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ABSTRACT
Numerical homotopy continuation gives a powerful tool for
the applied scientist who seeks solutions to a system of poly-
nomial equations. Techniques from numerical homotopy
continuation can also be useful in pure mathematical re-
search. We discuss applications of a particular homotopy
continuation idea that leads to probabilistic numerical algo-
rithms for construction of monodromy groups.

One such application is used to analyze positive-dimensional
solutions of polynomial systems. It is called the monodromy
breakup method and partitions a witness set representing a
positive-dimensional solution into irreducible components.
Leykin and Jan Verschelde have implemented two parallel
versions of this algorithm which show good speedups.

We use numerical homotopy continuation to compute Ga-
lois groups of certain enumerative geometric problems com-
ing from Schubert calculus. The basic idea is similar: given a
parametric family of 0-dimensional polynomial systems, we
construct loops in the parameter space, follow the solution
paths along these loops to obtain a permutation of the set of
the solutions. These permutations are used to compute the
subgroup of the full symmetric group that they generate.
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1. IRREDUCIBLE DECOMPOSITION VIA
MONODROMY BREAKUP

Polynomial equations are ubiquitous not only in pure and
applied mathematics, but also in the other sciences and en-
gineering. Indeed, the increasing computational power of
modern computer systems gives resources to devote to the-
oretical models that are not necessarily linear.

Some basic information one would like about a system
of polynomial equations is the structure of its solution set.
When there are finitely many solutions (the solution set has
dimension zero), this amounts to computing the solutions.
Numerical homotopy methods are very effective here: they
can approximate any solution to any degree of precision.

Numerical algebraic geometry [8, 9] represents positive-di-
mensional solution sets through witness sets, which consist
of general points in the solution set. We simplify this rep-
resentation by finding an irreducible decomposition of the
solution set as an algebraic variety.

Monodromy breakup is an algorithm to do this. With

it, witness points on the same irreducible component are
connected by path tracking techniques applying the idea of
monodromy, i.e, creating loops around singularities. Com-
puting a linear trace for each component certifies the decom-
position. Leykin and Verschelde [6] implemented a parallel
version which performs well well on solution sets of relatively
high degrees defined by systems of low degree polynomials.
Another monodromy breakup algorithm was later developed
and implemented [5]. This new algorithm works faster even
on a single processor. On multiple processors, it avoids syn-
chronization issues of the original algorithm, and therefore
makes making fuller use of the resources.

Both implementations – the original version and the more
efficient new one – are based on parallel PHCpack routines
[4], which in turn use MPI for communication.

2. GALOIS GROUP COMPUTATION OF
SCHUBERT PROBLEMS

The Schubert calculus [3] is a well-studied class of geo-
metric problems involving linear subspaces. Here is the pro-
totypical problem: how many lines in space meet four given
lines? To answer this, note that three lines ℓ1, ℓ2, ℓ3 lie on a
unique doubly-ruled hyperboloid.
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These lines lie in one ruling and the second ruling consisting
of the lines meeting the given three lines. The fourth line
ℓ4 meets the hyperboloid in two points. Through each of
these points there is a line in the second ruling, and these
are the two lines meeting our four given lines. The Galois
group is the group of permutations of the solutions which is
generated by following loops in the space of lines ℓ1, . . . , ℓ4.
One such loop is given by rotating ℓ4 about the point p.
This interchanges the two solution lines, showing that the
Galois group of this problem is the full symmetric group on
two letters.

A general description of the basic problem of Schubert
calculus and a symbolic-numerical approach for finding its



solution is presented in [2]. Galois/monodromy groups for
Schubert problems are discussed in [10] and for more general
enumerative geometric problems in [1].

The application of numerical homotopy to Galois group
computation is straightforward. We consider a parametric
family of such problems P (x,a), numerically obtain the fi-
nite solution set S0 = S(a0) for one instance obtained by
specialization to a generic set of parameters a0. Then we
create random loops in the space of parameters (in this case
flags) and numerically follow the solutions to get a permu-
tation of S0. Repeating this gives a list of permutations
which generate a subgroup of the Galois group of our Schu-
bert problem. We repeat this until either the full symmetric
group is found, or we reach some other stopping criteria.

The initial implementation of this idea in Maple using
the PHCmaple package [7] works for small (14 or fewer so-
lutions) Schubert problems in Grassmannians of subspaces
of C

6. Using more resources – in particular, distributed re-
sources – and lower-level programming languages will speed
up the implementation making the computation for more
complicated Schubert problems possible.

Similarly to the monodromy breakup procedures, our al-
gorithm for Galois groups if Schubert problems is highly
parallelizable. We are developing code involving parallel
PHCpack to use in a project to perform the computation
for all small (fewer than 100 solutions) Schubert problems
on all small Grassmannian (involving subspaces in C

10 or
smaller vector spaces). In all, we expect to determine Ga-
lois groups of perhaps 10,000 Schubert problems.
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