ENUMERATIVE GEOMETRY FOR THE REAL
GRASSMANNIAN OF LINES IN PROJECTIVE SPACE

FRANK SOTTILE

ABSTRACT. Given Schubert conditions on lines in projective space
which generically determine a finite number of lines, we show there
exist general real conditions determining the expected number of
real lines. This extends the classical Schubert calculus of enu-
merative geometry for the Grassmann variety of lines in projec-
tive space from the complex realm to the real. Our main tool is
an explicit geometric description of rational equivalences, which
also constitutes a novel determination of the Chow rings of these
Grassmann varieties of lines. The combinatorics of these ratio-
nal equivalences suggests a non-commutative, associative product
on the free Abelian group on Young tableaux. We conclude by
considering some of these enumerative problems over finite fields.

1. INTRODUCTION

Describing the common zeroes of a set of polynomials is more prob-
lematic over non-algebraically closed fields. For systems of polynomials
with few monomials on a complex torus (“fewnomials” ), Khovanskii [8]
showed that the number of real zeroes are at most a small fraction of
the the number of complex zeroes. Fulton ([5], §7.2) asked how many
solutions to a problem of enumerative geometry can be real; for exam-
ple, how many of the 3264 conics tangent to five general real conics
can be real. He later showed that all, in fact, can be real. This was
rediscovered by Ronga, Tognoli, and Vust [13]. Robert Speiser sug-
gested the classical Schubert calculus of enumerative geometry would
be a good testing ground for this question. For problems of enumerat-
ing lines in P™ incident to real linear subspaces in general position, we
show that all solutions can be real.

Let G{P" be the Grassmannian of lines in P". A flag and a par-
tition A = (o, 3) determine a Schubert subvariety of type A, which

Date: February 25, 2003.
1991 Mathematics Subject Classification. 14M15, 14N10, 14P99, 05E10.
Key words and phrases. Grassmannian, real enumerative geometry, Young
tableaux.
Research supported in part by NSERC grant # OGP0170279.
Appeared in Duke Math. J., 87 (1997) 59-85.
1



2 FRANK SOTTILE

has codimension |A\| = a + 8. The automorphism group PGL,; of
P" acts transitively on G;P" and on the set of Schubert varieties of a
fixed type. Over fields k£ of characteristic zero, Kleiman’s Transversal-
ity Theorem [9] shows that a general collection of Schubert subvarieties
of G;P" will intersect generically transversally. In §5, we extend this
to fields of positive characteristic. A consequence is that for Schubert-
type enumerative problems in G;P", the basic principle of the Schubert
calculus remains valid in positive characteristic: each component of a
general intersection of Schubert varieties appears with multiplicity one.
For partitions A\',... ;) A™ let G(A',... ,\™) be the (non-empty) set of
points of the Chow variety of GP" representing cycles arising as gener-
ically transverse intersections of Schubert varieties of types A!,... , \™.
Any generically transverse intersection of Schubert varieties is ratio-
nally equivalent to a sum of Schubert varieties; the Schubert calculus
gives algorithms for determining how many of each type. In §4, we
prove

Theorem A. Let \',... A\™ be partitions. Then there is a cycle
® (depending upon A',... \™) whose components are explicitly de-
scribed Schubert varieties, such that ® is in the Zariski closure of
G(A', ..., A™). Moreover, for each cycle X in G(\',... ,\™), there is
an explicit chain of rational curves between X and ® with each curve
lying in the Zariski closure of G(A', ..., \™).

The proof of Theorem A constitutes an explicitly geometric deter-
mination of the Schubert calculus of enumerative geometry for lines
in P™. In fact, Theorem A shows these ‘Schubert-type’ enumerative
problems may be solved without reference to the Chow ring, a tradi-
tional tool in enumerative geometry. As well, it determines products in
the Chow ring: Let o) be the rational equivalence class of a Schubert

variety of type A\. Equating the rational equivalence class of cycles in
G(AL, ..., A™) to that of ® yields a formula for products in A*G,P",
the Chow ring of G, P".

Corollary B. Let ¢* be the number of components of ® of type ).
Then

m
HO’)\i = E Aoy
i=1

A

Thus the structure of these Chow rings is determined in a strong
sense: All products among classes from the Schubert basis are ex-
pressed as linear combinations of basis elements and these expressions
are obtained by exhibiting rational equivalences between a generically



REAL ENUMERATIVE GEOMETRY 3

transverse intersection of Schubert varieties and the cycle ®. More-
over, these expressions require only a ‘set-theoretic’ understanding, as
the cycle ® is free of multiplicities.

Let F1 be the manifold of real flags which parameterizes real Schubert

varieties of fixed type. When k£ = R, Theorem A has the following
consequence.
Theorem C. Let \',...  \™ be partitions with ||+ --+|\™| = 2n—
2, the dimension of G{P". Then there exists a non-empty classically
open subset of (F1)™ consisting of m-tuples of flags whose correspond-
ing Schubert varieties (of respective types \',... , \™) meet transver-
sally, with all points of intersection real.

To the best of the author’s knowledge, this is the first result show-
ing that a large class of non-trivial enumerative problems can have all
of their solutions real. Theorem C may have applications outside of
geometry. For example, some problems involving real matrices, such
as the pole assignment problem in systems control theory [1], may be
expressed as intersection problems on a real Grassmannian.

The construction of the cycle ® and rational curves of Theorem A
uses the combinatorics of Young tableaux and suggests a non-commutative,
associative algebra with additive basis the set of Young tableaux, de-
scribed in §7. This algebra has surjections to the Chow rings of Grass-
mann varieties and the algebra of symmetric functions. However, it dif-
fers fundamentally from the plactic algebra of Lascoux and Schiitzenberger [11],
which is also non-commutative, associative, constructed from Young
tableaux, and related to symmetric functions. In §8, we ask which
enumerative problems may be solved over which (finite) fields and give
the answer for two classes of Schubert-type enumerative problems. We
also show how some of our constructions may be carried out over finite
fields.

The rational equivalences of Theorem A arise from a sequence of
deformations which transform generically transverse intersections of
Schubert varieties into ®, a sum of distinct Schubert varieties. We
regard this as the classical method of degeneration, with a shift in focus.
Traditionally, a product of cycles is computed by moving the cycles
into special position and then studying the resulting intersection cycle.
This may fail when applied to more than a few cycles; an intersection
typically becomes improper before the positions are special enough
for the intersection to be easily recognized. Rather than considering
deformations of cycles to be intersected, we use an idea of Chaivacci and
Escamilla-Castillo [2] and study deformations of intersection cycles. In
particular, the cycle ® of Theorem A is usually not an intersection of
Schubert varieties. Theorem C is deduced from Theorem A and ‘real’
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conservation of number; the number of real points in a real zero-cycle
is constant under small real deformations.

2. PRELIMINARIES

Let k£ be an infinite field. Varieties will be quasi-projective, reduced
(not necessarily irreducible), and defined over k. All subvarieties (ex-
cept some curves) are assumed to be closed. When k& = R, let X(R)
be the R-valued points of X, equipped with the classical topology.
Note that X (R) need not be topologically connected, even when X is
irreducible and projective.

Let X be a smooth variety, U and W subvarieties of X, and set
Z =UNW. We say U and W meet properly if either Z is empty or the
codimension of Z in X is the sum of the codimensions of U and W. We
say U and W meet generically transversally if each irreducible compo-
nent of Z has an open subset along which U and W are nonsingular
and meet transversally. In this case, Z is generically reduced (reduced
at the generic point of each component), the fundamental cycle [Z] of
7 is multiplicity free, and in the Chow ring A*X of X

Ul- W) = [unw] = [2] = ) (7],

where Z1,... , Z, are the irreducible components of Z.

2.1. Chow varieties. Suppose X is projective. Then positive cycles
of a fixed dimension and degree on X are parameterized by Chow X,
a Chow variety of X. We write Chow X for any Chow variety of X;
context will indicate the dimension and degree intended. Let U be a
normal variety and = a subvariety of X x U with generically reduced
equidimensional fibres over U. The association of a point u of U to
the fundamental cycle of the fibre =, determines a function ¢ from U
to ChowX. Since U is normal, this function is algebraic ([10], [4]).
Moreover, if X, U, and = are defined over k, then so are Chow X and
the map ¢ : U — Chow X ([15], §1.9). Cycles represented by points on
a rational curve in Chow X are rationally equivalent; the converse to
this statement is not true. If Y and Z are rationally equivalent, then
there is a third cycle W such that Y + W and Z + W are connected
by a chain of rational curves, as points in some Chow variety of X.

2.2. Grassmannians and Schubert varieties. For S C P", let (S)
denote the linear span of S. For a vector space V, let PV be the
projective space of all one dimensional subspaces of V. Suppose K =
PU and M = PW. Define Hom(K, M) to be Hom(U, W), the vector
space of linear maps from U to W. If K C M, set M/K = P(W/U).
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A complete flag F, is a collection of linear subspaces F,, C --- C F} C
Fy = P", where dim F; = n — i. We adopt the convention that F, = ()
for p > n.

Let G;P" be the Grassmannian of lines in P", a (2n—2)-dimensional
variety. For a partition A = («, 8), let F1, denote the variety of partial
flags of type A; those K C M with K an (n — « — 1)-plane and M an
(n— B)-plane. If F1, is non-empty, then necessarily 0 < 8 < a+1 < n,
so a+ (3 < 2n—2. A partial flag K C M determines a Schubert variety
Q(K, M) comprising lines contained in M which also meet K. The type
of Q(K, M) is the type, A = («, 8), of its defining partial flag K C M,
and its codimension is |A| = a+ 8. If a = §, then Q(K, M) = G1 M,
the Grassmannian of lines in M. If M = P", so f = 0, then we
write Qi for this Schubert variety. The tangent space to £ € G{P" is
naturally identified with the linear space Hom(¢,P"/¢). In fact, ¢ has
an affine neighbourhood isomorphic to Hom(¢, P"/¢). It is not hard to
verify the following lemma, whose proof we omit.

2.3. Lemma. Let K, M be subspaces of P"

(1) If K C M, then the smooth locus of Q(K, M) consists of those
lines ¢ with ¢ ¢ K. For such /£,

T(K, M) = {¢ € Hom(¢, P"/0) | $(£) C M/C and $(¢nK) € (K, 0)/0}.

(2) We have Qx (VG1M = Q(K N M, M). This intersection is
transverse at the smooth points of QK N M, M) if and only if
K and M meet properly in P".

(3) Let K; C M;, fori =1,2. If the intersection Q (K1, My) (Q(Kz, Mo)
is proper, then M; meets K; properly for i # j and M, N M, is
proper.

An intersection of two Schubert varieties may be generically trans-
verse and reducible. In fact, this observation is at the heart of our
methods.

2.4. Lemma. Let H C P" be a hyperplane, P ¢ H a linear subspace,
and F C PN H a proper linear subspace. Let N ¢ H be a linear
subspace meeting F'—and hence P—properly, and set L = N N H.
Then Q(F, P) and 1, meet generically transversally in G,P™,

QF,P)( = QNNF,P)+Q(F,PnH)[ ),

and the second component is itself a generically transverse intersection.

Proof: The right hand side is a subset of the left; we show the other
inclusion. Let ¢ € Q(F,P)(\Qg. If £ meets LN F = N N F, then
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¢ € Q(N N F,P). Otherwise, ¢ is spanned by its intersections with F
and L, hence { C PN(F,L) C PN H andso € QF,PNH)N Q.
We use (1) of Lemma 2.3 to verify these intersections are generically
transverse. Let £ € Q(F, PN H)(\Qx and suppose that p = £ N F is
distinct from ¢ = £N N, so that each Schubert variety is smooth at
¢ = (p,q). Then (F,q) = (F,¢) C PN H and (N, p) = (N, ), so that

TUF,PNH) = {¢<€Hom((,P"/{)|¢(q) € PN H/l and ¢(p) € (F,q)/l}
TiQy = {¢ € Hom((,P"/0) | 4(q) € (N,p)/L}-
The assumptions on F, P, N, and H ensure these tangent spaces meet

properly, proving Q(F, PN H) and Qy meet transversally at £. Similar
arguments may be used to verify the other transversality assertions.

F

2.5. Young tableaux I. The Young diagram of a partition A = (o, f)
is a two-rowed array of boxes with « boxes in the first row and S in

the second. Note that o > V“THJ > {%‘J > (. Here, |r| denotes

the greatest integer less than or equal to . We make no distinction
between a partition and its Young diagram.

A Young tableau T of shape X is a filling of the boxes of A\ with the
integers 1,2,...,|A|. These integers increase left to right across each
row and down each column. Thus the ith entry in the second row
of T must be at least 2i. Call |\| the degree of T, denoted |T|. If
a = [, then T is rectangular. Here are three Young tableaux; the first
is rectangular.

112]5 112]5]7] 113]4]6]|7]8]
3146 3146 21519

2.6. Arrangements. A key to our proof of Theorem A is the form of
the cycle @ as well as the cycles which are intermediate in the rational
equivalences. These cycles depend upon a particular lattice of sub-
spaces of P" defined by an arrangement of hyperplanes H,, ... , Hy, o
with specified linear dependencies. Given hyperplanes Hs, ... , Ho, o
and a subset A C {2,3,...,2n — 2}, define Hy by Hy = P" and, if
A7é @, HA = ﬂjeAHj'

2.7. Definition. An arrangement F in P" is a collection of 2n — 3
distinct hyperplanes Hs, ... , Ho,_5 in P" such that for m = 2,... | n,
the following two conditions hold:
(A.1) F, := H{g3,.. 2m—2} has codimension m, and if m # n, then
Fm C Hgm_l but Fm ¢ Hgm. Thus Fm+1 = Fm N Hgm, and if
AcCA{2,...,2m — 1}, then Hy ¢ Ho,.
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(A2) If Ac{2,...,2m — 2}, and F,, # Ha, then Hy ¢ Hopp1.

A consequence of (A.1) is that the subspaces Fy, F3, ... , F,, form part
of a complete flag in P", and that if [ > 2, then F; C H; if and only if
[ > L%J + 1. A main point of these conditions is that if A C {2,... 1},
then H4 meets H;,; properly unless [ even and Hy = Fé-kl’ or dropping
the condition that [ is even, unless Hy = FLHTl |41 (which implies { is
even, by (A.1)). Arrangements can be constructed over an arbitrary
infinite field. The potential obstruction for finite fields is nonexistence
of hyperplanes Hy,, 1 satisfying (A.2). In §8, we describe an inductive
construction of arrangements and estimate over which finite fields it is
possible to have an arrangement.

2.8. An arrangement in P°. We illustrate this definition with an

arrangement in P°. Let o, 21, ... , 25 be homogeneous coordinates for
P°. Define hyperplanes H,, ... , Hg by the linear forms:
H, : x
? ! H3 . X
H4 I )
H5 DT+ T+ To (1)
H6 . T3
H7 I T+ 2x1 + 3z + T3
HS . T4
The flag E associated to this arrangement is the standard flag, where
F; is defined by the equations 0 = xg = -+ = x;_;. The hyperplanes

H,, ..., Hg restricted to the P* defined by x5 = 0 give an arrangement
in P*. Figure 1 shows (part of) the Hasse diagram of the lattice of
subspaces in P* generated by this arrangement (also part of the Hasse
diagram of the original arrangement in P°).

H :\F/3 /4\ /5\ H/H/6\H\H

3 H236 H246 H256 H346 H356 H456

F,=H
FIGURE 1. The Arrangement in P*

= Ho3g6
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2.9. Definition-Lemma. Let F be an arrangement in P". For each
tableau T' with |T'| < 2n — 2, define Hr to be H,, where A is the set of
entries in the second row of T. If T has shape (o, ) with 8 > 1, then
the following hold.

(1) dimHy =n — B.

(2) Hy # Fp.

(3) If S is another tableau with shape (o, 3), then Hg = Hyp only

if S=T.
(4) If T is rectangular with degree 23, then Hr N Hop1 = Fpyq.

Proof: Let the second row of T be the set AU{j}, where j is the largest
entry in the second row of T'. We prove the first part by induction on
B. Let S be the tableau obtained from 7 by removing the entries
J,7+1,... ,aa+ B. Then Hg = H4 has dimension n —  + 1 and so
Hr will have dimension n — 8 if Hg ¢ Hj, since Hr = Hg N H;. As
AcC{2,...,5— 1}, we see by (A.1) and (A.2) that H4 C H; only if
j=2m —1 and F,, = H4. In this case, m = 3 — 1, thus j = 25 — 3.
But this contradicts 7 > 28, as j is the Sth entry in the second row of
T.

To prove the second statement, note that Fg ¢ Hj, since FL%J 7 H;

and FLlJ C Fg, as j > 2. Since Hr C Hj, it follows that Fg # Hr.

For (3), suppose that /3 is minimal with respect to the existence of
tableaux S # T of shape («, 5) where Hg = Hr. Let j be the largest
entry in the second row AU {j} of T and let m be the largest entry in
the second row BU{m} of S. If m # j, suppose m < j. Then Hg C Hj,
as Hr C H;. Since BU {m} C {2,...,j — 1}, this implies Hg = Fp,
contradicting (2). Suppose now that j = m. By the minimality of 3,
we have Hy # Hp and so Hyup = H4 N Hp = Hr C H;. Then (A.1)
implies j is odd and (A.2) implies Hy = F, as AUB C {2,...,j—1},
again contradicting (2).

For the last statement, suppose 7 is rectangular with | 7| = 2/3. Since
the second row of T is a subset of {2,...,28} and Fp1 = Hys,.. 25},
we have F 1 C Hr, and so Fg; is a hyperplane in Hy. Then (4) is
immediate, as Fp1 C Hagi1 but Hr ¢ Hypyy, by (A2). pr

2.10. Definition-Corollary. Let F be an arrangement and T a tableau
of shape (o, B) with a+ < 2n—2. Define U(T) := Q(F,41, Hr). Then
(1) If a« <m, then Fyy1 C Hr is a partial flag of type (o, B).
(2) If @ > n then ¥(T) = 0; otherwise, ¥(T') is a Schubert variety

of type (, ).
(3) If S is a tableau and V(S) = U (T) # (0, then S =T.
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Proof: For the first statement, note that the second row of T is a
subset of {2, ... ,a+ (}, so that F[MJH C Hr, by (A.1). This shows
2

Foyy CHp,as a > [#J Since dim Hy = n — 8 by Lemma 2.9(1),
F,.1 C Hr is a partial flag of type (a, 3).

The second statement is a consequence of the first. For the final
statement, first note that if ) # K C M, then M is the union of all
lines in (K, M). Thus ¥(S) = U(T) # 0 implies that Hy = Hg. But
then S =T, by Lemma 2.9(3). pr

3. THE CyCLES ®(7) AND ®(7;4; L)

We describe the cycle ® = ®(7) of Theorem A as well as the cy-
cles ®(7;,; L) which arise intermediately in the rational equivalences
between X and ® in Theorem A. These are defined with respect to a
fixed arrangement F, though our notation suppresses the dependence
on F. These cycles are also defined with respect to a fixed set 7 of
Young tableaux, all of which have the same degree [. In other words,
|T| =1 for every T € T.

Define ®(7), a multiplicity-free cycle on G;P" with pure dimension,
by

o(T) = Y Y(T).
TeT
By Corollary 2.10, each Schubert variety summand of ®(7") has dimen-
sion 2n—2—1[ and they are all distinct, showing ®(7) is multiplicity-free
and of pure dimension.

3.1. Young tableaux II. Suppose 7T is a tableau with |T| = and s a
positive integer. Let T'(s) be the tableau obtained from T by adjoining
the consecutive integers [ +1,... ,1 + s to the first row of T'. Let T+*
be the tableau obtained by adjoining [ +1,... ,l+ s to the second row
of T, if that is possible. For example, the following picture shows 7T,
T(3) and TT3. Note that T is not defined.

[am—

112]3]5] 112]3]5]6|7]8] 213]5
4 4 416178

With this notation, HT(s) = HT and HT+s = HT N Hl—|—1 n---N Hl—|—s-
These relations are the motivation for arrangements and our indexing
of subspaces by tableaux.

Ifa,b> 0, let T7%(b) be (T+*)(b). In T**(b), the consecutive integers
I+1,...l+a+boccur in distinct columns, in order left to right. If 7
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is a set of Young tableaux for which |T'| = [ for every T € T, then set

TeT

Similarly define 71% and 71%(b). For integers 0 < s < «, recursively
define 7, , by
Too = T(),

’

7;,04 = 7;—1,04L_J7'_|—5(O'/_“5’1)
= T(@UT - UT"@-9).

3.2. Intermediate cycles ®(7; o; L). The intermediate cycle ®(7; ;L)
is defined with respect to an integer s with 0 < s < «, a set T of

tableaux with |T'| = [ for every 7' € T, and a subspace L of codimen-

sion o« — s + 1 in P" which has a particular position with respect to

the fixed arrangement F. We say that a subspace L of codimension

a— s+ 1in P" meets F (l,s)-properly if the following conditions are

satisfied

(1) L meets the subspaces FLH_lJH, ..., Fi.1 properly;

(2) LN Fi11 = Flyq-st2; and

(3) For each tableau T with |T'| = [, L meets the subspaces Hp(s-1)
and Hp+s properly.

If Fiio_sio # 0, then the last condition is redundant: For any b, either
Hy+ is undefined, or else Fjy; C Hp+s, implying that L meets Hyp+s
properly, as L meets Fj,; properly with non-empty intersection. Note
also that L is a linear subspace of P"/F} , 5.2 with codimension o —
s+ 1.

Suppose [,s,a, and 7 are as in the previous paragraph, and that
L is a subspace of P" which meets F (I, s)-properly. Let T € Ts_1 4.
Then the first row of 7" has length b > [HTSJ + 14+ o — s. Define the
Schubert variety

U(T;L) = U(T) (= QUFpy1, Hr)) f0>1+a—s+2
’ o QLN Fy_ors, Hr) otherwise

and set

(T L) = Y W(T;L).

T€7}71,a

The cycle ®(7;-1,4; L) is well-defined and multiplicity-free:
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3.3. Lemma. For T € T;_1,, Y(T;L) is a Schubert variety of type
equal to the shape of T. Furthermore, ®(Ts_1,4; L) is a multiplicity-
free cycle with each component having dimension 2n —2 — | — .

Proof: Let T € T,_1, have shape (b,a). Then || =a+b=1+«
and no entry in the second row of T exceeds [ + s — 1. If the length of
the first row of T is at least | + o — s + 2, then ¥(T;L) = ¥(T) is a
Schubert variety of type (b, a). Otherwise LHTSJ +1<b—a+s<I1+1,
so L meets F,_,.s properly in a space of codimension b+ 1. Since no

entry in the second row of 7" exceeds [ + s — 1, Hy contains FLH_SJH,
2

hence also Fy_o.s N L, so ¥(T'; L) is a Schubert variety of type (b, a).

To see that ®(7;_1 4; L) is multiplicity-free, suppose ¥(7T; L) = ¥(S; L)

for some S,T € Ts_1,,. Then S and T have the same shape and
Hg = Hr,s0 S =T by Lemma 2.9(3).

3.4. Young tableaux III. Let T be a tableau of shape (a+ s, a), and
let o be a positive integer. Define a set T * « of tableaux by

Txa = {T(a), T (a=1),..., T}

(It is impossible to form the tableau TH+¢+1) so if o > s, then the
last tableau listed will be T7*(av — s).) If |T'| = [, then T * o consists
of all tableaux obtained from 7" by adjoining the consecutive integers
l4+1,...,l4+atoT in distinct columns and in order from left to right.
For example,

112]5]6] $3 = 1/2]5[6]7[8/9] [1|2[5]6/8[9] |1[2]5
34 3]4 3[4]7 3[4]7

Given a set 7 of tableaux, define 7 * o := (U7 T * @. Then, by the
definition of x,

Txa = T(a)UT+1(a—1)U---UT+a = Taa-

Let ay,...,q,, be positive integers and () the empty tableau, the
only tableau of shape (0, 0). Define the set of tableaux

apk-oxam = (o (D *ap) *ag) * -+ ) % .

Let s; = 2;21 a;. Then oy * - - - * oy, is the set of tableaux where, for
each 1 < 7 < m, the consecutive integers s; 1 +1,...,8 1+ a; = 8;
occur in distinct columns, and in order from left to right. In particular
Ix---%1 (I 1’s) is the set of all tableaux of degree [, and 2 % 4 * 3 is
the set of 11 tableaux shown in Figure 2.
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(1]2]3]4]5]6|7]8]9] [1]2]3/4]5]6]8]9] [1]2]3]4]5]6]9] [1]2]3]4]5]6]
7] 8 819
112]4]5]6]7/8]9] 112]4]5]/6/8]9] 112]4]5[6]9] 1/12]4]5]6]
3 7 708 71819
112]5]6]7/8]9] 1/2/5/6[8]9] 112]5/6]9]
4 417 41718

FIGURE 2. 2x4 %3

3.5. Families of intermediate cycles. The cycles ®(7;_1,4, L) are
used to construct families of cycles which arise in the proof of The-
orem A. These families, Z; ; — U, ,, have base U; ; which is an open
subset of a product of Grassmann varieties. The different families are
compared by considering the subset G;, of the Chow variety whose
points represent fundamental cycles of fibres of the family =; ; — U, .
In fact, we only use the Chow variety as a convenient place to compare
cycles from different families.

Let ay,...,q, be positive integers and F an arrangement. Fix
1<it<mandset T :=aq*---*xqa;_1. Then every tableau T' € T has
degree | := a1 + -+ a;_1. For 0 < a < n, let G'P" = G,_,P", the
Grassmannian of codimension a planes in P".

Let =}, be the subscheme of G;P" x [, G*tP" whose fibre at

a point (K, ..., Ky) of [T, G¥*'P™ is

(D(T)ﬂQKlﬂﬂQKm (2)

Let Uio C IT}%, G*'P" consist of those (m — i + 1)-tuples for which
this intersection is generically transverse, and let Z; ; be the restriction
of Eé’o to Ui, 50 Z;0 — U, is a family with generically reduced equidi-
mensional fibres. This family induces a map v : U;g — ChowG,P".
Let Gip C ChowG1P" be its image, the set of cycles which are generi-
cally transverse intersections of the form (2).

Similarly, for 1 < s < q, let V. C G* 5TYP"/Fj 4, s12) be the
(open) subset of those L of codimension o; — s+ 1 in P" which meet F
(1, s)-properly. Let =} ; be the subscheme of G1P"xV x[[}_, ,, G tipn
whose fibre at (L, Kii1,... , Ky) is

O(Ty_r00; L) + B(TH) ﬂQL} N ()

Define U;s C V x [[}L;4, G»HP" Z;,, and G;, analogously to U,

Zi0, and G;o. Set Gpi1,0 to be the singleton {Q(aq * - - - * o) }. When
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k=R, set G; .r = V(Ui s(R)), the set of fundamental cycles of fibres
of Z; 5 over real points of U; ;.

4. MAIN RESULTS

Kleiman’s Transversality Theorem [9] establishes the transversality
of a general translate in characteristic zero. In positive characteris-
tic, there exists a smooth subvariety of G;P?® which does not meet a
particular smooth Schubert variety, nor any PG Ls-translate of that
Schubert variety, generically transversally ([9], §9). However, in §5,
we show (Theorem E) that general translates of Schubert varieties of
G1P" do meet generically transversally and use this to show the sets
Ui s are non-empty, proving the following lemma.

4.1. Lemma. Let «ay,...,q,, be positive integers and let F be any
arrangement. Then for all1 <1 <m and 0 < s < o, U5 s a dense
open subset of the corresponding product of Grassmannians.

Thus G; ¢ is a unirational subset of ChowGP". When k = R, G, ;. r
is the image of the (non compact) real algebraic manifold U; ;(R) under
the morphism . In §6, we prove:

Theorem D. Let a, ..., a, be positive integers, F an arrangement,
and 1 <1< m.

(1) Let X be a closed point of Git10. Then there is an open subset
U of P\ {0} and a family of cycles X over UU{0} such that
X is the fibre of X over 0 and fibres of X|y are in G, o,. Thus
Y(U) is a rational curve in G; o, such that X € ¢(U) U {0}.

(2) Fiz s with 0 < s < «;. Let X be a closed point of G; s11. Then
there is an open subset U of P' \ {0} and a family of cycles X
over U U {0} such that X is the fibre of X over 0 and fibres of
Xy are in G; 5. Thus ¢¥(U) is a rational curve in G; s such that
X € y(U)u{0}.

4.2. Proof of Theorem A using Theorem D. Suppose \* = (¢, 0)
for 1 <i < m. Let F be an arrangement and let ®(c *- - - * ) be the
cycle @ of Theorem A. Then G = G(A',... ,A™) and Gpy10 = {P(ar*
-+ % 0y,)}. Since G; s is unirational, any two points of G; ; are connected
by a chain of rational curves, each lying within the closure of G, ;.
Downward induction on the lexicographic order on pairs (i, s), together
with and Theorem D proves the existence of a chain of rational curves
between ®(ay * - -+ * o) and an arbitrary cycle X € G(A',...,\™).
Thus Theorem D implies Theorem A when each partition )’ is a single
TOW.
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Now suppose X = (a; + f3;,53;) for 1 < i < m and set 3 = B, +
-++ 4 Bn. For a linear subspace My C P" of codimension S, let F be
an arrangement in My, and put ® = ®(ay * - - - * a,). Define U; 5 and
Gis as in §3.5, with M, replacing P". Then Gi1o C G(A',... ,A™). In
fact, if PGL,, is the automorphism group of P", then G(\!,...  \™)
is the union of all translates of G, under the action of PGL, ;. Let
X eg(Al,...,A™), so X is a generically transverse intersection

QK1 M) (- (UK, M),

where K; C M; has type X for 1 <i < m. Set M = M, N---N M,,.
Iteration of Lemma 2.3(3) shows that if M has codimension 8 in P"
and I, = M N K; has codimension o; + 1 in M. Thus

X = QLlﬂ...ﬂQLm

is a generically transverse intersection in G M.

Let v be any automorphism of P" with yM = M,, so that v(X) €
G1,0, and suppose that I' is a one parameter subgroup containing +.
The orbit I' - X is a rational curve (or a point) in G(A\!,... ,A\™), and
contains y(X). Since y(X) € Gy, previous arguments show there
exists a chain of rational curves between v(X) and ®(ay * - - - * ayy),
with each curve contained in the closure of G . r

4.3. The Schubert calculus. Interpreting Theorem A in terms of
products in the Chow ring of G;P", we have:

Corollary B'. Let \',... ,\™ be partitions with X = (oy + Bi, 8;) for
1<i<m, and set B=pP1+ -+ Bm. Then in A*G{P",

ﬁam‘ = > de o (3)
=1

A=(B+a,B+b)
atb=ai+-+am

where 031,...,% s the number of tableauz of shape \ such that for 1 <
t < m, the o; consecutive integers 1 + Z;;ll Qj, ... ,Z}Zl o occur in

distinct columns and in order from left to right.

Corollary B’ follows from Theorem A: The integers 031,...,am count
the number of tableaux in the set oy *- - - xay,, of shape A and hence the
number of components of ®(a; *- - -*ay,) of type A\. Thus Corollary B’
asserts the equality of the rational equivalence classes of cycles shown to
be rationally equivalent in Theorem A: The left hand side is the rational
equivalence class of cycles in G(A!,... ,\™) and the right hand side is
the rational equivalence class of ®(c * - - - * @y,). The number ¢}
is in fact the Kostka number K, ,, where u = (o, ... , oy) (see [14]).
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Ifp=--=p,=0and a; +---+ a,, = 2n — 2, then the only
non-zero term on the right hand side of (3) is cgi:,l,’z;l)o(n_l,n_l), or
(n—1,n—1)

Cay,..om times the class of a point (line). Since o4, 0) is the rational
equivalence class of {2, whenever L has dimension n — o; — 1, we
deduce:

4.4. Corollary. The number of lines meeting general (n — a; — 1)-
planes for 1 < i < m is equal to the number of tableauzr of shape
(n —1n- 1) such that for 1 < 1 < m, the consecutive integers 1 +
Z;;ll Q. .. aZ;‘:1 a; occur in distinct columns and in order from left
to right.

4.5. Enumerative geometry for the real Grassmannian. Let \!,...

be partitions and define Gg to be those cycles in G(A!, ..., A\™) which
arise as generically transverse intersections of Schubert varieties defined
by real flags.
Theorem C'. Let A\',... , \™ be partitions with \* = (o; + Bi, ),
and set B =Y ", Bi. Let M C P" be a real (n — B)-plane, F a real
arrangement in M, and define ®(ay * - - - % ayy,) in terms of F.
(1) ®(ay * - - * auy) is in the closure of GRr.
(2) If |AY+---+|A\™| = 2n—2, then there is a non-empty classically
open subset of [[~, Flys whose corresponding Schubert varieties
meet transversally, with all points of intersection real.

Proof: Define the sets U; ; and G; s as in §3.5 for the arrangement F in
M and the integers oy, ... , a,,. Arguing as in the proof of Theorem A
shows Gior C Gr. Restricting to the real points of the varieties in
Theorem D shows G; .r C Gior. Assertion (1) is the case (i,s) =
(m+1,0).

For (2), let d = ¢ 2% Y Then ®(ay *- - -+ yy) consists of d distinct
real lines. Hence G; s C S4GP", the Chow variety of effective degree
d zero cycles on G,P". The real points SG;P"(R) of S?G,P" are
effective degree d zero cycles stable under complex conjugation. The
dense subset of S?G;P"(R) of multiplicity free cycles has a topological
component M parameterizing sets of d distinct real lines and ®(ay *
cek0,) € M. By (1), ®(ay*- - -*xay,) € Gr, which shows Ggr (M # 0,
a restatement of (2). pr

5. GENERICALLY TRANSVERSE INTERSECTIONS

We give a proof, valid in any characteristic, that general translates
of Schubert varieties of G{P" meet generically transversally. This ex-
tension of Kleiman’s characteristic zero transversality Theorem [9] in



16 FRANK SOTTILE

this situation relies upon his result that general translates have proper
intersection.

Theorem E. Let \!, ..., \™ be partitions. Then the set U C [[%, Fly
of partial flags (K1 C My, ..., K,, C My,) for which the intersection

(K1, M) (- (UK, Mi)

is generically transverse is a dense open subset of T[], Fly.

Proof: We begin with an observation that simplifies the geometry.
For 1 <i < m, let K; C M; be a partial flag of type \* = (oy + 8;, Bi)
and suppose the corresponding Schubert varieties meet properly. By
Lemma 2.3(3),

Q(Kl,Ml) ﬂ . ﬂQ(Km,Mm) = GlMﬂQNl n . 'nQNm’

where M = M; N ---N M, has codimension 8 = §; + --- + 3, and
K; = N; N M;, with N; meeting M; properly for 1 < < m.

Fix a codimension  subspace M of P". As U is stable under the
diagonal action of PGL, 1, it is the union of the translates of U N X,
where X consists of those m-tuples of flags with M C M;, for 1 <14 <
m. Moreover, U is open if and only if V := U N X is open in X. Let
Y C X be the set of m-tuples of flags where M = M; N ---N M, and
K; meets M properly. The product of the maps

exhibits Y as a fibre bundle with base [[[~, G*"'M, and V is the
inverse image of the set of (Ly,..., Ly,) for which Q, ---MNQy,, is
generically transverse. It suffices to prove the theorem for Q;, (- -- (%,
in G M, that is, for the case when 5; =0 for 1 < < m.

Let = be the subscheme of

(P")™ x GP" x [ [ G+ P
i=1
consisting of (2m + 1)-tuples (p1, ... ,Pm, ¥, L1, ..., Ly) such that p; €
¢NL; for 1 < i < m. The projection of = to (P™)™ x G{P" exhibits = as
a fibre bundle with fibre [[[~, G**'(P"/p;) and base {(p1, - - - , Pm, £) | each p; €
£}. This base has dimension m+2n—2, so = is irreducible of dimension

m m m

m+2n—2+2(n—ai—1)(ai+1) = 2n—2—z ai+2(n—ai)(a,~+1).
i=1 i=1 i=1

m

The projection of = to [[;", G TIP™ has image consisting of those
(L1, ..., Ly) whose corresponding Schubert varieties have non-empty
intersection. This image is a proper subvariety if 2n —2 < >7" | ;. In

this case, let U be the complement of this image.
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Suppose 2n—2 > 37" ;. Let W C Z consist of those points where
Qr,y...,8, meet transversally at £. By Lemma 2.3, W consists of
those points such that

(1) £ ¢ L; for 1 < i < m; thus p; = £N L; and ¢ is a smooth point
of QLz‘ .
(2) The tangent spaces 1,0y, for 1 < i < m meet transversally.

Thus W is an open subset of Z=. We show W # (. Fix / € G,P"
and fix distinct points py,...,p,, of £. Suppose £ = PH and for each
1 < i <m, fix a point ¢; € H such that p; = P(g;). Suppose also that
P"/¢ = PM and identify P™ with P(H & M). Recall that 7,G,P" =
Hom(¢,P"/¢) = Hom(H, M). Define the linear map

f : Hom(H,M) — M™

by f(¢) = (¢(q1), .., P(gm)). If m > 2 (the case m=1 is trivial), then
f7H0) = {0}, as H = (g1, 2)-

For any linear subspace M; C M of dimension n—1—«;, define L; :=
P{q;, M;). Then L; € G%*'P™ and p; = £ N L;. Moreover, T2, =
{¢ € Hom(H, M) |é(¢;) € M;}. Fix linear subspaces My, ..., M, of
M where dim M; = n — 1 — «;. Since (GL(M))™ acts transitively on
M™ \ {0}, Theorem 2(i) of [9] shows there exists a dense open subset
V of (GL(M))™ consisting of g such that

FHg(Myx -+ x M)

either is {0} or has codimension equal to ) ;" ¢, the codimension of
My x -+ X My, in M. Let g = (¢1,-.-,9m) € V and set M/ := g; M;
and L} := (g;, M]). Then L} € G*T'P" and

JME % - x ML) = {¢ € Hom(H, M)| $(q;) € M}, fori=1,...,m}

m
= (7w
i=1
Since a; is the codimension of T, in T,G,P" and Yooy < 2n—2,
the varieties (1r/, ..., meet transversally at £. Thus W # 0.

Let Z =2\ W and let 7 : £ — [, G T1P" he the projection.
Then Qy, ... ,Qz,, meet generically transversally if dim(7=!(Ly, ... , Ln) [ Z)
is less than the expected dimension of a fibre, which is 2n—2—-3"" ;.
Take U to be the set of m-tuples (L1, ..., L) where

dim(r (L1, ..., Lw)(Z) <2n—2-) ;.
=1

Thus U is open and non-empty, for otherwise dim Z = dim =, which
would imply Z = = and contradict W # 0. pr
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We also need a further lemma;:

5.1. Lemma. Letd,aq,... ,ay, be positive integers and let Z be a sub-
scheme of G1P™ with dim(Z) < d. Then the set W C [[I~, G*T'P"
consisting of those (K, ..., K,,) for which

dim(Z ()2 () () <d=> o

1s open and dense.

Proof: Let = be the subscheme of Z x [[2; G*"'P" whose fibre
at (Ki,...,Kn) is ZN Q% NNk, and let X;(¢) C GxHip»
denote the set of K; which meet £. Projection to Z exhibits = as a
fibre bundle with fibre X;(¢) x --- x X,,,(¢) at a point £ € Z. The
codimension of X;(¢) in G*'P" is q;, so Z has dimension

dim Z — iai + zm:(n — ;)0 +1).
i=1 i=1

W C [Ti%, G**'P" is the locus where the fibre dimension is less than
d—>Y"", o;. By upper semicontinuity of fibre dimension, W is open. If
W were empty, then all fibres of the projection to [[[~; G**'P" would
have dimension at least d — )", «;. This would imply

dim=>d— Zai + Z(n —a;)(o + 1),
i=1 i=1

a contradiction, as d > dim Z. Thus W must be non-empty. pr

5.2. Proof of Lemma 4.1. We show that for each (i,s) with 1 <
t <mand 0 < s < q, the sets U; ; are open dense subsets of the
corresponding products of Grassmannians. We first show this for U; .
Let 7 = oy % - - - x a;_1. Recall that U, ¢ consists of those (Kj, ..., Ky,)
such that the intersection

o(T) ()% ()---[)%. (4)

is generically transverse. The cycle (4) has dimension d = 2n —
2 Z;’nzl Ojj .

Let Z be the singular locus of ®(7"). Since ®(7) has pure dimension
2n—2—23;11 «;, the intersection (4) is generically transverse if for every
component WU(T') of ®(7T), the intersection ¥(T) [k, [)---[)Qk,, is
generically transverse, and if dim(Z () Qgk, (- Qk,,) < d.

By Corollary 2.10(3), ¥(T) = ¥(S) # 0 implies T = S. Thus
Z is a union of intersections of components and the singular loci of
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components, and hence dim(Z) < dim(®(7)). By Lemma 5.1, there is
an open subset W of H;":Z G**t'P" consisting of those (Kj, ..., K,)
for which dim(Z N Qk, - Qk,,) < d.

For T € T, let Ur C [[}, G%1P" be the set of (Kj,..., K,,) for
which the intersection

(1) (%)) %

is generically transverse. Because U,y = (ﬂTeT UT) N W, it suffices to
show that Ur is a dense open subset of [[7", G**'P" for each T € T.
Let T € T and suppose T has shape A = (¢, 3). Define

V C Fl, x H Gotlipn
j=t

to be the set of flags for which the intersection

QFH) (%, ([ )%

is generically transverse. By Theorem E, V' is dense and open. Note
that

{Fa—H C HT} x Up = Vn ({Fa—H C HT} X HGaj+1Pn> ,
j=i
so Uy is open. Since Fly = PGL, 1 - {F,11 C Hr}, and V is stable
under the diagonal action of PGL,;, we see that V = PGL,.; -
({Fas1 € Hr} x Ur). Thus Ur is non-empty.
The case of U; s for s > 0 follows by similar arguments. r

6. CONSTRUCTION OF EXPLICIT RATIONAL EQUIVALENCES

We use the following lemma to parameterize the explicit rational
equivalences in the proof of Theorem D.

6.1. Lemma. Let F be a complete flag in P". Suppose Lo, is a hyper-
plane not containing F,,. Then there exists a pencil of hyperplanes Ly,
fort € P = A'[J{o0}, such that if t # 0, then L, meets the subspaces
of E properly, and, for each i < n — 1, the family of codimension i+ 1
planes induced by Ly ( F;, for t # 0, has fibre F; 1 at 0.

Proof: Let xy, ... ,x, be coordinates for P" such that L., is given by
z, =0and F; by xg =---=x;_1 = 0. Let eq, ... , e, be a basis for P"
dual to these coordinates. For ¢t € A!, define

Lt:<tej+€j+1|0§j§n—1).



20 FRANK SOTTILE

Fort #0, L, F; = (te; +ej11|% < j <n—1) and so has codimension
i+ 1. The fibre of this family at 0is (ej41[i <j<n—1)=F. p

In the situation of Lemma 6.1, write lim;_,o L; N F; = Fj,1.

6.2. Proof of Theorem D, Part 1. Fix an arrangement F and an
integer t with 1 <7 <m. Set T := ay*---*xqa; 1 and | := a;+- - -+;_1,
the degree of all tableaux in 7. Suppose Xy is a cycle in G; 1. That
is

X() = (P(T* ai)mQKH_lﬂ"'ﬂQKm,

where the intersection is generically transverse. Let L., be any hyper-
plane which meets F (I, o;)-properly. We use Lemma 6.1 to produce a
family of cycles with base P' whose special member is X, and whose
general member is a cycle in G, q,.

Apply Lemma 6.1 to the flag induced by F in P"/F;,, and the
hyperplane L., /F, 2 to obtain a pencil L, of hyperplanes such that if
t #0and? < [+1, then L; meets F; properly and lim; ,o LN F; = F; ;.
Let X be the subscheme of P! x G;P" whose fibre at non-zero ¢t € P!
is

X = | (Tai—1,055 L) + CI’(T“”)} ﬂQKH_l ﬂ o 'ﬂQKm-

It is shown below that Xj is the fibre of X' at 0; we first deduce Part
1 from this fact. Let U” C P! be the open subset of those t for which
X, is generically reduced and dim X; = dim X,. As Xj is generically
reduced, U" is non-empty. Since L, meets F (I, o;)-properly, the set
U’ C P! consisting of those ¢ where L; meets F (I, o;)-properly is open
and dense. Since €2, = G1P", we have

S(T*%) = &(T) [,

Thus, for t € U := U' N U", the fibre X, is a cycle in G;_1,4,. The
restriction of X to U U {0} gives a family over a smooth curve with
generically reduced equidimensional fibres. Thus the association of a
point u of U U {0} to the fibre X, gives a morphism ¢ : U U {0} —
Chow G, P" with ¢(U) C G;_1,4, and 9(0) = X,, proving Part 1.

We show X is the fibre of X at 0 by examining components of X
separately. For T' € 7,, 1,4, let X be the subscheme of P! x G,P"
whose fibre at a non-zero t € P" is

(Xr)e =U(T; L) () Qi [ [) Q-
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Since

XY = Z Xr| + P! x (@(T+ai)ﬂQKi+1ﬂ"'ﬂQKm>a
T€Ta;-1,04

and

Troi = Tamra | JTH,
it suffices to show that for each T € 7,,_1 4,, the fibre of Xp at 0 is

U(T) (s [ () -

Let T' € Ta;—1,0;- If the first row of T has length exceeding [ + 1,
then U(T; L;) = ¥(T), so Xr is the constant family over P! with fi-
bre W(T) (N Qk;y (-1 k,,- Now suppose the first row of 7" has
length b < | 4+ 1. Then, for t # 0, YV(T;L;) = Q(Fy, N Ly, Hy).
Since limy o Fy ([ L; = Fpy1, we see that U(T) = Q(Fyy 1, Hr) is the
fibre at 0 of the family over P! whose fibre at ¢t # 0 is U(T; L,).
Since U(T) (ks () -k, is generically transverse, there is an
open subset Ur C P! such that for ¢ € Ur \ {0}, the intersec-
tion W(T5 L) Qk;py () -+ k., is generically transverse. This shows
that the fibre at 0 of X7 is U(T) N Qk,,, (- - -[) Qk,., Which completes
the proof of Part 1 of Theorem D.

6.3. Proof of Theorem D, Part 2. Let 0 < s < «; and suppose
Xy € gi,s_H. Then

Xy = [@(Tpa; V) + (TH) x| s [ 2

where N has codimension «; — s in P™ and meets F (I, s+ 1)-properly,
and this intersection is generically transverse. We make a useful calcu-
lation.

6.4. Lemma. Let Ly = N N Hyys11, a hyperplane in N. Then
(T (i — 8); N) + (T (M Qy = S(T) [ o

Since Ts0; = Ts—1,0;, UT (s — ), this Lemma shows that

Xy = @(7;,1,%;1\1)“@(7“)(]9%} N )

We use Lemma 6.4 to complete the proof of Theorem D, and prove
it at the end of the section. Let N, be any complete flag in N/ Fj, 4, 512
refining the images of the partial flag

J#
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Let L be any hyperplane of N which meets F (I, s)-properly. Applica-
tion of Lemma 6.1 to the flag N, in N/F ;4,12 yields a pencil L; of hy-
perplanes of N, each containing Fj,,_s+2, such that for LHTSJ +1<35<
land t # 0, L; meets NNFj properly, with lim;_,o L;ANNF; = NNFj44.
Since Ly N N N F; = L, N Fj for j in this range, L; meets F; properly,
as N meets F (l, s + 1)-properly.

Leth be the subscheme of P! x G{P™ whose fibre at a non-zero
te P is

Xy = |O(To i L) + (T ) ()2, | () s [N+ () P

We claim that X is the fibre of X' at 0; Part 2 follows from this fact
in much the same manner as Part 1 followed from the analogous fact in
§6.2. We show X is the fibre of X at 0 by examining each component
separately. For T' € T;_1,, let Xr be the subscheme of P! x G,P"
whose fibre at ¢t # 0 is

(Xr)e = U(T; L) (Qin [ [ ) -

Arguing as at the end of §6.2, we conclude that ¥(7T; N) (N Qk,,, (- 2k,
is the fibre of X7 at 0. For S € 7%, let X5 be the subscheme of
P! x G,;P" whose fibre at ¢ is

(Xs)e = U(S) (2% ()% [ )+ [ ) -

Arguing as at the end of §6.2, we conclude that W(S) (1 Qr, () Qkiyy (- Lk
is the fibre of X5 at 0. Since X =) ;.. X7+ D g7+ Xs, We see

that the fibre of X at 0 is Xj. r

6.5. Proof of Lemma 6.4. Let 7" € T%. We show
U(T) (O, = U(T(i — 9)) + (T[] .

Summing over 7" € 7% will complete the proof. We treat the case
when T is rectangular separately from the general case.

Suppose T is rectangular. Then ¥(7T') = G, Hr, so by Lemma 2.3(2),
U(T) (2, is equal to Q(Hr N Ly, Hy), and this intersection is generi-
cally transverse only if Ly meets Hp properly. Since T is a rectangular
tableau in 7%%, s <l and [ + s = 2k is even, so |25t | =k < [
Then N meets Fj, properly, as N meets F (I, s + 1)-properly. Since T
is rectangular, Lemma 2.9(4) implies Hr N Hyy511 = Fy1. It follows
that Hy meets Ly = N N Hy 441 properly, and Hpr N Ly = N N Fiyq.
Since Hy = Hr(q;—s) and k + a; — s = [HTSJ + a; — s is the length of
the first row of T'(c;; — s), we have

(1) (2, = QN N F e |4y Hroms) = ¥(T(0s = 5); N).



REAL ENUMERATIVE GEOMETRY 23

Now suppose T is not rectangular. Let b be the length of the first row
of T,s0 b> |5t Then Hy N Hyyy1 = Hr+1. Since TH € T+
N meets Hr+1 properly, so Hy meets Ly properly. Lemma 2.4 with
F=F,,, P=Hyp,and H = H;, ;. implies

Q(Fo1, Hr) (o = QFop1 NN, Hr) + Q(Fy1, Hr O Hipoir) [ Q-

But this is U(T (o —5); N)+¥(T+") (" Qn, which completes the proof.
F

7. AN ALGEBRA OF TABLEAUX

The Schubert classes o, of a Grassmann variety form an integral

basis for its Chow ring. Thus there exist integral constants ¢, defined

by the identity:
Oy 0y = ZCZ)VO',\.
)

In 1934, Littlewood and Richardson [12] gave a conjectural formula for
these constants, which was proven in 1978 by Thomas [16].

Lascoux and Schiitzenberger [11] showed how to construct the ring of
symmetric functions as a subalgebra of a non-commutative associative
ring called the plactic algebra whose additive group is the free abelian
group A with basis the set of (non-standard) Young tableaux. Each
tableau 71" of shape A determines a monomial summand of the Schur
function s,.

Evaluating s, at Chern roots of the dual to the tautological bun-
dle of the Grassmannian gives the Schubert class o). Non-symmetric
monomials in these Chern roots are not defined, so individual Young
tableaux are not expected to appear in the geometry of Grassmanni-
ans. In this context, the crucial use we made of the Schubert varieties
U(T) is surprising.

A feature of our methods is the correspondence between an iterative
construction of the set «y *- - - % oy, and the rational curves in the proof
of Theorem D. This suggests an alternate non-commutative, associative
product o on A. The resulting algebra has surjections to the ring of
symmetric functions and to Chow rings of Grassmannians.

Additional combinatorial preliminaries for this section may be found
in [14]. Here, partitions A, p, and v may have any number of rows.
Suppose T and U are, respectively, a tableau of shape y and a skew
tableau of shape A/u. Let T'|JU be the tableau of shape A whose first
|pu| entries comprise T, and remaining entries comprise U, with each
increased by |u|. For tableaux S and T where the shape of S is A,
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define

SoT =Y S| v

the sum taken over all v and all skew tableaux U of shape v/A Knuth
equivalent to T'. Figure 3 shows an example. This product is related
to the operation x of §2.5: Let Y, be the unique standard tableau of
shape («, 0). If T has at most 2 rows, then T x« is the set of summands
of T oY, with at most two rows.

(@)

FI1GURE 3. The composition o

Theorem F. The product o determines an associative non-commutative
Z-algebra structure on A with unit the empty tableau 0. Moreover, o is
not the plactic product.

Proof: In the plactic algebra, the product of two tableaux is always
a third, showing o is not the plactic product. For any tableau 7', we
have o T =T o) = T. Note

1/2]5]6] _[1]2]5]6]7]8]9]  [1]2]5]6]8]9]  [1]2
34 o l2[3] = 3 T [3]4]7 " [3]4
112]5]6/8]9] 112]5]6]9] 12
34 T 13048 " [3]a
7] 7] 7]
112]5]6]9] . 1[2]5]6]
34 3/4]9
718 718

1] o [112) = [1203) + (3 » [ + 2 - (12 - [

so o is non-commutative. To show associativity, let R, S, and T be

tableaux. Then
Ro(SoT) Z R U W,

the sum taken over W Knuth equivalent to S|JV, where V is Knuth
equivalent to 7. Let U’ be the first |S| entries in W, and V' the last
|T| entries, each decreased by |S|, thus,

Ro(SoT)=>Y R|JU'|JV"
the sum taken over U’ Knuth equivalent to S and V' to T, which is
(RoS)oT. r



REAL ENUMERATIVE GEOMETRY 25

Let m < n. For a tableau T of shape A, let ¢(7T") be the Schur
function sy. Define ¢p, ,(T) to be 0 if A\ + m > n or Aypq # 0 and
oy otherwise. Then ¢ and ¢,, , are additive surjections from A to,
respectively, the algebra of symmetric functions and A*G,,,P".

Theorem G. The maps ¢ and ¢, , are Z-algebra homomorphisms.

Proof: For any tableaux S and 7T of shape v, and arbitrary partitions
A and p, there is a natural bijection (given by Haiman’s dual equiva-
lence [6]) between the set of tableaux with shape \/y Knuth equivalent
to S and those Knuth equivalent to 7', and this common number is cl’)u.

Thus ¢ is an algebra homomorphism. It follows that ¢,, ,, is as well.

F

8. ENUMERATIVE GEOMETRY AND ARRANGEMENTS OVER FINITE
FIiELDS

A main result of this paper, Theorem C, shows that any Schubert-
type enumerative problem concerning lines in projective space may be
solved over R. By ‘solved’ over a field k£, we mean there are flags in
P} determining Schubert varieties which meet transversally in finitely
many points, all of which are defined over k. We describe two families
of enumerative problems and, for each problem in each family, we de-
termine the fields over which it may be solved. We also consider the
problem of finding arrangements over finite fields.

8.1. The n lines meeting four (n—1)-planes in P?*~!. Given three
pairwise non-intersecting (n — 1)-planes Ly, Ly, and L3 in P?*~! there
are coordinates xq,...,Ts, for P?"! such that L,, L,, and L3 are
defined by the equations:

L1 . $1:$2:"'=.’En:0
Ly @ zpp1 =+ =o9, =
L3 . $1—$n+1="':$n—l’2n:0

One may check that Qr, (27, )97, is a transverse intersection, and
that if ¥, ; C P21 is the union of the lines meeting each of L, Lo,
and Lj, then ¥, ,_, is the image of the standard Segre embedding of
P! x P"! into P?"~! ([7]):

¢ : [a7b] X [yla"' 7y'rL] — [a’yla"' 7ayn7by17"' >byn]
The lines meeting L;, Ly, and Lz are the images of P' x {p}, for
p € P"1. The Segre variety ¥ ,,_; has degree n, so a general (n — 1)-
plane L, meets };,_; in n distinct points, each determining a line
meeting Ly, ..., Ls. These lines, ¢, ... ,¢,, meet Ly in distinct points
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which span L;. If these lines are defined over k, then we may change
coordinates so that each /; is the span of the standard basis elements
e; and e ;.

For 1 < j < n, let p; = [0, 5;] € P}, be the first coordinate of
¢~1(¢; N Ly). Then

Ly : pixi— A Tpy1 =" = Bnn — @nTop = 0.

Also, py, ... ,p, are distinct; otherwise Ly N3, ,_; contains a line.

Thus, if this enumerative problem may be solved over k, then k£ has
at least n—1 elements. Conversely, suppose k has at least n—1 elements
and let pi, ... , p, be distinct elements in P, and define Ly, ..., L, and
li,...,¢, as above. Then ¢4, ... , ¢, are precisely the lines which meet
each of Lq,..., Ly.

8.2. The n lines meeting a fixed line and n + 1 (n — 1)-planes
in P"*1, A line £ and (n — 1)-planes K7, ... , K, in P**! are in linear
general position if for every p € £, the hyperplanes I';(p) = (p, K;), for
1 <4 < n, meet in a line. In this case, the union

Sip—1 = U (Fl(p) n---N Fn(p))

pel

is a rational normal surface scroll. Moreover, the lines meeting each of
L, Ky,...,K, are precisely those lines A\(p) = T'1(p) N ---NTy(p) for
p e /L.

Since Si,,—1 has degree n, a general (n—1)-plane K, 11 meets S ,_ in
n distinct points, each determining a line A(p) which meets ¢, K1, ... , Ky 1.
If k is finite with g elements, there are only ¢ + 1 lines A(p) defined
over k. Thus it is necessary that ¢ > n — 1 to solve this problem over
k. We show this condition suffices.

All rational normal surface scrolls are projectively equivalent, ([7],
89), so we may assume that Sj,_; has the following standard form.

Let z1,%9,¥1,...,yn be coordinates for P"*! where ¢ has equation
y1 = --- =y, = 0. Then for p = [a,b,0,...,0] € £, we have that A(p)
is the linear span of p and the point [0,0,a" !, a"2b,... ,ab® 2, b"71].

Let p1,... ,p, € P! be distinct, and let ' =" A;b'a™* be a form
on P! vanishing at pi,... ,p,. Define K, by the vanishing of the two
linear forms

A tzo— Ay o Agzy + Ay + - -+ Apyn.

The intersection of S;, ; and the hyperplane defined by A, is the
rational normal curve

¥ [a,b] — [a",a™ b, a™ b, a2, ..., ab™ Tt b
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Since 1*(Ay) is the form F, we see that A(p1),...,A(p,) are the lines
meeting each of /, Ky, ..., K, 1. Thus, if £ has at least n — 1 elements,
this enumerative problem may be solved over k.

These two families are the only non-trivial examples of Schubert-
type enumerative problems for which we know an explicit description
of their solutions. Each of these problems can be solved over any field &
where #P; exceeds the number of solutions. In particular, they may be
solved over Q. It would be interesting to find exact solutions to other
enumerative problems in order to test whether these observations hold
more generally.

8.3. Arrangements over finite fields. In §2.6 we remarked it is pos-
sible to construct arrangements over some finite fields. Here we show
how. Recall that an arrangement F in P" is a collection of 2n — 3
distinct hyperplanes Hs, ... , Hy,_5 in P" such that for m = 2,... | n,
the following two conditions hold:

(A.1) F, := Hyz3,.. 2m—2 has codimension m, and if m # n, then
F,, C Hyy—q but F,, ¢ Hyy. Thus Fpy = F,, N Hyy,, and if
AcC{2,...,2m — 1}, then Hy ¢ Hop,.

(A2) If AcC{2,...,2m — 2}, and F,, # Hy, then Hy ¢ Hopp 1.

We characterize subsets A of {2,...,2n — 2} which give distinct
subspaces H,4. This is used to estimate the order of a field £ sufficient
to construct an arrangement.

8.4. Lemma. Let F be an arrangement and A a subset of {2,... ,2n—
2} with dim Hy = n — m. Then there exists B = {b; < -+ < b} C
{2,...,2n — 2} with Hg = H,, where B satisfies

(A.3) FEither b; > 2i, fori=1,... ,m, or else by = 2, by = 3, and
there is some

. ) bi=21—2 for2<i1<y
2sj<m w’th{bizzi for j <i
Moreover, if B' is another subset satisfying (A.3), then dim Hp =
n—m and Hg = Hg if and only if B = B'.

Proof: Let A C {2,...,2n — 2} and suppose A = {a; < --- < ag}-
Discarding, if necessary, elements a; of A such that Hy,, .. 4,3 C Hg,,
we may assume that m =k and, for 1 <7 < m, dim Hy,,, .. o) =1 — 1.
If a; > 2i for all 7, set B = A.

Otherwise, let j be the largest index with a; < 2j. Since {a4,... ,q;}
isasubset of {2,...,2j—1}, (A.1) implies F; = Hyy, . 2j_1} C Hia,, ... 0;}-
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But dim F; = n—j =dim Hyg,, . 4,3, which shows Fj = Hy,, . 4;3. De-
fine by,..., by by by = 2, by = 3, and for ¢ > 2,

, - [2i-2 if2<i<)

b a; if j <1

The Hg = Hy, as an easy induction and (A.1) show Hy, . 5y = Fj.
If B' C {2,...,2n — 2} satisfies (A.3), then arguing as in the proof

of Lemma 2.9(3) shows Hy = Hp = B=B'. p

We estimate the size of a finite field k£ sufficient to construct an
arrangement.

Theorem H. There exists an arrangement in P} if the order of k is
at least

on — 4)! =1 (29)!
( ) +Zz'(( )

(=2 -1 "~ & id(+1)

Proof: Consider the problem of inductively constructing an arrange-
ment in P, Let 2 < m < n—2 and suppose we have found Hs, ... , Hop—g
satisfying (A.1) and (A.2). This defines F,,, = Ho N ---N Hoy—1. Let
Hy,, be any hyperplane in P} not containing F,,. Set Fi,+1 = Fj,,NHop,.
Then, we must find a hyperplane Hopy1 CPY/Foy with Hg & Hopyi1,
forall B C {2,...,2m—2} satisfying the condition (A.3) of Lemma 8.4.
We investigate When this is possible. Let S, be the set of all B satis-
fying (A.3), with B C {2,...,2m — 2}.

Let P™ be the set of hyperplanes in P” defined over £ which contain
F,.11. Every codimension m subspace Hpg containing F,,.; determines
a hyperplane Hg in P™ consisting of those hyperplanes in P™ contain-
ing Hg. Moreover, Hp is defined over k whenever Hy is defined over .
Thus there exists a hyperplane Hyy,y 1 in PY/F1 with Hg ¢ Hopiq
for all B € §,,, if, as sets of k-valued points,

X =P\ J Hs #0.

BeSn,

We estimate # (Jpcs, Hg, to show that the hypotheses imply X # (.
We claim that for each m =0,... ,n — 2,

_ o (2m)! 2 (20)!

Granting this, suppose k has ¢ > s,_» elements. Since P™ has (g™t —

1)/(g—1) elements and each Hg has (¢™ —1)/(¢ — 1) elements, X is
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non-empty if ¢! — 1 > (¢™ — 1)s,,. This holds because
qm—l—l -1

=

by our assumption on g = #k.

To enumerate S,,, let B = {b; < --- < b,} € S,,. Then there is
some j € {0,2,...,m} such that b; > 2i for i > j, but b; < 2i for

JZqzsnzzsm,

1 <j. Ifweset ;=04 —2jfore=1,...,m—j,thenciy,...,cnm_j
is the second row of a Young tableau of shape (m — j,m — j). This is
because for each ¢, 2i < ¢; < 2(m — j). Conversely, if ¢1,... ,cp_j is

the second row of a tableau of shape (m — j, m — j), then
{2<3<--<2j-2<e14+2j < <cCpmej+2j} € S

Let 7; be the set of tableaux of shape (s,s). These arguments show
there is a bijection

Sm <—>TmUTm_2U7;n_3U...U75.
By the hook length formula of Frame, Robinson, and Thrall 3], #7, =
m—2 (2i)!
'Es—}—)l)' Thus #8 m' m+1)' + Zz 0 z'(z

This result is not the best possible, as we used a crude estimate to
count the set X. For P*, Theorem H gives #k > 3 and for P°, #k > 7.
However, the arrangements in §2.8 are defined over smaller fields. The
arrangement in P* is defined over the field with two elements, while the
arrangement in P° may be defined over the field with four elements: If
F, is the field with 2 elements so that Fy = Fy[z]/(2? + z + 1) is the
field with 4 elements, then changing the coefficients 2 and 3 in (1) of
§2.8 to z and z + 1, gives an arrangement in P° defined over F,.
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