
A MONOID FOR THE GRASSMANNIAN BRUHAT ORDER

NANTEL BERGERON AND FRANK SOTTILE

Abstract. Structure constants for the multiplication of Schubert polynomials by Schur sym-
metric polynomials are related to the enumeration of chains in a new partial order on S∞, the
Grassmannian Bruhat order. Here we present a monoid M related to this order. We develop
a notion of reduced sequences for M and show that M is analogous to the nil-Coxeter monoid
for the weak order on S∞.

1. Introduction

Let S∞ denote the infinite symmetric group consisting of permutations of {1, 2, . . .} which
fix all but finitely many numbers. In their approach to the Schubert calculus for flag manifolds,
Lascoux and Schützenberger [7, 8, 9, 10] defined Schubert polynomials Su ∈ Z[x1, x2, . . .], a
homogeneous basis indexed by permutations u ∈ S∞. By construction, the degree of Su is the
length, ℓ(u), of u. We refer the reader to [11] for an interesting detailed account of Schubert
polynomials.
It is a famous open problem to understand the multiplicative structure constants for the

Schubert polynomials. From algebraic geometry, the structure constants cwuv defined by the
identity

SuSv =
∑

w∈S∞

cwuvSw

are positive integers, and in some special cases they are the Littlewood-Richardson coefficients.
A combinatorial construction for the cwuv is not known.
It is believed that cwuv counts the number of chains from u to w in the Bruhat order which

satisfy conditions imposed by v [2]. In particular, if v is a Grassmannian permutation with
descent in k, then one can restrict the chains to a suborder: the k-Bruhat order ≤k on S∞ [9, 13,
2]. In [2], a study of ≤k leads to a new partial order ¹ on S∞ which we call the Grassmannian
Bruhat order. This order is ranked and has the property that a nonempty interval [u, w]k in
a k-Bruhat order is isomorphic to the interval [1, wu−1]¹ in the Grassmannian Bruhat order
(independent of k). As a special case, every interval in Young’s lattice is an interval in this
Grassmannian Bruhat order. The Grassmannian Bruhat order is by definition linked to the
structure of the flag manifolds considered as a module over the ring of symmetric polynomials,
but this order is combinatorially interesting on its own. The aim of this paper is to present a
monoid M that describes the chain structure of this order.
In Section 3, we sketch the main features of the Grassmannian Bruhat order ¹ but the

detailed background is found in [2]. We recall here the definition of the order ¹ and its rank
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function ℓu . For ζ ∈ S∞, let up(ζ) = {j : ζ−1(j) < j} and let dw(ζ) = {j : ζ−1(j) > j}. Set
ℓu(ζ) to be

|{(i, j) ∈ up(ζ)× dw(ζ) : i > j}| − |{(ζ(i), ζ(j)) ∈ up(ζ)× dw(ζ) : i > j}|

−|{(ζ(i), ζ(j)) ∈ up(ζ)×2 : i < j and ζ(i) > ζ(j)}|

−|{(ζ(i), ζ(j)) ∈ dw(ζ)×2 : i < j and ζ(i) > ζ(j)}|.

Definition 1.1 ( Grassmannian Bruhat Order on S∞). η ¹ ζ if and only if

(1) α ≤ η(α) ≤ ζ(α) for α ∈ ζ−1
(

up(ζ)
)

,

(2) α ≥ η(α) ≥ ζ(α) for α ∈ ζ−1
(

dw(ζ)
)

,

(3)
(

η(α) < η(β) =⇒ ζ(α) < ζ(β)
)

for α < β ∈ ζ−1(up(ζ)) or α < β ∈ ζ−1(dw(ζ)).

We consider the monoid M that has a 0 and generators uαβ indexed by integers 0 < α < β,
subject to the relations:

(1) uβγuγδuαγ ≡ uβδuαβuβγ, if α < β < γ < δ,

(2) uαγuγδuβγ ≡ uβγuαβuβδ, if α < β < γ < δ,

(3) uαβuγδ ≡ uγδuαβ, if β < γ or α < γ < δ < β,

(4) uαγuβδ ≡ uβδuαγ ≡ 0, if α ≤ β < γ ≤ δ,

(5) uβγuαβuβγ ≡ uαβuβγuαβ ≡ 0, if α < β < γ.

(1.1)

The relation between M and the order ¹ on S∞ is obtained via a faithful representation of
M as linear operators on the group algebra QS∞. Let (α β) ∈ S∞ be the transposition that
interchanges α and β. We define the linear operator ûαβ by

ûαβ : QS∞ −→ QS∞,

ζ 7−→

{

(α β)ζ if ℓu
(

(α β)ζ)
)

= ℓu(ζ) + 1,

0 otherwise.

(1.2)

Theorem 1.2.

(a) The map ℓu : S∞ → N is well defined by ℓu(ζ) = ℓ(ζu)− ℓ(u) for any u and k such that
u ≤k ζu.

(b) The operators ûαβ satisfy the relations (1.1), and a composition of operators is charac-
terized by its value at the identity. That is ûα′

mβ′

m
· · · ûα′

1
β′

1
= ûαnβn

· · · ûα1β1
if and only

if ûα′

mβ′

m
· · · ûα′

1
β′

1
1 = ûαnβn

· · · ûα1β1
1.

(c) For x = uαnβn
· · ·uα2β2

uα1β1
∈ M, the map x 7→ x̂ = ûαnβn

· · · ûα2β2
ûα1β1

is a faithful
representation of M.

(d) The map M → S∞ ∪ {0}, well defined by x 7→ x̂1, is a bijection.
(e) The Grassmannian Bruhat order ¹ on S∞ is ranked by ℓu. We have η ¹ ζ if and

only if there exists x ∈ M such that ζ = x̂η. The order ¹ satisfies the property:
[u, ζu]k ∼= [1, ζ]¹ whenever u ≤k ζu. In particular [η, ζ]¹ ∼= [1, ζη−1]¹ whenever η ¹ ζ.

(f) The set Ru(ζ) = {x̂ : x̂1 = ζ} is in bijection with the set of all maximal chains in
[1, ζ]¹.

We call the elements of Ru(ζ) the u-reduced sequences of ζ. Parts (a) and (e) of Theorem
1.2 were obtained in §3.2 of [2]. We have included them for completeness. In Section 3, we
show the remaining parts. In Section 2, we emphasize the parallel between Theorem 1.2 and a
similar classical results on the weak order of S∞ and the nil-Cotexer monoid.
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Recall [11] that the Schur polynomial Sλ(x1, x2, . . . , xk) = Sv(λ,k) for a unique Grassmannian
permutation v(λ, k). In Theorem E of [2], we have shown that if cwuv(λ,k) 6= 0, then cwuv(λ,k)

depends only on λ and ζ = wu−1. We can thus define constants cζλ such that cwuv(λ,k) = cwu−1

λ

whenever u ≤k w. We have (cf. Prop. 1.1 [2])

|Ru(ζ)| =
∑

λ

fλc
ζ
λ, (1.3)

where fλ is the number of standard Young tableaux of shape λ. In Section 4 we give a
description of the constant cwuv(λ,k) using elements of Ru(ζ). This description will be helpful in

some subsequent work [3, 4].

2. orders and monoids on S∞

Let ℓ(u) denote the length of a permutation u ∈ S∞. The weak order ≤wk on S∞ is the
transitive closure of the following cover relation: for u, w ∈ S∞, we say that w covers u in the
weak order if ℓ(w) = ℓ(u) + 1 and wu−1 is a simple transposition (α α+1). Maximal chains
from the identity to w ∈ S∞ correspond to reduced sequences for w. The nil-Coxeter monoid
N plays a role [8] in studying reduced sequences. The monoid N has a 0 and generators ui

indexed by integers i > 0, subject to the nil-Coxeter relations:

uαuα+1uα ≡ uα+1uαuα+1,

uαuβ ≡ uβuα, if |α− β| > 1,
uαuα ≡ 0.

(2.1)

There is a faithful representation of N as linear operators on the group algebra QS∞. For this,
consider the linear map ûα : QS∞ → QS∞ defined by

ζ 7−→

{

(α α+1)ζ if ℓ
(

(α α+1)ζ
)

= ℓ(ζ) + 1,

0 otherwise.

The following proposition is a reformulation of well known results of J. Tits about reduced
sequences of a permutation and the weak order. See [11] for proofs.

Proposition 2.1.

(a) The map ℓ : S∞ → N is well defined.
(b) The operators ûα satisfy the relations (2.1), and a composition of operators is char-

acterized by its value at the identity. That is ûαn
· · · ûα1

= ûβm
· · · ûβ1

if and only if
ûαn

· · · ûα1
1 = ûβm

· · · ûβ1
1.

(c) For x = uαn
· · ·uα2

uα1
∈ N , the map x 7→ x̂ = ûαn

· · · ûα2
ûα1

is a faithful representa-
tion of N .

(d) The map N → S∞ ∪ {0}, well defined by x 7→ x̂1, is a bijection.
(e) The weak order ≤wk on S∞ is ranked by ℓ. We have u ≤wk w if and only if there exists

x ∈ N such that w = x̂u. Also [η, ζ]wk
∼= [1, ζη−1]wk whenever η ≤wk ζ.

(f) The set R(w) = {x̂ : x̂1 = w} is in bijection with the set of all maximal chains in
[1, w]wk. The elements of R(w) are the reduced sequences of w.

At this point we note the striking resemblance between Theorem 1.2 and Proposition 2.1.
The proof of Proposition 2.1 relies on the understanding of reduced sequences. For Theorem
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1.2, the order ¹ is new and its chains have not been studied previously. We develop the
elementary theory of reduced sequences for ¹.
We note that not all orders on S∞ have such a simple monoid. In particular, the Bruhat order

≤ on S∞ has no known monoid. Recall that w covers u in the Bruhat order if ℓ(w) = ℓ(u) + 1
and wu−1 is a transposition (α β). In fact, very little is known about the problem of chain
enumeration for the Bruhat order. We believe that a monoid for the Bruhat order would not
satisfy conditions as simple as those of Theorem 1.2 and Proposition 2.1.
The monoid structure for the weak order was a key factor in the following results. Under

the nil-Coxeter-Knuth relations

uαuα+1uα ≡ uα+1uαuα+1,

uβuγuα ≡ uβuαuγ and uαuγuβ ≡ uγuαuβ, if α < β < γ,

uαuα ≡ 0,

(2.2)

the set of all reduced sequences R(w) for a permutation w ∈ S∞ is refined into classes, called
Coxeter-Knuth cells, indexed by some semi-standard tableaux. The cardinality of a cell is the
number of standard tableaux of the same shape as the cell’s index [5, 8, 14]. This decomposition
suggests an action of the symmetric group on R(w). The symmetric function corresponding to
such an action is the function Fw introduced by Stanley in [14]. Equation (1.3) suggests the
possibility of similar structure for the monoid M and relations (1.1).

3. k-Bruhat orders and the monoid M

Monk’s rule [11] determines the multiplicative structure of Schubert polynomials:

Su(x1 + x2 + · · ·+ xk) =
∑

a ≤ k < b
ℓ(u(a b))=ℓ(u)+1

Su(a b).

Successive applications of this give

Su(x1 + x2 + · · ·+ xk)
n =

∑

w ∈ S∞

ℓ(w)=ℓ(u)+n

γ(u, w, k)Sw,

where γ(u, w, k) counts the sequences of transpositions (a1 b1), (a2 b2), . . . , (an bn) such that
w = u(a1 b1)(a2 b2) · · · (an bn) and, for all r, we have ar ≤ k < br with

ℓ
(

u(a1 b1)(a2 b2) · · · (ar−1 br−1)
)

= ℓ
(

u(a1 b1)(a2 b2) · · · (ar br)
)

+ 1.

On the other hand,

(x1 + x2 + · · ·+ xk)
n =

∑

λ

fλSλ(x1, x2, . . . , xk),

where Sλ(x1, x2, . . . , xk) is the Schur polynomial indexed by a partition λ of n. There is a
unique Grassmannian permutation v(λ, k) such that the Schubert polynomial Sv(λ,k) is equal
to the Schur polynomial Sλ(x1, x2, . . . , xk) [11]. Hence

Su(x1 + x2 + · · ·+ xk)
n =

∑

λ

fλ
SuSv(λ,k) =

∑

w

(

∑

λ

fλcwuv(λ,k)

)

Sw,
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and we have
∑

λ

fλcwuv(λ,k) = γ(u, w, k).

This suggests that we should study the partial order defined by the relation: u ≤k w if and
only if γ(u, w, k) > 0. Equivalently, this is the partial order with covering relation given by the
index of summation in Monk’s rule. We call this suborder of the Bruhat order the k-Bruhat
order. We denote by [u, w]k the interval from u to w in the k-Bruhat order. Hence γ(u, w, k)
is the number of maximal chains in [u, w]k.
These cover relations give some invariants of the k-Bruhat order. For example, consider the

following maximal chain in the 3-Bruhat order:

(3, 1, 5, 2, 6, 4) ≤3 (3, 1, 6, 2, 5, 4) ≤3 (3, 2, 6, 1, 5, 4) ≤3 (3, 5, 6, 1, 2, 4).

Here and after, we use a finite list
(

w(1), w(2), . . . , w(n)
)

to denote any permutation w ∈ Sn ⊂
S∞. In this example, the first three entries of the permutations do not decrease and the other
entries do not increase. Also, the second and third entries remain in the same relative order
for all permutations in the chain. This leads to a characterization of the k-Bruhat order based
on such invariants.

Proposition 3.1 (Theorem A of [2]). For u, w ∈ S∞, u ≤k w if and only if

(1) u(i) ≤ w(i) for i ≤ k,
(2) u(i) ≥ w(i) for i > k,
(3) (u(i) < u(j) =⇒ w(i) < w(j)) for i < j ≤ k or k < i < j.

The sufficiency of these conditions follows from the existence of a specific maximal chain in
the interval [u, w]k. We call it the CM-chain of [u, w]k.

Definition 3.2 (CM-chain). For u <k w, the CM-chain of the interval [u, w]k is recursively
defined as follows:

• If ℓ(w) = ℓ(u) + 1 then the unique chain u <k w is the CM-chain of [u, w]k.
• If ℓ(w) > ℓ(u) + 1, let a ≤ k < b be the unique integers such that

I u(a) < w(a) and w(a) = max{w(j) : j ≤ k, u(j) < w(j)},
II u(b) > u(a) ≥ w(b) and w(b) = min{w(j) : j > k, u(j) > u(a) ≥ w(j)}.

Let u1 = u(a b). The CM-chain of [u, w]k is

u = u0 <k u1 <k u2 <k · · · <k un = w,

where u1 <k u2 <k · · · <k un is the CM-chain of [u1, w]k.

It is not obvious that conditions I and II define unique integers a ≤ k < b. We refer the
reader to §3.1 of [2] for a complete proof of this fact. The symmetry in the conditions (1)-(3)
of Proposition 3.1 implies the following lemma.

Lemma 3.3. Let m be any integer such that u, w ∈ Sm. Let ω0 denote the longest element
(m,m− 1, . . . , 1) of Sm. Then the map Ωm : Sm → Sm defined by Ωm(u) = ω0uω0 is an order
preserving involution. That is

u ≤k w ⇐⇒ Ωm(u) ≤m−k Ωm(w).

Lemma 3.3 suggests the definition of another specific maximal chain in the interval [u, w]k
image of the CM-chain under the map Ω.
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Definition 3.2′ (DCM-chain) The DCM-chain is obtained as in Definition 3.2, replacing I and
II by:

I′ u(b) > w(b) and w(b) = min{w(j) : j > k, u(j) > w(j)},
II′ u(a) < u(b) ≤ w(a) and w(a) = max{w(j) : j ≤ k, u(j) < u(b) ≤ w(j)}.

For example, if u = (2, 1, 6, 4, 3, 5) and w = (4, 5, 6, 1, 2, 3), the first step of the procedure
for the CM-chain of [u, w]3 gives us (a, b) = (2, 4). The full chain is given below, written from
bottom to top.

(4, 5, 6, 1, 2, 3) (4, 5, 6, 1, 2, 3) (4, 5, 6, 1, 2, 3)
(3, 5, 6, 1, 2, 4) (4, 3, 6, 1, 2, 5) (3, 5, 6, 1, 2, 4)
(2, 5, 6, 1, 3, 4) (4, 1, 6, 3, 2, 5) (3, 4, 6, 1, 2, 5)
(2, 4, 6, 1, 3, 5) (3, 1, 6, 4, 2, 5) (2, 4, 6, 1, 3, 5)
(2, 1, 6, 4, 3, 5) (2, 1, 6, 4, 3, 5) (2, 1, 6, 4, 3, 5)
CM-Chain A Maximal Chain DCM-Chain

Consider a maximal maximal chain of [u, w]k,

u = u0 <k u1 <k u2 <k · · · <k un = w,

where ui+1 = ui(ai bi). If this chain is the CM-chain, then w(ai) > w(aj), or w(ai) = w(aj) and
w(bi) < w(bj) for all 1 ≤ i < j ≤ n. Our first objective is to generate all the maximal chains
of [u, w]k.

Proposition 3.4 (Theorem E of [2]). For u ≤k w and u′ ≤k′ w
′, if wu−1 = w′(u′)−1, then

v 7→ vu−1u′ induces [u, w]k ∼= [u′, w′]k′.

Proposition 3.5 (Theorem 3.1.5 of [2]). Let w =
(

j1, j2, . . . , jk, . . .
)

where, to the right of jk,
we put the complement of up(ζ) in increasing order. We have that [ζ−1w,w]k is nonempty.

With the above two propositions the function ℓu becaumes clearer. The number k in Proposi-
tion 3.5 is the smallest possible for which [u, w]k is nonempty and w = ζu. The length difference
ℓ(w)− ℓ(u) is the same for all nonempty [u, w]k such that w = ζu. With this in mind, we can
see that ℓu(ζ) = ℓ(w) − ℓ(u) for any nonempty [u, w]k such that w = ζu. Using Propositions
3.4 and 3.5, we see that η ¹ ζ if and only if there exists u and k such that u ≤k ηu ≤k ζu.
It follows from the definition that the order ¹ is ranked by ℓu and [1, ζη−1]¹ ∼= [η, ζ]¹ via the
map ξ 7→ ξη.
The operators ûαβ in (1.2) are defined so that ûαβη = ζ if and only if ζ covers η in ¹.

In particular, nonzero compositions x̂ = ûαnβn
· · · ûα2β2

ûα1β1
such that x̂η = ζ correspond

bijectively to maximal chains in [η, ζ]¹:

η ¹ ûα1β1
η ¹ ûα2β2

ûα1β1
η ¹ · · · ¹ x̂η = ζ

We note that the isomorphism [1, ζη−1]¹ ∼= [η, ζ]¹ implies

x̂η = ζ ⇐⇒ x̂1 = ζη−1. (3.1)

Hence the operator x̂ is completely defined by its value at 1.
The isomorphism [1, wu−1]¹ ∼= [u, w]k given by η 7→ ηu, induces an isomorphism on chains.

Given a maximal chain
u = u0 <k u1 <k u2 <k · · · <k un = w (3.2)

of [u, w]k, we adopt the following conventions.

• Let ai ≤ k < bi be such that ui+1 = ui(ai bi).
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• Let αi = ui−1(ai) and βi = ui−1(bi). Hence ui = (αi βi)ui−1.

Under the isomorphism above, this defines a unique (nonzero) composition

x̂ = ûαnβn
· · · ûα2β2

ûα1β1
(3.3)

such that wu−1 = x̂1. Conversely, given a nonzero composition as in (3.3) such that wu−1 = x̂1,
we define a unique maximal chain as in (3.2) where ui = (ûαiβi

· · · ûα1β1
1)u. This correspon-

dence is used to encode maximal chains for the rest of the paper. Via this identification, we
will refer to a nonzero composition x̂ such that x̂1 = wu−1 as a maximal chain of [u, w]k.
In the next theorem we will show that every maximal chain of an interval is obtained from

the CM-chain via the relation (1.1). For example, let ζ = (5, 4, 2, 1, 3). Proposition 3.5 gives
u = (2, 1, 4, 3, 5) ≤2 (4, 5, 1, 2, 3) = ζu. From Definition 3.2, the CM-chain is û34û23û45û14.

(3,5,1,2,4) (4,3,1,2,5)

(2,4,1,3,5) (3,1,4,2,5)

(4,5,1,2,3)

(4,1,2,3,5)

(2,1,4,3,5)

(3,4,1,2,5) (4,1,3,2,5) (4,2,1,3,5)(2,5,1,3,4)

Figure 1. The interval [(2, 1, 4, 3, 5), (4, 5, 1, 2, 3)]2.

Now if we apply the relations (1)-(3) of (1.1) to the CM-chain we get:

û34û23û45û14 ≡ û34û45û23û14 ≡ û34û45û14û23 ≡ û35û13û34û23 ≡ û35û23û12û24.

These are all the maximal chains of the interval [u, w]k as depicted in Figure 1. The first two
equivalences are instances of the relation (3) of (1.1), the last two are instances of relations (1)
and (2), respectively. The second chain is the DCM-chain.

Theorem 3.6. If u ≤k w, then any two maximal chains in [u, w]k are connected by a series
of relations (1)-(3) of (1.1). Moreover, it is never possible to apply any of the relations (4) or
(5) of (1.1) to a maximal chain.

Proof We first show that any of the relations (1)-(3) of (1.1) that can be applied to a maximal
chain

x̂ = ûαnβn
· · · ûα2β2

ûα1β1
(3.4)

in [u, w]k results in another maximal chain. Moreover, the relations (4) and (5) can never be
applied to this chain. Given the maximal chain (3.4), let ui = (ûαiβi

· · · ûα1β1
1)u be as before,

for 0 ≤ i ≤ n. Then since ui−1 ≤k ui is a cover,

(i) ui = (αi βi)ui−1 = ui−1(ai bi) with ai ≤ k < bi.
(ii) If αi < γ < βi, then u−1

i−1(γ) < ai or bi < u−1
i−1(γ).
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Consider applying the relations (1.1) to a segment of length two in the chain (3.4). We may
assume that the segment is ûα2β2

ûα1β1
. Suppose {α1, β1}∩{α2, β2} = ∅, and assume α1 < α2, as

the other case is symmetric. There are three possible relative orders for the numbers α1, β1, α2

and β2. We consider each in turn. If α1 < α2 < β1 < β2, the situation in relation (4) with
strict inequalities, then condition (ii) for i = 1 implies a2 = u−1

0 (α2) < a1, and for i = 2 implies
a1 = u−1

1 (β1) < a2, a contradiction. Now suppose α1 < β1 < α2 < β2 or α1 < α2 < β2 < β1. An
example of each case is found as a square in Figure 1. Then (i) and (ii) impose no additional
conditions on a1, a2, b1 and b2, so u0 ≤k u0(a2 b2) ≤k u0(a2 b2)(a1 b1) = u2.
Suppose one of the relations (1) or (2) of (1.1) applies to a segment of length three. Again

an example of each case is found as a hexagon in Figure 1. Both arguments are similar, so
suppose that (1) applies. We have α < β < γ < δ and the segment is ûβγûγδûαγ. By condition
(ii), the numbers α, β, γ, and δ appear in u in one of the following two orders

(

. . . , β, . . . , α, . . . , γ, . . . , δ, . . .
)

or
(

. . . , β, . . . , α, . . . , δ, . . . , γ, . . .
)

.

The argument in both case are similar. In the first case, the chain is
(

. . . , γ, . . . , δ, . . . , α, . . . , β, . . .
)

(

. . . , β, . . . , δ, . . . , α, . . . , γ, . . .
)

(

. . . , β, . . . , γ, . . . , α, . . . , δ, . . .
)

(

. . . , β, . . . , α, . . . , γ, . . . , δ, . . .
)

It is clear that
(

. . . , γ, . . . , δ, . . . , α, . . . , β, . . .
)

(

. . . , γ, . . . , β, . . . , α, . . . , δ, . . .
)

(

. . . , γ, . . . , α, . . . , β, . . . , δ, . . .
)

(

. . . , β, . . . , α, . . . , γ, . . . , δ, . . .
)

is also a chain. This is represented by ûβδûαβûβγ, completing this case. To conclude our first
objective, we notice that the fourth relation, with equalities, or the fifth relation, are clearly
not possible for k-Bruhat orders, by Proposition 3.1 (1) and (2).
We now show that any two maximal chains in [u, w]k are connected by successive uses of the

relations (1.1). It suffices to show that any maximal chain x̂ is connected to the CM-chain. For
this we proceed by induction on n. If n = 1, then there is a unique maximal chain. Let n > 1
and assume that the theorem holds for all intervals [u′, w′]k′ such that ℓ(w′)−ℓ(u′) < n. That is,
we may assume that x̂ = ŷûα1β1

where y is any maximal chain. If a1, b1 satisfy the conditions
I and II of Definition 3.2 then choosing ŷ to be the CM-chain of [u1, w]k completes the proof
since then x̂ is the CM-chain of [u, w]k. If condition I fails, then w(a1) is not maximal with
u(a1) < w(a1). In this case assume that ŷ is the CM-chain of [u1, w] so that w(a2) > w(a1).
We have two sub-cases to consider:
Case 1a: {α1, β1} ∩ {α2, β2} = ∅. We can use relation (3) of (1.1) and get

x̂ ≡ ûαnβn
· · · ûα1β1

ûα2β2
.

The hypothesis on y and w(a2) > w(a1) implies that ûα2β2
is the first step of the CM-chain of

[u, w]k. We can use our induction hypothesis on [ûα2β2
u, w]k and get x̂ ≡ ẑûα2β2

, the CM-chain
of [u, w]k.
Case 1b: α2 < β2 = α1 < β1. Since y is the CM-chain of [u1, w]k, we have

β2 = α3 < β3 = α4 < · · · < βm−1 = αm,
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for m ≥ 3, where βm = w(a2) > w(a1) ≥ β1. Let 3 ≤ s ≤ m be such that αs < β1 < βs. We
can apply the relations (1.1) and get

x̂ = ûαnβn
· · · ûαmβm

· · · ûαsαs
· · · ûα2β2

ûα1β1

≡ ûαnβn
· · · ûαmβm

· · · ûαs+1αs+1
ûαsβ1

ûβ1βs
ûα2β1

ûαs−1βs−1
· · · ûα3β3

≡ ûαnβn
· · · ûαmβm

· · · ûαs+1αs+1
ûαsβ1

ûαs−1βs−1
· · · ûα3β3

ûβ1βs
ûα2β1

≡ ẑûα2β1
.

where, by the induction hypothesis, ẑ is the CM-chain of [ûα1β2
u, w]k. Here ûα2β1

is the first
step in the CM-chain of [u, w]k. Hence x̂ ≡ ẑûα2β1

, the CM-chain of [u, w]k.
If condition I holds but condition II fails, then w(b1) is not minimal. In this case assume

that y is the DCM-chain of [u1, w]. Here, we must have that w(b2) < w(b1) and again we have
two sub-cases to consider:
Case 2a: {α1, β1} ∩ {α2, β2} = ∅. We can use the relation (3) of (1.1) and the induction
hypothesis to get

x̂ ≡ ûαnβn
· · · ûα1β1

ûα2β2
≡ ẑûα2β2

,

where ẑ is the CM-chain of [ûα2β2
u, w]k. If ûα2β2

is the first step in the CM-chain of [u, w]k we
are done. If not, then condition I′ on ûα2β2

implies that only condition I can fail in ẑûα2β2
and

we are back to cases 1a or 1b.
Case 2b: α1 < β1 = α2 < β2. Since y is the DCM-chain of [u1, w]k, we have

α2 = β3 > α3 = β4 > · · · > αm−1 = βm,

for m ≥ 3, where αm = w(b2) > w(b1) ≥ α1. Let 3 ≤ s ≤ m be such that βs > α1 > αs. We
can apply the relations (1.1) and get

x̂ = ûαnβn
· · · ûαmβm

· · · ûαsαs
· · · ûα2β2

ûα1β1

≡ ûαnβn
· · · ûαmβm

· · · ûαs+1αs+1
ûα1βs

ûαsβ1
ûα1β2

ûαs−1βs−1
· · · ûα3β3

≡ ûαnβn
· · · ûαmβm

· · · ûαs+1αs+1
ûα1βs

ûαs−1βs−1
· · · ûα3β3

ûαsβ1
ûα1β2

≡ ẑûα1β2
,

(3.5)

where ẑ is the CM-chain of [ûα1β2
u, w]k. If ûα1β2

is the first step in the CM-chain of [u, w]k,
then we are done. If not, then condition I′ on ûα1β2

implies that only the condition I can fail
in ẑûα2β2

and again we are back to cases 1a or 1b. ¤

We now complete the characterization of compositions x̂ = ûαnβn
· · · ûα1β1

corresponding
to maximal chains for some [u, w]k. If x̂ corresponds to a maximal chain in [u, w]k, then
wu−1 = x̂1. Hence w = ζu for ζ = x̂1 = wu−1. Conversely, Proposition 3.5 shows that for any
ζ ∈ S∞ we can find u and w such that w = ζu and [u, w]k is nonempty for some k. In the
following, we say that a composition x̂ = ûαnβn

· · · ûα1β1
is u-reduced if x̂1 6= 0. Theorem 3.6

gives us a way of generating all u-reduced sequences for ζ ∈ S∞; they are all connected via the
relations (1)-(3) of (1.1). To complete our study, we characterize the compositions x̂ such that
x̂ = 0.

Theorem 3.7. Let x̂ = ûαnβn
· · · ûα1β1

be a composition. If x̂1 = 0, then x̂ ≡ 0 modulo the
relations (1.1).

Proof We proceed by induction on n. When n = 2, x̂1 = 0 implies that relation (4)
applies to x̂. Suppose n ≥ 3 and the theorem holds for all compositions of length < n. Let
ŷ = ûαn−1βn−1

· · · ûα1β1
and we may assume that ŷ1 = τ 6= 0.
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We first characterize those w such that τ−1w ≤k w, for some k. Let up(τ) and dw(τ)
be defined as above, and let fix(τ) be the set of fixed points of τ . By Proposition 3.1,
u = τ−1w ≤k w if and only if

• up(τ) ⊆ {w(i) : 1 ≤ i ≤ k} ⊆ up(τ) ∪ fix(τ),
• for i < j ≤ k or k < i < j, if u(i) < u(j) then w(i) < w(j).

The second condition implies that if α < γ are in up(τ) ∪ fix(τ) and τ−1(α) > τ−1(γ), then
max{w−1(α), w−1(γ)} ≤ k implies w−1(α) < w−1(γ). Similarly, if γ < β are in dw(τ) ∪ fix(τ)
and τ−1(γ) > τ−1(β) then k < min{w−1(β), w−1(γ) ≤ k} implies w−1(γ) < w−1(β). With this
and the definition of ¹, we see that ℓu

(

(αn, βn)τ
)

6= ℓu(τ) + 1 implies one of the following
holds:

(a) αn ∈ dw(τ),
(b) βn ∈ up(τ),
(c) αn < γ < βn where τ−1(αn) > τ−1(γ), or τ−1(γ) > τ−1(βn).

We complete the proof by showing that each case (a), (b), or (c) implies ûαnβn
ŷ ≡ 0 modulo

the relations (1.1).
If (a) holds: By Theorem 3.6 we may assume that ŷ is any maximal chain. Let ŷ = ẑûα1β1

.
Note that if αn ∈ dw

(

ẑ1) then the induction hypothesis applies and we are done. We can thus

assume that αn = α1. But this must be true for any maximal chain ŷ. Since α1 = min
(

dw(τ)
)

for the DCM-chain, we have αn = min
(

dw(τ)
)

. Now let ŷ be the CM-chain, and consider
its initial segment ûαmβm

· · · ûα1β1
where β1 = α2 < β2 = α3 < · · · < βm−1 = αm and

βm = max
(

up(τ)
)

. If
∣

∣up(τ)
∣

∣ > 1, then m < n − 1. Consider the next operator ûαm+1βm+1
.

Since α1 = min
(

dw(τ)
)

, we have α1 < αm + 1, and since βm = max
(

up(τ)
)

, we have βm+1 <

βm. Thus we may apply a sequence of the relations (1)-(3) of (1.1), as in (3.5), to obtain
ŷ ≡ ẑ′ûαm+1β′ for some ẑ′ and β′. Since αn = α1 ∈ dw

(

ẑ′1), the induction hypothesis applies

to conclude ûαnβn
ẑ′ ≡ 0. Thus we may assume that (a) holds and

∣

∣up(τ)
∣

∣ = 1. That is,
β1 = α2 < β2 = α3 < · · · < βn−2 = αn−1 and αn = α1. If βn < αn−1 or βn > βn−1 then
we apply relation (3) to obtain ûαnβn

ŷ ≡ ûαn−1βn−1
ûαnβn

ûαn−2βn−2
· · · ûα1β1

≡ ûαn−1βn−1
ŷ′, and

ŷ′ ≡ 0 by the induction hypothesis. If βn = αn−1 then we may apply relation (2) to obtain
ûαnβn

x̂ ≡ ûαn−2βn−2
ûαnαn−2

ûαn−2βn−1
· · · ûα1β1

, which is equivalent to 0 as before. Finally if
ûαnβn

ûαn−1βn−1
≡ 0

If (b) holds: This case is similar to (a), the map Ωn from Lemma 3.3 can be used to interchange
the roles of conditions (a) and (b).
If (c) holds: Assume that τ−1(αn) > τ−1(γ). The other case, τ−1(γ) > τ−1(βn), is argued
in a similar fashion using the map Ωn. We may also assume that (a) does not hold, hence
we have τ−1(γ) < τ−1(αn) ≤ αn < γ < βn and, in particular, γ ∈ up(τ). Let γ be minimal
with these properties. We may assume that ŷ is the CM-chain and we let ŷ = ûαn−1βn−1

ẑ and
ẑ1 = σ ∈ S∞. In this case βn−1 = min

(

up(τ)
)

≤ γ. If βn−1 < γ then the minimality of γ
implies βn−1 ≤ αn. We have a four sub-cases:

(i) If βn−1 = γ and αn−1 ≤ αn, then ûαnβn
ûαn−1βn−1

≡ 0 is an instance of relation (4) of
(1.1).

(ii) If βn−1 = γ and αn−1 > αn, then ûαnβn
ŷ ≡ ûαn−1βn−1

ûαnβn
ẑ. Since τ−1(γ) < αn and

x is the CM-chain, we must have βn−2 = αn−1. So αn < αn−1 = βn−2 < γ < βn and
σ−1(βn−2) = τ−1(γ) < αn. By the induction hypothesis ûαnβn

ŷ ≡ 0.
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(iii) If βn−1 < αn, then ûαnβn
ŷ ≡ ûαn−1βn−1

ûαnβn
ẑ where σ−1(βn−2) = τ−1(γ). The induction

hypothesis applies and again ûαnβn
ẑ ≡ 0.

(iv) If βn−1 = αn, then since ŷ is the CM-chain, the minimality of γ implies that βm = γ < βn

for some 1 ≤ m ≤ n− 2, with

αn = βn−1 > αn−1 = βn−2 > · · · > αm+2 = βm+1 > αm+1.

For some 1 ≤ s ≤ m we also have

γ = βm > αm = βm−1 > · · · > αs+1 = βs,

where αs = τ−1(γ) < τ−1(αn) = αm+1. If s > 1 we may appeal to the induction
hypothesis and get ûαnβn

ŷ ≡ 0. Thus we may assume that s = 1. Also, since α1 <

αm+1 < βm+1 ≤ αn < γ = βm we may apply relations (1)-(3) as in (3.5) to obtain

ûαm+1βm+1
ûαmβm

· · · ûα1β1
≡ ûα′

mβ′

m
· · · ûα′

1
β′

1
ûαm+1βm+1

,

where γ = βm = β′
m, β

′
m−1 = α′

m, β
′
m−2 = α′

m−1, . . ., β
′
1 = α′

2 and α′
1 = α1. Hence we

can use the induction hypothesis on ûαnβn
· · · ûαm+2βm+2

ûα′

mβ′

m
· · · ûα′

1
β′

1
, to obtain

ûαnβn
· · · ûαm+2βm+2

ûα′

mβ′

m
· · · ûα′

1
β′

1
≡ 0,

and this concludes our proof. ¤

Proof [of Theorem 1.2]

(a) This is a direct consequence of Proposition 3.4 and Proposition 3.5.
(b) Theorem 3.6 and Theorem 3.7 imply that the operators ûαβ satisfy the relations (1.1).

Equation (3.1) gives the characterization part.
(c) This is a consequence of (b), Theorem 3.6, and Theorem 3.7.
(d) Injection is from part (b) and (c). Surjection is given by Proposition 3.5.
(e) Follows from the definitions of ¹ and ûαβ.
(f) This is a direct consequence (a)-(f) above. ¤

4. A description of c
ζ
λ.

We give a description of the constants cζλ appearing in Equation (1.3) using the elements of
M. This will be useful in some subsequent work [3, 4]. It can also be used by the interested
reader to derive combinatorial proofs of many of the geometrical identities of [2].
Recall that the Schur polynomial Sλ(x1, x2, . . . , xk) equals Sv(λ,k) for a unique Grassmannian

permutation v(λ, k). We have

SuSv(λ,k) =
∑

w

cwuv(λ,k)Sw. (4.1)

First we consider a special case of (4.1). The Schubert polynomial Sv((n),k) =
hn(x1, x2, . . . , xk) is the homogeneous symmetric polynomial on k variables. Lascoux and
Schützenberger [7] formulated a Pieri-type formula for SuSv((n),k). In [1], proven in [13],
we have reformulated this rule. Using Theorem 1.2, we can state it here as follows:

SuSv((n),k) =
∑

x̂ = ûαnβn
· · · ûα1β1

6≡ 0

α1<α2<···<αn

S(x̂1)u. (4.2)
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There are now other proofs of (4.2), some of them are combinatorial [12, 15]. Let p =
(p1, p2, . . . , pr) be a sequence of r integers such that p1 + p2 + · · · + pr = n. We say that
a u-composition x̂ = ûαnβn

· · · ûα1β1
weakly fits p if

α1 < α2 < · · · < αp1 ,

αp1+1 < αp1+2 < · · · < αp1+p2 ,
...

αn−pr+1 < αn−pr+2 < · · · < αn,

and for all i, we have pi ≥ 0. Let Hp(ζ) = {x̂ ∈ Ru(ζ) : ζ = x̂1 and x̂ weakly fits p}. Note
that Hp(ζ) = ∅ if some pi < 0.

Remark 4.1. From (4.2), Hp(wu
−1) is the coefficient of Sw in the product

SuSv((p1),k)Sv((p2),k) · · ·Sv((pr),k)

when all pi > 0.

Now consider the Jacobi identity [11]: for λ = (λ1, λ2, . . . , λr) a partition of n,

Sv(λ,k) = Sλ(x1, x2, . . . , xk) = det (hλi+j−i(x1, x2, . . . , xk))1≤i,j≤r
, (4.3)

where h0(x1, x2, . . . , xk) = 1, hn(x1, x2, . . . , xk) = Sv((n),k) for n > 0, and hn = 0 for n < 0. For

σ ∈ Sr, let λσ =
(

λσ(1), λσ(2), . . . , λσ(r)
)

, where λσ(i) = λσ(i) + i − σ(i). Denote by ǫ(σ) the
sign of the permutation σ ∈ Sr. Expanding the determinant (4.3) in (4.1), and using (4.2), we
get

SuSv(λ,k) =
∑

σ∈Sr

ǫ(σ)SuSv((λσ(1)),k)Sv((λσ(2)),k) · · ·Sv((λσ(r)),k)

=
∑

w∈S∞

(

∑

σ∈Sr

ǫ(σ)
∣

∣Hλσ
(wu−1)

∣

∣

)

Sw.

Thus

cwuv(λ,k) =
∑

σ∈Sr

ǫ(σ)
∣

∣Hλσ
(wu−1)

∣

∣ .

This is a consequence of Theorem 1.2. From this we deduce the following proposition.

Proposition 4.2.

(1) cwuv(λ,k) = 0 if u 6≤k w, and

(2) if u ≤k w then cwuv(λ,k) depends only on λ and wu−1.

Hence, cζλ := cwuv(λ,k) is well defined for any u ≤k w with ζ = wu−1. We have

Theorem 4.3. c
ζ
λ =

∑

σ∈Sr

ǫ(σ) |Hλσ
(ζ)|.

Let us illustrate Theorem 4.3 on an example. Let ζ = (2, 5, 4, 1, 6, 3). Using Proposition 3.5
we have (3, 1, 2, 5, 6, 4) = u ≤4 ζu = (4, 2, 5, 6, 3, 1). In Figure 2, we have drawn the interval
[u, ζu]4 and we have labeled each covering edge in the interval by the index α of the correspond-
ing ûαβ. Here we have removed the commas and parentheses to represent the permutations in
a more compact form. Note that there are 14 maximal chains in this interval.
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312654412563

312564

314562

324561314652412653413562

423561 413652 324651

423651 415632 325641

425631

3
5

2

315642

3 1 3

2 4 51

3 3
1

415

15

5
2352 1

Figure 2. The interval [(3, 1, 2, 5, 6, 4), (4, 2, 5, 6, 3, 1)]4.

Theorem 4.3 gives us that

c
ζ

(2,2,1) =
∣

∣H(2,2,1)(ζ)
∣

∣−
∣

∣H(1,3,1)(ζ)
∣

∣−
∣

∣H(2,0,3)(ζ)
∣

∣+
∣

∣H(1,0,4)(ζ)
∣

∣

+
∣

∣H(−1,3,3)(ζ)
∣

∣−
∣

∣H(−1,2,4)(ζ)
∣

∣ .

The sets H(−1,3,3)(ζ) and H(−1,2,4)(ζ) are both empty since the indices contains a negative
component. Looking at Figure 2, we find H(2,2,1)(ζ) = {û12û35û23û56û34, û34û45û12û56û24}

and H(1,3,1)(ζ) = H(2,0,3)(ζ) = ∅. Hence c
ζ

(2,2,1) = 2. Now for λ = (2, 1, 1, 1) and σ ∈

S4, the sequences λσ that do not contains a negative component are (2, 1, 1, 1), (2, 1, 0, 2),
(2, 0, 2, 1), (2, 0, 0, 3), (0, 3, 1, 1), (0, 3, 0, 2), (0, 0, 4, 1) and (0, 0, 0, 5). For our example, we have
∣

∣H(2,1,1,1)(ζ)
∣

∣ = 5,
∣

∣H(2,1,0,2)(ζ)
∣

∣ = 2,
∣

∣H(2,0,2,1)(ζ)
∣

∣ = 2 and all the others are empty. Hence

c
ζ

(2,1,1,1) = 5 − 2 − 2 = 1. Using (1.3) for this example, we get c
ζ
λ = 0 for the other λ, since

14 = 5 ∗ 2 + 4 ∗ 1 is the total number of maximal chains.
Most of the geometrical identities of [2] can now be proven combinatorially using Theo-

rem 4.3, but some of them are still very surprising. For example, Theorem H of [2] states that

for γ = (1, 2, 3, . . . , n) and ζ in Sn, c
ζ
λ = c

γζγ−1

λ . We do not know how to show this combinatori-
ally. Here, Equation (1.3) implies that

∣

∣Ru(ζ)
∣

∣ =
∣

∣Ru(γζγ
−1)

∣

∣. This suggests the existence of
a bijection ϕ : Ru(ζ) −→ Ru(γζγ

−1). Note that the two Posets [1, ζ]¹ and [1, γζγ−1]¹ are not
necessarily isomorphic. For example let ζ = (2, 4, 1, 3), the interval [1, γζγ−1]¹ is a hexagon
and [1, ζ]¹ is not, it is a kite. On the other hand, since the Jacobi identity (4.3) is invertible, the

equality c
ζ
λ = c

γζγ−1

λ implies that
∣

∣Hp(ζ)
∣

∣ =
∣

∣Hp(γζγ
−1)

∣

∣ for any p. Is it possible to construct

the bijection ϕ such that ϕ
(

Hp(ζ)
)

= Hp(γζγ
−1)?

We should point out that Theorem 4.3 needs to be improved. It is a useful combinatorial
description of the c

ζ
λ but it is unsatisfactory. It would be more elegant to have a formula that

does not involve signs. There are still many open questions about the Grassmannian Bruhat
order. We shall conclude with a list of them:
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(i) As suggested by Equation (1.3), can we find a representation of the symmetric group

Sℓu (ζ) on QRu(ζ) with character given by
∑

λ c
ζ
λχ

λ?
(ii) Can we find a partition of Ru(ζ) similar to the one discussed after Eq. (2.2)?

(iii) Can we describe the polynomial Pn(t) =
∑

ζ∈Sn

tℓu (ζ)?

(iv) What are the properties of the partial order ¹. e.g. What is its Möbius function?
Is any interval Cohen-Macauley? (We should mention here that the intervals contain
hexagons in general, hence they are not shellable in the classical sense.)

(v) Is it possible to find a faithful representation of M as operators on the polynomial ring
Z[x1, x2, x3, . . .]?

Acknowledgment The authors are grateful to M. Shimozono and many others for stimulat-
ing conversations.
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