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THE PHASE LIMIT SET OF A VARIETY

MOUNIR NISSE AND FRANK SOTTILE

Abstract. A coamoeba is the image of a subvariety of a complex torus under the argument
map to the real torus. We describe the structure of the boundary of the coamoeba of a variety,
which we relate to its logarithmic limit set. Detailed examples of lines in three-dimensional
space illustrate and motivate these results.

1. Introduction

A coamoeba is the image of a subvariety of a complex torus under the argument map to
the real torus. Coamoebae are cousins to amoebae, which are images of subvarieties under the
coordinatewise logarithm map z 7→ log |z|. Amoebae were introduced by Gelfand, Kapranov,
and Zelevinsky in 1994 [7], and have subsequently been widely studied [9, 10, 14, 15]. Coamoe-
bae were introduced by Passare in a talk in 2004, and they appear to have many beautiful and
interesting properties. For example, coamoebae of A-discriminants in dimension two are unions
of two non-convex polyhedra [11], and a hypersurface coamoeba has an associated arrangement
of codimension one tori contained in its closure [12].
Bergman [3] introduced the logarithmic limit set L ∞(X) of a subvariety X of the torus as

the set of limiting directions of points in its amoeba. Bieri and Groves [4] showed that L ∞(X)
is a rational polyhedral complex in the sphere. Logarithmic limit sets are now called tropical
algebraic varieties [16]. For a hypersurface V(f), logarithmic limit set L ∞(V(f)) consists of
the directions of non-maximal cones in the outer normal fan of the Newton polytope of f .
We introduce a similar object for coamoebae and establish a structure theorem for coamoebae
similar to that of Bergman and of Bieri and Groves for amoebae.
Let coA (X) be the coamoeba of a subvariety X of (C∗)n with ideal I. The phase limit set of

X, P∞(X), is the set of accumulation points of arguments of sequences in X with unbounded
logarithm. For w ∈ R

n, the initial variety inwX ⊂ (C∗)n is the variety of the initial ideal of
I. The fundamental theorem of tropical geometry asserts that inwX 6= ∅ exactly when the
direction of −w lies in L ∞(X). We establish its analog for coamoebae.

Theorem 1. The closure of coA is coA (X) ∪ P∞(X), and

P
∞(X) =

⋃

w 6=0

coA (inwX) .

Johansson [8] used different methods to prove this when X is a complete intersection.

1991 Mathematics Subject Classification. 14T05, 32A60.
Research of Sottile supported in part by NSF grant DMS-1001615 and the Institut Mittag-Leffler.

1



2 MOUNIR NISSE AND FRANK SOTTILE

The cone over the logarithmic limit set admits the structure of a rational polyhedral fan Σ
in which all weights w in the relative interior of a cone σ ∈ Σ give the same initial scheme
inwX. Thus the union in Theorem 1 is finite and is indexed by the images of these cones σ
in the logarithmic limit set of X. The logarithmic limit set or tropical algebraic variety is
a combinatorial shadow of X encoding many properties of X. While the coamoeba of X is
typically not purely combinatorial (see the examples of lines in (C∗)3 in Section 3), the phase
limit set does provide a combinatorial skeleton which we believe will be useful in the further
study of coamoebae.
We give definitions and background in Section 2, and detailed examples of lines in three-

dimensional space in Section 3. These examples are reminiscent of the concrete descriptions of
amoebae of lines in [18]. We prove Theorem 1 in Section 4.

2. Coamoebae, tropical varieties and initial ideals

As a real algebraic group, the set T := C
∗ of invertible complex numbers is isomorphic to

R×U under the map (r, θ) 7→ er+
√
−1θ. Here, U is the set of complex numbers of norm 1 which

may be identified with R/2πZ. The inverse map is z 7→ (log |z|, arg(z)).
Let M be a free abelian group of finite rank and N = Hom(M,Z) its dual group. We

use 〈·, ·〉 for the pairing between M and N . The group ring C[M ] is the ring of Laurent
polynomials with exponents in M . It is the coordinate ring of a torus TN which is identified
with N ⊗Z T = Hom(M,T), the set of group homomorphisms M → T. There are natural
maps Log : TN → RN = N ⊗Z R and arg : TN → UN = N ⊗Z U, which are induced by the
maps C

∗ ∋ z 7→ log |z| and z 7→ arg(z) ∈ U. Maps N → N ′ of free abelian groups induce
corresponding maps TN → TN ′ of tori, and also of RN and UN . If n is the rank of N , we may
identify N with Z

n, which identifies TN with T
n, UN with U

n, and RN with R
n.

The amoeba A (X) of a subvariety X ⊂ TN is its image under the map Log : TN → RN ,
and the coamoeba coA (X) of X is the image of X under the argument map arg : TN → UN .
An amoeba has a geometric-combinatorial structure at infinity encoded by the logarithmic
limit set [3, 4]. Coamoebae similarly have phase limit sets which have a related combinatorial
structure that we define and study in Section 4.
If we identify C∗ with R

2\{(0, 0)}, then the map arg : C∗ → U given by (a, b) 7→ (a, b)/
√
a2 + b2

is a real algebraic map. Thus, coamoebae, as they are the image of a real algebraic subset of
the real algebraic variety TN under the real algebraic map arg, are semialgebraic subsets of
UN [1]. It would be very interesting to study them as semi-algebraic sets, in particular, what
are the equations and inequalities satisfied by a coamoeba? When X is a Grassmannian, such
a description would generalize Richter-Gebert’s five-point condition for phirotopes from rank
two to arbitrary rank [2].
Similarly, we may replace the map C

∗ ∋ z 7→ log |z| ∈ R in the definition of amoebae by the
map C

∗ ∋ z 7→ |z| ∈ R
+ := {r ∈ R | r > 0} to obtain the algebraic amoeba of X, which is a

subset of R+
N . The algebraic amoeba is a semi-algebraic subset of R+

N , and we also ask for its
description as a semi-algebraic set.
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Example 2. Let ℓ ⊂ T
2 be defined by x + y + 1 = 0. The coamoeba coA (ℓ) is the set of

points of U2 of the form (arg(x), π + arg(x + 1)) for x ∈ C \ {0,−1}. If x is real, then these
points are (±π, 0), (±π,±π), and (0,±π) if x lies in the intervals (−∞,−1), (−1, 0), and (0,∞)
respectively. For other values, consider the picture below in the complex plane.

x x+ 1

R0

arg(x+ 1)»»9arg(x) XXXz

For arg(x) 6∈ {0, π} fixed, π + arg(x+1) can take on any value strictly between π + arg(x) (for
w near ∞) and 0 (for x near 0), and thus coA (ℓ) consists of the three points (π, 0), (π, π),
and (0, π) and the interiors of the two triangles displayed below in the fundamental domain
[−π, π]2 ⊂ R

2 of U2. This should be understood modulo 2π, so that π = −π.

(1)

−π

0

π

−π 0 π
-

arg(x)

6

arg(y) = π + arg(x+1)

The coamoeba is the complement of the region

{(α, β) ∈ [−π, π]2 : |α− β| ≤ π = arg(−1)} ,
together with the three images of real points (±π, 0), (±π,±π), and (0,±π).
Given a general line ax + by + c = 0 with a, b, c ∈ C

∗, we may replace x by cx′/a and y by
cy′/b, to obtain the line x′ + y′ + 1 = 0, with coamoeba (1). This transformation rotates the
coamoeba (1) by arg(a/c) horizontally and arg(b/c) vertically.

Let f ∈ C[M ] be a polynomial with support A ⊂ M ,

(2) f =
∑

m∈A
cm · ξm , cm ∈ C

∗ ,

where we write ξm for the element of C[M ] corresponding to m ∈ M . Given w ∈ RN , let w(f)
be the minimum of 〈m, w〉 for m ∈ A. Then the initial form inwf of f with respect to w ∈ RN

is the polynomial inwf ∈ C[M ] defined by

inwf :=
∑

〈m,w〉=w(f)

cm · ξm .

Given an ideal I ⊂ C[M ] and w ∈ RN , the initial ideal with respect to w is

inwI := 〈inwf | f ∈ I〉 ⊂ C[M ] .

Lastly, when I is the ideal of a subvariety X, the initial scheme inwX ⊂ TN is defined by the
initial ideal inwI.
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The sphere SN := (RN \ {0})/R+ is the set of directions in RN . Write π : RN \ {0} → SN

for the projection. The logarithmic limit set L ∞(X) of a subvariety X of TN is the set of
accumulation points in SN of sequences {π(Log(xn))} where {xn} ⊂ X is an unbounded set.
A sequence {xn} ⊂ TN is unbounded if its sequence of logarithms {Log(xn)} is unbounded.
A rational polyhedral cone σ ⊂ RN is the set of points w ∈ RN which satisfy finitely many

inequalities and equations of the form

〈m, w〉 ≥ 0 and 〈m′, w〉 = 0 ,

where m,m′ ∈ M . The dimension of σ is the dimension of its linear span, and faces of σ are
proper subsets of σ obtained by replacing some inequalities by equations. The relative interior
of σ consists of its points not lying in any face. Also, σ is determined by σ ∩ N , which is a
finitely generated subsemigroup of N .
A rational polyhedral fan Σ is a collection of rational polyhedral cones in RN in which every

two cones of Σ meet along a common face.

Theorem 3. The cone in RN over the negative −L ∞(X) of the logarithmic limit set of X is
the set of w ∈ RN such that inwX 6= ∅. Equivalently, it is the set of w ∈ RN such that for every
f ∈ C[M ] lying in the ideal I of X, inwf is not a monomial.
This cone over −L ∞(X) admits the structure of a rational polyhedral fan Σ with the property

that if u, w lie in the relative interior of a cone σ of Σ, then inuI = inwI.

It is important to take −L ∞(X). This is correct as we use the tropical convention of
minimum, which is forced by our use of toric varieties to prove Theorem 1 in Section 4.2.
We write inσI for the initial ideal defined by points in the relative interior of a cone σ of

Σ. The fan structure Σ is not canonical, for it depends upon an identification M
∼−→ Z

n.
Moreover, it may be the case that σ 6= τ , but inσI = inτI.
Bergman [3] defined the logarithmic limit set of a subvariety of the torus TN , and Bieri and

Groves [4] showed it was a finite union of convex polyhedral cones. The connection to initial
ideals was made more explicit through work of Kapranov [5] and the above form is adapted from
Speyer and Sturmfels [16]. The logarithmic limit set of X is now called the tropical algebraic
variety of X, and this latter work led to the field of tropical geometry.

3. Lines in space

We consider coamoebae of lines in three-dimensional space. We will work in the torus TP3

of P3, which is the quotient of T4 by the diagonal torus ∆T and similarly in UP
3, the quotient

of U4 by the diagonal ∆U := {(θ, θ, θ, θ) | θ ∈ U}. By coordinate lines and planes in UP
3 we

mean the images in UP
3 of lines and planes in U

4 parallel to some coordinate plane.
Let ℓ be a line in P

3 not lying in any coordinate plane. Then ℓ has a parameterization

(3) φ : P
1 ∋ [s : t] 7−→ [ℓ0(s, t) : ℓ1(s, t) : ℓ2(s, t) : ℓ3(s, t)] ,

where ℓ0, ℓ1, ℓ2, ℓ3 are non-zero linear forms which do not all vanish at the same point. For
i = 0, . . . , 3, let ζi ∈ P

1 be the zero of ℓi. The configuration of these zeroes determine the
coamoeba of ℓ ∩ TP

3, which we will simply write as coA (ℓ).
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Suppose that two zeroes coincide, say ζ3 = ζ2. Then ℓ3 = aℓ2 for some a ∈ C
∗, and so ℓ lies

in the translated subtorus z3 = az2 and its coamoeba coA (ℓ) lies in the coordinate subspace
of U3 defined by θ3 = arg(a) + θ2. In fact, coA (ℓ) is pulled back from the coamoeba of the
projection of ℓ to the θ3 = 0 plane. It follows that if there are only two distinct roots among
ζ0, . . . , ζ3, then coA (ℓ) is a coordinate line of U3. If three of the roots are distinct, then (up to
a translation) the projection of the coamoeba coA (ℓ) to the θ3 = 0 plane looks like (1) so that
coA (ℓ) consists of two triangles lying in a coordinate plane.
For each i = 0, . . . , 3 define a function depending upon a point [s : t] ∈ P

1 and θ ∈ U by

ϕi(s, t; θ) =

{

θ if ℓi(s, t) = 0 ,
arg(ℓi(s, t)) otherwise

.

For each i = 0, . . . , 3, let hi be the image in UP
3 of U under the map

θ 7−→ [ϕ0(ζi, θ), ϕ1(ζi, θ), ϕ2(ζi, θ), ϕ3(ζi, θ)] .

Lemma 4. For each i = 0, . . . , 3, hi is a coordinate line in UP
3 that consists of accumulation

points of coA (ℓ).

This follows from Theorem 1. For the main idea, note that arg ◦φ(ζi + ǫeθ
√
−1) for θ ∈ U is a

curve in UP
3 whose Hausdorff distance to the line hi approaches 0 as ǫ → 0. The phase limit

set of ℓ is the union of these four lines.

Lemma 5. Suppose that the zeroes ζ0, ζ1, ζ2 are distinct. Then

P
1 \ {ζ0, ζ1, ζ2} ∋ x 7−→ arg(ℓ0(x), ℓ1(x), ℓ2(x)) ∈ U

3/∆U = UP
2

is constant along each arc of the circle in P
1 through ζ0, ζ1, ζ2.

Proof. After changing coordinates in P
1 and translating in UP

2 (rotating coordinates), we may
assume that these roots are ∞, 0,−1 and so the circle becomes the real line. Choosing affine
coordinates, we may assume that ℓ0 = 1, ℓ1 = x and ℓ2 = x+1, so that we are in the situation
of Example 2. Then the statement of the lemma is the computation there for x real in which
we obtained the coordinate points (π, 0), (π, π), and (0, π). ¤

Lemma 6. The phase limit lines h0, h1, h2, and h3 are disjoint if and only if the roots ζ0, . . . , ζ3
do not all lie on a circle.

Proof. Suppose that two of the limit lines meet, say h0 and h1. Without loss of generality, we
suppose that we have chosen coordinates on U

4 and P
1 so that ζi ∈ C and ℓi(x) = x − ζi for

i = 0, . . . , 3. Then there are points α, β, θ ∈ U such that

(ϕ0(ζ0, α), ϕ1(ζ0, α), ϕ2(ζ0, α), ϕ3(ζ0, α))

= (ϕ0(ζ1, β), ϕ1(ζ1, β), ϕ2(ζ1, β), ϕ3(ζ1, β)) + (θ, θ, θ, θ) .

Comparing the last two components, we obtain

arg(ζ0 − ζ2) = arg(ζ1 − ζ2) + θ and arg(ζ0 − ζ3) = arg(ζ1 − ζ3) + θ ,
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and so the zeroes ζ0, . . . , ζ3 have the configuration below.

θ
θ

ζ3
ζ2

ζ0 ζ1

But then ζ0, . . . , ζ3 are cocircular. Conversely, if ζ0, . . . , ζ3 lie on a circle C, then by Lemma 5
the lines hi and hj meet only if ζi and ζj are the endpoints of an arc of C \ {ζ0, . . . , ζ3}. ¤

Lemma 7. If the roots ζ0, . . . , ζ3 do not all lie on a circle, then the map

arg ◦φ : P
1 \ {ζ0, ζ1, ζ2, ζ3} −→ UP

3

is an immersion.

Proof. Let x ∈ P
1 \ {ζ0, ζ1, ζ2, ζ3}, which we consider to be a real two-dimensional manifold.

After possibly reordering the roots, the circle C1 containing x, ζ0, ζ1 meets the circle C2 con-
taining x, ζ2, ζ3 transversally at x. Under the derivative of the map arg ◦φ, tangent vectors at x
to C1 and C2 are taken to nonzero vectors (0, 0, u1, v1) and (u2, v2, 0, 0) in the tangent space to
U

4. Furthermore, as the four roots do not all lie on a circle, we cannot have both u1 = v1 and
u2 = v2, and so this derivative has full rank two at x, as a map from P

1 \ {ζ0, ζ1, ζ2, ζ3} → UP
3,

which proves the lemma. ¤

By these lemmas, there is a fundamental difference between the coamoebae of lines when
the roots of the lines ℓi are cocircular and when they are not. We examine each case in detail.
First, choose coordinates so that ζ0 = ∞. After dehomogenizing and separately rescaling each
affine coordinate (e.g. identifying UP

3 with U
3 and applying phase shifts to each coordinate

θ1, θ2, θ3 of U3), we may assume that the map (3) parametrizing ℓ is

(4) φ : C ∋ x 7−→ (x− ζ1, x− ζ2, x− ζ3) ∈ C
3 .

Suppose first that the four roots are cocircular. As z0 = ∞, the other three lie on a real line
in C, which we may assume is R. That is, if the four roots are cocircular, then up to coordinate
change, we may assume that the line ℓ is real and the affine parametrization (4) is also real. For
this reason, we will call such lines ℓ real lines. We first study the boundary of coA (ℓ). Suppose
that x lies on a contour C in the upper half plane as in Figure 1 that contains semicircles of

ζ1 ζ2 ζ3

R

C

Figure 1. Contour in upper half-plane

radius ǫ centered at each root and a semicircle of radius 1/ǫ centered at 0, but otherwise lies
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along the real axis, for ǫ a sufficiently small positive number. Then arg(φ(w)) ∈ U
3 is constant

on the four segments of C lying along R with respective values

(5) (π, π, π) , (0, π, π) , (0, 0, π) , and (0, 0, 0) ,

moving from left to right. On the semicircles around ζ1, ζ2, and ζ3, two of the coordinates are
essentially constant (but not quite equal to either 0 or π!), while the third decreases from π
to 0. Finally, on the large semicircle, the three coordinates are nearly equal and increase from
(0, 0, 0) to (π, π, π). The image arg(φ(C)) can be made as close as we please to the quadrilateral
in U

3 connecting the points of (5) in cyclic order, when ǫ is sufficiently small. Thus the image
of the upper half plane under the map arg ◦φ is a relatively open membrane in U

3 that spans
the quadrilateral. It lies within the convex hull of this quadrilateral, which is computed using
the affine structure induced from R

3 by the quotient U3 = R
3/(2πZ)3.

For this, observe that its projection in any of the four coordinate directions parallel to its
edges is one of the triangles of the coamoeba of the projected line in CP

2 of Example 2, and
the convex hull of the quadrilateral is the intersection of the four preimages of these triangles.
Because ℓ is real, the image of the lower half plane is isomorphic to the image of the upper

half plane, under the map (θ1, θ2, θ3) 7→ (−θ1,−θ2,−θ3) and so the coamoeba is symmetric in
the origin of U3 and consists of two quadrilateral patches that meet at their vertices. Here are
two views of the coamoeba of the line where the roots are ∞,−1/2, 0, 3/2:

Now suppose that the roots ζ0, . . . , ζ3 do not all lie on a circle. By Lemma 6, the four
phase limit lines h1, . . . , h3 are disjoint and the map from ℓ to the coamoeba is an immersion.
Figure 2 shows two views of the coamoeba in a fundamental domain of UP3 when the roots are
∞, 1, ζ, ζ2, where ζ is a primitive third root of infinity. This and other pictures of coamoebae
of lines are animated on the webpage [13].
The projection of this coamoeba along a coordinate direction (parallel to one of the phase

limit lines hi) gives a coamoeba of a line in TP
2, as we saw in Example 2. The line hi is

mapped to the interior of one triangle and the vertices of the triangles are the images of line
segments lying on the coamoeba. These three line segments come from the three arcs of the
circle through the three roots other than ζi, the root corresponding to hi.

Proposition 8. The interior of the coamoeba of a general line in TP
3 contains 12 line segments

in triples parallel to each of the four coordinate directions.
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Figure 2. Two views of the coamoeba of a symmetric line.

The symmetric coamoeba we show in Figure 2 has six additional line segments, two each
coming from the three longitudinal circles through a third root of unity and 0,∞. Two such
segments are visible as pinch points in the leftmost view in Figure 2. We ask: What is the
maximal number of line segments on a coamoeba of a line in TP

3?

4. Structure of the Phase limit set

The phase limit set P∞(X) of a complex subvariety X ⊂ TN is the set of all accumulation
points of sequences {arg(xn) | n ∈ N} ⊂ UN , where {xn | n ∈ N} ⊂ X is an unbounded
sequence. For w ∈ N , inwX ⊂ TN is the (possibly empty) initial scheme of X, whose ideal is
the initial ideal inwI, where I is the ideal of X. Our main result is that the phase limit set of
X is the union of the coamoebae of all its initial schemes.

Theorem 1. The closure of coA is coA (X) ∪ P∞(X), and

P
∞(X) =

⋃

w 6=0

coA (inwX) .

Remark 9. This is a finite union. By Theorem 3, inwX is non-empty only when w lies in the
cone over the logarithmic set L ∞(X), which can be given the structure of a finite union of
rational polyhedral cones such that any two points in the relative interior of the same cone σ
have the same initial scheme. If we write inσX for the initial scheme corresponding to a cone
σ, then the torus T〈σ〉 ≃ (C∗)dimσ acts on inσX by translation (see, e.g. Corollary 13). (Here,
〈σ〉 ⊂ N is the span of σ∩N , a free abelian group of rank dim σ.) This implies that coA (inσX)
is a union of orbits of coA (T〈σ〉) = U〈σ〉, and thus that dim(coA (inσX)) ≤ 2 dim(X)−dim(σ).

This discussion implies the following proposition.

Proposition 10. Let X ⊂ TN be a subvariety and suppose that TX ⊂ TN is the largest subtorus
acting on X. Then we have dim coA (X) ≤ min{dimTN , 2 dimX − dimTX}.
We prove Theorem 1 in the next two subsections.
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4.1. Coamoebae of initial schemes. We review the standard dictionary relating initial ideals
to toric degenerations in the context of subvarieties of TN [7, Ch. 6]. Let X ⊂ TN be a
subvariety with ideal I ⊂ C[M ]. We study inwI and the initial schemes inwX = V(inwI) ⊂ TN

for w ∈ N . Since in0I = I, so that in0X = X, we may assume that w 6= 0. As N is the
lattice of one-parameter subgroups of TN , w corresponds to a one-parameter subgroup written
as C∗ ∋ t 7→ tw ∈ TN . Define X ⊂ C× TN by

(6) X := {(t, x) ∈ C
∗ × TN | tw · x ∈ X} .

The fiber of X over a point t ∈ C
∗ is t−wX. Let X be the closure of X in C× TN , and set X0

to be the fiber of X over 0 ∈ C.

Proposition 11. X0 = inwX.

Proof. We first describe the ideal I of X . For m ∈ M , the element ξm ∈ C[M ] takes the value
t〈m,w〉 ∈ C

∗ on the element tw ∈ TN , and so if x ∈ TN , then ξm takes the value t〈m,w〉ξm(x) =
t〈m,w〉m(x) on twx. Given a polynomial f ∈ C[M ] of the form

f :=
∑

m∈A
cmξm , (cm ∈ C

∗)

define the polynomial f(t) ∈ C[t, t−1][M ] by

(7) f(t) :=
∑

m∈A
cmt〈m,w〉ξm .

Then f(t)(x) = f(twx), so I is generated by the polynomials f(t) (7), for f ∈ I. A general
element of I is a linear combination of translates taf(t) of such polynomials, for a ∈ Z.
If we set w(f) to be the minimal exponent of t occurring in f(t), then

inwf =
∑

〈m,w〉=w(f)

cmξm ,

and

t−w(f)f(t) = inwf +
∑

〈m,w〉>w(f)

t〈m,w〉−w(f)cmξm .

This shows that I ∩ C[t][M ] is generated by polynomials t−w(f)f(t), where f ∈ I. Since
inwf ∈ C[M ] and the remaining terms are divisible by t, we see that the ideal of X0 is generated
by {inwf | f ∈ I}, which completes the proof. ¤

We use Proposition 11 to prove one inclusion of Theorem 1, that

(8) P
∞(X) ⊃

⋃

w∈N\{0}
coA (inwX) .

Fix 0 6= w ∈ N , and let X , X , and X0 = inwX be as in Proposition 11, and let x0 ∈ X0. We
show that arg(x0) ∈ P∞(X). Since (0, x0) ∈ X , there is an irreducible curve C ⊂ X with
(0, x0) ∈ C. The projection of C ⊂ C

∗ × TN to C
∗ is dominant, so there exists a sequence
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{(tn, xn) | n ∈ N} ⊂ C that converges to (0, x0) with each tn real and positive. Then arg(x0) is
the limit of the sequence {arg(xn)}.
For each n ∈ N, set yn := twn · xn ∈ X. Since tn is positive and real, every component of twn is

positive and real, and so arg(yn) = arg(xn). Thus arg(x0) is the limit of the sequence {arg(yn)}.
Since xn converges to x0 and tn converges to 0, the sequence {yn} ⊂ X is unbounded, which
implies that arg(x0) lies in the phase limit set of X. This proves (8).

4.2. Coamoebae and tropical compactifications. We complete the proof of Theorem 1 by
establishing the other inclusion,

P
∞(X) ⊂

⋃

w∈N\{0}
coA (inwX) .

Suppose that {xn | n ∈ N} ⊂ X is an unbounded sequence. To study the accumulation points
of the sequence {arg(xn) | n ∈ N}, we use a compactification of X that is adapted to its
inclusion in TN . Suitable compactifications are Tevelev’s tropical compactifications [17], for in
these the boundary of X is composed of initial schemes inwX of X in a manner we describe
below.
By Theorem 3, the cone over the logarithmic limit set L ∞(X) of X is the support of a

rational polyhedral fan Σ whose cones σ have the property that all initial ideals inwI coincide
for w in the relative interior of σ.
Recall the construction of the toric variety YΣ associated to a fan Σ [6], [7, Ch. 6]. For σ ∈ Σ,

set

σ∨ := {m ∈ M | 〈m, w〉 ≥ 0 for all w ∈ σ} , and

σ⊥ := {m ∈ M | 〈m, w〉 = 0 for all w ∈ σ} .
Set Vσ := specC[σ∨] and Oσ := specC[σ⊥], which is naturally isomorphic to TN/T〈σ〉, where
〈σ〉 ⊂ N is the subgroup generated by σ∩N . The mapm 7→ m⊗m determines a comodule map
C[σ∨] → C[σ∨]⊗C[M ], which induces the action of the torus TN on Vσ. Its orbits correspond to
faces of the cone σ with the smallest orbit Oσ corresponding to σ itself. The inclusion σ⊥ ⊂ σ∨

is split by the semigroup map

(9) σ∨ ∋ m 7−→
{

m if m ∈ σ⊥

0 if m 6∈ σ⊥ ,

which induces a map C[M ] ։ C[σ⊥], and thus we have the TN -equivariant split inclusion

(10) Oσ −֒→ Vσ

πσ−−։ Oσ .

On orbits Oτ in Vσ, the map πσ is simply the quotient by T〈σ〉.
If σ, τ ∈ Σ with σ ⊂ τ , then σ∨ ⊃ τ∨, so C[σ∨] ⊃ C[τ∨], and so Vσ ⊂ Vτ . Since the quotient

fields of C[σ∨] and C[M ] coincide, these are inclusions of open sets, and these varieties Vσ for
σ ∈ Σ glue together along these natural inclusions to give the toric variety YΣ. The torus TN

acts on YΣ with an orbit Oσ for each cone σ of Σ.
Since V0 = TN , YΣ contains TN as a dense subset, and thus X is a (non-closed) subvariety.

Let X be the closure of X in YΣ. As the fan Σ is supported on the cone over L ∞(X), X
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will be a tropical compactification of X and X is complete [17, Prop. 2.3]. To understand the
points of X \X, we study the intersection X ∩ Vσ, which is defined by I ∩C[σ∨], as well as the
intersection X ∩ Oσ, which is defined in C[σ⊥] by the image I(σ) of I ∩ C[σ∨] under the map
C[σ∨] ։ C[σ⊥] induced by (10).

Lemma 12. The initial ideal inσI ⊂ C[M ] of I is generated by I(σ) under the inclusion
C[σ⊥] →֒ C[M ].

Proof. Let f ∈ I. Since σ is a cone in Σ, we have that inσf = inwf for all w in the relative
interior of σ. Thus for w ∈ σ, the function m 7→ 〈m, w〉 on exponents of monomials of f is
minimized on (a superset of) the support of inσf , and if w lies in the relative interior of σ, then
the minimizing set is the support of inσf . Multiplying f if necessary by ξ−m, where m is some
monomial of inσf , we may assume that for every w ∈ σ, the linear function m 7→ 〈m, w〉 is
nonnegative on the support of f , so that f ∈ C[σ∨], and the function is zero on the support of
inσf . Furthermore, if w lies in the relative interior of σ, then it vanishes exactly on the support
of inσf . Thus inσf ∈ C[σ⊥], which completes the proof. ¤

Since Oσ = TN/T〈σ〉, Lemma 12 has the following geometric counterpart.

Corollary 13. T〈σ〉 acts (freely) on inσX by translation with inσX/T〈σ〉 = X ∩ Oσ.

Proof of Theorem 1. Let θ ∈ P∞(X) be a point in the phase limit set of X. Then there exists
an unbounded sequence {xn | n ∈ N} ⊂ X with

lim
n→∞

arg(xn) = θ .

Since X is compact, the sequence {xn | n ∈ N} has an accumulation point x in X. As the
sequence is unbounded, x 6∈ O0, and so x ∈ X \X. Thus x is a point of X ∩Oσ for some cone
σ 6= 0 of Σ. Replacing {xn} by a subsequence, we may assume that limn xn = x.
Because the map πσ (10) is continuous and is the identity on Oσ, we have that {πσ(xn)}

converges to πσ(x) = x, and thus

(11) πσ(θ) = πσ

(

lim
n→∞

arg(xn)
)

= arg
(

lim
n→∞

πσ(xn)
)

= arg(x) ∈ coA (X ∩ Oσ) .

Corollary 13 implies that coA (X ∩ Oσ) = coA (inσX)/Uσ, as U〈σ〉 = arg(T〈σ〉). Recall that
on O0, πσ is the quotient by T〈σ〉. Thus we conclude from (11) that θ ∈ coA (inσX) which
completes the proof of Theorem 1 as inσX = inwX for any w in the relative interior of σ. ¤

Example 14. In [12], the closure of a hypersurface coamoeba coA (V(f)) for f ∈ C[M ] was
shown to contain a finite collection of codual hyperplanes. These are translates of codimension
one subtori Uσ for σ a cone in the normal fan of the Newton polytope of f corresponding
to an edge. By Theorem 1, these translated tori are that part of the phase limit set of X
corresponding to the cones σ dual to the edges, specifically coA (inσX). Since σ has dimension
n−1, the torus Tσ acts with finitely many orbits on inσX, which is therefore a union of finitely
many translates of Tσ. Thus coA (inσX) is a union of finitely many translates of Uσ.
The logarithmic limit set L ∞(C) of a curve C ⊂ TN is a finite collection of points in SN .

Each point gives a ray in the cone over L ∞(C), and the components of P∞(C) corresponding
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to a ray σ are finitely many translations of the dimension one subtorus Uσ of UN , which we
referred to as lines in Section 3. These were the lines lying in the boundaries of the coamoebae
coA (ℓ) of the lines ℓ in T

2 and T
3.
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