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REAL RATIONAL CURVES IN GRASSMANNIANS

FRANK SOTTILE

INTRODUCTION

Fulton asked how many solutions to a problem of enumerative geometry can be
real, when that problem is one of counting geometric figures of some kind having
specified position with respect to some given general figures [5]. For the problem
of plane conics tangent to five general (real) conics, the surprising answer is that
all 3264 may be real [13]. Similarly, given any problem of enumerating p-planes
incident on some given general subspaces, there are real subspaces such that each
of the (finitely many) incident p-planes is real [17]. We show that the problem
of enumerating parameterized rational curves in a Grassmannian satisfying simple
(codimension 1) conditions may have all of its solutions real.

This problem of enumerating rational curves in a Grassmannian arose in at
least two distinct areas of mathematics. The number of such curves was predicted
by the formula of Vafa and Intriligator [20, 8] from mathematical physics. Tt is
also the number of complex dynamic compensators which stabilize a given linear
system, and the enumeration was solved in this context [12, 11]. The question of
real solutions also arose in systems theory [3]. This application will be discussed in
Section 4.

1. STATEMENT OF RESULTS

Fix integers m,p > 1 and ¢ > 0. Set n := m + p. Let G be the Grassmannian
of p-planes in C*. The space M, of maps M : P! — G of degree ¢ has dimension
N :=pm+qn [4,19]. If L is an m-plane and s € P!, then the collection of all maps
M € M, satisfying M (s) N L # {0} is an irreducible subvariety of codimension 1.
Consider the following enumerative problem.

(1.1) Given general points s1, ..., sy in P! and general m-planes Ly, ..., Ly in
’ C*, how many maps M € M, satisfy M(s;)NL; # {0} fori=1,... N7

Since G is a homogeneous space, Kleiman’s Theorem [9] shows there are finitely
many solutions and no multiplicities.

Rosenthal [14] interpreted the solutions as a linear section of a projective embed-
ding of M,, and Ravi, Rosenthal, and Wang [12, 11] gave a formula for the degree
d of its closure K, in this embedding. Thus the number of solutions (counted with
multiplicity) is at most d. The difference between d and the number of solutions
counts points common to both the linear section and to the boundary X, — M, of

K,.
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Bertram [1] studied this and other intersection problems on M, using a different
compactification @, of M,. He used an explicit moving lemma to show there are
finitely many solutions to these problems on @, with none in the boundary Q,—M,
of @,. He also determined the small quantum cohomology ring of G, which gives
formulas for these intersection numbers. For our problem (1.1), the formula of
Bertram coincides with the formula of Ravi, Rosenthal, and Wang. This shows
there are no points common to both the linear section and to the boundary of K,
and so there are d solutions to (1.1).

When the s; and L; are real, there may be fewer than d real solutions. We show
there are real s; and L; such that each of the d solutions are real.

Theorem 1.1. There exist m-planes Ly,... , Ly inR” and points sy,... sy € Pﬁg
so that there are exactly d maps M : P! — G of degree q which satisfy M (s;) N L; #
{0} for each i=1,... N, and each of these are real.

Our proof is elementary in that it argues from the equations for the locus of maps
M which satisfy M (s) N L # {0}. A consequence is that we obtain fairly explicit
choices of s; and L; that give only real maps, which we discuss in Section 4. Our
proof uses neither Kleiman’s Theorem nor Bertram’s Moving Lemma, and thus it
provides a new and elementary proof that there are d solutions to the enumerative
problem (1.1).

2. THE QUANTUM (GRASSMANNIAN

The space M, of maps P! — G of degree ¢ is a smooth quasi-projective algebraic
variety. A smooth compactification is provided by a quot scheme Q, [19]. By
definition, there 1s a universal exact sequence

0 - S — C"®0pixg,., = 7T —0

of sheaves on P! x @, where S is a vector bundle of degree —q and rank p. Twisting
the determinant of § by Op:1(¢) and pushing forward to @, induces a Plicker map

Q, — P(A"C" @ H(Or:(q))")

which is the analog of the Plicker embedding of G. The Pliucker map is an embed-
ding of M,, and so its image K, provides a different compactification of M,. We
call K, the quantum Grassmannian. (This space is called the Uhlenbeck compacti-
fication in [2].) Our proof of Theorem 1.1 exploits some of its structures that were
elucidated in systems theory.

The Plicker map fails to be injective on the boundary @, — M, of Q,. Indeed,
Bertram [1] constructs a PP~! bundle over P! x Q,_; that maps onto the boundary
of Q,, with its restriction over P! x M,_; an embedding. On this projective bundle,
the Pliicker map factors through the base P! x Q,_; and the image of a point in
the base is s - S, where s is the section of Op:(1) vanishing at s € P! and S is the
image of a point in Q,_; under its Pliicker map. This identifies the image of the
exceptional locus of the Pliicker map with the image of P* x Kq-1 in K, under a
map 7 which is given in (2.1) below.

More concretely, a point in @, may be (non-uniquely) represented by a p x n-
matrix M of forms in s,? with homogeneous rows and whose maximal minors have
degree q [10]. The image of such a point under the Pliicker map is the collection



REAL RATIONAL CURVES IN GRASSMANNIANS 335

of maximal minors of M. The maps in M, are represented by matrices whose
maximal minors have no common factors: Given such a matrix M, the association

P35 (s,t) — row space M(s,t)

defines a map of degree q.

The collection ([Z]) of p-subsets of {1,...,n} index the maximal minors of
M. For o € ([Z]) and 0 < a < q, let z,) be the coefficient of s?¢97¢ in the
ath maximal minor of M. These z,.) provide Plucker coordinates for the space
P (/\p " ® HO(OTI(q))*). Let C, := {al®) :a € ([z]), 0 < a < ¢} be the indices
of these Pliicker coordinates. Then the image of the exceptional locus in K, is the
image of the map m : P! x K,_; — K, defined by

2.1) = : ([A,B],(xﬁ(b) L g ecq_l)) — (AZg) — B yeon 1 al® €0,),

where z ) = 24-1) = 0.

The relevance of the quantum Grassmannian K, to the enumerative problem (1.1)
is seen by considering the condition for a map M € M, to satisfy M (s,t)NL # {0}
where L is an m-plane in C* and (s,t) € P!. If we represent L as the row space of
an m X n matrix, also written L, then this condition is

L
0 = det [ M(s,1) ] = Z Ja(s, t) s,
e ()
the second expression given by Laplace expansion of the determinant along the rows

of M. Here, [, 1s the appropriately signed maximal minor of L. If we expand the
forms fo(s,t) in this last expression, then we obtain

E Zoa) s 17, = 0,
a(a)qu

a linear equation in the Pliicker coordinates of M. Thus the solutions M € M, to

the enumerative problem (1.1) are a linear section of M, in its Pliicker embedding,

and so the degree d of K, provides an upper bound on the number of solutions.
The set C, of Pliicker coordinates has a natural partial order

@ < g — g<b and o < Pp—qyi fori=1,2,... p—b+a.

The poset C, is graded with the rank, |a(@)]) of a(®) equal to an + Sia — i It
is also a distributive lattice. Figure 1 shows C; when p = 2 and m = 3. Given
al®) e Cy, define the quantum Schubert variety

Loy 1= {(Zﬁ(b)) e, : Zgm) = 0 if ﬂ(b) £ Oz(a)} .

Let H () be the hyperplane defined by z
use is the following.

() = 0. The main technical result we

Proposition 2.1 ([11, 12]). Let o{® € C,. Then
(1) Zy@ ts an irreducible subvariety of K, of dimension |a(@)].

(i1) The intersection of Z ) and H,w) is generically transverse and we have

Zyw)y NH @) = U Zﬁ(b) .
B0) <ale)
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FiGUure 1. C; with p =2 and m = 3.

Another proof of (ii) is given in [18], which shows that (ii) is a scheme-theoretic
equality. From (ii) and Bézout’s theorem, we obtain the following recursive formula
for the degree of 7 :

deg Za(a) = Z deg Zﬁ(b) .
B < ala)

Since the minimal quantum Schubert variety is a point, we deduce the formula

of [12].

Corollary 2.2. The degree d of K4 is the number of mazimal chains in the poset
C,.

For example, when p = 2 and m = 3, the degree of Ky is 55.
An alternative proof of Corollary 2.2 is given in [18] by explicitly deforming K,
to the toric variety associated with the poset C,.

3. Proor or THEOREM 1.1
Let L(s,t) be the m-plane osculating the parameterized rational normal curve
v (s,t) €PY e ("7 s L 1T s ) e Pt

at the point y(s,t). Then L(s,t) is the row space of the m x n matrix of forms
with rows v(s,t),7'(s,t),. .. ,7(m_1)(5,t), the derivative taken with respect to the
parameter t. Write L(s,t) for this matrix. For o € ([;]), the maximal minor of
L(s,t) complementary to « is s(%) . (=1)lelq, - slelgme=lel where |a| = Yo —
and (—1)!ll, is the corresponding maximal minor of L(1,1). For (s,t) € P!, let
H(s,t) be the hyperplane given by the linear form

(a) —laf®)
A(S,t) = Z Zoé(a)laslCY LN =l
oz(a)qu
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Let M be a matrix representing a map in M,. Then

L(s,t) . m
det ) = (%) Z za(a)stmt(q_a)"laesclo‘ltmp_IOKI = 5(2)A(5,t).

M (s, t" al@ec,

Thus M, N H(s,t) consists of all maps M : P! — G of degree ¢ which satisfy
M(s™,t")N L(s,t) # {0}.

Theorem 1.1 is a consequence of the following two theorems.

Theorem 3.1. There exist real numbers s1,...,sy such that for any o(® ¢ C,
the intersection

(31) Za(a) ﬁH(sl,1)ﬂ~~~ﬂ'H(5|a(a)|,1)

s transverse with all points of intersection real.

Theorem 3.2. Ifsy,...,s; € C are distinct, then for any o(®) € C, the intersec-
tion

(3.2) Ty NH(s1,1) N - NH (s, 1)

is proper in that it has dimension |a(®)]| — k.

Proof of Theorem 1.1. By Theorem 3.1, there exist real numbers s1,...,sy (nec-
essarily distinct) so that the intersection

(3.3) KeNH(s1,1)N---NH(sw, 1)

is transverse and consists of exactly d real points. To prove Theorem 1.1, we show
that all these points lie in M,. Thus each point in (3.3) represents a real map
M : P! — G of degree q satisfying M (s?,1) N L(s;,1) # {0} fori=1,... ,N.

Let 7 : P! x Ky_1 — K, be the map (2.1) whose image is the complement of M,
in k4. Then

T A(s,t) = Z (Az 4 —Bma(a_l))la5|a(a)|tN—|a(a)|
al)ec,
= (A" =Bs") ) 2 g0 L sl7 TN =18

B®eCy,_1
= (At" — Bs") A'(s,1),
where A’(s,t) is the linear form for K,_; analogous to A(s,t). Let H'(s,t) be the
hyperplane given by the linear form A’(s, ).

Any point in (3.3) but not in M, is the image of a point ([4, B], z) in P* x K,_;
satisfying 7*A(s;, 1) = (A — BsP)A'(s;, 1) for each i = 1,...,N. As the s; are
distinct and real, such a point can satisfy A — Bs? = 0 for at most two ¢. Thus
z € Ky_1 lies in at least N — 2 of the hyperplanes H'(s;, 1). Since N — 2 exceeds
the dimension N — n of K,_1, there are no such points z € K,_1, by Theorem 3.2

for maps of degree ¢ — 1. O
Proof of Theorem 3.2. For any si,..., sk, the intersection (3.2) has dimension at
least |oz(‘1)| — k. We show it has at most this dimension, if s1,...,s; are distinct.

Suppose k = |a(®| + 1 and let z € Z (). Then zge = 0 if B £ al®) and so
the form A(s, 1) defining H(s, 1) evaluated at z is

E zgm g S8

p) <ale)
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This is a non-zero polynomial in s of degree at most |a(®)| and thus it vanishes for
at most |a(®)] distinct values of s. Tt follows that (3.2) is empty for k > |a(?)],

If £ < |a®| and s1,...,s; are distinct, but (3.2) has dimension exceeding
|oz(‘1)| — k, then completing s1,..., s to a set of distinct numbers s1, ..., s|q()|41
would give a non-empty intersection in (3.2), a contradiction. O

Proof of Theorem 3.1. We construct the sequence s; inductively. The unique ele-
ment of rank 1 in C, is o9 where « is the sequence 1 <2< ---<p—1<p+1.
The quantum Schubert variety Z,) is a line in Plucker space. Indeed, it is iso-
morphic to the set of p-planes containing a fixed (p — 1)-plane and lying in a fixed
(p+ 1)-plane. By Theorem 3.2, Z, ) NH(s, 1) is then a single, necessarily real,
point, for any real number s. Let s; be any positive real number.

Suppose we have real numbers sq,...,s; with the property that for any A
with |3)] <k,

Zﬁ(b) N H(Sl, 1) n---N H(Sw(b)l, 1)

is transverse with all points of intersection real.
Let a(®) be an index with |a(®)| = k+1 and consider the 1-parameter family Z(s)
of schemes defined by Z,) NH(s, 1). If we restrict the form A(s, 1) to z € Z ),

then we obtain
()
Z zzm) g P ,
B <ala)

(a)|

a polynomial in s with leading term z @) s!®"’l. Thus Z(c0) is

Zo@) NHy@ = U Z,@(b) )
30) <ale)

by Proposition 2.1 (ii).
Claim: The cycle

Z(oco)NH(s1, )N -NH sk, 1)

is free of multiplicities.
If not, then there are two components Zg¢) and Z, () of Z(00) such that

Zﬁ(b) n Z,y(c) n H(Sl, 1) n---N H(Sk, 1)

is non-empty. But this contradicts Theorem 3.2, as Zge) N Z, () = Zs(a), where 8(d)
is the greatest lower bound of B and 'y(c) in Cy, and so dim Z5) < dim Zg0) = k.
From the claim, there is a real number A, ) > 0 such that if s > A, ), then

Z(s)NH(s1, )N -NH(sk, 1)
is transverse with all points of intersection real. Set
Nig1 = max{N,w : o] =k + 1}

and let spy1 be any real number satisfying s;11 > Npy1. O
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4. FURTHER REMARKS

The proof of Theorem 3.1 gives a rather precise choice of s; and L; in the
enumerative problem (1.1) which gives only real maps. The positive real numbers
$1,...,sn of Theorem 3.1 are constructed inductively, first choosing s; > 0. Then,
having chosen si, ..., s, a number N1 > 0 is found with the property that for
any spy1 > Nipg1 and o(®) with |al®)| = k 4 1, the intersection (3.1) is transverse
with all points real. By the quantifier Vs; € sy € -+ € sy, we mean such a
choice of real numbers s1,...,sy. More precisely,

Vsy >0 N3 > 0, such that Vso > Ny --- ANy > 0, such that Vsy > Ny .

We deduce a more precise form of Theorem 1.1, as the quantifiers Vs; < s3 <
<L sy and Vst € s < - - L s}y are equivalent.

Corollary 4.1. Vs; € 59 € --- < sy, each of the d maps M : P! — G of degree
q which satisfy M(s;, 1) N L(syn, 1) #{0} fori=1,..., N are real.

K3

When ¢ = 0, there is substantial evidence [16] that this choice of s1,...,sy is
too restrictive. B. Shapiro and M. Shapiro have the following conjecture:

Conjecture 4.2 (B. Shapiro and M. Shapiro). Suppose ¢ = 0. Then for distinci
real numbers si,...,smp each of the finitely many p-planes H which satisfy H N
L(s;, 1) # {0} are real.

In contrast, when ¢ > 0 the restriction Vs; € s9 < -+ € sy 1s necessary. We
observe this in the case of ¢ = 1, p = m = 2, so N = 8 and d = 8; that is, for
parameterized curves of degree 1 in the Grassmannian of 2-planes in C*. Here, the
choice of s; = i in (3.3) gives no real maps, while the choice s; = i gives 8 real
maps.

We describe that calculation. There are 12 Pliicker coordinates z;;) for 1 <i <
J<4and a=0,1. If we let f;; :=1z;;0) + 52;;1), then

frafas — fisfoa + fiafaa = 0,

as fij(s,t) € G for all s,t. The coefficients of ¢?, st, and s* in this expression give
three quadratic relations among the z;;():

Z14(0) Z93(0) — Z13(0) Z94(0) F Z19(0) Z34(0) ,
Z19(1) Z34(0) — Z13(1) Z24(0) T+ Z14(1) Z93(0) F Z23(1) Z14(0) — Z24(1) Z13(0) F Z34(1) Z12(0) ,
Z14(1) Z93(1) — Z13(1) Z24(1) + Z1201) Z34(1)

and these constitute a Grobner basis for the homogeneous ideal of £ [18].
Here, the form A(s, 1) is

. 2 0.2 5.3 4
Z1900) — 28 21300 + 5" Z1400 + 354223(0) — 257 294(0) + 8" 23400
+sY2190) — 25% 21300 + 8821400 + 35529300 — 25729400 + B 25400) -

We set 2341y = 1 and work in local coordinates. Then the ideal generated by the
3 quadratic equations and 8 linear relations A(s;, 1) for ¢ = 1,...,8 defines the 8
solutions to (3.3). We used Maple to generate these equations and compute the
number of real solutions. There are no real solutions when s; = ¢z, but all 8 are real

when s; = 5.
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We describe how the enumerative problem (1.1) arises in systems theory (see
also [3]). A physical system (e.g. a mechanical linkage) with m inputs and p mea-
sured outputs whose evolution is governed by a system of linear differential equa-
tions is modeled by an m x n-matrix L(s) of real univariate polynomials. The
largest degree of a maximal minor of this matrix is the McMillan degree, r, of the
evolution equation. Consider now controlling this linear system by output feedback
with a dynamic compensator. That is, use a p-input, m-output linear system M to
couple the m inputs of the system L to its p outputs. The resulting closed system
has characteristic polynomial

o= | iy |

and the roots of ¢ are the natural frequencies or poles of the closed system. The
dynamic pole assignment problem asks, given a system L(s) and a desired charac-
teristic polynomial ¢, can one find a (real) compensator M (s) of McMillan degree
q so that the resulting closed system has characteristic polynomial ¢? That is, if
51,...,5r44 are the roots of ¢, then which M € M, satisfy

L(si) | _ S o
det[M(si)] = 0, fori=1,2,...,74+q"

In the critical case when r 4+ ¢ = mp + ¢n (= dimM,), this is an instance of
the enumerative problem (1.1). When the degree d is odd, then for any real system
L and a real characteristic polynomial ¢, there will be at least one real dynamic
compensator. Part of the motivation for [11] was to obtain a closed formula for d
from which its parity could be deduced for different values of ¢, m, and p.

The choice of planes L; that arise in the dynamic pole placement problem are
N = mp + gn points on a rational curve of degree mp 4+ (n — 1)q in the Grass-
mannian of m-planes in C*. In contrast, the planes of Theorem 3.1 (and hence of
Theorem 1.1) arise as N points on a rational curve of degree mp. Only when ¢ =0
(the case of static compensators) is there overlap.

Our proof of Theorem 1.1 (like that in [17]) was inspired by the numerical Pieri
homotopy algorithm of [7] for computing the solutions to (1.1) when ¢ = 0. Like-
wise, our explicit degenerations of intersections of the H(s,t), and more generally
Proposition 2.1 (ii), suggested to Huber and Verschelde an optimal numerical ho-
motopy algorithm for finding the solutions to (1.1) [6]. This is in exactly the same
manner as the explicit degenerations of intersections of special Schubert varieties
of [15] were used to construct the Pieri homotopy algorithm of [7] (see also [6]).

We close with one open problem concerning the enumeration of rational curves
on a Grassmannian. For a point s € P! and a Schubert variety Q of G, consider the
quantum Schubert variety Q(s) of curves M € M, satisfying M (s) € Q. Bertram’s
quantum Schubert calculus gives formulas to compute the number of curves M €
M, which lie in the intersection of an appropriate number of these Q(s), and we
ask when it 1s possible to have all solutions real. A modification of the proof of
Theorem 3.1 shows that this is the case when all except possibly 2 are hypersurface
Schubert varieties. In every case we have computed, all solutions may be real.
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