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QUIVER COEFFICIENTS ARE SCHUBERT

STRUCTURE CONSTANTS

ANDERS SKOVSTED BUCH, FRANK SOTTILE, AND ALEXANDER YONG

1. Introduction

Buch and Fulton established a formula for the cohomology class of a quiver variety [9],
which Buch later extended to K-theory [5]. The K-theory formula expresses a quiver class
as an integer linear combination of products of stable Grothendieck polynomials. Quiver
coefficients are the coefficients of this linear combination. The quiver coefficients were
conjectured to be nonnegative in cohomology and to alternate in sign in K-theory. These
conjectures were recently proved by Knutson, Miller, and Shimozono [15], Buch [7], and
Miller [21]; see also [8].
Buch, Kresch, Tamvakis, and Yong [11, 12] gave combinatorial formulas for the decom-

position coefficients expressing a Grothendieck polynomial as an integer linear combination
of products of stable Grothendieck polynomials. In particular, it was proved that the de-
composition coefficients alternate in sign.
Alternation in sign also occurs in the Schubert calculus of the flag variety; Brion [3]

proved that the K-theory Schubert structure constants alternate in sign.
We give natural and explicit equalities between the three aforementioned integers. Our

argument uses results of Bergeron and Sottile [1] and Lenart, Robinson, and Sottile [20] who
earlier established a connection between the decomposition coefficients and the Schubert
structure constants. The other main ingredient is the ratio formula of Knutson, Miller, and
Shimozono [15], or rather an identity derived from it [7]. We also give a direct argument
that the decomposition coefficients have alternating signs, based on Brion’s theorem, which
then implies that quiver coefficients have alternating signs. A consequence of our theorem
is that formulas for the other numbers give formulas for the quiver coefficients; we give
examples in the last section.

2. The Main Result

Quiver coefficients cµ(r) are defined for a set of rank conditions r = {ri,j} for 0 ≤ i ≤ j ≤
n and a sequence of partitions µ = (µ1, µ2, . . . , µn), where µi fits in a ri−1 × ri rectangle
(for convenience, set ri := ri,i). The Grothendieck polynomial Gw for a permutation w

represents the class of the structure sheaf of the corresponding Schubert variety in the
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Grothendieck ring of the flag variety [19]. These form a Z-linear basis for the Grothendieck
ring. The integer Schubert structure constants Cw

u,v are defined by the identity

Gu ·Gv =
∑

w

Cw
u,v Gw .

Brion’s theorem [3, Thm. 1] proves that they alternate in sign, (−1)`(wuv)Cw
u,v ≥ 0.

For a partition λ, let w(λ, k) denote the Grassmannian permutation for λ with descent
at k. It is given by w(λ, k)(i) = i + λk+1−i for 1 ≤ i ≤ k and w(λ, k)(i) < w(λ, k)(i + 1)
for i 6= k. The Grothendieck polynomial Gw(λ,k)(y1, y2, . . . ) is symmetric in the variables
y1, . . . , yk and is independent of yi for i > k. Thus we can write Gλ(y1, . . . , yk) for this
symmetric Grothendieck polynomial, without ambiguity.
Suppose that v is a permutation whose descents occur at positions in {r0, r0+r1, . . . , r0+

· · ·+rn−1}. If x
i = (xi1, x

i
2, . . . , x

i
ri
) is a set of ri variables, then the Grothendieck polynomial

Gv(x
0, x1, . . . , xn) is separately symmetric in each set of variables xi and is independent of

xn. As the symmetric Grothendieck polynomials {Gλ} form a basis for all symmetric
polynomials, there are integer decomposition coefficients bµ(v) defined by the identity

(1) Gv(x
0, x1, . . . , xn) =

∑

µ

bµ(v)Gµ1
(x0)Gµ2

(x1) · · ·Gµn
(xn−1) .

Formulas for these coefficients given in [12] show that (−1)
∑
|µi|−`(v)bµ(v) ≥ 0. In Remark 3

below, we give a simple geometric argument that accounts for this alternation in sign, via
Brion’s theorem.
Our main result requires some notation and terminology. For a set of rank conditions

r, let d′i := ri + · · · + rn−1 and di := d′i + rn. Also let Ri = (di+1)
ri−1 be the rectangular

partition with ri−1 rows and di+1 columns. For a sequence of partitions µ = (µ1, µ2, . . . , µn)
let µ̃i be the result of attaching µi to the right side of Ri, and let µ̃ = (µ̃1, . . . , µ̃n) denote
the sequence of these partitions.

(2) µ̃i := ri−1

di+1

µiRi

Let ρ be a concatenation of rectangles of sizes d′i × di for i = 1, 2, . . . , n−1. This is the
shaded part of the partition shown in (3). Finally, we let ρ(µ) be the partition obtained
when µ̃i is placed under the ith rectangle of ρ and the result is concatenated with µn. This
has d := d′0 rows and is shown below.

(3)
d′1

d1

µ̃1

d′2

d2

µ̃2

d′n−1

dn−1

µ̃n−1

µn
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The Zelevinsky permutation v(r) encodes the rank conditions r; we refer to [15, Def. 1.7]
for the precise definition. We note that the descents of v(r) occur at positions in {r0, r0 +
r1, . . . , r0 + · · ·+ rn−1}.

Theorem 1. Let r be a set of rank conditions and µ = (µ1, . . . , µn) be a sequence of
partitions with µi a subset of the ri−1 × ri rectangle. Then the following numbers are equal:

(I) the quiver coefficient cµ(r);

(II) the decomposition coefficient bµ̃(v(r));

(III) the Schubert structure constant C
w(ρ(µ),d)

v(r), w(ρ,d).

We follow the notation for quiver coefficients used in [15], which conjugates all partitions
compared to the notation used in [9, 5, 7].

Proof. Zelevinsky [22] showed that a quiver variety for a set r of rank conditions is isomor-
phic to an open subset of a Schubert variety indexed by the Zelevinsky permutation v(r).
Knutson, Miller, and Shimozono used this to prove their ratio formula, which expresses a
quiver class as a quotient of two Grothendieck polynomials [15, Thm. 2.7]. We need the
following identity which is derived from the ratio formula in [7, §7]:

(4)
Gv(r)(x

0, x1, . . . , xn)

Gv(ε)(x0, x1, . . . , xn)
=

∑

µ

cµ(r)Gµ1
(x0)Gµ2

(x1) · · ·Gµn
(xn−1) .

Here ε denotes the maximal rank conditions given by εij = min{ri, . . . , rj}. Notice that the
cohomology version of (4) follows from Thm. 7.10 and Prop. 7.13 of [15]. The denominator
of (4) is the monomial

Gv(ε)(x
0, x1, . . . , xn) =

n−1∏

i=1

GRi
(xi−1) =

n−1∏

i=1

(xi−1
1 xi−1

2 · · · xi−1
ri−1
)di+1 .

This formula follows from the special form of the permutation v(ε) (denoted v(Hom) where
it was originally defined in [15, Def. 1.7.10]). This permutation is dominant, and thus the
Grothendieck polynomial is the monomial associated to the diagram of the permutation;
this latter fact can be derived from, e.g., [13].
By using that GRi

(xi−1)Gµi
(xi−1) = Gµ̃i

(xi−1) [6, Cor. 6.5] we deduce that

Gv(r)(x
0, x1, . . . , xn) =

∑

µ

cµ(r)Gµ̃1
(x0)Gµ̃2

(x1) · · ·Gµ̃n
(xn−1) .

This proves the equivalence of (I) and (II). Now since the last descent of v(r) occurs before
position d, it follows from [20, Thm. 9.7] that

(5) Gv(r)(x
0, x1, . . . , xn) =

∑

ui∈Sdi−1

C
(u1×···×un)·w(ρ,d)
v, w(ρ,d) Gu1

(x0) · · ·Gun
(xn−1) ,

where Sdi−1
is the symmetric group on di−1 elements, and u1 × · · · × un ∈ Sd0+···+di−1

is the
Cartesian product of the permutations ui. Because the left hand side of (5) is symmetric in
each set of variables xi, it follows that any permutation ui which occurs in (5) with a non-
zero coefficient must be Grassmannian with descent at position ri−1, so ui = w(λi, ri−1) for
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a partition λi. Furthermore, since GRi
(xi−1) divides the left hand side of (5), each partition

λi must have the form µ̃i for a partition µi. One may check that(
w(µ̃1, r0)× · · · × w(µ̃n, rn−1)

)
· w(ρ, d) = w(ρ(µ), d) .

Together with (5), this gives

(6) Gv(r)(x
0, x1, . . . , xn) =

∑

µ

C
w(ρ(µ),d)

v(r),w(ρ,d) Gµ̃1
(x0)Gµ̃2

(x1) · · ·Gµ̃n
(xn−1) .

This proves the equivalence of (II) with (III). ¤

Example 2. Suppose that n = 3 and let r be the set of rank conditions

r00 r11 r22 r33

r01 r12 r23

r02 r13

r03

=

1 4 3 3
1 2 2
1 1
0

Here, (d′0, d
′
1, d

′
2) = (8, 7, 3), (d0, d1, d2, d3) = (11, 10, 6, 3), and the Zelevinsky permutation

v(r) is (7, 4, 5, 8, 9, 1, 2, 11, 3, 6, 10). The partition ρ is the concatenation of a 7 × 10 rec-
tangle with a 3 × 6 rectangle, and so equals (16, 16, 16, 10, 10, 10, 10). This is the shaded
part of the partition shown in (7).
Let µ = (∅, (2, 1, 1), (1)) be a sequence of partitions. Then µ̃ = ((6), (5, 4, 4, 3),

(1)) and the partition ρ(µ) is (17, 16, 16, 15, 14, 14, 13, 6), which is illustrated below.

(7)

In Example 1 of [4], the quiver coefficient cµ(r) was computed to be 1. Due to our different
conventions, the corresponding term there is written 1⊗ s ⊗ s , which is indexed by the

sequence of partitions (∅, (3, 1), (1)). Later, we will use formulas from [11] and [17] to cal-
culate that the corresponding decomposition coefficients and Schubert structure constants
are both 1.

Remark 3. The alternating signs of the decomposition coefficients can be explained ge-
ometrically using Brion’s theorem as follows. Let v be a permutation whose descents
occur at positions in {r0, r0 + r1, . . . , r0 + · · · + rn−1}. Fix a large integer N and let
Y = Fl(r0, r0 + r1, . . . , r0 + · · · + rn−1;CnN ) be the variety of partial flags of the indicated
type in CnN . Then Gv represents the class [OYv

] of the structure sheaf of the Schubert
variety Yv of Y [19]. The product of Grassmannians

X = Gr(r0, N)×Gr(r1, N)× · · · ×Gr(rn−1, N)

can be identified with a subvariety of Y by mapping each point (V1, . . . , Vn) ∈ X to the
partial flag V1 ⊂ V1 ⊕ V2 ⊂ · · · ⊂ V1 ⊕ · · · ⊕ Vn in Y . If we let xi = {xi1, . . . , x

i
ri
} denote
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the K-theoretic Chern roots of the dual of the tautological subbundle corresponding to the
ith factor of X, then the specialization Gv(x

0, x1, ..., xn) is obtained by restricting the class
[OYv

] to the Grothendieck ring of X. Expanding this restriction in the basis of Schubert
structure sheaves on the flag variety X gives

Gv(x
0, x1, . . . , xn) = [OXv

] =
∑

bµ(v)Gµ1
(x0)Gµ2

(x1) · · ·Gµn
(xn−1) .

When the Schubert variety Yv is in general position, the subvariety Xv := X ∩ Yv of X has
rational singularities [3, Lemma 2]. By [3, Thm. 1], we have that (−1)

∑
|µi|−`(v)bµ(v) ≥ 0,

as required. This, together with Theorem 1 proves that the quiver coefficients alternate in
sign.
In [1] similar geometry is used to study the restriction of Schubert classes [Yv] in a full flag

manifold Y to products X of flag manifolds embedded in Y in a similar fashion to that given
here. There, the subvarietyXv is identified as an intersection of Schubert varieties in Y . This
is used to identify the decomposition coefficients as particular Schubert structure constants,
for cohomology. The analogous identification of K-theoretic decomposition coefficients with
K-theoretic Schubert structure constants is accomplished in [20].

3. Alternative formulas for quiver coefficients

By Theorem 1, formulas for the decomposition coefficients and Schubert structure con-
stants give alternative formulas for the quiver coefficients. We give two examples of this for
the cohomology quiver coefficients (which are indexed by sequences of partitions such that∑
|µi| equals the expected codimension of the quiver variety, see [9]).
The formulas of [11, 12] for the decomposition coefficients give formulas for quiver coef-

ficients in cohomology and in K-theory. We state this formula for the cohomology decom-
position coefficients. Suppose that v is a permutation whose descents occur at positions in
{r0, r0+ r1, . . . , r0+ · · ·+ rn−1}. The decomposition coefficient bµ(v) is equal to the number
of sequences of semistandard tableaux (T1, . . . , Tn) such that

(i) The shape of Ti is the conjugate (matrix transpose) of the partition µi,
(ii) The entries of Ti are strictly larger than r0 + · · ·+ ri−2, and
(iii) Concatenating the bottom-up, left-to-right column reading words of the tableaux

T1, T2, . . . , Tn gives a reduced word for v.

The quiver coefficient computed in Example 2 corresponds to the sequence of tableaux

1
2
3
4
5
6

2 3 4 5
3 4 5 6
4 5 6 7
7 8 9
10

8

which encodes the following reduced word:

v(r) = s6s5s4s3s2s1s10s7s4s3s2s8s5s4s3s9s6s5s4s7s6s5s8 .

Second, Kogan [17] gives a generalization of the Littlewood-Richardson rule for the co-
homology Schubert structure constants Cu

v,w(λ,d), when v has no descents after position d.
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We give a mild reformulation of his formula in terms of chains in the Bruhat order from v

to u that give valid reading words for tableaux of shape λ.
A saturated chain γ in the d-Bruhat order is a sequence of permutations

γ : v = v0 −→ v1 −→ v2 −→ · · · −→ vt = u ,

where `(vi) = `(v) + i and v−1
i−1vi is a transposition (ji, ki) with ji ≤ d < ki for each

i = 1, . . . , t. The word of such a chain γ is the sequence of integers

v1(k1), v2(k2), . . . , vt(kt) .

Kogan’s formula [17, Theorem 2.4] asserts that if v has no descents after position d, then
Cu
v,w(λ,d) is equal to the number of saturated chains in the d-Bruhat order from v to u whose
word is the left-to-right, bottom-up row reading word of a tableau of shape λ.
For the quiver coefficient of Example 2, we have d = 8 and there is exactly one saturated

chain in the d-Bruhat order that goes from v(r) to w(ρ(µ)) and whose word is a reading
word for a semistandard tableau of shape ρ.
To describe it, we define a chain in the d-Bruhat order to be increasing if its word is

an increasing sequence. If there is an increasing chain from v to u, then it is unique, the
permutation vu−1 is the product of disjoint cycles where the numbers decrease in each
cycle, and the partition of the numbers by the cycles they lie in is non-crossing [2, p. 655].
The desired chain has length 88 and it is the concatenation of increasing chains of lengths
10, 10, 10, 10, 16, 16, 16, respectively. Below, we display each increasing chain on a separate
line. Each product of cycles on a given line is vjv

−1
i , where the increasing subchain for that

line is from vi to vj.

(21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11)
(19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9)
(18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8)
(16, 15, 14, 13, 12, 11, 10, 9, 8, 6, 5)
(25, 24, 23, 22, 21)(20, 19)(17, 16)(15, 14, 13, 12, 11, 10, 9, 8, 6, 5, 4)
(23, 22, 21, 19, 16, 14, 13, 12, 11, 10, 9, 8, 6, 5, 4, 3, 3, 2)
(22, 21, 19, 16, 14, 13, 12, 11, 10, 9, 8, 6, 5, 4, 3, 2, 1)

This chain corresponds to the following semistandard tableau of shape ρ.

1 2 3 4 5 6 8 9 10 11 12 13 14 16 19 21
2 3 4 5 6 8 9 10 11 12 13 14 16 19 21 22
4 5 6 8 9 10 11 12 13 14 16 19 21 22 23 24
5 6 8 9 10 11 12 13 14 15
8 9 10 11 12 13 14 15 16 17
9 10 11 12 13 14 15 16 17 18
11 12 13 14 15 16 17 18 19 20

Remark 4. It would be interesting to give bijections between the formulas discussed here
for the quiver coefficients (in cohomology) with those given in [15].

Remark 5. Since this paper was submitted, further formulas relevant to quiver coefficients
have been discovered, we refer the reader to [10, 16] for details.
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