimal, then set 6(() = x(¢{) = 0.

We state the Pieri-type formula in terms of the permutation wu=!.

Theorem D. Let u,w € B, and m <n. Then
By - Pm = Ze(wufl)%w and Cou Qm = Zx(wufl)ciw,
the sum over all w € B,, with u <o w and £(w) — £(u) = m.

This is similar to the form of the Pieri-type formula for SL,C/B in [22], which
is in terms of the cycle structure of the permutation wu~!. Our proof for Sp,,,C/B
shows these multiplicities arise from the intersection of a linear subspace of P27~!
with a collection of quadrics, one for each irreducible factor n of wu=! with §(n) =
1, similar to the proof of the Pieri-type formula for Grassmannians of maximal
isotropic subspaces in [33]. The two formulas in Theorem D are shown to be
equivalent in Section 6.4, and we show the equivalence of the two formulations
(Theorems A and D) of the Pieri-type formula in Sections 6.3 and 6.4.

Example 1.5. We return to Example 1.2. For u = 2314 and w equal to each of
3214, 4213, 3124, 1234, 1243 in turn, wu™" is the permutation in Sy4:

(2’ §) (3’ i)’ (2’ Z’ g’ §’ 4’ 3)’ (]" 25 g’ T’ Q’ 3)3 (]" 35 27 T’ 37 i)’ a’nd (]‘5 47 33 2) (T’ Z’ 33 §) *
These are all irreducible as permutations in By. The first is not minimal, while the
rest are. Of those, the first three have § = 0, and the last has 6 = 1. Thus the

values of @ are0,1,1,1,1 and of x are 0,1,1, 1,2, which, together with Example 1.2,
shows the two forms of the Pieri-type formula agree on this example.

Theorem D generalizes the Pieri-type formula for Grassmannians of maximal
isotropic subspaces [8] (see also [17, p. 31]). We describe this. A strict partition A
can be represented by its Ferrers diagram as a left justified array of boxes with );
boxes in the ith row. When pu C A, we can consider the skew partition A/u = A — p.
Here, the unshaded boxes represent 32, 43, 43/32, and 421/32:

Let |A/u| count the boxes in A\/u. We call A\/p a horizontal strip if there is at
most one box in each column. Two boxes in A/u are connected if they share a
vertex. Let k(A/u) count the connected components of A/u and let m(\/p) count
those components not containing a box in the first column. The Pieri-type formulas
for these Grassmannians are:

P, pm = Z 2k =1 p,
A M pl=m
A/u a horizontal strip

Qu-dm = > 2m Q)
A A/pl=m
A/u & horizontal strip
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The connection of these formulas to Theorem D is a consequence of the following
two facts. The permutation v(A)v(u)~! is minimal if and only if A\/u is a horizontal
strip. Connected components of A\/u correspond to disjoint irreducible factors of
v(AN)v(p)~! and a component has § = 1 if it does not contain a box in the first
column. In the figure above, 43/32 has a single connected component with § = 1,
while 421 /32 has two components, one with § = 0 and the other with § = 1.

This paper is organized as follows: Section 2 contains basic combinatorial defini-
tions and properties of the Bruhat order on B, analogous to those of S, established
in [3, 5], and also a strengthened version of Theorem B(1). Section 3 contains our
basic geometric definitions and also the geometric Theorems 3.3 and 3.4, which
imply Theorems B(2) and C, respectively. Section 4 is devoted to the proof of
Theorem 3.3. In Section 5, we prove Theorem 3.4 and derive some useful geometric
lemmas. The next two sections form the heart of this paper. In Section 6, we
establish further combinatorial properties of the Lagrangian order and réseau, and
prove the equivalence of Theorems A and D. These combinatorial results are used
in Section 7 to establish the Pieri-type formula, which we prove by first reducing to
the case when ( is irreducible and minimal, and then treating two further subcases
separately. Finally, in Section 8, we apply these results to show how the Pieri-type
formula implies the identity of Theorem B(2), compute many of the constants bl
and c¥,, and deduce some combinatorial consequences for the Bruhat order.

The proof of the Pieri-type formula occupies most of Sections 2 through 7. Those
results not needed for the proof are closely related to the other results in those
sections. For example, in Section 5 only Lemma 5.9 is used in the proof of the Pieri-
type formula—but this Lemma requires some other results in Section 5. Figure 2 is
a schematic of some main ingredients in the proof of the Pieri-type formula. Here,

Theorem B(1)*| _ __ D - "
i 0 | Section 7

proven in § 2.2 s ~

Theorem B(2) | 7 | N

\ [ AN
Theorem 3.4* Theorem 3.3*

N
. -— — — . — — —» |Theorem 3.5*
proven in § 5 proven in § 4

* x:= uses results from [3] and the (related) inclusions

Sp2nC/B < SLnC/B and Ba < Sipu

FIGURE 2. Schematic of Proof of Pieri-type formula.

a solid arrow — indicates a direct implication, while a broken arrow —— indicates
that one result is used in the proof of another. Note the centrality of Theorem 3.3
and Sections 6 and 7.
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2. ORDERS ON B,

2.1. Basic Definitions. We begin with some combinatorial definitions, and then
in Section 2.2 derive the basic properties of the 0-Bruhat order on By, analogous
to properties of the k-Bruhat order on S,,. We list the various orders with their
respective notation and place of definition in Table 1. The entries marked with (x)

| Order | notation | rank function | defined in |
Bruhat order type B < L Sec. 2.1
0-Bruhat order type B <o (*) Sec. 2.1
k-Bruhat order type B <k (%) Sec. 2.1
Lagrangian order (type B) < L Def. 2.9
Bruhat order type A < l, Sec. 2.2
k-Bruhat order type A g (%) Sec. 2.2
Grassmannian order (type A) < L, Def. 2.10

TABLE 1. Different orders

are not ranked posets, but every interval [z, y] is ranked by £(z) — £(z) for z € [z, y].
Similarly for (xx), except that the ranking now is £, (z) — £, (z).
Let #5S be the cardinality of a finite set S. For an integer j, its absolute value
is |j| and let j := —j. Likewise, for a set P of integers, define P := {j | j € P}
and £P := PUP. Set [n] :={1,...,n} and let S.[n) be the group of permutations
of £[n]. Let e be the identity permutation in S.p,; and wp the longest element
in Sipp: wo(i) = 7. Then By, is the subgroup of Sy, consisting of those w for
which wowwo = w. We have wo € B,. We also have B, C Sz ,), the symmetric
group on [, n] := £[n]U{0}. We refer to elements of these groups as permutations.
Permutations w € B,, are often represented by their values w(1) w(2) ... w(n). For
example, 2431 € By. The length ¢(w) of w € B, is [17, p. 66]
lw) = #{0<i<jlw@>w@} + Y [w@).
i>0>w(%)
Thus £(2431) = 4 + 4 = 8. Note that wy is the longest element in B,,.
The inclusion +[n] < +[n+1] induces inclusions B, < Bny1 and Syipp —

Siint1]- Define By := |J,, Bn and St := |J,, S4[n)- In this representation, By
has three types of reflections, which are, as elements of S4.:

ti; = (3,70, j)
t; = (J7) for0<i<y.
tzj = (3,1 J4)

These reflections act on positions on the right and on values on the left. The
Bruhat order on B, is defined by its covers: u < w if £(u) + 1 = £(w) and v~ 'w is
a reflection. For each k = 0,1, ..., define the k-Bruhat order (on B, or By) by its
covers: Set u < w if u < w and
t;; withi<k<yj, or
wlw is one of t; with k < j, or

For example, Figure 3 shows all covers w € By of u = 2431, the reflection u 1w,
and for which £ this is a cover in the k-Bruhat order.
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2 3
341 1432 2413

FI1GURE 3. Covers of 243T.

An important class of permutations are the Grassmannian permutations, those
v € B, for which v(1) < v(2) < --- < v(n). Such a permutation is determined by
its initial negative values. If v(k) < 0 < v(k 4 1), define A(v) to be the decreasing
sequence v(1) > v(2) > --- > v(k). Note that £(v) = v(1) + --- + v(k) =: |A(v)].
Likewise, given a decreasing sequence u of positive integers (a strict partition) with
n > up, let v(p) be the Grassmannian permutation with A(v(u)) = u. We write
u C X for strict partitions p, A if p; < A; for all i. For example, v = 4123 € By is
Grassmannian with A(v) = 41. Since v has no inversions, {(v) =4+ 1 = |41].

2.2. The 0-Bruhat order. While these orders are analogous to the k-Bruhat
orders on S [3, 5, 23, 32], only the 0-Bruhat order on By, enjoys most properties
of the k-Bruhat orders on S,,. This is because the 0-Bruhat order is an induced
suborder of the 0-Bruhat order on Sy -

The length £, (w) of a permutation w € St counts the inversions of w:

L (w) = #{i <jlw(@) >w(i)}.

The Bruhat order (<1) on Sio is defined by its covers: u <@ w if and only if wu™
is a transposition and £,(w) = £,(u) + 1. Alternatively, u<q w if and only if
(a, b) = u~'w is a transposition such that a < b, wu(a) < u(b) andforall a < i < b,
we have u(i) < u(a) or u(i) > u(b). If k¥ € Z, this is a cover (written <) in the
k-Bruhat order (<ix) on Sioo (0r Sipn) if u'w = (a, b) with @ < k < b. The
k-Bruhat order has a non-recursive characterization, needed below:

1

Proposition 2.1 ([3], Theorem A). Let u,w € Sy and k € Z. Then u <y, w if
and only if

(1) a < k < b implies u(a) < w(a) and u(b) > w(b).
(2) If a < b, u(a) < u(b), and w(a) > w(b), then a < k < b.

For the remainder of this paper, we will be concerned with the case & = 0.

Theorem 2.2. The 0-Bruhat order on By, is the order induced from the 0-Bruhat
order on S+ by the inclusion Boo > S+oo-

Proof. For u,w € By, it is straightforward to verify
u<gut; < u<g ud, j)
and
u<gul;; <= u<o u(J,i)<do u(F, )G, J).

Thus u <¢ w = u g w, and so <q is a suborder of <.
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To show this suborder is induced, we suppose that v <p w with u,w € By, and
argue by induction on £, (w) — £, (u). Suppose u<dg v <o w. If v = u(7, j) = ut;,
then v € By, and we are done by induction.

Suppose now that v = u(J, i) € Boo. Let 2 — T be the involution of (Steo, <o)
which fixes (Boo,<) (Z := wozwo when z,wo € Sifn)). Then T = u(7, j) also
satisfies u <dg T <lg w. Proposition 2.1(1) show that either 0 < u(7) and 0 < u(j),
or else u(j) - u(i) < 0. In the first case, Proposition 2.1(2) forces u(i) > u(j) if and
only if i < j. We thus have both u<dg u(7, j) <o w and u <o u(3, i) <o w, and
uti, ut; € Boo. In the second case v<dg v(7, j) <o w and v(7, j) = uty,; € B,
which completes the proof. =

Remark 2.3. We extract the following useful fact from this proof. If u(7, i) <o u,
then either ut;; <o u or else both ut; <o v and ut; <o u.

Example 2.4. Figure 4 illustrates Theorem 2.2. There, the elements of Bs are

323121 121323 223311

boxed.

FIGURE 4. The intervals [312213, 123321]4, and [213, 321].

This relation between the two partial orders (By, <o) and (S+oo, <o) makes
many properties of (B, <o) easy corollaries of Theorem 2.2 and the analogous
results for (Sieo, <o) (established in [3, 5]). We discuss these properties in the
remainder of this section, leaving some proofs to the reader.

From Proposition 2.1, we deduce the following non-recursive characterization of
the 0-Bruhat order on B.
Proposition 2.5. Let u,w € By,. Then u <g w if and only if
(1) 0<i= u(i) >w(i), and
(2) 0<i<jandu(i) <u(j) = w(i) < w(j).
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For P C {1,2,...} = N, let #P € NU {oo} be the cardinality of P. For

P = {p1,p2,...} where py < ps < ---, the map i — p; induces compatible
inclusions
Ep
Byp ¢«———— By
Ep
Sepp ——+ St

Shape-equivalence is the equivalence relation on By induced by u ~ ep(u) for
P C Nand u € Bgp. The support of a permutation ¢ € B is {i > 0| (i) # i}.
Note that the supports of shape-equivalent permutations have the same cardinality.
Furthermore, shape-equivalent permutations with the same support are equal. Let
[u,w]o := {v | u <o v <o w} denote the interval in the 0-Bruhat order between u
and w, a finite graded poset. A corollary of Theorem 2.2 and Theorem E(i) of [3]
is the following fundamental result about the 0-Bruhat order on B, which is a
strengthening of Theorem B(1).

Theorem B(1)' Suppose u,w,z,z € B with wu™! shape-equivalent to zx~!.

Then [u,w]o = [x,2]o. If ep(wu=t) = zz~!, then this isomorphism is given by

[u,w]o v — ep(vu)z € [z,2]o .

Definition-Example 2.6. We illustrate Theorem B(1)'. First, we introduce some
notation for permutations in By,. If ( € By, then as a permutation in Si,, each
of its cycles has one of the following two forms:

(a,b,...,0) or (a,b,...,¢c,a,b,..., ¢

with |al,|bl,...,|c| distinct. Furthermore, every cyclen = (a, b, ..., c¢) of the first
type is paired with another, 7j := (a, b, ..., €), also of the first type. This motivates
a ‘cycle notation’ for permutations { € Bs. Write {(a, b, ..., ¢) for the product

(a,b,...,c)-(@b,...,¢) and {a, b, ..., c] for cycles (a, b, ..., ¢, @, b, ..., ¢ of
the second type. Call either of these cycles in B,,. We will often omit writing the
commas.

Consider the isomorphic intervals in the 0-Bruhat orders on B3 and By:

/32 1\ 312 4123
123 312 ITQ §|21 1423 4321
123 213 132 231 1423 3421
213 231 3421

If we Iet u, z,v be the respective b_ottom elements, az_ld w, 2,y the respective top ele-
ments, then, wu' = zz~! = (123] and yv—! = (134], and these two permutations

are shape-equivalent.

This characterization of intervals in the 0-Bruhat order is not shared by the
k-Bruhat order on B, for any k£ > 0. The following example illustrates this for
k=1.
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Example 2.7. Consider the following two intervals in the 1-Bruhat order on By:

3412
N ]
43‘12 24‘13 1423
4213 2314 1243
3214

If we let u,z be the bottom elements and w,z the top elements, then wu™' =

zx~1 = (24) but the two intervals are not isomorphic.

Remark 2.8. For any { € By, there is a u € By, with u <o (u. Suppose we write
{a € N | a > ((a)} = {a1,---,an} where ((a1) < {(az) < --- < {(a,). Further
let {amt1 < amy2 < - -} =N—{lai|,|az],...,|am|}. If we define u(j) = a;, then
Proposition 2.5 implies that u <¢ (u. Note that if [m] = {a > 0| {(a) # a}, then
Cu is a Grassmannian permutation. In this last case we have

#{1>0]u(l) <0} = #{0>a>((a)},
as g(a):@.

This can be seen in the leftmost interval of Definition-Example 2.6. If ( = (123],
then this construction gives u = 213 and (u = 321, which is Grassmannian.

By Theorem B(1)’, we may define a new partial order on B, which we call the
Lagrangian order: For n,( € By, set n < (if thereisa u € By, with u <g nu <¢ (u.
By Remark 2.8, the Lagrangian order has the unique minimal element e. This order
is graded by the rank, £(({), where £(({) := £(Cu) — ¢(u) whenever u <o (u. These
notions have definitions independent of <j.

Definition-Theorem 2.9. Let 1,( € Bo.
(1) Thenn =< ( if and only if

(i) a € £N with a > n(a) = n(a) > ¢(a), and
(ii) a,b € £N with a < b, a > {(a),b > ((b), and {(a) < {(b) = n(a) <

n(b).
2 £©) = Y K@l - #{(b)|0<a<ba={(a)>(0)}
a,0>¢(a)
— #{(a,b) |a <b,a>((a),b>((b),¢(a) >CB)}Y — Dl
0>a>¢(a)

Proof. Let u be the permutation with u <y (u constructed from ¢ in Remark 2.8,
using Proposition 2.5 and Theorem B(1)'. If u <o nu <o Cu, then 7 satisfies the
conditions in (1), and conversely.

For (2), consider the difference £((u) — £(u). The length of (u is the first sum,
plus the number of inversions of the form 0 < i < m < j with u(i) > Cu(j) = u(j).
(Here, m is as constructed in Remark 2.8.) In the construction of u, each of these
is also an inversion in u involving positions 0 < ¢ < n < 7, and so are canceled in
the difference. The second term counts the remaining inversions of this type in u,
the third term counts the inversions with 0 < ¢ < 7 < n in u, and the fourth term

i Y isosag) [u@)].
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We illustrate this result. Consider the rightmost interval of Definition-Example 2.6.
It has rank 3, so the permutation (134] has length 3. For this permutation, the four
terms in statement 2 are, respectively 7 = 4+3, 2 = #{(2,3), (2,4)}, 1 = #{(1,3)},
and 1. Thus £(134] =7—2—1—1 = 3, as we have already observed.

The Lagrangian order is the B,-counterpart of the Grassmannian Bruhat order
< on Sy [3, 5]. This is defined as follows: Let 1,{ € Seo. Then n<( if and
only if there is a u € Soo With u <o nu <o (u. The Grassmannian Bruhat order is
ranked with £, (n) := £, (qu) — £, (u) whenever u <l nu. Equivalently, Definition-
Theorem 2.9 is the counterpart of the following definition of the Grassmannian

order. For € Su, let up(¢) = {j | (1(j) < j} and let dw(¢) = {4 | ¢"*(j) > j}-
Definition 2.10 ([3] Sect. 3.2). Let 7,( € Seo-
(1) Then n=( if and only if
(1) a<n(a) <¢(a) forae€ ¢t (up(()),
(2) a>n(a)>((a) forae ("M dw((),
(3) (n(a) <n(d) = ((a) <)) for a<be (H(up(()) or ¢~ (dw(C)).

(2) L£,(C) is given by
#{(i,5) € up(¢) x dw(() | i > j} — #{(C(9),¢(7)) € up(¢) x dw({) | i > j}
—#{(¢(1),¢(4) € up(¢)*? | i < j and ¢(i) > ((4)}
—#{(¢(1),¢(4)) € dw(¢)** | i < j and {(i) > ¢(4)}-

Let s(¢) count the sign changes {a > 0|0 > ¢((a)} in {. We have the following
relation between these two orders.

Corollary 2.11.

(1) (Boo, =) is an induced suborder of (Sioo, <).
(2) For ¢ € Boo(C S+oo), we have L(() = (EA Q)+ s(())/2

Proof. The first statement is a consequence of Theorem 2.2. For the second
statement, consider any maximal chain in [e,{]< (in Bs). By Theorem 2.2, this
gives a maximal chain in [e,(]4 (in Sio), where covers of the form n=<tq,n are
replaced by 1 =< (a,b)n =< (a,b)@@,b)n. Thus £, (¢) = L(¢) + 7, where T counts the
covers in that chain if the form n<t, 7. Since only covers of the form n< tyn
contribute to s(¢), we have £,(¢) = 2£(¢) — s(¢). =

We remark on a notational convention: we use Latin letters u, v, w, x,y, 2 or one-
line notation for permutations when using the Bruhat orders on B, or Sy, and
Greek letters 7, (, £ or cycle notation when using the Lagrangian or Grassmannian
Bruhat orders.

Let 7, € Boo- If (-n=1n-¢ with L(n-¢) = L(n) + £(¢), and neither of ¢ or 5
is the identity, then 7 -  is the disjoint product of 5 and {. (In general L(n - () <
L(n) + L£(¢).) If a permutation cannot be factored in this way, it is irreducible.
Permutations ¢ € By, factor uniquely into disjoint irreducible permutations. This
is most easily described in terms of non-crossing partitions [21]: (A non-crossing
partition of £N is a set partition such that if a < ¢ < b < d with a,b in a part 7
and ¢,d in a part 7', then m = 7/, as otherwise the parts 7,7’ are crossing.)

First, consider ¢ as an element of S ,. Let II be the finest non-crossing partition
of =N which is refined by the partition given by the cycles of (. For each non-
singleton part « of II, let (, be the product of the cycles of { which partition .
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(These (, are the disjoint irreducible factors of (, as an element of S1,,.) Since
¢ € By, for each such part 7 of II, either 7 = 7 or else one of 7,7 consists solely
of positive integers. In the first case, (; is an irreducible factor of ¢ (as an element
of Bw), and in the second, ({7 is an irreducible factor of (.

For example, (3] - (12) is the disjoint product of (3] and (12), while (2](13) is
irreducible.

The main result concerning this disjointness is the following straightforward
consequence of Theorem 2.2 and Theorem G(i) of [3]:

Proposition 2.12. Suppose ( = (1 --- (s is the factorization of ( € By into dis-
joint irreducible permutations. Then the map (m1,...,ms) — 11 -7 induces an
isomorphism

[eacl]< XX [65C3]< E— [eaC]< .

We summarize some properties of (Beo, <), which follow from previous arguments
and Theorem 3.2.3 of [3].

Proposition 2.13.

(1) (Boo, <) is a graded poset with minimal element e and rank function L(-).

(2) The map A — v(\) exhibits the lattice of strict partitions as an induced
suborder of (Bso, <).

(3) If u <g Cu, then n — nu induces an isomorphism [e, (]« — [u, Culo-

(4) Ifn 2 ¢, then & = &n~" induces an isomorphism [n, ()< — [e,(n~Y]<.

(5) For every infinite set P C N, the map ep : Boo = Bwo 18 an injection of
graded posets. Thus ifn,{ € B are shape-equivalent, then [e,(]< ~ [e,n]<.

(6) The map n v+ ¢! induces an order-reversing isomorphism between [e, (]«
and [ea C_1]<'

Example 2.14. Figure 5 shows the Lagrangian order on Bs. The thickened lines
are between skew Grassmannian permutations v(A)v(u)™ for p C \.

A chain in either [u, (u]o or [e, (]« is a particular factorization of ¢ into transpo-
sitions ¢, and t,5. We give an algorithm for finding a chain in [e, {]<, which is the
analog of the algorithm given in Remark 3.1.2 of [3]. For this, set t;, = t,; = t5.

Algorithm 2.15.
input: A permutation ¢ € Byo.
output: Permutations (,(1,...,(m = € such that
€< Cn1=< =G =C
is a saturated chain in the Lagrangian order.
Output (. While { # e, do
1 Choose b € N mazimal subject to b > ((b).
2 Choose a minimal subject to a < ((b) < ((a).
3 (:= (tap, output C.
Before every ezecution of 3, (t,p=<(. Moreover, this algorithm terminates in
L(C) iterations and the reverse of the sequence produced is a chain in [e, (] <.

3. ISOTROPIC FLAG MANIFOLDS AND MAXIMAL GRASSMANNIANS

We begin with some basic definitions concerning the flag manifolds G/B for the
symplectic and orthogonal groups, then in Section 3.1 we develop properties of
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(13)(2]
I
(132] (13)(2] (123] (13K2]
/ N | I
(123) <132> (132) (12)(3] <123 (23 (123) 13)(2] (132)

WAV NS

<123 @3l1] (123] (13) 132] 2) <12<3 (1(20(3] <23 (23 (1231 a2)(3] (132] (132]

N AN 22

(123) (3] (23)1] (13] (12] k3l K2 ] (23] (12)(3] (12] (132 (13

\m\\\//\/// e
~l =

F1GURE 5. The Lagrangian order on Bs.

their Schubert varieties analogous to those for the SL,,C-flag manifold. We give
the statements of geometric results which imply Theorem B(2) and Theorem C,
and in Section 3.2 prove an important product decomposition property of certain
intersections of Schubert varieties.

Let V denote either C2"*! equipped with a non-degenerate symmetric bilinear
form or C2" equipped with a non-degenerate alternating bilinear form. In the first
case, V is an odd orthogonal vector space, and in the second, a symplectic vector
space. A linear subspace K of V is isotropic if the restriction of the form to K is
identically zero. Isotropic subspaces have dimension at most n. An isotropic flag
in V is a sequence E, of isotropic subspaces:

E,:EHCEHC"'CET,

where dim F; = n+ 1 —i. Let K1 be the annihilator of a subset K of V. Given
an isotropic flag E, in V, we obtain a canonical complete flag in V' (also written
E,) by defining E; := Ei? for i = 1,...,n, and in the odd orthogonal case,
Ey := Ef- Henceforth, flags will always be complete, although we may only specify
the subspaces Eg, ..., Er. Indexing flags by elements of +[n] or [7i, n] corresponds
to our concrete realization of B,, as permutations.

The group G of linear transformations of V' which preserve the given form acts
transitively on the set of isotropic flags in V. Since the stabilizer of an isotropic
flag is a Borel subgroup B of G, this exhibits the set of isotropic flags as the ho-
mogeneous space G/B. Here, G is either S05,,1C (odd orthogonal) or Sp,,,C
(symplectic). Similarly, G acts transitively on the set of maximal isotropic sub-
spaces of V', exhibiting it as the homogeneous space G/ Fy. Here Fj is the stabilizer
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of a maximal isotropic subspace, a maximal parabolic subgroup associated to the
simple root of exceptional length. Let w : G/B — G /P, be the projection map.

The rational cohomology rings [9] of G/B for both the symplectic and odd-
orthogonal flag manifolds are isomorphic to

Qz1,-..,z0)/(ei(a],...,22),i=1,...,n),

where e;(a1, ..., a,) is the ith elementary symmetric polynomial in a4, . .., a,. How-
ever, their integral cohomology rings differ [13]:

H*(SpanC/B) ~ ZLlay,...,xa)/ {ei(a?,...,22)).
H*(S02p,41C/B) =~ Zlz1,...,%n,C1,-..,¢a]/1,

I = (eiaf,...,52), 2¢; — ei(T1,-- -, Ty), C2i = (=1)'cF) .

* n

These rings have another description in terms of Schubert classes, given below.

3.1. Schubert varieties. Since an isotropic flag E, € G/B is also a complete flag
in V, we have a canonical embedding G/B — F{(V'), the manifold of complete
flags in V. Similarly, there is an embedding G/Py — G, (V), the Grassmannian of
n-dimensional subspaces of V. We use these maps to understand some structures
of G/B.

Given w € B,, and an isotropic (complete) flag E, € G/B, the Schubert variety
YuwE, (or Y, (E,)) of G/B is the collection of all flags F, € G/B satisfying

(3.1) dmE;NF; > #{n>1>j|w(l) <i},

for each j € [n] and —n < i < n (i # 0 in the symplectic case) [17, p. 66]. This
has codimension ¢(w) in G/B. Also, Y, E, C Y, E, if and only if v < w in the
Bruhat order. The Schubert cell Y0 E, is the set of flags F, for which equality holds
in (3.1). These are the flags in Y, E, which are not in any sub-Schubert variety
(YuE, with u < w).

If now E, € FU(V) and w € Spp,n) (S4[n in the symplectic case), then the
Schubert variety X, E, of F£(V') is the collection of flags F, € F{(V') satisfying (3.1)
forallm < 4,5 <n (i,j # 0 in the symplectic case). Furthermore, if w € B,, and
E, € G/B, then

YuE, = G/BNX,kE, .

The Schubert cells constitute a cellular decomposition of G/B. Thus Schubert
classes, the cohomology classes Poincaré dual to the fundamental cycles of Schubert
varieties, form Z-bases for these cohomology rings. Write 9,, for the class [Y,, E,]
in H*(S02,+1C/B) Poincaré dual to the fundamental cycle of Y,, E, of SO2,+1C/B
and €, for the corresponding class in H*(Sp,,,C/B). Since these are bases, there
are integral structure constants b, and ¢, for u,w,v € B, defined by the identities

By By, = Y b, B, and & = ) ¥, &y,

Let s(w) count the number of sign changes in the permutation w. Then the
isomorphism of rational (coefficients in Q) cohomology rings is induced by the
map [7]

Cp — 22y,
Thus

(3.2) 2s(wts(v) pw = — gs(w) qw



18 NANTEL BERGERON AND FRANK SOTTILE

Hence, it suffices to establish identities and formulas for Sp,,C/B. We do this,
because a crucial geometric result (Theorem 3.5) does not hold for SOs,4+1C/B.
Moreover, since H*(Sp,,,C/P) — H*(Sp,,C/B), it suffices to work in the ring
H*(Sp,,,C/B) to establish formulas valid in all H*(Sp,,,C/P).

Two flags E,,E! are opposite if dim(E; N EL) = 1 for all . In what follows,
Y, and Y, will always denote Schubert varieties defined by fixed, but arbitrary
opposite isotropic flags. A consequence of Kleiman’s theorem on the transversality
of a general translate [19], results in [12], and some combinatorics, is the following
proposition.

Proposition 3.1. Let u,w € B,. Then Y, NY] ,, # 0 if and only if u < w in

the Bruhat order. If u < w, thenY,,Y'  meet generically transversally, and the

us L wow
intersection cycle is irreducible of dimension £(w) — £(u).

The top-dimensional component of H*(G/B) is generated by the class of a point
[pt] = By, (or €,,). The map deg : H*(G/B) — Z selects the coeflicient of [pt] in
a cohomology class. The intersection pairing on H*(G/B) is the composition

B,y € H*(G/B) +— deg(8-7).

By Proposition 3.1, the product [Yy] - [Ys] is the cohomology class [V, NY,]. In
particular, when v = wyu, these intersections are single reduced points, so that [Yy,]
and [Y,,,.] are dual under the intersection pairing. Thus

ey, = deg(€y - Cppw - ),

which is also the number of points in the intersection

Y.nY, ,NnY,,
where Y, is defined by a flag E!' opposite to both E, and E! (which define Y,, and
Yu.lzo'w)

We derive a useful description of flags in the intersection of the Schubert cells
YeNY', ., when u <o w. For S C V, let (S) be the linear span of S.

wow

Lemma 3.2. Suppose that u <o w and E,,E' are opposite isotropic flags in V.
Then there are algebraic functions g; : YOE, NYS (E! =V for 1 < j <n such

wow

that for each flag F, €e YOE, NY? E' and each 1 < j < n,

wWow e
(1) F7 = <gﬁ(E)7 s 597(E))} and
!
(2) g3(E) € Bujy) N E -
Proof. The representation of Schubert cells via parameterized matrices [17, p. 67]
gives V-valued functions f; defined on the Schubert cell Y7 E, such that if F is a
flag in that cell, then F5 = (fr(EK),..., f3(K)), and f; € Ey).
We construct the functions g; inductively. First, set gr(F) := fa(F) for F, €
YoE, NYS B! Since Fy C Eypy N E! conditions (1) and (2) are satisfied for

WowW e WJ
gr- Suppose we have constructed g; for n > i > j. Let g;(E) be the intersection of
E' __ with the affine space

w(j)
Wj = f3(R) + {g:(E) | i>j and w(i) <w(f))-

There is a unique point of intersection: Since F, € Y5,  E!,
dimEL N Fy = #{i]i>j and w(i) > w(j)}.
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Since u <g w, if ¢ > j and w(é) < w(j), then necessarily u(i) < u(j), by Proposi-
tion 2.5(2). Hence W; C E,(;) and so g5(F) € Ey) N E':u(—]) -

Schubert varieties Yy of G/P, are indexed by strict partitions A, which are
decreasing sequences n > Ay > --- > )\ of positive integers. The projection map
m : G/B - G/Py maps Schubert varieties to Schubert varieties, with 7Y, = Tj,
where A consists of the positive numbers among {u(1),u(2),...,u(n)} arranged in
decreasing order. For a strict partition A, let v(A) be the Grassmannian permutation
whose (initial) negative values are A\; < Az < --- < Ag. Let A° be the decreasing
sequence obtained from the integers in [n] which do not appear in A. Then an easy
argument shows Y,y =7~ 'T) and

™ on'v(/\) — TAC

is an isomorphism of their Schubert cells, and hence is generically one-to-one.

We will let O(V) denote SO2,+1C/ Py and Lag(V') denote Sp,,,C/P, and call
Lag(V') the Lagrangian Grassmannian. Set Py := [Y,] in H*(O(V)) (equivalently
Py = [Yyn] in H*(802,41C/B)) and let @y be the corresponding class in the
symplectic case. For 1 < m < n, these definitions imply that the special Schubert
variety, T (), is the collection of all maximal isotropic subspaces which meet a
fixed (n + 1 — m)-dimensional isotropic subspace. Let p,, (respectively ¢,,) denote
the class P, in either H*(S03y,41C/B) or H*(O(V')) (respectively the class Q)
in either H*(Sp,,, C/B) or H*(Lag(V))).

We are particularly interested in the constants by, := by, ) and ¢y = ¢y, )
which give the structure of the cohomology of G/B as a module over the cohomology
of G/ P,. Using the intersection pairing and the projection formula (see [15, 8.1.7]),
we have

Cg/\ = deg(cu “Cow * (Q/\))
= deg(m(€y - Cupu) - @),

and a similar formula for b{,. Our main technique will be to find formulas for
Ti(€y - €uow) by studying the effect of the map 7 on the cycle Y, NY] .

To that end, define Y/ := n(Y, NY] ,). These cycles V;’ are, like Schubert
varieties, defined only up to translation by the group G. In the theorems below,
write YV’ = YZ to mean that the cycles may be carried onto each other by an
element of G. (We will be more explicit in their proofs.)

Section 4 is devoted to proving the following result concerning these cycles.

Theorem 3.3. Let u,w € B, with u <g w. Then
(1) The map w:Y, NY, ., = V¥ has degree 1.

wow
(2) If we have z,z € B, with x <¢ z and wu~' shape-equivalent to zx~1, then

Vi =Y;.
By Theorem 3.3(1),
W*(Q:u : Q:wow) = 7"-*[Yu ny, ] = [y:f] .

wou

Combining this with Theorem 3.3(2) and the projection formula, we deduce the
following strengthened version of Theorem B(2):
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Theorem B(2)' If u,w,x,z € B, withu <o w, x <o 2, and wu™! shape-equivalent
to zx~ Y, then for any strict partition )\,

wo o pz Wz
bu/\ - b:c)\ and Cux = Cza-

As a consequence of Theorem 3.3(2), define Y, := YS* for any (,u € B, with
u <o Cu. These cycles satisfy more identities which we establish in Section 5. Define
p € Bnbyp(i)=i-1-nforl1 <i<mnand~y€B,byy()=i+lfor1<i<nand
v(n) = 1. Then p is a reflection (p? = 1), and 7 is the n-cycle (12...n).

Theorem 3.4.

(1) For any ¢ € By, we have Y; = Vycp-
(2) For any ¢ € By, with a-((a) > 0 for every a, we have Yo = V,cq-1.

By Proposition 3.1, £(¢) = dim ), so Theorem C follows from Theorem 3.4.
We prove Theorem 3.4(1) in Section 5.1 and Theorem 3.4(2) in Section 5.2.

3.2. Product decomposition. We establish another geometric result concerning
these cycles V.. Suppose that W is a 2m-dimensional symplectic vector space and
consider the map

E : Lag(V) x Lag(W) — Lag(V & W)

defined by
E:(HK) — HoK,
where H C W and K C V are maximal isotropic (Lagrangian) subspaces.

Theorem 3.5. Let 1,{ € Bptm with - a disjoint product and #supp(n) < m,
#supp(¢) < n. Then for anyn' € By, and ¢' € By, withn ~n' and { ~ ' (~ is
shape-equivalence), there is an element g of Spy,, 1 ,C such that

EQe xVy) = 9(Ven) -

Proof. This is a consequence of Lemma 5.2.1 of [3], the analogous fact for the
classical flag manifold and Grassmannian. Restricting that result to the symplectic
flag manifold and Lagrangian Grassmannian proves the theorem. =

Remark. This does not hold for the odd orthogonal case. In fact, even the map
= cannot be defined: If V, W are odd-orthogonal spaces, then V @& W is an even-
dimensional space.

4. THE FUNDAMENTAL IDENTITY OF STRUCTURE CONSTANTS

We establish Theorem 3.3 which implies Theorem B(2). As in Section 2, many
results and methods are similar to those of [3] for analogous results about SL,,C/B.
Our discussions are therefore brief. The results here hold for both $02,+1C/B and
Sp,,C/ B, with nearly identical proofs. We only provide justification for Sp,,C/B.

Let Hy = (h,h) ~ C? be a symplectic vector space of dimension 2. Then the
orthogonal direct sum V @ H» is a symplectic vector space of dimension 2n + 2. For
each 1 < p < n + 1, define embeddings ,¢p : Sp,,C/B < Sp,,,,C/B, the
space of isotropic flags in V & Hs,, by

_ E; J<p(<0)
Wok); = { <Ej-,+fll) pP<j<O0
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Define ¢ by replacing h with h in the definition above. We compute the effect of
these maps on cohomology by determining the image of a Schubert variety under
Up.

First, define two families of maps between B,, and B,,41. Forevery 1 <p<n+1
and g € £[n + 1], define the injection &, 4 : B, = Bpy1 by:

[ w(j) j <pand w(j)| < |q|
w(j) —1 J <pand w(j) < —|q|
w(j) +1 j <p and w(j) > |q|
epq(w)(j) = q Jj=p
w(j —1) J > pand |[w(j)| <|q|
w(j—1)—1  j>pandw(j) < —|q|
w(j—1)+1  j>pandw(j) > |q|

\

Let /, : Bny1 — By be the left inverse of € 4, defined by €, ) (w/p) = w. If we
represent permutations as permutation matrices, then the effect of /, on w € Byt

is to erase the pth and pth columns and the w(p)th and w(p)th rows. The effect of
€p,q ON W is to expand its permutation matrix with new pth, pth columns and gth,

gth rows filled with zeroes, except for 1s at positions (g, p) and (g,p). For example:

£35(2341) = 34251

cra(3341) = 34251 and 41523/, = 3142.

These definitions imply the following proposition (cf. [32, Lemma 12]).
Proposition 4.1. Let w € B,, 1 <p,|q| <n+1, and E, any isotropic flag. Then
Uy YuB, C Yi, () (WgE.).

Recall that e is the identity permutation and Y, is the flag manifold G/B.

Corollary 4.2. Let E,,E' be opposite isotropic flags. Then for any q € £[n + 1],
Y E, ,YgE! are opposite flags, and for any 1 < p <n+ 1, we have

UpYoB, = Yo )1 B)NY;, o) (UngpEL)
Y:?p,n+1 (w) (’(/)mE. ) N Yep,n—_H(e) ("/}n-‘rlE.l) .

Proof. It is straightforward to check that the flags are opposite. Moreover, by
Proposition 4.1, 9, Y,, E, is a subset of either intersection, as Y, = Sp,,,C/B. Since

Uepnri(w)) = Lw)+n+p, Uepnii(w)) = L(w)+n+1-p,

and dim Sp,,,C/B = n?, Proposition 3.1 implies that all three cycles are irreducible
with the same dimension, proving their equality. =

Corollary 4.3. For any w € B,, and 1 < p < n, we have
W9)s€w = € w) " Copniale) = Copnpa(w) " e, (o) -

Lemma 4.4. Suppose u <o w in Bpt1 and u(p) = w(p) = q for some 1l <p < n+1.
Then

(1) ufp <o wjp and L(w) — L(u) = Lw/p) — L(u/fp).
(2) For any opposite isotropic flags E, ,E! in 'V,

bp (Yup B 0 Yooy BY) = YatgE. N YaeuwtoEL .
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Proof. Since u <o w and u(p) = w(p), Proposition 2.5 implies that u/p <o w/p.
Moreover, wu~" is shape-equivalent to w/,(u/p)~", so the first statement follows
from Theorem B(1)'.

For (2), Proposition 4.1 gives the inclusion C. By Corollary 4.2, ¢¥zE, and ¢, E!
are opposite flags. Thus, by Proposition 3.1 and (1), both sides are irreducible and
have the same dimension, proving their equality. =

Theorem 4.5. Suppose u <g w in Byy1 and u(p) = w(p) = q for some 1 < p <
n + 1. Then for any strict partition A, we have

w _ wh w _ W
vy = bu/,,,,\ and Cun = Cyj 3~

Proof. We first study the map ¥ : Lag(V) — Lag(V + H>), defined by K +— (K, h).
If E,,E! are opposite isotropic flags in V, the analog of Corollary 4.2 is

U(YAE,) = Ta@nr1E) N Y1y (WpggEL)

where (n+1) is a decreasing sequence of length 1. We leave this to the reader. As
this intersection is generically transverse, ¥.Qx = @ - ¢n+1- Expressing U*@Q), in
the Schubert basis, we have U*Qy = 3 d\Q,, where

dy = deg((T*Q») - Que)
= deg(QA - ‘I’*(Quc))
= deg(Qx-dnt1-Que) = 6,

the Kronecker delta, by the Pieri-type formula for isotropic Grassmannians [8].
(The product Qx - @nq1 is zero if Ay =n + 1 oris Qni1,n), if A1 <n+1). In the
second case, the Poincaré dual class to Q(n41,)) is @xc.) Thus

* _ @ A <n+1
lI;Q)‘_{O AM=n+1

Consider the commutative diagram, whose first row is Lemma 4.4(2).

¥p
YU/P N Yul)ow/p Yu N Yo.llow
R4

Vol = w(Yuy, NYL ) m(YuNYl,) = Vi

u/p w
Thus [Y¥] = w*[y:/f] and the maps 7 have the same degree § as the horizontal

maps are isomorphisms.
Let A be a strict partition. Then ¢¥, = ¢ - deg(Qx - [V¥]) which is

5-deg(Qx-WL[Vy 7)) = 6-deg(*(Qn)- [V /7)) = d-deg(@r- VoD =cir .

Lemma 4.6. Suppose u <¢ w and x <g z in By, withwu™" = zz~! and u(i) # w(i)
for all i € [n]. Then, if Yy,Y,, (respectively Y, .,,Y, .) are defined with the same

ow?
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flags, there is commutative diagram

f

YuﬂYu’)ow - — - = - YzﬂYuﬁoz
71'\ /7T
T(YunYl,) = w(¥,nY).)

where f is an isomorpism between Zariski open subsets of YuﬂYu’,ow and Y, ﬂYUjOZ,
the maps w have degree 1, and the equality is set-theoretic.

Proof. Let g; for 1 < j < n be the functions of Lemma 3.2, defined for all
E eYynY'; . For such E, let f(E) be the flag whose 7-th subspace is

(Gu-12m)(B), -+ Gu-12() () -

Then the reader is invited to check that f is an isomorphism between the inter-
sections of Schubert cells, which are Zariski dense in the intersections of Schubert
varieties, and the diagram is commutative. Since we may assume w is a Grassman-
nian permutation, and in this case, the map 7 : ¥,,0 — m(Yuow) has degree 1, it
follows that the maps 7 (which have the same degree) have degree 1. =

Remark 4.7. The hypothesis u(¢) # w(i) (which implies (i) # 2(¢)) in Lemma 4.6
is due to the equality in the diagram. Suppose n = 1 and V' = (ef,e;) with
w=u =1 and # = z = 1. Then both intersections of Schubert varieties Y, N Y} ,,
and Y; NY, _ are single points (lines in V), with one equal to (ey) and the other to
(e1). This restrictive hypothesis u (i) # w(¢) could be removed, but at the expense

of weakening the statement of Lemma 4.6, and greatly complicating its proof.

Proof of Theorem 3.3. For statement (1), if the support of wu~! is not [n], then

there is a number p € [n] with u(p) = w(p). Since the maps 7 of diagram (4.1)
have the same degree, this degree must be 1, by Lemma 4.6 and an induction on
the number of fixed points {p | u(p) = w(p)} of wu1.

For (2), since the map ¥ of diagram (4.1) is one-to-one, we may use ideas from
the previous paragraph to reduce to the case when the supports of the permutations
wu~! and zz~! are both [n]. Since these permutations are shape-equivalent with
the same support, they are equal and thus the hypotheses of Lemma 4.6 hold. But
then 7, [V, NY] ] = m[Y, NY) ], hence (€, - €upw) = mu(€y - €uyz), showing

w —_— V4
Cux = Cza- T

5. FURTHER IDENTITIES OF STRUCTURE CONSTANTS

We prove Theorem 3.4, the geometric counterpart of Theorem C.

5.1. Reflection identities. Define the permutation p € B, by p(i) = i—1—n.
Then p is a reflection. For example, in By we have p = (14)(23), in the cycle no-
tation of Definition-Example 2.6. In general, p = (1m)(2n—1)--- (| 2] |2£2]).
We give an example of { and p(p in Example 8.5 below. Here, we prove The-
orem 3.4(1), namely that Jo = V,¢,. By Theorem B(2)’, we may assume that
supp(¢) = [n], and this case is shown in Lemma 5.1 below.
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Let E,, E! be opposite isotropic flags in V. Define a flag E, by:
E : E\NE- C -+ C E,NE:- C (Ba+EY) C - C (B;+EY) C V.

Define E the same way, but with the roles of E, and E reversed. This gives

opposite flags E,, E!, and since (AN B)1 = (A1 + B*1), they are isotropic.

Lemma 5.1. Suppose u,w,x,z € By, with u <q w, x <o 2, pwu~'p = 2271, and

u(j) # w(j) for 1 < j < n. Then, for any opposite isotropic flags E,,E' in V,
there is a commutative diagram

YuE. N onwE: - _f_ - YZE N onz-ﬁ.l
77\ /7r
7(YoE. NYyywE!) = n(Y,E NYy,.E)

with f an isomorpism between Zariski open subsets of the intersections Y, E, N
YoowE! and Y, E, NY,  E'.

Let G,,G! be opposite (not necessarily isotropic) flags in V. Define G,* to be
Gt : G—=nG,, Cc GcnG,_, C --~- C G, CV.
Define Gt to be
Gt Gr C (Gr+GL) C -~ C (Ga+G_,) C V.

For ¢ € Sy, let ¢t be the conjugation of ¢ by the cycle (7,...,1,1,...,n). In
Section 5.3 of [3], the following proposition is proven:

Proposition 5.2. Let u,w,z,z € Sy with u < w, = < 2z, (v w)t =271z,
and w is a Grassmannian permutation with descent 0, (w(n) < --- < w(1) and
w(l) < -~ < wn)). Ifm: FV) - G,(V) is the projection, then there is a
commutative diagram

X,G N XypuG - - == - -~ X,G.F N X,,.G'"
7r\ ,/7r
T(XuG, N XpouG') = w(X,GtNX,,.G'T)

with f an isomorphism of Zariski open subsets of the intersections X,,G, N XuouwG!
and X,G,* N X,,,.G'".

Proof of Lemma 5.1. By Lemma 4.6, we may assume w is a Grassmannian
permutation. Observe that (E,, E!) is the result of n applications of the map
(E,,E!) — (E.7,E'"). Similarly, p = (@,...,2,1,1,...,n)". Thus, iterating
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Proposition 5.2 n times gives the commutative diagram in FZ(V) and G, V:

X, E,NX,wE -- Lo X, E nX,,.E
"\ /-
T(XuB. N XpowE!) = w(XoE N Xy, E!)

Restricting this to the subset of isotropic flags gives the diagram of the lemma.

T

These same arguments prove the analog of Lemma 5.1 for SO3,41C/B.

5.2. Cyclic identities. Until now, we have deduced identities in H*(Sp,,,C/B)
by restricting constructions involving Schubert subvarieties of F¢(V') to those in
Sp,,,C/ B via the embedding Sp,,,C/B < FL(V'). This is the geometric counterpart
of the embedding B,, — S.[y) studied in Section 2. Here, we explore the geometric
counterpart of the map ¢ : S, < B,, where a permutation w € §,, is extended
to act on —[n] by w(—i) = —w(i). We first develop the necessary combinatorial
preliminaries. A consequence of Theorem 2.2 is the following lemma.

Lemma 5.3. The map ¢ is an embedding of Bruhat orders (S, <) <= (Bn, <) and
it respects the length functions in each order. Furthermore, 1(S,) consists of those
permutations ( € B, with a - {(a) > 0 for all numbers a, that is, those { with
5(¢) = 1.

Define ¢, : S, = B,, by

w(j + k) 1<j<n—k
(5.1) (pw)(f) = ¢

w(n+1-j) n—k<j<n
Note that eow = v(w).

Lemma 5.4. Let u,w € S, with u < w. Then € induces an isomorphism of

graded posets [u,w]q, — [exu, epwlo and L(wu™1) = epw(epu) L.

Proof. A consequence of the definitions is that, for u,w € S,,
U< w < €u<g€ErWw,

and t(wu™') = egw(exu) ™. The lemma follows from these observations. =

Corollary 5.5. The map ¢ : (S0, <) = (Boo, <) is an embedding of ranked orders.

We now introduce the geometric counterpart of the map ¢. Let L, L* be comple-
mentary Lagrangian subspaces in V. The pairing (z,y) € L ® L* — S(x,y), where
B is the alternating form, identifies them as linear duals. Given a subspace H of L,
let H+ C L* denote its annihilator in L*. Then H + H' is a Lagrangian subspace
of V.

Let F¢(L) be the space of complete flags F, := F; C F, C --- C F, = L in L.
Note that here dim F; = i. For each k = 0,1,...,n, define an injective map

er + FU(L) — Sp,,,C/B



26 NANTEL BERGERON AND FRANK SOTTILE

by
_ Fn+1—j jZ"-k+1
(5:2) (prf); = { Fe+ F, j<n—k+1
Then (i E )1 = (Fy, + Fit) is Lagrangian, showing that ¢ E is an isotropic flag.
For w € S, the Schubert variety X, E, of F¢(L) consists of those flags F, € F{(L)
satisfying

(5.3) dmE,NF, > #{b>1|wl)+a>n+1}.

We determine the image of Schubert varieties of F/(L) under these maps .
Let w" be defined by wV(j) = n+ 1 — w(j). Then X, FE, and X,,vE' are dual
under the intersection pairing on F/(L), where E,, E! are opposite flags.

Lemma 5.6. With these definitions, pr X E, is a subset of either Schubert variety
YekaOnE. or onekaSOOE. .

Proof. Let E € X, E,. We show g F, € Y, wprE,, that is, for each —n <i<n
(t#£0)and 1< j <n,
(5.4) dim (pnE.); N (prE); > #{n>1>j|i>ew(l)}.

Suppose that j > n — k + 1. Then (prE); = Fop1—j C L = (ppE.)7. If
n > 1> j, then (epw)(l) = w(n+1-1) < 0. Thus if 7 > 0, (5.4) holds as both sides

equal n+1—j. Suppose i < 0. Then (¢, E,); = E,+1-7 and so the left side of (5.4)
is

dimEnpt1sNFpyi—; > #{m<n+l-jlwm)+n+1-7>n+1}
#{n>1>jli>wh+1-1)=euwl)}.
Now suppose that j < n —k+ 1. Then (pxE); = Fi + Fkl—f—jfl' Thus the left
side of (5.4) is
(5.5) dim(pnE.)i N Fr + dim(pnE.)i N Fi5, o -

If i <0, then (p,FE,); C L and only the first term of (5.5) contributes. By the
previous paragraph, this is

dim(pnE,)iNFy > #{n>1>k|[i> ew(l)}.

If k> 1, then e;w(l) > 0 > i, showing this equals the right side of (5.4).
If now i > 0, then (¢, E,); = L+ E;- .. Thus (5.5) is

k+dimE, ;NF;_, = k+n—dm(E,_1 + Fryj-1).

But this is
k+n—dimE, ; —dimFpy; 1 +dim E,_1 N Fiqj1,

which is at least

i—j+1+#{k+j—-1>m>1|wim)+n—1>n+1}.
This equals

n—j+1—#{n>m>k+j|wlm)>i+1}
Which is
B+ f{n—k> 1> | wl+k) <i} = k+#{n—k>1> ]| eww(l) <i}.

This last quantity equals the right side of (5.4) since l > n—k implies e;w(l) < 0 < 4.
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Similar arguments show g F € Y,oc,wv (0oE,). =

Corollary 5.7. Let u,w € S,, with u <y w and E,,E! € F{(L) be opposite flags.
Then pnE.,poE! are opposite isotropic flags, and

o (Xu By N Xy E.I) = YeulpnE) N onfkﬂ)(‘POE:) .

Proof. Lemma 5.6 gives the inclusion C and ¢, E, and ¢oE! are opposite flags.
By Lemma 5.4, both sides have the same dimension, proving equality. =

For each k = 1,2,...,n, let 7 : FA(L) — G (L) be the projection induced by
E, — Ej. Asin Lemma 4.6, if u < w in S, and E,, E! are opposite flags in
F¢(L), then the intersection X, E, N X,,vE' is mapped birationally onto its image
mk(XuE, N XyvE!) in G(L). Furthermore, the image cycle depends only upon
n := wu~'. Denote it by X,,.

Define ®;, : Gi(L) — Lag(V) by H ~ (H+H"'). Then we have the commutative
diagram

Fe(L) 5p2,C/B
(5.6) T .
g
Gi(L) Lag(V')

Thus ®; o m, = m o ¢y and so we have the following corollary.
Corollary 5.8. For any n € Sn, Vi) = ®r(AXy), where k = #{a | a < n(a)}.

Recall that v is the cycle ¢(1,2,...,n) =(12...n) € B,.

Proof of Theorem 3.4(2). If ¢ € B, with a-((a) > 0 for all a, then ¢ = ¢(n) for
some n € Sp. Let k = #{a | a < n(a)}. Then by Corollary 5.8 and Proposition 5.2,

y»ygry—l = q)k(X’yn'y—l) = (I)k(Xn) = yg- T

We deduce a corollary of Theorem 3.5 and Corollary 5.8, which is needed in
Section 7 to establish the Pieri-type formula. For ¢ € B, recall that §(¢) = 1 if
¢ is in the image of + : S,, — B, and §(¢) = 0 otherwise. We emphasize that this
lemma holds only in the symplectic case.

Lemma 5.9. Let ( € B, and { = (1 ---(s be the factorization of { into disjoint
irreducible permutations. For each factor (; with §((;) = 1 there is a quadratic form
g; on V which vanishes on every K € Y. These forms are linearly independent and
together they define a reduced complete intersection of codimension r and degree 27,
where r counts the §; with §(¢;) = 1.

Proof. Suppose first that ¢ is irreducible with §(¢) = 1. Let L, L* be complemen-
tary Lagrangian subspaces of V. Then the decomposition V = L & L* allows us to
define a quadratic form ¢ on V' by

q(z) = B(z*,27),
where z1, £~ are the projections of z to the summands L, L* of V. By Corollary 5.8,
every K € )¢ has the form H + H* for some H C L. Since H+ C L* annihilates
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H in the bilinear form associated to ¢ on V', and L, L* are isotropic for ¢, we see
that q|x = 0.

Now let { = (3 ---(s; be the factorization of ¢ into disjoint irreducible permu-
tations. Suppose #supp(¢;) < n; with ny + --- +ny, = n and let (] € B, be
shape-equivalent to (; for each i = 1,...,s. For each ¢, let V; be a 2n;-dimensional
symplectic vector space, and identify V with V; @ --- ® V;. By Theorem 3.5, the
map

(K17"'7Ks) — Ki+--+ K
gives an isomorphism
Yy x - x Ve — Ve
If 6(¢;) = 1, so that §(¢}) = 1, let ¢} be the quadratic form constructed on V; in the
previous paragraph. For each such ¢, let ¢; be the pullback of ¢} to V' under the
projection V' — V;. Since ¢} annihilates each K; € V!5 ¢i annihilates each K € ).

Lastly, as each g; is non-zero only on the summands V;, the forms g¢; are linearly
independent. In fact, their monomials are disjoint, and so they define a reduced
scheme that is a complete intersection. If r counts the number of {; with §(¢;) = 1,
then this complete intersection has codimension r and degree 2. =

6. MINIMAL PERMUTATIONS AND LABELED RESEAUX

Our proof of the Pieri-type formula in Section 7 requires a deeper study of the
Lagrangian order B.,. Particularly important are permutations whose lengths are
minimal given their cycle structure, which we begin studying in Section 6.1. We also
relate the two formulations (Theorems A and D) of the Pieri-type formula. This
requires a study of labeled chains in both the Lagrangian order and the Lagrangian
réseau. We initiate this by studying chains in intervals in the Grassmannian Bruhat
order on Sy, in Section 6.2, and apply this to chains in the Lagrangian order in
Section 6.3 and the Lagrangian réseau in Section 6.4. Throughout, we provide
examples to illustrate these results.

We recall some notation developed in Section 2. There are two types of reflections
in Boo, ty = (b] and t4p = (ab) where a < b by convention. As elements in
S+ioo, these are (b,b) and (b,@)(a,b), respectively. For ¢ € By, let s(¢) count the
sign changes in ¢, those a > 0 with 0 > ((a). Let ¢ : S < B be the map
where «(n)(a) is n(a) if @ > 0 and 5(@) if a < 0. We have that 6(¢) = 1 if ¢
is in the image of ¢+ and 6(¢) = 0 otherwise. The support of a permutation ¢ is
supp() = {a > 0| a # ((a)}.

Let < be the order relation in the Lagrangian order and £(-) be its length func-
tion. Let < be the order relation in the Grassmannian Bruhat order on both S4
and S, and let £, (+) be its length function. As defined in Definition-Example 2.6,
a permutation ( € By, is a cycle either if { is a single cycle as an element of Si,
or if ¢ is the product of two complementary cycles n and 7, where n € S1, is a
cycle whose numbers have distinct absolute values.

Two permutations (,n € By are disjoint if they have disjoint supports and if
L(n-¢) = L(n) + L(¢). This occurs if we do not have a > b > ((a) > n(b) (or
a > b > n(a) > ((b)), by the characterization of disjointness in terms of non-crossing
partitions. A permutation is irreducible if it has no non-trivial factorization into
disjoint permutations. Given a permutation ( € B, it has a unique factorization
into irreducible, pairwise disjoint permutations. A minimal cycle is a cycle ¢ € B,
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for which £({) = #supp(¢) —(¢). By Lemma 6.1 below, this is a cycle of minimal
length, given its form.

For example, consider Figure 5 in Section 2. The permutation (1](23) is a
disjoint product of (1] = #; and (23). The permutation (23) is not a minimal
cycle, but (23] and (23) are: In Si3, (23) = (2,3)(2,3) while (23] = (2,3,2,3 )
and (23) = (3,2)(2,3). The permutation (13](2] is irreducible as £({13](2]) =
2+1=L((13]) + L((2])-

6.1. Minimal permutations. We study the relationship between the length of
a permutation in B., and the support of its disjoint irreducible factors. Those
with minimal length play a special role in the Pieri-type formula, and we call these
minimal permutations. An irreducible minimal permutation is a cycle as introduced
in Definition-Example 2.6. In Lemma 6.5 we establish the main technical result
about minimal cycles.

Lemma 6.1. Let ( € By be a cycle. Then L£(¢) > #supp(¢) — 6(¢). If L) =
#supp(C) — 6(¢), then s(¢) +46(¢) =
Proof. A saturated chain in [e,(]4 (in Sio) gives a factorization of ¢ into trans-
positions. If ¢ consists of two cycles in S, then £,({) > 2(#supp(¢) — 1) and
by Corollary 2.11(2),

L(¢) = #supp(¢) — 1+ [s(¢)/2] > #supp(¢) —6(C),

with equality only if s({) = 0, that is, only if 6(¢) = 1.
Similarly, if ¢ is a single cycle in Sioo, then £,({) > 2#supp(¢) — 1. Since
4(¢) = 0 and s(¢) > 1, Corollary 2.11(2) gives

L(¢) = #supp(¢) —4(C),
with equality when s({) =1. =

Consider again Figure 5 in Section 2. We have the following minimal cycles
£((123) = 2 = 3—1 = #supp((123)) — 3((123)),
£(13) = 2 = 2-0 = #supp((13])) - 3((13)).
Not all cycles are minimal. For example £({123]) =5 > 3 — 0 = #supp((123]) —

5({123]) and so (123] is a cycle which is not minimal. On the other hand, all
permutations ¢ € Bz with £(¢) = #supp(¢) — §(¢) are cycles. More generally,

Corollary 6.2. ( € By is a minimal cycle if and only if it is irreducible and

L(¢) = #supp(¢) — 4(¢).

Proof. The forward implication is clear. For the converse, recall that if n,£ € B,
have disjoint supports, then £(n-&) > L(n) + L(£), with equality only when 7 - £ is
a disjoint product. Thus, by Lemma 6.1,

L(¢) > #supp(¢) —d(Q),
with equality only when s(¢) + 6(¢) = 1, which implies that ¢ is a cycle. =

In view of Definition 1.4 we have that a permutation { € B, is minimal if each
of its disjoint irreducible factors are minimal cycles. For example the permutation
(13](2] above is irreducible but not minimal as it is not a cycle, and the permutation
(1](23] is minimal since both irreducible factors (1] and (23] are minimal cycles.
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Corollary 6.3. If n,( € By, with n < ¢ and ¢ is minimal, then so is 1.

Proof. By Proposition 2.12, we may assume ( is irreducible. Then ( is a single
cycle and the result follows by induction on £((), similar to the proof of Lemma, 6.1.

T

If ( = (1---(s is the factorization of ( € By into disjoint irreducible permu-

tations, then we have £({) = }_, £(¢;) and also #supp(¢) = >, #supp((;). We
deduce the following important inequality concerning minimal permutations.

Corollary 6.4. Let ( € Boo. If ( = (1--- (s is the factorization of ¢ into disjoint
irreducible permutations, then

L) > #supp(C)—Zé(ci),

with equality only if ¢ is minimal.
We establish our main technical result concerning minimal cycles.

Lemma 6.5. If ( € By, is a minimal cycle with 6(¢) = 0, then there is a unique

a € supp(¢) with a > 0> ((a). Let a be ((a). Furthermore,

1<ty 2 ¢ if a<a
1 <t < ¢ if a>a.

For example, let ¢ = (1324]. We have §(¢) = 0. Since ¢((2) = 4 and 2 < 4,

we have t5 < (. (See Figure 6 in Section 6.3 for the Hasse diagram of the interval
[6, C] =< )
Proof. Let ¢ € Bo be a minimal cycle with §(¢) = 0. Then s({) = 1, so there is
a unique a > 0 with 0 > ((a). Set a = ((a). We prove the lemma when a > «:
If a = «, then ¢ = t,, as ( is irreducible and if a < «, then replacing ¢ by (71,
reduces to the case a > «, by Proposition 2.13 (6).

Suppose a > a. We claim that if b > a, then ((b) > a. The lemma follows from
this claim. Indeed, then condition (ii) of Definition 2.9(1) is satisfied, and hence
to¢ < (. Since a > a, we have supp(t,() = supp(¢). As §(t,¢) = 1, it follows that
L(tag) = #supp(¢) — 1 = L(¢) — 1 and thus ta(=< (.

Let ¢ be a minimal cycle and a as above, b > a with a > ((b), and #supp(¢)
minimal having these properties. By Algorithm 2.15, n := (t,,~<(, where z is
maximal in supp(¢) and y is minimal subject to y < {(z) < ((y) < z. Then y # a,
asy < ((y). Since a < z, §(n) = 0. As ¢ is minimal and n< ¢, Corollary 6.3 implies
that 7 is minimal. In S+, 7 is the product of 2 cycles, so as a permutation in B,
either ) is irreducible and supp(n) C supp(¢) or else 7 is the disjoint product of two
minimal cycles with z in the support of one and |y| in the support of the other.

If y < 0, then y = @ as ((y) > 0 and s(¢) = 1. Then 5(a) = ¢(z) and 5(z) = o,
so supp(n) = supp(¢) and so 5 is reducible with z in the support of one component
and a in the other. But z > a > a = n(x) > ((z) = n(a), contradicting disjointness.

If y > 0, then ((x) > a, for otherwise y = @ < 0. Thus x > b and so we have
b>a > a > nb) with n(a) = @ Thus the component 7' of  whose support
contains a also contains b and supp(n’) C supp(¢) with 6(n’) = 0, contradicting the
minimality of #supp(¢). =
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6.2. Grassmannian Bruhat order on S,,. We develop some additional combi-
natorics for the symmetric group S. Recall that the Grassmannian Bruhat order
on Sy is induced from that on St

Covers < ( in the Grassmannian Bruhat order correspond to transpositions
(a, B) = (n~1. We construct a labeled Hasse diagram for (S, <), labeling such a
cover with the greater of o, 3. By Theorem 3.2.3 of [3], the map n — (n~! induces
an order-reversing isomorphism between [e, (]« and [e,("!] , preserving the edge
labels. Also, if P = {p1,p2,...} C Nand ep : Syp — S is the map induced
by i — p; (these maps induce shape-equivalence), then p induces an isomorphism
[e,¢]< — [e,ep(¢)]~ , preserving the relative order of the edge labels. Specifically,
an edge label i of [e, (]« is mapped to the label p; of [e,ep({)] < . Lastly, we remark
that Algorithm 2.15 restricted to S, and with ¢, replaced by the transposition
(a, b), gives a chain in the < -order on Sy, from e to (.

Lemma 6.6. Let ( € Soo and suppose that x is maximal subject to © # ((x). Then,
for any o
(1) (@, 2)(=¢ = ¢(T'(z) <((z) = o
2) (v, 2)=<¢ = a=(1z) > ((2).

Proof. For 1, let 1 := (o, )( < ¢ and set a = (" '(z) and b = ("' (). Note that
a # b and n(b) = x. We claim that b = z and a < «, which will establish 1.

Suppose b # x = n(b). Then, by the maximality of =, b < n(b) and so the
definition of < implies 7(b) < ((b) = a. Since a < z, this implies z < z, a
contradiction. Suppose now that a > a = n(a). By the definition of <), this
implies that n(a) > ((a) = z, and so a > z, contradicting the maximality of z.

The second assertion follows from the first by applying the anti-isomorphism
n = n¢L between [e, ¢ and [e,¢ 1],

e (,z) 9 (= (a,)("' 2 ¢

We illustrate Lemma 6.6. Let ¢ = (1,2,5,3,4) € S5 and consider Figure 7 in
Section 6.4, which shows the interval [e, +(¢)]< ~ [e,(]< - Then 2 = (" '(5) < ((5) =
3, and (1,2,3,4) = (2,5)( < ¢ in accordance with (1). Similarly, for ¢ = (1,2, 3,4),
we have 3 = (~1(4) > ((4) = 1, and (3,4) < (, in accordance with (2).

A cycle ( € Sy is minimal if £,(¢) = #supp(¢) — 1, that is, if its length is
minimal given its support. A permutation is minimal if it is the disjoint product
of minimal cycles. For example ¢ = (1,3,5,2,4) € S5 is not minimal since £, ({) =
6 > 4 = #supp(¢) — 1, and (1,5,2)(3,4) is minimal since both (1,5,2) and (3,4)
are minimal cycles of Ss. It is worthwhile to note that if ( € Sy, is a minimal
cycle, then under the embedding ¢ : Soo < Boo the cycle ¢(¢) is minimal in By.
Indeed, from Corollary 2.11, £(¢(¢)) = (2£,(¢) +0)/2 = L,({) = #supp(¢) — 1 =
#supp(«(C)) = 6(¢(C))

A maximal chain in an interval [e, (], is peakless if we do not have a; 1 < a; >
ajrq for any i = 2,...,L£,(¢)—1, where ay, .. -,ag  (¢) is the sequence of labels in
that chain.

Lemma 6.7. Suppose ( € Sy is a minimal cycle. Then there is a unique peakless
chain in the labeled interval [e, (]« . If B is the smallest label in such a chain, then
the transposition of that cover is (o, 3) where a < 3 are the two smallest elements

of supp(().
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Proof. We argue by induction on £, (¢), which we assume is at least 2, as the
case L£,(¢) = 1 is immediate. Replacing ¢ by a shape-equivalent permutation if
necessary, we may assume that supp(¢) = [n], so that £,({) =m =n—1.

Replacing ¢ by ¢~! would only reverse such a chain, so we may assume that
a:= (" '(n) < b:=((n). We claim that (b, n)¢ = ((a, n) <. Given this, the
conclusion of the lemma follows. Indeed, let 5 := (b, n)¢. Since n(n) = n, this is
an irreducible minimal permutation in S,_;. By the inductive hypothesis, [e, 1]«
has a unique chain with labels 81 > --- > B < --- < 8,_2, and each §; < n. The
unique extension of this to a chain in [e,(]< has 8, 2 < B,-1 = n. This is the
unique such chain in [e, (|- as =< ( is the unique terminal cover in [e, (|5 with
edge label n, by Lemma 6.6.

Suppose the statement about the minimal cover holds for the permutation 5 of
the previous paragraph. Since 3,_1 is the maximum of supp((), the statement
about the minimal cover also holds for (.

We prove the claim, that ((a, n) < ¢, where a = (~1(n). By Algorithm 2.15, if
y is chosen minimal so that y < {(n) = b < {(y), then {(y, n) < (. We show that
y = a, which will establish the claim and complete the proof.

Suppose y # a. Since a < b < n = ((a), the minimality of y implies that y < a.
But ( = (---anb---), so {(y, n) consists of two cycles, which we call  and 7’
where we have n(a) = n and n'(y) = b. Since y < a < b < n, these cycles are not
disjoint, so we have

n—2 = ﬁA(U'U') L:A(U)+£A(77')

>
> #supp(n) — 1+ #supp(n’) —1 = n—2,

a contradiction. =

6.3. Labeled Lagrangian order. The Pieri-type formula for SOs,,41C/B has two
formulations (Theorems A and D), which we relate. The labeled Lagrangian and
0-Bruhat orders on By, are obtained from the Hasse diagrams of the underlying
orders by labeling each cover with the integer 3, where that cover is either (< tg(
or (< tq g¢ in the Lagrangian order (u <tgu or u <t4 gu in the 0-Bruhat order). By
Corollary 5.5, the map ¢ : S — B maps the Grassmannian Bruhat order on Sy
isomorphically onto its image in the Lagrangian order. This map preserves edge
labels, as ¢(a, 8) = top and the covers < (o, 8)n in the Grassmannian Bruhat
order and ¢(n)=< tq gt(n) have the same label, 8. Thus ¢ is an inclusion of labeled
orders.

A chain in [e,(]< is peakless if in its sequence fi, ..., B, of labels, we do not
have 8; 1 < B8; > Bit1, for any ¢ = 2,...,m — 1. Recall that s(¢) counts the sign
changes {a > 0| {(a) < 0} for ¢ € By.

Lemma 6.8. Let ( € By, be a minimal cycle. Then there is a unique peakless
chain in the labeled interval [e,(]<. If 6(¢) = 0, then the minimal label of that
chain corresponds to the cover whose reflection is t,, where a is minimal in the
support of C.

Proof. If §(¢) = 1 this is a consequence of Lemma 6.7. Suppose that §(¢) = 0.
Replacing ¢ by a shape-equivalent permutation if necessary, we may assume that
supp(¢) = [n] and n > 1, as the case n = 1 is immediate. Replacing ¢ by ¢!
if necessary, we may assume that a := (~!(n) < b := {(n). As in the proof of
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Lemma 6.7, (b,n)( < ¢ in the Grassmannian Bruhat order on Si,. By Remark 2.3,
either t,,(< ¢ or else we have both ¢,{(< ( and ¢,{< (. The second case implies
s(¢) > 1, contradicting the minimality of ¢. Thus 5 := t3,(=< (.

Then 7 is a minimal cycle with §(n) = 0 and supp(n) = [n—1]. Appending
the cover 7 — ( to the unique peakless chain in [e,n]< gives a peakless chain in
[e, (]<. Moreover, ) is the unique permutation with n< ¢ and n — ¢, showing the
uniqueness of this chain.

Since the last label in that chain is n > 1, the minimal label occurs in its
restriction to [e,n]<. Since supp(n) = supp(¢) — {n}, the conclusion of the lemma
follows. =

We illustrate Lemma 6.8. Let ¢ = (1324] € Bs. Then 6(¢) = 0. Figure 6 shows
the labeled order [e, (]<. This has a unique peakless chain:

e 2 (12) 5 (12] 25 (132] -5 (1324].

Observe that (12)~<t;(12] is the cover with minimal label in this chain.

<132\1\\
3 3 4
(243] (124] (132]
4 1
4| 2 |%
(23] (24] (2] (132)
3 4 1| A
(2] (12)
2/
e

FIGURE 6. The interval [e, (1324]] _.

For any ¢ € By, let II(¢) be the number of peakless chains in [e, (] <.

Lemma 6.9. Ifn,( € By, are disjoint, then
II(n-¢) = 2II(n) - II(C)-

Proof. A shuffle S of two sequences A, B is a sequence consisting of elements of
A and of B, in which the elements from A (respectively from B) are in the same
order in S as they are in A (respectively in B). By Proposition 2.12, [e,7 - {]< ~
[e,n]< % [e,{]<- Thus a chain in [e,n - (]< is a shuffle of a chain from [e,n] < with a
chain from [e, (], and all shuffles occur.

For £ € By, let W (&) be the multiset of words formed from labels of chains in
[e,&]<. The alphabet of these words is a subset of supp(€). Thus W () and W (()
have disjoint alphabets. Then W (5 - ) consists of all shuffles of pairs of words in
W (n) x W(({). The lemma follows from a combinatorial result concerning peakless
words and shuffles proven in Lemma 6.10. =
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For a set A of words in an ordered alphabet 4, let peak(A) be the subset of
peakless words from A. Suppose that A’ is another set of words with a different
alphabet A’ and fix some total order on the disjoint union A]].A’ which extends
the given orders on each of A, A’. Let sh(A, A’) be all shuffles of pairs of words in
Ax A

Lemma 6.10. The natural restriction map sh(A, A') - A x A" induces a 2 to 1
map
peak(sh(A, A")) —» peak(A) x peak(4’).

Proof. It is clear that the restriction map takes a peakless word in sh(A4, A’) to a
pair of peakless words in A x A’. Given a pair of peakless words (w,w’) € A x A’,
there are exactly two shuffles of w,w’ which are peakless: Suppose the minimal
letter @ in w is greater than the minimal letter in w’. Then these two shuffles
differ only in their subwords consisting of a and ', where u' is that subword of w'
consisting of all letters less than a. Then u' is a segment of w’, as w' is peakless.
The two subwords of peakless shuffles are a.v' and v’.a. =

Lemma 6.11. Let ( € By, and suppose there is a peakless chain in [e,(]<. Then
¢ is minimal.

Proof. Suppose by way of contradiction that ( € B, is irreducible and not min-
imal, but TI(¢) # 0. We may further assume that among all such permutations, ¢
has minimal rank, and that supp(¢) = [n]. Let 81 > --- > By < --- < B, be the
labels of a peakless chain in [e, (]<. Replacing ¢ by ¢! if necessary (which merely
reverses the chain), we may assume that 8,, = n and so ;1 # n, by Lemma 6.6
and Theorem 2.2. Let 7 be the penultimate member of this chain. Then II(n) # 0,
as the initial segment of this chain gives a peakless chain in [e,n]<. Thus 75 is a
minimal permutation, by our assumption on ¢, and so

L(n) < #supp(n) —d(n) < n—48(¢) < L) = L) +1,

as ( is not minimal and =< ¢ so §(n) > §(¢). Therefore the weak inequalities are
equalities and supp(n) = [n]. Since f1 > -+ > B < -+ < Bm—1 are the labels of
a chain in [e,n]4 and B,—1 < n, we must have 81 = n, as supp(n) = [n]. But this
contradicts our earlier observation about 5. =

We relate the two formulations of the Pieri-type formula for SOz,11C/B. For
¢ € By, define

2#{irreducible factors of (}—1 if C is minimal

0(¢) = { 0 otherwise

Corollary 6.12. For ( € Boo, II(¢) = 6(().

Proof. This is clear if ¢ is minimal as both II(¢) and 6({) satisfy the same recur-
sion, by Lemmas 6.8 and 6.9, and when ¢ is not minimal, 7({) = 0(= 6({)) by
Lemma 6.11. =

6.4. Lagrangian réseau. The enumerative significance of the constants ¢y’ is best
expressed in terms of maximal chains in certain directed multigraphs associated to
intervals in the Bruhat order. A cover n< ( in the Lagrangian order corresponds
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to a reflection n¢~!, which is either of the form ¢, or of the form ¢,. The La-
grangian réseau on By, is the labeled directed multigraph where a cover n=< ( in
the Lagrangian order with n¢~' = t, is given a single edge n — ¢ and a cover
with n¢~1 = t,; is given two edges n —— ¢ and p N (. We obtain the labeled
Lagrangian order from this réseau by erasing those edges with negative labels.

In the Grassmannian Bruhat order on S, there are two conventions for labeling
a cover < (: This cover gives a transposition (a, 3) := n{~! with a < 3, and we
may choose either a or §. For want of a better term, we call the consistent choice of
a the lower convention, and the consistent choice of 8 the upper convention. (We
have been using the upper convention in the previous sections.) We make use of
the following fact.

Proposition 6.13. Let n € Sw. If there is a chain in [e,n]< with decreasing labels
in the lower convention, then there is a chain in [e,n]< with decreasing labels in
the upper convention, and these chains are unique. The same is true for chains
with increasing labels, and in either case n is minimal.

Proof. The map ¢ € S, = wnlwn (W € Sy, is the longest element) is an iso-
morphism of orders [3, Theorem 3.2.3 (vii)] which takes decreasing chains in the
upper (respectively lower) convention to increasing chains in the lower (respectively
upper) convention. By the definition of the Grassmannian Bruhat order < and
Lemmas 2 and 6 in [32], [e, (]~ has an increasing chain in the upper convention if
and only if [e,wpwy] has a decreasing chain in the upper convention, and any
such chain must be unique. =

A chain with increasing labels is an increasing chain and one with decreasing
labels is a decreasing chain.

Lemma 6.14. Let ( € Boo be a minimal cycle. Then the réseau [e,(]< has an
increasing chain. If 6(¢) = 1, then there are at least 2 increasing chains.

Proof. Consider the peakless chain in the labeled order [e, (]« given by Lemma 6.8:
(6.1) e 2 g B 2 G =¢

Let ay, be the minimal label in this chain. Then (1 = ¢(ng_1) for some ny_; € Swo.
To see this, if §(¢) = 0, then by Lemma 6.8, the label oy corresponds to the only
cover whose reflection is not in 1(Sx), and so §(¢x—1) = 1. If §(¢) = 1, then
0(¢;) =1, by Lemma 5.3.

The pullback of the initial segment of this chain to [e,n;—1]< gives a decreasing
chain (with labels aq,...,a—1) in the upper convention. Consider the unique
decreasing chain

B B2 Br-1

e 2o o0 T e
in the lower convention. Then
B1 B2 Br—1
e — um) — -+ = 1pk—1) = Gt

is an increasing chain in the réseau [e, (;—1]<. Concatenating the end of the peakless
chain (6.1) onto this gives an increasing chain

e P i) 2 o PR ) S L 9my

in the réseau [e, (] <.
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Suppose 6(¢) = 1 and consider the middle portion of this increasing chain:

We—z) 275 i) = G 2 G
Let b be the label of the other edge between (x_; and (;. Then we claim that

Br_1 < b so that replacing Cx—1 — (i by Cr_1 SN (r gives a second increasing
chain in the réseau.

To see this, first note that by Theorem 2.2 and [5, Equation (1.1)(4)], Bx—1 = b
is impossible as these are consecutive covers in the Lagrangian order. Define 7
by ¢(p) = ¢ and pull this chain back to [e,n]. It is the unique peakless chain
in [e,n]y and a4 is the minimal label. By Lemma 6.7, b = min(supp(n)) and so
Br—1>b. =

Lemma 6.15. Let ( € By, and suppose there is an increasing chain in the réseau
[e,{]<. Then ¢ is minimal. If  is a minimal cycle, then there are precisely 20(0)
such chains.

Proof. Let
(6.2) e 2 B I g =

be an increasing chain in [e, (]<. Suppose that Sr—1 < 0 < Bg. Then for i < k,
0(¢;) = 1. Define n; € Sy, by t(n;) = ¢; for i < k. Then

e ﬂ)nl 62} o ﬂk_l)

Mk—1
is a decreasing chain in [e, 7]~ , with the lower labeling convention. Let

e 24 & 25 ... Bl TN Eho1 = Tt

be the unique decreasing chain in the upper labeling convention, by Proposi-
tion 6.13. Concatenating the image of this chain in [e,(]< with the end of the
chain (6.2) gives a peakless chain

(6.3) e 24 1(&1) o2, 21y L(fk—1)=Ck_1ﬁ> i’"_> ¢

in the interval [e, (] in the Lagrangian order. By Lemma 6.11, { is necessarily
minimal.

Suppose now that ¢ is a minimal cycle, then the réseau [e, (]~ has an increasing
chain, by Lemma 6.14, and the peakless chain (6.3) is unique. Consider another
increasing chain
(6.4) e By By Iy — ¢
and form 7}, &, afand k' as for the original chain (6.2). If k = k', then the
chains (6.2) and (6.4) coincide: The final segments agree, by the uniqueness of (6.3),
as do their initial segments, by Proposition 6.13.

If 6(¢) = 0, then the minimal label in the peakless chain (6.3) (either ax_q or
B) corresponds to the cover whose reflection has the form #,. As 6({;_1) = 1, this
must be 8 and so k = k' and the chain (6.2) is the unique increasing chain in the
réseau [e, (] <.

Suppose now that §(¢) = 1 and k¥ < k. Since o; = @] for i < k, p; = g} for
i>k,and g > - > ap_1 and B < --- < B, we must have ¥’ = k+ 1. But
then & = & for i < k and also ¢; = (] for ¢ > k, and so the two chains (6.2)
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and (6.4) agree except for the label of the cover (;—1 < (. Thus there are at most 2
increasing chains in the réseau [e,(]< and their underlying permutations coincide.
Thus by Lemma, 6.14, there are exactly 2 = 2°(9) increasing chains. =

We illustrate Lemma 6.15. Let n = (1,2,5,3,4) € S5. Let ¢ = (12534) = u(n) €
Bs. Figure 7 shows the réseau [e, (]<. In the réseau, there are two increasing chains

e =55 (34) 2 (234) -5 (1234) 25 (12534)
e 2 (34) 3 (234) 25 (1234) 25 (12534)

which correspond to the unique peakless chain in [e,n] 4

e 5 (3,4) 2 (2,3,4) > (1,2,3,4) - (1,2,5,3,4).

Now let ¢ = (1324] € Bs. The réseau [e, (] < is also illustrated in Figure 7. There

(12534) (1324 ]

/ “ \ / } 14
(1234) (2534) (1254 (243] (124] (132]
N AN N N

(234) (254) (124) (23] (4] (2] (132)

O \ | #
(34) (24) (2] (12)

N/ |

e

FIGURE 7. The intervals [e, (12534)] < and [e, (1324]] _

is a unique peakless chain in [e, {]<:
e 2 (12) 4 (12] =2 (132] 5 (1324].

We enumerate the increasing chains in an interval in the Lagrangian réseau. Let
I(¢) be the number of increasing chains in the réseau [e, (]<.

Lemma 6.16. If n,( € By, are disjoint, then I(n-¢) = I(n) - I({).

Proof. As with Lemma 6.9, this is a consequence of the analogous bijection con-
cerning increasing words among shuffles of words with disjoint alphabets. =

We relate the two formulations of the Pieri-type formula for Sp,,C/B. For
¢ € By, define
ot {irreducible factors n of ¢ with d(n) =1} if C is minimal
x(¢) = { 0 otherwise

Let D(¢) be the number of the decreasing chains in the réseau [e,(]<. By
Proposition 2.13(6), an increasing chain in ¢ becomes a decreasing chain in (~!
By Lemmas 6.16 and 6.15, the following result is now immediate.
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Corollary 6.17. For ¢ € By, I(¢) = x(¢) = D(¢).

We compare the two formulas in Theorem D. Theorem D asserts that bY,, =
f(wu~ 1) and c¥,, = x(wu"'). Since the number of sign changes in the permutation
v(m) is 1, formula (3.2) states that

2pY, = 2sw)ms(w v

or (when neither coefficient is zero), b¥, /c¥, = 25(W)=s(w)=1  When wu~" is
minimal, s(wu~!) is the number of irreducible factors n of wu=! with §(n) = 0.
Combining this with the definitions of §(wu~!) and x(wu~"), we see that

B(wu ") /x(wu ?) = 2201 — g gew

which shows the equivalence of the two formulas in Theorem D.

7. PROOF OF THE PIERI-TYPE FORMULA

We first deduce the Pieri-type formula (Theorem D) from the case when the
permutation ( is irreducible and minimal, and then we separately treat the subcases
of 6(¢) =1 (Section 7.1) and §(¢) = 0 (Section 7.2). Both cases reduce to the same
calculation in the cohomology of the ordinary flag manifold, and the case when
0(¢) = 0 is more involved.

For ¢ € B,, §(¢) = 1 if a > 0 implies {(a) > 0 and 6(¢) = 0 otherwise. For
¢ € By, we defined

(C) B 97t {irreducible factors n of ¢ with 6(n) =1} if C is minimal
X N 0 otherwise ’
0(() B 97t{irreducible factors (}—1 if C is minimal

B 0 otherwise

Lemma 7.1. Let ( € B, be irreducible and minimal with supp(¢) = [n]. Set
m := L((). Then

1 if6(¢)=0
q — —
We prove the case of Lemma 7.1 when §({) = 1 in Section 7.1 and the case when
0(¢) = 0 in Section 7.2. We deduce Theorem D from Lemma 7.1.

Theorem D. (Pieri-type Formula) Let { € By with £(¢) = m. Then c5, = x(¢)
and b$, = 0(¢).

We remark that by Corollaries 6.12 and 6.17, this implies Theorem A, the chain-
theoretic version of the Pieri-type formula.

Proof. Let s(n) be the number of sign changes in a permutation 1 € By Since
s(vm) = 1 and s(¢) = s(Cu) — s(u) if u <o Cu, Equation (3.2) implies that bS, =
25(0~1¢¢ . By Lemma 6.1, a minimal cycle ¢ has s(¢) +6(¢) = 1, and so

6() = 22971x(Q).-
Thus it suffices to show c$, = x(¢).

By Theorem B(2), we may replace ¢ by a shape-equivalent permutation if neces-
sary and assume that supp(¢) = [n]. Let M be a general isotropic (n+1—m)-plane
in V. Then, by the projection formula and Kleiman’s Theorem on the transversal-
ity of a general translate [19], c$, counts the Lagrangian subspaces K in Y, which
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meet M nontrivially, as g, is represented by the set of flags F, where F; meets M
nontrivially.

Let ¢ = (1 --- (s be the factorization of ¢ into disjoint irreducible permutations.
By Lemma 5.9, each factor ¢; with §({;) = 1 gives quadratic form g; which vanishes
on every K € Y. Let r be the number of these forms. If K € ) meets M, then
K N M lies in the common zero locus of these forms on M. Since M is in general
position, we must have r < dim M =n + 1 — m. By Corollary 6.4,

n—}—l—mgn—i—l—(n—Z(S(Q))=r—|—1,

with equality only if each ¢; is a minimal cycle. Thus ¢, = 0 if ¢ is not minimal,
and for non-minimal ¢, we have x(¢) = 0.

Thus we need only consider the case when ( is minimal. Let W, be the common
zero locus of the r quadratic forms ¢;, a reduced complete intersection of codimen-
sion r and degree 2", by Lemma 5.9. Since M is in general position, M N W is
2" = x(¢) lines. It follows that c§, = d - x({), where d counts the Lagrangian sub-
spaces K in ) which contain a general line of W,. By Lemma 7.1, we deduce that
d = 1 when ( is a minimal cycle. We now use this to show d = 1 for all minimal
permutations.

Let ¢ = (1 --- (s be the factorization of ¢ into disjoint irreducible permutations.
Then each (; is a minimal cycle. Set n; = #supp((;), and let ¢! € B, be shape-
equivalent to ;. Let V; be a symplectic vector space of dimension 2n; and identify
V with V1 @ ---®V;. Then, by Theorem 3.5 the map = : Lag(Vy) x - - - X Lag(Vs) —
Lag(V) defined by Z(Ky,...,K;) = K; + --- + K restricts to an isomorphism
E: Vg x - X Ver = Ve

Let 0 # v € W, be a general vector. From the construction of the the forms g;
in Lemma 5.9, we see that v = v1 @ --- @ v,, where 0 # v; € W, is a general vector
foreach i =1,...,s. It follows that v € K if and only if v; € K;. Since there is a
unique such Kj; for each ¢, K is unique, and so we haved=1. =

7.1. Lemma 7.1, case §(¢) = 1. This case follows from the following lemma. In
the notation of the preceding proof, we need only show there is a unique K € )
meeting a general v € W, when ( is a minimal cycle with §(¢) = 1.

Lemma 7.2. Let ( € B, with supp(¢) = [n] and L({) = n — 1 so that { is a
minimal cycle with 6(¢) = 1. Then, for a general 0 # v € W, there is a unique
Ke)Y: withveK.

Proof. Define € Sx, by ¢t(n) = (. Set k := #{a | a < n(a)}. Recall the notation
of Section 5.2: Let L, L* be complementary Lagrangian subspaces of V', which are
identified as linear duals. Define the map ®; : G(L) — Lag(V) by H — (H+H™),
where H- C L* is the annihilator of H. Define 7, : F{(L) — Gy (L) by E, > E.
This gives the commutative diagram (5.6) of Section 5.2. By Corollary 5.8, ® :
X, = V¢ where X, := mp (XuE, N X (u)v EL).

Schubert varieties Q, of the Grassmannian G (L) are indexed by ordinary par-
titions (weakly decreasing sequences) g:n—k > g1 > --- > g > 0 [17, p. 18]. We
show

(7.1) o' ({K € Lag(V) |v € K}) = Qnpy
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where h(n, k) is the hook-shaped partition with first row n — k and first column k.
It follows from the projection formula that

deg (V¢ N{K |ve K}) = deg (XN Qpnr))

which is deg(S&y, - Sugnw - TE[Qn(n,k)]), the product in H*(F¢(L)). By [32, Theorem
8], this counts the chains in the k-Bruhat order

w 2 wy N N nw
with 81 > B2 > -+ > Br < Br+1 < -+ < Pp-1. The conclusion follows by
Lemma 6.7.

To show (7.1), suppose H € Gi(L) andv € H+ H*. Let v~ be the projection of
vinto L and vt its projection to L*. Then v = v~ @vt and v~ € H and v+ € H+
so that H C (vt)*. Thus &, '({K |v € K}) = {H |v~ € Hand H C (vt)*},
which is just the Schubert variety Qp(,z). =

7.2. Lemma 7.1, case §({) = 0. We first present an example.

Example 7.3. Let ( = (125643 ] € Bg. This is a minimal cycle with §(¢) = 0. We
have t4¢ = (125643)< (, and in accordance with Lemma 6.5, 4 (= «) is unique with
this property. Let n = (1,2,5,6,4,3) € S, then 1(n) = t4(. If we set u = 526134,
then (u = 654213 is a Grassmannian permutation and v <¢ (u. These are the
permutations constructed from ( in Remark 2.8. Then t,(u = 654213. Note that
3=#{a]0< a< ((a)} = #{a]a < na)}.

Let eg,...,e1,€7,...,e5 be a basis for V in which the alternating form f is given
by B(ei,ej) = 0 unless i + j = 0, and B(e;,e;) = 1 for ¢ > 0. Define opposite
flags E! and E, by E! = (eg,...,e;) and E; = (eq,...,e;). We represent a typical
flag K € Y;E.NY,; ., E. by a6 x 12-matrix M, where M (es, ..., e1,ef,...,e5) =

(95>---»97), the vectors of Lemma 3.2:

668561%%%616263646566

g5 : a 1

g§ : c b 1

& b1

& abf -bf f e d 1
& 0 ab -b 1

8; d 1 -

Here, . indicates an entry of zero, and a,b, c,d, e, f are arbitrary complex numbers
with abcde # 0 and 8 = —abe/d. Observe that if f = 0, then the resulting vectors

give a flag ¢(E) in Y, E, N Yy, ()uE.. Let g; be the vector gz with f = 0. Then
(98, 95> g; ) annihilates (g7, 95, 97), and we can also define ¢(F,) by:
$(R)s=(95)  $(E)z= (95 95 9) $(F)5 = (97,95, 97) 91 92)

¢(E)§ = (96;95) ¢(E)§ = <<g4_a gfagT>J_ag4_) d)(E)T: <<g4_ag§59T)J_ag4_ag§59T)

This alternative description of ¢(F,) is the idea behind the proof of Lemma, 7.5,
which is the most technical result in this section (and perhaps in this paper). We
prove the following case of Lemma, 7.1 here.
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(Case 6(¢) = 0 of Lemma 7.1.) Let ( € B, with 6(¢) =0 and L({) = n. Then
e, = 1.

We use a geometric correspondence to reduce the computation of c§, to the same
calculation in the cohomology of the classical flag manifold used in Section 7.1.
We first define this correspondence, then state two lemmas concerning this corre-
spondence. We next deduce Lemma 7.1 from these lemmas, and finally prove each
one.

Throughout this section, ¢ will be fixed a minimal cycle in B,, with §(¢) = 0 and

L(¢) =n. By Lemma 6.5, there is a unique a > 0 with 0 > ((a). Set a := ((a).

Since cf\ = cf\ , we may replace ¢ by ¢! if necessary and assume a > « so that

ta(< (. We then have 6(t,() = 1 and so there is a permutation n € S, with
t(n) = to(. Define k to be #{a | 0 < a < {(a)}, which is also #{a | a < n(a)}.

Let u € B, be the permutation constructed in Remark 2.8 with u <¢ (u and
Cu a Grassmannian permutation. Define j by u(j) < 0 < Cu(j) = a. Since (u is
Grassmannian, we have j < k + 1.

Let L,L* be complementary Lagrangian subspaces of V, and identify L* with
the hnear dual of L as in Section 5.2. Let V¢ = w(YyE, N Yy, cuE!), where E, and
E! are opposite flags with Ef = L and Ey = L*. Set

= {F; C Fyy1 C L |dim F; =i},
a variety of partial flags in L.
Let p : F{(L) — Fy be the projection. Then the projections 7y, w1 of FE(L)

to Gg(L), Ggs1(L) factor through p. Let pg, pr+1 denote the projections of Fy, to
G (L), Ggy1(L). Consider the incidence variety T

r _{FkaFk-Ha )|Fk@FkL+1gK,C«Fk+1@FkJ—}

7Y

Then T is a P!-bundle over F; and f is generically 1-1: The image of f consists of
those K with dim KNL > k and dim KNL* > n—k—1, which is an intersection of
Schubert varieties. Thus a generic K in this intersection determines g(f~1(K)) =
(KN L,(KNL*)") uniquely. We have the diagram

Fe(L) r
NN
Tk Iy, Lag(V)
y \k.\}l
G (L) Grt1(L)

The value of this construction is the following lemma.
Lemma 7.4. Let u, E, , E!, and Cu be as above, and set
Ve = 7(YouFE, NYyouEL) .
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Then Y¢ = n(Y;E, NY, o, E) C Lag(V') is contained in the locus over which the
map f:T — Lag(V) is injective.
Proof. Let K € yg so that K = Fy for some F, in the intersection of Schubert cells
Y E, NY;y ., E.. We must show that dim FyNE; = k and dim FfNEr =n—k—1.
We have that
dimFrNnEr = #{I>0]u(l) <0}
= #{0<a<((a)} =k,
the second equality by the construction of u (see Remark 2.8). Similarly
dim Ffﬂ EIT = #{l >0 | wOCu(l) < 0}
= #{I>0]¢u(l)>0}.
Since ¢ has exactly one position a > 0 with value {(a) < 0, this is
n—1—#{I>0]u(l)<0} = n-1-k. -

For | € [n], let h(n,l) be the hook-shaped partition with first row n — [ and first
column [. For a partition p:n—1> 91 >--- > g, >0, let 0, € H*(Gy(L)) be the
Schubert class associated to the partition g, as in [17, p. 18]. We will show:

Lemma 7.5. There is a permutation w € S, with w < nw, and w Lr+1 Nw so
that we have gf 'Y: = p (Xw nx!’ )

(nw)¥
Lemma 7.6. g.f*"q, = pionmi) + Pri1Th(n,k+1)-
Proof of Lemma 7.1 with §({) = 0. Let w € S, be the permutation of
Lemma 7.5. Set Z :=p (Xw N Xénw)v). Then pi(2) = X, and Z is irreducible of
dimension n —1 = £, (n), as both X, N X, v and &} are irreducible of dimension
n—1.

By Lemma 7.5, g~ '(Z) D f~'(J). Since both of these are irreducible of dimen-
sion n = £(¢), we have equality, and so fg~'(Z) = ). The map f is generically
1-1on f~1(J;), as a generic K € Y hasdim KNL = kand dim KNL* =n—k—1.
Thus f.g*[Z] = [V¢]. We now compute c:

c% = deg([yC] “qn) = deg(feg*[Z]-qn)
= deg([Z2]- 9«f"qn),

by the projection formula applied to the maps f, g and Lemma, 7.5, as Z = p(X,, N
anw)v)' By Lemma 7.6, and the projection formula applied to the map g, noting

that p*pj = w5, and also p*pf, = T, we see that c§, is

deg (Gw . anv . (Wlto'h(n,k) + 7Tlt+10-h(n,k+l))) .
Since nw Agy1 w, only the first term is non-zero. By [32, Theorem 8] and by
Lemma 6.7, this degree is 1, as [e,n] 4 has a unique peakless chain. =

Proof of Lemma 7.6. The class ¢, € H*(Lag(V')) is represented by the Schubert
variety

YT, ;= {KeLag(V)|veK} = {K|Bv,K) =0},
where 0 #v € V and f is the alternating form. Then g, f*q, is represented by

9(f 'Yy) = {Fr C Fry1 | 3K withv € K and Fy ® Fyy G K C Fy1 ® Fy ).

= =
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We may write a general v € V = L @ L* uniquely as v = w & u with w € L and
u € L* and so g(f~'7,) is a subset of

{Fk C Fk+1 |w € Fk+1} n {Fk C Fk+1 |Fk C UJ'}.

This is an intersection of Schubert varieties (in general position if v is general) of
codimensions n — k — 1 and k, respectively. These Schubert varieties have classes
Pry10(n—k—1) and pgo(ixy. Since T, has codimension n, g(f~1T,) equals this
intersection if the map g : f~1T, — g(f~'Y,) is finite. Thus
9ef " = d(Prs10(n—k-1) - PLOAF)) 5

where d is the degree of the map g : f~'T, — g(f~'T,) (which is 0 if the map is
not finite).

To compute d, let F, C Fyyq satisfy w € Fyyq and Fp, C ut with Fpq ¢ u*t
and w ¢ Fy,. Then Fj11 @ Fi- ¢ v, and so f(g Y (Fy, Fry1)) = Fr, @ FF not,
which shows d = 1. Lastly, the Pieri-type formula [32] in H*(F}) shows

Pk410(n—k—1) " PLO(1¥) = Prt10h(nk+1) T PEOh(n k) -

(While the Pieri-type formula of [22, 32] is formulated in terms of the cohomology
of the complete flag manifold, it gives valid formulas in the cohomology of any
partial flag manifold.) =

Proof of Lemma 7.5. Since p : Z — A&, is generically 1-1, it suffices to show
that pr o go f~1 () = X,. As in Section 5.2 (see diagram (5.6)), given a k-plane
H in L, let H* be its annihilator in L* and define ®;(H) = H + H* € Lag(V).
By Corollary 5.8, ®;(X;) = V(- Since the map & is 1-1, it will suffice to show
that ®; o progo [ (V) =Vn-
Let K € ), satisfy dim K N L = k. Then
BpoprogofTHK) = ®pop(KNL C (KNL*)"Y)
®(KNL) = (KNLy&(KNL)™*.
We claim that (K N L) & (K N L)+ € Y,(). From this is follows that

Proprogo fﬁl(yc) C yt(n) .

Equality follows as both cycles are irreducible, and the dimension of ®; o pr ogo
S () is at least dimY, — 1 = dimY,(,. This is because the map g has 1-
dimensional fibres, while f, py, and ®;, are generically 1-1 on the relevant images
of V¢ in this composition.

To show (K NL) & (K N L)+ € Yy, we define a map

(ZS : YuoE, ﬂyo ! _>YuE- meoL( X

wolue mul,

so that for E € Y2E, NY? . E! we have ¢(F )y = (FrNL)® (FnL)*.

oCue
Let £ € YJE, N Y;OCuE: and let gg,...,g7 be the vectors constructed in
Lemma 3.2 with F; = (gn, ..., g7) and gz € E¢y(;) ﬂE;(—i) fori=1,...,n. It follows
from the construction of u that gz,..., 95z € L* and g7, .., G5, -+ -, 97 € L.
Since V = L @ L*, we may write gz = g; ®g; with g; € L* and 9; € L. If
g; € FFNL* = {gm,.--,9557), then Ff N L = (gg,...,97) and so has dimension
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k + 1, contradicting F, € Y’ E,. Define

(gr>--->90) ifi>j
E T = ol ep - .
d)( )1 { (gﬁa'-'agja"'agiag;_> lfiSJ

Since g; annihilates F;y N L we see that (FrN L)L = (gx, ... s 953 g;) Thus

d)(E)T = <gm77%77ﬁ)®<gﬁ77gm;g;_>
= (BEnLe(FnL)*t

Since g; € EL C E_, we have gJ € E’ .Asgr € E’ and @(F )7 is the span

u(j)’
of the first n — ¢ of the vectors g, . ,gJ - ,g—, it follows that o(F)z € Y, E,.

We use the definition of Schubert variety to show that ¢(E )7 € Yyye,(n)uE.. That
is, for all a € [n] and b € +[n], we show

(7.2) dm¢(E)gNEy > #{n>12>a|un)u(l) > b}.
Since F, € Y;; ., E., we have
(7.3) dimFzNE, = #{n>1>a]| Cu(l) > b}.

Since t(n)u(l) = Cu(l) unless I = j, and v(n)u(j) = a = Cu(j), the right hand sides
of (7.2) and of (7.3) differ only when a < j and @ < b < @, and in that case, the
right hand side of (7.2) is larger by 1.

Similarly, we have Fgz = ¢(E)g if a > j, and if a < j, then we have

FE = (gﬁr"agj:"':gE) and ¢(E)E = <gﬁa"'>gja"'7gﬁ)'

and gJ € L C Eg 5, we see that the left-hand sides of (7.2) and
if b < @, then

Since g; € Eety
of (7.3) are the same if a > j or 1f b > «a. Finally, since g; € ECu(z)’
H(E)aNEy C FzN E.

Thus it suffices to show the following statement: If a < j, then
(7.4) dim¢(E)gNEx = dim FyN Ex+ 1.
When k+1 <iandi # j, we have g; € L. Since LN Egz =0, ¢(E )z N Ex equals
#(E); N Eg, which is just ((Fy N L) N Ez). Thus the left hand side of (7.4) is
dm(FrN L)Y NEy = dim{gg,---2G5---»91) N Ea.
Since Fx annihilates E,_1 N L*, this is
n—k—(a—1)+dim{gy---, 95,91 N Ea1-
Since F, € Y5 ., E., we have g5 € E¢y(j) — Ecu(j)—1- As Cu(l) < --- < Cu(k+1) and

wolu "e?
Cu(j) = a, wecsee this intersection is (gz77,- - ., g777), and so the left side of (7.4)
isn—k—a+1+k—j+1:n+2—j—a.
We compute the right hand side of (7.4). Since, for i < k+ 2, g; € Er D Eg, we
see that F; N Ey = F; N Eg, and so the right hand side of (7.4) is

1+dimFyNE; = 1+#{l]|u(l) > a}
= n+2-a—#{l]Cu@j) <a}
= n+2-a-j,

as Cu(j) =@ and Cu(l) < --- < Cu(n). This completes the proof. =
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8. CONSEQUENCES OF THE PIERI-TYPE FORMULA

The identity of Theorem B(2)’ was crucial in our proof of the Pieri-type formula.
We show below that it is a consequence of the Pieri-type formula. The identities
we have established allow us to determine many of the constants c;. y, and we make
that precise below. Lastly, the identities of Theorem C have non-trivial implications
for enumerating chains in the Bruhat order.

For any composition a@ = (aq,...,as) with each a; > 0, let py := P, - - Pa.,
da = Go; " " Ga,, and I(a) := {a1,a1 + a2,...,00 + -+ + as_1}. The peak set of
a (maximal) chain in a labeled order is the set of indices of peaks in the chain.
Given a chain in a labeled réseau, its descent set (respectively ascent set) is the set
of indices of descents (respectively ascents) in the chain.

Theorem 8.1. Let u,w,z,z € By,.

(1) Let a be any composition. Then the coefficient of B, in the product B, -py
is the number of chains in the interval [u, w]o in the labeled 0-Bruhat order
with peak set contained in I(«).

(2) Let o be any composition. Then the coefficient of €, in the product €, - qq
is the number of chains in the interval [u,w]o in the labeled 0- Bruhat réseau
with descent set contained in I(«). This is also the number with ascent set
contained in I(a).

(3) Suppose the Pieri-type formula (Theorem A) holds. Then the intervals
[u,w]o and [z,z]o have the some number of chains with peak set I(a) for
every composition o if and only if for every strict partition A, b, = bZ,.
The same statement holds for ascent/descent sets for chain in the réseaux
and the coefficients c¥,cZ . In particular, Theorem B(1) implies Theo-
rem B(2).

Moreover, the numbers in (1) and (2) depend only upon the multiset {aq,...,as}.

Statements (1) and (2) follow from Theorem A. For (3), note that the Schur
P-polynomials (respectively @-polynomials) are linear combinations of the p, (re-
spectively the g,) [24, IIL.8.6]. This linear combination gives a formula for 5%,
(respectively ¢, ) in terms of chains with given peak sets (respectively, given as-
cent/descent sets).

Theorems B’ and C allow us to determine many of the constants b, and c?,,
showing they equal certain Littlewood-Richardson coefficients b7, , and ¢}, , for Schur
P- and Q-functions. These are defined by the identities

PM'PA:ZbZAPH and Qu'Q)\:ZCZ)\QN‘

A combinatorial formula for these coefficients was given by Stembridge [34].

Definition 8.2. Let u, & be strict partitions with u C k. We say that a permutation
¢ € B,, has skew shape k/p if
(1) Either ¢ or p(p is shape-equivalent to v(k)v(u)~1, or
(2) If a - {(a) > 0 for all a, and one of {,y(y~L,v2(y72,...,y" 1y~ is
shape-equivalent to v(k)v(u)~!.

Corollary 8.3. Ifu <o w are permutations in B, and wu™' has a skew shape k/pu,
then for any strict partition A we have

w K —_
ux = Dpa and Cun = Cpa-
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By Theorem 8.1(3), Theorem C has a purely enumerative corollary.

Corollary 8.4. For any € B,

(1) For any subset S of {2,...,L(C) — 1}, the intervals [e,(]< and [e, p(p]< in
the Lagrangian order have the same number of chains with peak set S.

(2) For any subset S of {1,...,L(C) — 1}, the intervals [e,(]< and [e, p(p]< in
the Lagrangian réseau order have the same number of chains with descent
set S and the same number of chains with ascent set S, and these two
numbers are equal.

(3) If 6(¢) = 1, then the same is true for [e,(]< and [e,v(y Y]<.

These assertions are non-trivial, as in general, [e, (]« # [e, p(p]<, and if 6(¢) =
1, then in general, [e,(]< # [e,7(y " !]<- We close with two examples of this
phenomenon which also serve to illustrate Corollary 8.4.

Example 8.5. In By, let ( = (134){(2]. Then p(p = (142)(3]. Consider the
intervals [e, (] < and [e, p(p]< in the labeled Lagrangian réseau displayed in Figure 8.
While they are not isomorphic, they have the same rank, the same number of

(134)(2] (142)(3]
e 3 ﬂ 3
(1342 , (1432) ,
/ \ / 304\
(121(34) (1342) (1432) (132] (143]
SN S N/ XAl
(12) (34) (132) (13] . (143)
AN A
(12) (34) (13)
N A N S
e e

FiGure 8. Conjugation by p on labeled intervals.

maximal chains, 80, and the underlying orders each have 5 chains. Moreover, they
each have 2 chains with peak set {3}, and one each with peak sets {2},{4}, and
{2,4}. The réseaux have the same number of chains with fixed descent sets. The
jth component of the following vector records the number of chains with descent
set equal to the position of the 1’s in the binary representation of j—1:

(0,2,6,4,6,12,8,2,2,8,12,6,4,6,2,0)

The symmetry in this vector results from the identity c)‘ = ci and Theorem 8.1(3).

Example 8.6. Let n = (1,2,4,3). Then ¢ = 1(n) = (1243) and v(y~! = (1423).
The labeled intervals [e,n]< and [e,(]< are isomorphic. Consider the intervals
[e, (] < and [e,y(y ]« in the labeled Lagrangian réseau displayed in Figure 9. While
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they are not isomorphic, they have the same rank, the same number of maximal
chains, 16, and the underlying orders each have 2 maximal chains. Moreover, they
each have a peakless chain and one with peak set {2}. The réseaux each have 2
increasing chains, 2 decreasing chains, 6 with descent set {1}, and 6 with descent

set {2}.

(1243) (1243) <1423>
(243) (123) 43) (123) (143) (123)
N/ \ / 4()3 201
(23) (13) (23)

_ 1 3

3 2
e e e
F1GURE 9. Conjugation by 7 on labeled intervals.
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