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SOLVING SCHUBERT PROBLEMS WITH

LITTLEWOOD-RICHARDSON HOMOTOPIES

FRANK SOTTILE, RAVI VAKIL, AND JAN VERSCHELDE

Abstract. We present a new numerical homotopy continuation algorithm for finding all
solutions to Schubert problems on Grassmannians. This Littlewood-Richardson homotopy is
based on Vakil’s geometric proof of the Littlewood-Richardson rule. Its start solutions are
given by linear equations and they are tracked through a sequence of homotopies encoded by
certain checker configurations to find the solutions to a given Schubert problem. For generic
Schubert problems the number of paths tracked is optimal. The Littlewood-Richardson ho-
motopy algorithm is implemented using the path trackers of the software package PHCpack.

1. Introduction

The Schubert calculus is concerned with geometric problems of the form: Determine the k-
dimensional linear subspaces of C

n that meet a collection of fixed linear subspaces in specified
dimensions. For example, what are the three-dimensional linear subspaces of C

7 that meet
each of 12 general four-dimensional linear subspaces in at least a line? (There are 462 [14].)
The traditional goal is to count the number of solutions and the method of choice for this
enumeration is the Littlewood-Richardson rule, which comes from combinatorics and repre-
sentation theory [4]. Recently, Vakil gave a geometric proof of this rule [20] through explicit
specializations organized by a combinatorial checkers game.

Interest has grown in computing the solutions to actual Schubert problems. One motiva-
tion has been the experimental study of reality in the Schubert calculus [6, 16, 17, 19]. A
proof of Pieri’s rule (a special case of the Littlewood-Richardson rule) using geometric spe-
cializations [18] led to the Pieri homotopy for solving special Schubert problems [7]. This was
implemented and refined [8, 11, 22, 23, 24], and has been used to address a problem in pure
mathematics [9]. Another motivation is the output pole placement problem in linear systems
control [1, 2, 3, 13, 23].

We present the Littlewood-Richardson homotopy, which is a numerical homotopy algorithm
for finding all solutions to any Schubert problem. It is based on the geometric Littlewood-
Richardson rule [20] and it is optimal in that generically there are no extraneous paths to be
tracked.

We describe Schubert problems and their equations in §2, and give a detailed example of
the geometric Littlewood-Richardson rule in §3. We then explain the local structure of the
Littlewood-Richardson homotopy in §4. The next three sections give more details on the
local coordinates, the moving flag, and the checker configurations. In §8 we discuss the global
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structure of the Littlewood-Richardson homotopy and conclude in §9 with a brief description
of our PHCpack [21] implementation and timings.

2. Schubert Problems

A Schubert problem asks for the k-dimensional subspaces of C
n that satisfy certain Schubert

conditions imposed by general flags. We explain this in concrete terms.
A point in C

n is represented by a n× 1 column vector and a linear subspace as the column
span of a matrix. A flag F is represented by an ordered basis f1, . . . , fn of C

n that forms the
columns of a matrix F . If we write Fi for the span of the first i columns of F , then a Schubert
condition imposed by F is the condition on the k-plane X that

(1) dim(X ∩ Fωi
) ≥ i for 1 ≤ i ≤ k ,

where ω ∈ N
k is a bracket; 1 ≤ ω1 < ω2 < · · · < ωk ≤ n.

If we set |ω| =
∑

i n−k + i−wi, then a Schubert problem is a list ω1, ω2, . . . , ωs of brackets
such that

(2) |ω1| + |ω2| + · · · + |ωs| = k(n − k) .

For example, the Schubert problem of three-planes meeting 12 four-planes in C
7 is given

by 12 equal codimension one brackets and is written succinctly as [4 6 7]12. The numerical
condition (2) ensures that if F 1, . . . , F s are general, then there are finitely many k-planes that
satisfy condition ωi for flag F i, for i = 1, . . . , s.

The set of k-planes X satisfying (1) is the Schubert variety Ωω(F ). This is a subvariety
of the k(n−k)-dimensional Grassmannian of k-planes in n-space. Thus solving a Schubert
problem corresponds to determining the intersection of Schubert varieties with respect to
various flags.

These geometric conditions are formulated as systems of polynomials by parameterizing an
appropriate subset of the Grassmannian. For example, for F ∈ C

6×6, the Schubert variety
Ω[2 4 6](F ) contains

(3) X =















1 0 0
x21 1 0
x31 x32 1
x41 x42 x43

0 x52 x53

0 0 x63















dim(X ∩ F2) = 1
dim(X ∩ F4) = 2
dim(X ∩ F6) = 3

Expressed via conditions on the minors of [X|Fi] this is a system of 13 polynomials in 9
variables.

The most elementary Schubert problem involves only two brackets, ω and τ with |ω|+ |τ | =
k(n−k). If F and M are general flags and ω∨ = [n+1−ωk . . . n+1− ω1], then

(4) Ωω(F ) ∩ Ωτ (M) =

{

〈x1, . . . ,xk〉 if τ = ω∨,
∅ otherwise,

where xi = Fωi
∩ Mn+1−ωi

, which is one-dimensional and thus solved by linear algebra. Such
elementary Schubert problems are the start systems for the Littlewood-Richardson homotopy.

When |ω| + |τ | < k(n−k), an intersection

(5) Ωω(F ) ∩ Ωτ (M)
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of Schubert varieties for general flags F and M has positive dimension. This intersection is
homologous to a union of Schubert varieties Ωσ(F ) for |σ| = |ω| + |τ |, each occurring with
multiplicity the Littlewood-Richardson number cσ

ω,τ . We write this formally as a sum,

(6) Ωω(F ) ∩ Ωτ (M) ∼
∑

σ

cσ
ω,τΩσ(F ).

In the geometric Littlewood-Richardson rule [20], the flag M moves into special position
with respect to the flag F . This changes the intersection (5), breaking it into components
which are transformed into Schubert varieties Ωσ(F ). Then cσ

ω,τ is the number of different
ways to arrive at Ωσ(F ).

The relative position of the flags F and M is represented via a configuration of n black
checkers in a n×n board with no two in the same row or column. The dimension of Ma∩Fb is
the number of checkers weakly northwest of the square (a, b). This is illustrated in Figure 1.
Each cell corresponds to a vector space, and the vector space of each cell is contains the vector

1
1
1
1
0

2
2
1
1
0

3
2
1
1
0

4
3
2
1
0

5
4
3
2
1

M5

M4

M3

M2

M1

F1F2F3F4F5

⇐⇒

Figure 1. Dimension array dimMa ∩ Fb and corresponding checker configuration.

spaces of the cells weakly northwest of it.
All components of the specializations of (5) are represented by placements of k red1 checkers

on a board with n checkers representing the relative positions of the flags. The red checkers
represent the position of a typical k-plane in the component as follows: If the k-plane meets
the vector space corresponding to a cell in dimension ℓ, then there are ℓ red checkers weakly
northwest of it. See Figure 2 for examples. We discuss the placement and movement of the

Figure 2. Three checkerboards with n = 4 and k = 2.

checkers in §3 and §7.
Applying the geometric Littlewood-Richardson rule to two Schubert varieties in a Schubert

problem of s brackets reduces it to Schubert problems involving s−1 brackets. The Littlewood-
Richardson homotopy begins with the solutions to those smaller problems and reverses the
specializations to solve the original Schubert problem.

Let k = 3 and n = 6, and consider this for the Schubert problem [2 4 6]3 = [2 4 6][2 4 6][2 4 6].
Given three general flags F,M,N , we want to resolve the triple intersection

(7) Ω[2 4 6](F ) ∩ Ω[2 4 6](M) ∩ Ω[2 4 6](N).

1Red checkers look grey when printed in black and white.
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We first apply the geometric Littlewood-Richardson rule to the first intersection to obtain

(8)
(

Ω[2 3 4](F ) + 2Ω[1 3 5](F ) + Ω[1 2 6](F )
)

∩ Ω[2 4 6](N),

and then apply (4) to obtain 2〈x1,x2,x3〉, where x1 = F1∩N6, x2 = F3∩N4, and x3 = F5∩N2.
The Littlewood-Richardson homotopy starts with the single 3-plane 〈x1,x2,x3〉 (counted

twice) which is the unique solution to (8). It then numerically continues this solution back-
wards along the geometric specializations transforming (7) into (8) to arrive at solutions to (7).
As the multiplicity 2 of Ω[1 3 5](F ) in (8) is the number of paths in the specialization that end
in Ω[1 3 5](F ), the single solution 〈x1,x2,x3〉 that we began with yields two solutions to (7).

3. The problem of four lines

We illustrate the Littlewood-Richardson homotopy via the classical problem of which lines
in projective three-space (P3) meet four given lines. This corresponds to two-planes in C

4

meeting four fixed two-planes nontrivially, or [2 4]4.

stage 0 stage 1

stage 4

stage 2

stage 5

stage 3

stage 6

→

→

→

→

→

→

stage 0
1 1 1 1
1 1 1 0
1 1 0 0
1 0 0 0 →

stage 1
1 1 1 0
1 1 0 1
1 1 0 0
1 0 0 0 →

stage 2
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 0 →

stage 3
1 1 0 0
1 0 1 0
1 0 0 1
1 0 0 0 →

stage 4
1 0 0 0
0 1 1 0
0 1 0 1
0 1 0 0 →

stage 5
1 0 0 0
0 1 0 0
0 0 1 1
0 0 1 0 →

stage 6
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Figure 3. Specialization of the moving flag to the fixed flag.

A flag in P
3 consists of a point lying on a line that is contained in a plane (depicted here

as a triangle). Figure 3 shows the specialization of two flags, one fixed and one moving, that
underlies the geometric Littlewood-Richardson rule for every Schubert problem in P

3. The
top shows the geometry of the specialization. Below are matrices representing the moving
flag and checkerboards representing the relative positions of the two flags. We recognize this
as the bubble sort of the black checkers.

From stage 0 to stage 1 only the moving plane moves; the line and point are fixed. The
plane moves until it contains the fixed point of the fixed flag. From stage 1 to stage 2 only the



LITTLEWOOD-RICHARDSON HOMOTOPIES 5

moving line moves, until it too contains the fixed point. Then the moving plane moves again
(to contain the fixed line); then the moving point; then the moving line; then the moving
plane. At the end the two flags coincide.

We describe the solution to the problem of four lines using the Littlewood-Richardson
homotopy. Let ℓ1, ℓ2, ℓ3, ℓ4 be the four lines, where ℓ1 is the line of the fixed flag, ℓ2 the line
of the moving flag, and ℓ3 and ℓ4 are two other general lines. The family of lines meeting
ℓ1 and ℓ2 is two-dimensional; it is parameterized by ℓ1 × ℓ2, as any line meeting ℓ1 and ℓ2

is determined by the points where it meets them. On this parameterized surface, we seek
those points corresponding to lines satisfying the further condition (∗) of meeting ℓ3 and ℓ4.
Between stages 0 and 1, nothing changes, but in moving to stage 2, ℓ2 moves to intersect ℓ1.
There are now two distinct two-dimensional families of lines meeting both ℓ1 and ℓ2: (a) those
lines lying in the plane P containing ℓ1 and ℓ2 and (b) those lines in space passing through
the point p = ℓ1 ∩ ℓ2. We now impose the additional condition (∗) on both of these cases.
In case (a), ℓi meets P in a point pi (i = 3, 4), so there is one line in P meeting ℓ3 and ℓ4,
namely p3p4. In case (b), there is one line through p meeting ℓ3 and ℓ4, namely p, ℓ3 ∩ p, ℓ4.
After this, the only change is that the plane P , which equals the moving plane after stage 3,
and rotates into the fixed plane between stages 5 and 6. To solve the original problem, we
reverse this process, starting with the two solutions in cases (a) and (b), and reversing the
specialization.

Note that we have reduced one problem involving 4 brackets to two problems involving 3
brackets.

Figure 4 shows the geometry and algebra behind this discussion. The top shows the geom-
etry and the bottom gives the checker description. It also shows the matrices parameterizing
the two-dimensional families of lines in each case. The parameterization is explicitly described
in §5.

This single example is sufficient to understand the general case. The initial position of the
red checkers is as follows. The intersection of the k-plane with the moving flag M determines
the rows of the red checkers, and the intersection with the fixed flag F determines their
columns, and they are arranged from southwest to northeast. The movement of the moving
flag in arbitrary dimension is analogous to the specific case described here, and is described
by a sequence of moves of black checkers. The movement of the black checkers determines
the movement of the red checkers (see §7), and at each stage, there are one or two choices.
When there are two choices, the underlying geometry is essentially the same as in the example
above. When there is one choice, often the underlying geometry does not change, but the
parameterization changes.

4. The Littlewood-Richardson Homotopy

We first explain how the geometric Littlewood-Richardson rule gives equations and ho-
motopies for solving Schubert problems, and then illustrate that with two specific examples
coming from the problem of four lines.

In the geometric Littlewood-Richardson rule the intersection Ωω(F ) ∩ Ωτ (M) breaks into
components which eventually become Schubert varieties Ωσ(F ) as the moving flag M spe-
cializes to coincide with the fixed flag F . At each stage, the components correspond to
checkerboards.
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stage 0 stage 1

stage 4

stage 2

stage 5

stage 3

stage 6

→

→

→

→

→

→

stage 0 stage 1 stage 2 stage 3 stage 4 stage 5 stage 6

∗ 0
1 0
0 ∗
0 1

∗ 0
1 0
0 ∗
0 1

-

∗ 0
1 0
0 ∗
0 1

∗ 0
1 0
0 ∗
0 1





�

J
JĴ

0 ∗
1 0
0 ∗
0 1

∗ 0
1 ∗
0 0
0 1

-

-

0 ∗
1 0
0 ∗
0 1

∗ 0
1 ∗
0 1
0 0

-

-

1 0
0 ∗
0 ∗
0 1

∗ ∗
1 0
0 1
0 0

-

-

1 0
0 ∗
0 ∗
0 1

∗ ∗
1 0
0 1
0 0

-

-

1 0
0 ∗
0 ∗
0 1

∗ ∗
1 0
0 1
0 0

Figure 4. Resolving the problem of four lines.

A checkerboard encodes the relative positions of the fixed and moving flags as well as a
representation X, called a localization pattern, of the general element in the corresponding
component. Specifically, X is a n × k matrix whose entries are either 0, 1, or indeterminates
such that the n × k matrix MX is a general point in that component. In §5 we explain how
to obtain a localization pattern from its checkerboard.

Given a Schubert problem,

(9) Ωω(F ) ∩ Ωτ (M) ∩ Ωρ1
(N1) ∩ · · · ∩ Ωρs

(N s),

the intersection of the last s Schubert varieties is expressed as rank conditions on (minors
of) matrices [Y |N i

j ] (3), where Y is a general n × k matrix representing a general k-plane.
Write this system of minors succinctly as P (Y ) = 0. When X is a localization pattern for a
checkerboard in the degeneration of Ωω(F )∩Ωτ (M) (as in §5), the points in the corresponding
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component that also lie in the last s Schubert varieties in (9) are the solutions to the system
P (MX) = 0.

Reversing the specialization of the flags F and M is the generalization sequence. Between
adjacent stages i and i+1 of the generalization sequence, the moving flag is M(t) for t ∈ [0, 1].
Then the homotopy connecting these stages is

(10) P (M(t)X) = 0

for t ∈ [0, 1]. When t = 0, we are in stage i and when t = 1, we are in stage i+1. The
generalization of the moving flag is described in more detail in §6. We explain how the red
checkers move in §7, and then how the localization patterns for different stages fit together.

We illustrate this with some examples from Figure 4. For X ∈ Ω[2 4](F ) ∩ Ω[2 4](M), we
have

(11) X =









x11 0
1 0
0 x32

0 1









F = [e1, e2, e3, e4]
M = [e4, e3, e2, e1]
for any x11 and x32 :
dim(X ∩ 〈e1, e2〉) = 1,
dim(X ∩ 〈e4, e3〉) = 1,
dim(X ∩ 〈e1, e2, e3, e4〉) = 2.

In the first stage of Figure 4, the plane in the moving flag rotates about its line until it
meets the fixed point. As the line in the moving flag does not move, there is no homotopy,
only a change of coordinates, as illustrated in Figure 5 for a line meeting two lines and a

∗ 0
1 0
0 ∗
0 1

→
∗ 0
1 0
0 ∗
0 1

Figure 5. No homotopy, only change of coordinates.

fixed point in three-space, and as discussed at the end of §7. The corresponding coordinate
transformation is:









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 −1

















x11 0
1 0
0 x32

0 1









=









x11 0
1 0
0 1
0 x32−1









≡









x11 0
1 0
0 1/(x32−1)
0 1









.(12)

When the red checkers swap rows, we use a homotopy, shown in Figure 6, also for the case
of a line meeting two lines and a fixed point. This homotopy has coordinates

(13) X(t) =









x12t x12

x32 0
x32t x32

0 1









.
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At t = 0 we see that X(0) fits the pattern on the right in Figure 6, while at t = 1 a coordinate
change brings X(1) into the pattern on the left. With linear combinations of the two columns
we find generators for the line that fit the columns of the pattern.

∗ 0
1 0
0 ∗
0 1

→
0 ∗
1 0
0 ∗
0 1

Figure 6. Homotopy, as red checkers swap rows.

5. Localization Patterns

We describe coordinates for each component corresponding to a checkerboard: given two
flags M and F in relative position described by the black checkers, it is the space of k-planes
meeting M and F in the manner specified by the positions of the red checkers. The black
checkers correspond to a basis of both F and M . Each red checker is a basis element for the
k-plane and it lies in the space spanned by the black checkers weakly to its northwest.

While special cases were shown in Figure 4, we illustrate the general case with an example.
In the checkerboard of Figure 7, one black checker (in row D) is descending. Red checkers
are distributed along the sorted black checkers (regions B and E), as well as in the pre-sorted
region (regions A, C, D, and F ); in the latter region, they are distributed from the southwest
to the northeast as shown. The corresponding localization pattern, which is expressed with
respect to the basis of M , is shown in Figure 7.

A

B C

D

E F















































x1,1 · · · · · ·
x2,1 · x2,3 · · · ·
1 · x3,3 x3,4 · · ·
· · x4,3 x4,4 · · ·
· · x5,3 x5,4 · x5,6 ·
· x6,2 x6,3 x6,4 x6,5 x6,6 x6,7

· 1 · · · · ·
· · 1 x8,4 x8,5 x8,6 x8,7

· · · x9,4 x9,5 x9,6 x9,7

· · · 1 · x10,6 x10,7

· · · · x11,5 x11,6 x11,7

· · · · 1 · ·
· · · · · 1 x13,7

· · · · · · 1















































Figure 7. Coordinates corresponding to a checkerboard. Entries · in the co-
ordinate matrix are 0.
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We discuss the linking of localization patterns between stages after we describe the move-
ment of checkers in §7.

6. Generalizing the moving Flag

Underlying the geometric Littlewood-Richardson rule is the sequence of specializations
(analogous to Figure 3) in which the moving flag M successively moves to coincide with
the fixed flag F . Reversing this gives the generalization sequence in which M emerges from
F .

The generalization of the moving flag M is as follows. Throughout, the fixed flag is

(14) F = {〈e1〉 ⊂ 〈e1, e2〉 ⊂ 〈e1, e2, e3〉 · · · } .

Initially, the moving flag M coincides with F . We let m
′

i(t) describe the vectors during
the generalization (t = 0 corresponds to the specialized case, and t = 1 corresponds to the
generalized case), and m

′′

i describe the vectors after the generalization. At time t,

(15) M(t) = {〈m′

1(t)〉 ⊂ 〈m′

1(t),m
′

2(t)〉 ⊂ · · · } .

In the checker diagram, at each stage the black checkers in rows r and r + 1 swap rows, for
some r. Set

(16) mi = m
′

i(t) = m
′′

i for i 6= r, r + 1.

These different notations for the same vector keep track of whether we are talking about t = 0,
general t, or t = 1.

mr = m
′′

r+1(= m
′

r(0) = m
′

r+1(0)),(17)

mr+1 = m
′′

r+1 − m
′′

r(= m
′

r+1(0) − m
′

r(0)).(18)

m
′

r(t) = tm′′

r + (1 − t)m′′

r+1 = m
′′

r+1 − tmr+1,(19)

m
′

i(t) = m
′′

i for all other i.(20)

Thus m
′

i(1) = m
′′

i for all i.
It is convenient to describe the homotopy in terms of matrices. Here are the generalizing

moves from Figure 3.

F =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









→









1 0 0 0
0 1 0 0
0 0 γ31 1
0 0 1 0









→









1 0 0 0
0 γ21 1 0
0 γ31 0 1
0 1 0 0









→









γ11 1 0 0
γ21 0 1 0
γ31 0 0 1
1 0 0 0









(21)

→









γ11 1 0 0
γ21 0 γ22 1
γ31 0 1 0
1 0 0 0









→









γ11 γ12 1 0
γ21 γ22 0 1
γ31 1 0 0
1 0 0 0









→









γ11 γ12 γ13 1
γ21 γ22 1 0
γ31 1 0 0
1 0 0 0









.(22)

Here, γij are general complex numbers. For example, the second matrix in (22) corresponds
to stage 1, and we see that the moving plane, (the projectivization of) the span of the first
three columns, indeed contains the fixed point, as e1 is in the span of those three column
vectors, in agreement with Figure 3.
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The arrows represent the movement of the flag M , which we parametrize using our homo-
topy parameter t ∈ [0, 1]. For example, the next to last deformation is









γ11 1 0 0
γ21 0 γ22 1
γ31 0 1 0
1 0 0 0

















1 0 0 0
0 γ12t 1 0
0 1 0 0
0 0 0 1









(23)

=









γ11 γ12t 1 0
γ21 γ22 0 1
γ31 1 0 0
1 0 0 0









=: M(t).(24)

The gradual introduction of the random constants γij in the moving flag is the analog here
of the gamma trick [15] to ensure the regularity of the solution paths. By this gamma trick,
for all t, except for a finite number of choices of γij, the solution paths contain only regular
points.

The Littlewood-Richardson homotopies operate on randomly generated complex flags. To
move to flags with specific coordinates, we use coefficient-parameter [12] or cheater homo-
topies [10].

7. Movement of red checkers

In the geometric Littlewood-Richardson rule, the black checkers start out on the anti-
diagonal, and a bubble sort is performed which moves them to the diagonal. This is indicated
in Figures 3, 4, and 7. In each of the

(

n

2

)

steps, one black checker descends and another rises
as in Figure 8. The descending checker is in the critical row and the ascending checker is at

critical row

critical diagonal -

Figure 8. Critical row and critical diagonal.

the top left of the critical diagonal.
To resolve the intersection Ωω(F ) ∩ Ωτ (M), we initially place red checkers as follows. The

intersection of the k-plane with the moving flag M determines the rows of the red checkers,
and the intersection with the fixed flag F determines their columns, and they are arranged
from southwest to northeast. As the black checkers move, they induce a motion of the red
checkers. There will be nine cases to consider. In eight, the motion is determined, while in
the ninth case there are sometimes two choices as in Figure 4.

The cases are determined by the answers to two questions, each of which has three answers.

(1) Where is the top red checker in the critical diagonal?
(a) In the rising checker’s square.
(b) Elsewhere in the critical diagonal.
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(c) There is no red checker in the critical diagonal.
(2) Where is the red checker in the critical row?

(α) In the descending checker’s square.
(β) Elsewhere in the critical row.
(γ) There is no red checker in the critical row.

Table 1 shows the movement of the checkers in these nine cases. The rows correspond to
the answers to the first question and the columns to the answers of the second question. Only
the relevant part of each checkerboard is shown.

α β γ

a

b or

c

Table 1. Movement of red checkers.

In case (b, β) there are two possibilities, which can both occur—this is when a component
breaks into two components in the geometric Littlewood-Richardson rule. The second of
these (where the red checkers swap rows) only occurs if there are no other red checkers in the
rectangle between the two, which we call blockers. Figure 9 shows a blocker.

red checker in critical row�
top red checker
in critical diagonal -

blocker�

Figure 9. a blocker.

To track solutions to Schubert problems between adjacent stages in the generalization
sequence, we need uniform coordinates corresponding to two adjacent diagrams—for example,
two boards connected by an arrow in Figure 4. We can then track solutions from one board
to the more generalized board. There are three cases to consider.

In trivial cases, such as the first arrow in Figure 4, which is case (c, γ) of Table 1, the
coordinates do not change because the underlying geometry is constant.

We describe one of the nontrivial examples of the coordinates linking two stages, that of
the lower arrow between stage 1 and stage 2 in Figure 4 (left case of (b, β)). We follow the
vector corresponding to the red checker in the bottom row. Throughout the degeneration (as
t goes from 0 to 1), we write its vector as m4 + xm

′

2(t). As m
′

2(1) = m
′′

2 and m
′

2(0) = m
′′

3
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(see (17)–(20) of §6 with r = 2), we see that the reason for the change of row of the ∗ in the
matrix in Figure 4 is just a renaming of the variable.

The third case, where the two red checkers swap rows, is more subtle, and an example was
described at the end of §4.

8. Solving Schubert Problems

The global structure of the Littlewood-Richardson homotopy is encoded by a graded poset.
This records the branching of Schubert varieties that occur in when running the geometric
Littlewood-Richardson rule through successive specializations of their defining flags, equiva-
lently, moving checkers as in §7.

We construct the poset for a a Schubert problem

(25) Ωω1(F 1) ∩ Ωω2(F 2) ∩ · · · ∩ Ωωs(F s).

First, use the geometric Littlewood-Richardson rule to resolve the first intersection

(26) Ωω1(F 1) ∩ Ωω2(F 2) ∼
∑

σ

cσ
ω1,ω2Ωσ(F 1).

The top of the poset is the bracket ω1, which branches to those brackets σ appearing in the
sum. The edge ω1 → σ occurs with multiplicity cσ

ω1,ω2 . Geometrically, we have the disjunction
of Schubert probems

(27)
(

∑

σ

cσ
ω1,ω2Ωσ(F 1)

)

∩ Ωω3(F 3) ∩ · · · ∩ Ωωs(F s),

and we resolve each Ωσ(F 1)∩Ωω3(F 3) with the geometric Littlewood-Richardson rule, further
building the poset, and continue in this fashion.

The penultimate stage has the form

(28)
(

∑

σ

CσΩσ(F 1)
)

∩ Ωωs(F s),

where Cσ are the multiplicities. This is resolved via (4), so the only term in the sum which
contributes is when σ∨ = ωs, and the final Schubert variety is Ω[1 2 ··· k](F

1).
The global structure of the Littlewood-Richardson homotopy is to begin with the solution

Ω[1 2 ··· k](F
1) at the bottom of our poset, and continue this solution along homotopies corre-

sponding to the edges of the poset. Each edge is a sequence of
(

n

2

)

homotopies or coordinate
changes corresponding to running the geometric Littlewood-Richardson rule backwards, as
explained in §5, §6, and §7. In this way, we iteratively build solutions to the Schubert-type
problems corresponding to the nodes of this poset.

For example, suppose that we have the Schubert problem [2 4 6][2 5 6]3. This is resolved
in the geometric Littlewood-Richardson rule as

[2 4 6][2 5 6]3 = (1[2 3 5] + 1[1 4 5] + 1[1 3 6])[2 5 6]2(29)

= (2[1 3 4] + 2[1 2 5])[2 5 6](30)

= 2[1 2 3].(31)

The poset corresponding to the Littlewood-Richardson homotopies is shown in Figure 10.
The multiplicities in front of the brackets are the number of solutions tracked to the given
Schubert variety.
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0[2 3 5] 1[1 3 6] 1[1 4 5]

@ � @ �
0[1 3 4] 1[1 2 5]

1[1 2 3]

Figure 10. Poset to resolve [2 4 6][2 5 6]3.

The number of solution paths is one of the three factors that determine the cost of the
homotopies. Another factor is the complexity of the polynomials that express the intersection
conditions. The current implementation performs a Laplace expansion on the minors to
elaborate all conditions (1). Locally, for use during path following, an overdetermined system
of p equations in q unknowns is multiplied with a q-by-p matrix of randomly generated complex
coefficients to obtain square linear systems in the application of Newton’s method. The third
factor in the cost lies in the complex and real geometry of the solution paths. In practice
it turns out that solving a generic complex instance with the Pieri homotopies is in general
always faster than running a cheater homotopy using the solutions of a generic complex
instance as start solutions to solve a generic real instance. This experience also applies to
solving general Schubert problems with Littlewood-Richardson homotopies.

9. Computational Experiments

Littlewood-Richardson homotopies are available in PHCpack [21] since release 2.3.46. Re-
lease 2.3.52 contains LRhomotopies.m2, an interface to solve Schubert problems in Macaulay 2 [5].
Via phc -e option #4 we resolve intersection conditions and Littlewood-Richardson homo-
topies are available via option #5.

Below we list sample timings for solving some small Schubert problems on one core of a
Mac OS X 2.2 Ghz:
• [2 4]4 = 2 takes 5 milliseconds,
• [2 4 6]3 = 2 takes 169 milliseconds,
• [2 5 8]2[4 6 8] = 2 takes 2.556 seconds,
• [2 4 6 8]2[2 5 7 8] = 3 takes 8.595 seconds.
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