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TRACE TEST

ANTON LEYKIN, JOSE ISRAEL RODRIGUEZ, AND FRANK SOTTILE

Abstract. The trace test in numerical algebraic geometry verifies the completeness
of a witness set of an irreducible variety in affine or projective space. We give a brief
derivation of the trace test and then consider it for subvarieties of products of projective
spaces using multihomogeneous witness sets. We show how a dimension reduction leads
to a practical trace test in this case involving a curve in a low-dimensional affine space.

Introduction

Numerical algebraic geometry [11] uses numerical analysis to study algebraic varieties,
which are sets defined by polynomial equations. It is becoming a core tool in applications
of algebraic geometry outside of mathematics. Its fundamental concept is a witness set,
which is a general linear section of an algebraic variety [8]. This gives a representation
of a variety which may be manipulated on a computer and forms the basis for many
algorithms. The trace test is used to verify that a witness set is complete.

We illustrate this with the folium of Descartes, defined by x3+y3 = 3xy. A general line ℓ
meets the folium in three points W and the pair (W,ℓ) forms a witness set for the folium.
Tracking the points of W as ℓ moves computes witness sets on other lines. Figure 1 shows
these witness sets on four parallel lines. It also shows the average of each witness set,

x3 + y3 = 3xy

ℓ

collinear traces✛

Figure 1. Witness sets and the trace test for the folium of Descartes

which is one-third of their sum, the trace. The four traces are collinear.
Any subset W ′ of W may be tracked to get a corresponding subset on any other line,

and we may consider the traces of the subsets as ℓ moves in a pencil. The traces are
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collinear if and only if W ′ is complete in that W ′ =W . This may also be seen in Figure 1.
This trace test [10] is used to verify the completeness of a subset of a witness set.

Methods to check linearity of a univariate function—e.g., the trace—in the context of
algorithms for numerical algebraic geometry were recently discussed in [2].

An algebraic variety V may be the union of other varieties, called its components. Given
a witness set W = V ∩L for V (L is a linear space), numerical irreducible decomposition [9]
partitions W into subsets corresponding to the components of V . For example, suppose
that V = E ∪ F is the union of the ellipse 8(x + 1)2 + 3(2y + x + 1)2 = 8 and the folium, as
in Figure 2. A witness set for V consists of the five points W = V ∩ ℓ. Tracking points

ℓ

Figure 2. Numerical irreducible decomposition for the ellipse and folium

of W as ℓ varies in a loop in the space of lines, a point w ∈ W may move to a different
point which lies in the same component of V . Doing this for several loops partitions W
into two sets, of cardinalities two and three, respectively. Applying the trace test to each
subset verifies that each is a witness set of a component of V .

A multiprojective variety is subvariety of a product of projective spaces. Since there are
different types of general linear sections in a product of projective spaces, a witness set
for a multiprojective variety is necessarily a collection of such sections, called a witness
collection. We see this in Figure 3, where vertical and horizontal lines are the two types
of hyperplanes in the product P1 × P1.

Witness sets for multihomogeneous varieties were introduced in [4]. Figure 3 shows
that the trace obtained by varying ℓ(2) is nonlinear in either affine chart. One may
instead apply the trace test to a witness set in the ambient projective space of the Segre
embedding. By Remark 10, this may involve very large witness sets. We propose an
alternative method to verify irreducible components, using a dimension reduction that
sidesteps this potential bottleneck followed by the ordinary trace test in an affine patch
on the product of projective spaces. In Figure 3 this is represented by the linear section of
the plane cubic xy2 = 1 by the line ℓ. Both xy2 = 1 and x = z2 = ( 1

y
)2 bihomogenize to the

same cubic, but line ℓ in the first affine chart becomes a quadric in the second. Moreover,
a general line in the second chart intersects the curve at two points. Taking a generic
chart preserves the total degree, so we first choose a chart, and then take a general linear
section in that chart. This will have the same number of points as the the total number
of points in the witness collection.
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Figure 3. The curve C in P1 × P1 is defined by xy2 = 1 and x =
z2 = (1/y)2 in two distinct affine charts C × C. Its witness collection is
((W1, ℓ(1)), (W2, ℓ(2))), where Wi = C ∩ ℓ(i).

In §1 we present a simple derivation of the usual trace test in affine space. While
containing the same essential ideas as in [10], our derivation is shorter, and we believe
significantly clearer. In §2 we introduce witness collections, collections of multihomoge-
neous witness sets representing multiprojective varieties. In §3 we present trace test for
multihomogeneous varieties that exploits a reduction in dimension. Proofs are placed in
§4 to streamline the exposition.

1. Trace in an affine space

We derive the trace test for curves in affine space, which verifies the completeness of
a witness set. We also show how to reduce to a curve when the variety has greater
dimension. Let V ⊂ Cn be an irreducible algebraic variety of dimension m > 0. We restrict
to m > 0, for if m = 0, then V is a single point. Let (x, y) be coordinates for Cn with
x ∈ Cn−m and y ∈ Cm. Polynomials defining V generate a prime ideal I in the polynomial
ring C[x, y]. We assume that V is in general position with respect to these coordinates.
In particular, the projection π of V to Cm is a branched cover with a fiber of d = degV
points outside the ramification locus ∆ ⊂ Cm.

Example 1. If we project the folium of Descartes to the y-axis, all fibers consist of three
points, except those above zeroes of the discriminant −27y3(y3−4). These zeroes form the

ramification locus ∆ = {0,22/3, (−1

2
±
√
−3
2
)22/3}. Figure 4 shows the real points, where the

fiber consists of one or three points, with this number changing at the real points of ∆.

Let ℓ ⊂ Cm be a general line parameterized by t ∈ C, so that L ∶= Cn−m × ℓ is a general
affine subspace of dimension n−m+1 with coordinates (x, t). The intersection C ∶= V ∩L is
an irreducible curve of degree d by Bertini’s Theorem (see Theorem 12) and the projection
π ∶C → ℓ is a degree d cover over ℓ ∖∆.

Proposition 2. Let C ⊂ Pn, n ≥ 2, be a curve. Let α ∶Pn ⇢ P2 be a generic projection.

Then C is irreducible if and only if α(C) is irreducible.
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Figure 4. Projecting the folium to the y-axis.

Note that one can state Proposition 2 for a generic linear map of affine spaces Cn → C2,
since taking affine charts preserves (ir)reducibility.

Since V and L are in general position, Proposition 2 implies that the projection of C
to the (xi, t)-coordinate plane is an irreducible curve given by a single polynomial f(xi, t)
of degree d with all monomials up to degree d having nonzero coefficients.

Normalize f so that the coefficient of xd
i is 1, and extend scalars from C to C(t). Then

f ∈ C(t)[xi] is a monic irreducible polynomial in xi. The negative sum of its roots is the
coefficient of xd−1

i in f , which is an affine function of t. Equivalently,

trK/C(t)(xi) = c0t + c1 , (for some c0, c1 ∈ C) ,
where K is a finite extension of C(t) containing the roots of f . A function of t of the
form c0t + c1 where c0, c1 are constants is an affine function. We deduce the following.

Proposition 3. The sum in Cn−m of the points in a fiber of C over t ∈ ℓ ∖∆ is an affine

function of t.

The converse to this holds.

Proposition 4. No proper subset of the points in a fiber of C over t ∈ ℓ∖∆ has sum that

is an affine function of t.

Example 5. Consider this for the folium of Descartes. As the folium is a plane curve, a
general projection α of Proposition 2 is a general change of coordinates. In the coordinates
ξ = x + 1 and t = 2y − x, the folium has equation

9ξ3 + (3t − 39)ξ2 + (3t2 − 18t + 51)ξ + t3 − 3t2 + 15t − 21 = 0 .

The trace is − t
3
+ 13

3
. Figure 5 shows Figure 1 under this change of coordinates. The lines

become vertical, and the average of the trace is the line ξ = − t
9
+ 13

9
.

Remark 6. We generalize the situation of Proposition 4. A pencil of linear spaces is a
family Mt for t ∈ C of linear spaces that depends affinely on the parameter t. Each Mt is
the span of a linear space L and a point t on a line ℓ that is disjoint from L.

Suppose that V ⊂ Pn is a subvariety of dimension m and that Mt for t ∈ C is a general
pencil of linear subspaces of codimension m with V ∩M0 transverse. Let ∆ ⊂ C be the
finite set of points t such that the intersection V ∩Mt is not transverse. Given any path



TRACE TEST 5

Figure 5. Folium of Descartes in new coordinates

γ ∶ [0,1]→ C ∖∆ with γ(0) = 0 and any v ∈ V ∩M0, we may analytically continue v along
γ to obtain a path v(γ(s)) for s ∈ [0,1] with v(γ(s)) ∈ V ∩Mγ(s).

The sum of the points in a subset W of V ∩M0 is an affine function of t if for a
nonconstant path γ ∶ [0,1] → C ∖∆ with γ(0) = 0, the sum of the points w(γ(s)) is an
affine function of γ(s). This is independent of choice of path and of a general pencil.

Remark 7. This leads to the trace test. Let V ⊂ Pn (or Cn) be a possibly reducible variety
of dimension m and M a general linear space of codimension m so that W = V ∩M is
a witness set for V . Suppose we have a subset ∅ ≠ W ′ ⊂ W whose points lie in a single
component V ′ of V so that W ′ ⊂ V ′ ∩M . Such a set W ′ is a partial witness set for V ′.
To test if W ′ = V ′ ∩M , let Mt for t ∈ C be a general pencil of codimension m planes in
Pn with M = M0 and test if the sum of the points of W ′ is an affine function of t. By
Proposition 4, W ′ = V ′ ∩M if and only if it passes this trace test.

Remark 8. Let U be a variety and φ ∶U ⇢ Pn be a rational map with image V = φ(U). As
obtaining defining equations for V may not be practical, working with a witness set V ∩M
may not be feasible. Instead one may work with the preimage φ−1(V ∩M) producing a
proxy for the witness set V ∩M . A partial proxy witness set is a finite subset of φ−1(V ∩M).
It is complete if its image is a complete witness set.

We can, in particular, employ the trace test for the image working with proxy witness
sets for V ∩Mt in Remark 7.

Hauenstein and Sommese use this general observation in [5] to provide a detailed de-
scription of how proxy witness sets can be computed and used to get witness sets of images
of subvarieties under a linear map Pm → Pn.

2. Witness collections for multiprojective varieties

Suppose that V ⊂ Cn1 ×Cn2 is an irreducible variety of dimension m > 0. Letting z(i) be
coordinates for Cni for i = 1,2, the variety V is defined by polynomials F (z(1), z(2)) which
generate a prime ideal. Separately homogenizing these polynomials in each set z(i) of
variables gives bihomogeneous polynomials that define the closure V of V in the product
Pn1 × Pn2 of projective spaces. Let us also write V for this closure.

Then V has a multidegree [3, Ch. 19]. This is a set of nonnegative integers dm1,m2

where m1 +m2 =m with 0 ≤mi ≤ ni for i = 1,2 that has the following geometric meaning.
Given general linear subspaces Mi ⊂ Pni of codimension mi for i = 1,2 with m1 +m2 =m,
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the number of points in the intersection V ∩ (M(1) ×M(2)) is dm1,m2
. Multidegrees are

log-concave in that for every 1 ≤m1 ≤m−1, we have

(1) d2m1,m2
≥ dm1−1,m2+1 ⋅ dm1+1,m2−1 .

These inequalities of Khovanskii and Tessier are explained in [7, Ex. 1.6.4].
Following [4], a multihomogeneous witness set of dimension (m1,m2) with m1 +m2 =

dimV for an irreducible variety V is a set Wm1,m2
∶= V ∩ (M(1) ×M(2)), where for i = 1,2,

M(i) ⊂ Pni is a general linear subspace of codimension mi. More formally, the witness set is
a triple consisting of the pointsWm1,m2

, equations for a variety that has V as a component,
and equations for M(1) and for M(2). A witness collection is the list of witness sets Wm1,m2

for all m1 +m2 =m.

Remark 9. If m2 = dimπ2(V ), then the multihomogeneous witness set V ∩ (M(1) ×M(2))
is a (proxy) witness set for the image π2(V ) of V in the sense of [5] and Remark 8.

Suppose that V is reducible and Wm1,m2
= V ∩ (M(1) ×M(2)) is a multihomogeneous

witness set for V . This is a disjoint union of multihomogeneous witness sets for the
irreducible components of V that have non zero (m1,m2)-multidegree. We similarly have
a witness collection for V . We consider the problem of decomposing a witness collection
into witness collections for the components of V . For every irreducible component V ′ of V
it is possible to obtain a partial witness collectionW ′

m1,m2
form1+m2 =m and then—much

like in the affine/projective setting—use the monodromy action and the membership test
to build up a (complete) witness collection. We seek a practical trace test to verify that
a partial witness collection is, in fact, complete. That is, if we have equality W ′

m1,m2
=

V ′ ∩ (M(1) ×M(2)) for each partial witness set W ′
m1,m2

for V ′.
By Example 20 of [4], the trace of a multihomogeneous witness set as the linear sub-

spaces M(1) and M(2) each vary in pencils is not multilinear. The trace test for subva-
rieties of products of projective spaces in [4] uses the Segre embedding σ ∶Pn1 × Pn2 →
P(n1+1)(n2+1)−1 to construct the proxy witness sets as in Remark 8 (with φ = σ). Since σ

gives an isomorphism from V to σ(V ), proxy witness sets are preimages of witness sets
(in contrast to [5] where extra work is needed, since the preimage of a witness point may
not be 0-dimensional).

Remark 10. Multihomogeneous witness sets for V are typically significantly smaller than
witness sets for σ(V ). Let V ⊂ Pn1 × Pn2 be a subvariety with multidegrees dm1,m2

. By
Exercise 19.2 in [3] the degree of its image under the Segre embedding is

deg(V ) = ∑
m1+m2=m

dm1,m2

m!

m1!m2!
.

This is significantly larger that the union of the multihomogeneous witness sets for V .
Thus a witness set for the image of V under the Segre embedding (a Segre witness set

in [4]) involves significantly more points than any of its multihomogeneous witness sets.

Example 11. The graph V ⊂ Pm
×Pm of a general linear map has multidegrees (1, . . . ,1)

with sum m+1, but its image under the Segre embedding has degree 2m. If V is the closure
of the graph of the the standard Cremona transformation [x0, . . . , xm]↦ [1/x0, . . . ,1/xm],
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then its multidegrees are di,m−i = (mi ) with sum 2m and its degree under the Segre embed-

ding is (2m
m
) = ∑i (mi )

2

, which is considerably larger.

This suggests that one should seek algorithms that work directly with multihomoge-
neous witness sets Wm1,m2

for m1 +m2 =m and—as the graph of Cremona suggests—also
involve as few of these as possible.

Algorithm 18 does exactly that while avoiding the Segre embedding.

3. Dimension reduction and multihomogeneous trace test

We give a useful version of Bertini’s theorem that follows from [6, Thm. 6.3 (4)].

Theorem 12 (Bertini’s Theorem). Let V be a variety and φ ∶V ⇢ Pn be a rational map

such that dimφ(V ) ≥ 2. Then V is irreducible if and only if V ∩φ−1(H) is irreducible for

a generic hypersurface H ⊂ Pn.

In §1 we sliced a projective variety V ⊂ Pn, dimV ≥ 2, with a general linear subspace.
This reduced the dimensions of the ambient space and of the variety, but did not alter
its degree or irreducible decomposition. A similar dimension reduction procedure is more
involved for subvarieties of a product of projective spaces.

Proposition 13. Let V ⊂ Pn1×Pn2 be an irreducible variety and suppose that dm1,m2
(V ) ≠

0 is a nonzero multidegree with 1 ≤m1,m2. For i = 1,2, let M ′
(i) be a general linear subspace

of Pni of codimension mi−1. Then V ′ ∶= V ∩ (M ′
(1) ×M

′
(2)) is irreducible, has dimension

two, and multidegrees

d0,2(V ′) = dm1−1,m2+1 , d1,1(V ′) = dm1,m2
, and d2,0(V ′) = dm1+1,m2−1 .

We have several overlapping cases.

(1) If d0,2(V ′) = d2,0(V ′) = 0, then π1(V ′) and π2(V ′) are both curves, V ′ is their

product, and V is the product of its projections π1(V ) ⊂ Pn1 and π2(V ) ⊂ Pn2.

(2a) If d0,2(V ′) = 0 then π1(V ′) is an irreducible curve and V ′ is fibered over π1(V ′) by
curves. Also, π1(V ) is irreducible of dimension m1 and the map V → π1(V ) is a

fiber bundle. If d2,0(V ′) = 0, then the same holds mutatis mutandis.

(2b) One of d2,0(V ′) or d0,2(V ′) is non-zero. Suppose that d2,0(V ′) ≠ 0. Then π1(V ′)
is two-dimensional, and for a general hyperplane H ⊂ Pn1, W ∩ (H × Pn2) is an

irreducible curve C with d1,0(C) = d2,0(V ′) and d0,1(C) = d1,1(V ′).
Case (1) is distinguished from cases (2a) and (2b) as follows. Consider the linear maps

induced by projections πi, i = 1,2, on the tangent space of V ′ at a general point. We are
in case (1) if and only if both maps on tangent spaces are degenerate.

Case (1) reduces to the analysis of projections πi(V ′), otherwise it is possible to use
Bertini’s theorem to slice once more (preserving irreducibility and multidegrees) to reduce
a two-dimensional subvariety V ′ to a curve C.

Example 14. Consider the three-dimensional variety V in P4
× P4 defined by f ∶=

∑4

i=1(x0 + xi)3 = 0 and the maximal minors of the 5 × 2 matrix [yi, ∂f/∂xi]. The mul-
tidegree of V is (d3,0, d2,1, d1,2, d0,3) = (3,6,12,0). Since d2,1(V ) ≠ 0, we intersect V with
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M ′
(1) ×M

′
(2) where M ′

(1) is a hyperplane in P4 and M ′
(2) = P4; the multidegree of V ′ is

(d2,0, d1,1, d0,2) = (3,6,12). On the other hand, d1,2(V ) is also non-zero. Intersecting V

with M ′
(1) ×M

′
(2) where now M ′

(1) = P
4 and M ′

(2) is a hyperplane in P4, the multidegree

of V ′ is (d2,0, d1,1, d0,2) = (6,12,0). Each may be sliced once more to reduce to a curve in
either P4

× P2, P3
× P3, or P2

× P4.

The following multihomogeneous counterpart of Proposition 2 is not a part of our
multihomogeneous trace test. We include it to provide better intuition to the reader.

Proposition 15. Let C ⊂ Pn1 × Pn2 be a curve. Let αi ∶P
ni ⇢ P1 be a generic linear

projection for i = 1,2. Then C is irreducible if and only if (α1 × α2)(C) ⊂ P1
× P1 is

irreducible.

Having reduced to a curve C ⊂ P1
×P1, we could use a trace test via the Segre embedding

P1
× P1 → P3 as in Remark 10. It is more direct to use the trace test in C2.

Example 16. Let us consider the trace test for a curve C in P1
× P1. Let x ∶= (x0, x1)

and y ∶= (y0, y1) be homogeneous coordinates on the two copies of P1. Let C be a curve
given by the bihomogeneous polynomial f(x, y) ∶= x0y

2

0
− x1y

2

1
of bidegree (1,2)

Linear forms ℓ(1) ∶= x1 −
7

2
x0 and ℓ(2) ∶= y1 + y0 cut out witness sets W1,0 and W0,1 for C.

Choose the (sufficiently general) linear forms

h(1) ∶= x0 , h(2) ∶= y0 , k(1) ∶= 3

2
x1 − x0 , and k(2) ∶= −4

3
y1 −

10

3
y0 ,

and consider the bilinear form

g(x, y) ∶= h(1)k(2) + k(1)h(2) + h(1)h(2) .

Following the points of W1,0 ∪W0,1 along the homotopy

(2) h(t) ∶= (1 − t)ℓ(1)ℓ(2) + tg

from t = 0 to t = 1 gives the three (= 1 + 2) points of C ∩V(g).
Then (x1, y1) provides coordinates in the affine chart where h(1) = 1 and h(2) = 1, with

multihomogeneous witness sets W1,0 = {(1,1)} and W0,1 = {(7/2,−
√
2/7), (7/2,

√
2/7)}.

The homotopy (2) from t = 0 to t = 1 takes the three witness points W1,0 ∪W0,1 for
C ∩V(ℓ(1)ℓ(2)) to the three witness points for C ∩V(g). In this chart, V(g) is a line in
C1
×C1 = C2, so that C ∩V(g) is a witness set for the curve C in C2.
Using the witness points C ∩V(g), we perform the trace test for C in this affine chart,

using the family of lines, V(g + τ) as τ varies. The values of the trace at three points,

τ 0 −1 −2
avg x1 1.48148 1.92592 2.37037
avg y1 −.83333 −1.08333 −1.33333

let us find the trace, (40
27
−

4

9
τ,−5

6
+

1

4
τ), by interpolation.

Remark 17. It is not essential to reduce to a curve in P1
× P1. The construction and

argument of Example 16 holds, mutatis mutandis, for an irreducible curve Pn1 ×Pn2 with
the trace test performed in an affine patch Cn1+n2 ≃ Cn1 ×Cn2 .
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2
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slices V(g + τ) are in green, and the average of the witness points (1
3
of the

trace) lies on the brown line. The blue curve is C.

We give a high-level description of an algorithm for the trace test for a collection of

partial multihomogeneous witness sets. Details and improvements of a numerical irre-
ducible decomposition algorithm that uses this trace test shall be given elsewhere. For an
overview of numerical irreducible decomposition see Section 6 of [4].

Let us fix
dimension: an integer m, the dimension of a witnessed component;
affine charts: for i = 1,2, linear forms h(i) defining affine charts h(i) = 1 in Pni ;

slices: for i = 1,2, for j = 1, . . . ,m, linear forms ℓ
(i)
j defining hyperplanes in Pni ;

Write Lm1,m2
for the system {h(1)−1, ℓ(1)

1
, . . . , ℓ

(1)
m1

, h(2)−1, ℓ
(2)
1

, . . . , ℓ
(2)
m2
}. Observe that the

system Lm1,m2
defines a product M(1) ×M(2) in an affine chart of Pn1 × Pn2 .

Algorithm 18 (Multihomogeneous Trace Test).
Input:

equations: a multihomogeneous polynomial system F ;
a partial witness collection: partial witness sets Wm1,m2

where m1 = 0, . . . ,m and
m2 = m − m1 representing an irreducible component V ⊂ V(F ), i.e., Wm1,m2

⊂
V ∩V(Lm1,m2

).
Output: a boolean value = the witness collection is complete.

1: if Wm1,m2
= ∅ for all m1 = 0, . . . ,m but one then

2: if both projections of V(F ) to the factors Pni are degenerate at an available witness
point then

3: return (both trace tests for the projections to Pni for i = 1,2 pass) and (the
unique nonempty set of witness points equals the product of its projections)

4: else

5: return false

6: else

7: for m1 = 0, . . . ,m − 1 do
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8: if the trace test in Cn1+n2 described in Example 16 and Remark 17 (after tracking

Wm1,m2
and Wm1+1,m2−1 along the deformation from ℓ

(1)
m1+1ℓ

(2)
m2

to a general affine
linear function on Cn1+n2) does not pass then

9: return false

10: return true

We presented results for subvarieties of a product of two projective spaces for the sake
of clarity. These arguments generalize to a product of arbitrarily many factors with a few
subtleties.

4. Proofs

We present a proof of Proposition 15 immediately following the proof of Proposition 2.
While the first is standard, it helps to better understand the second. A map on a possibly
reducible variety is birational if it is an isomorphism on a dense open set.

Every surjective linear map Pn ⇢ Pn−1, n > 1, is the projection from a point p ∈
Pn ≃ Proj(Cn+1). Namely, it is the projectivization αp ∶P

n ⇢ Pn−1 of the quotient map
Cn+1 → Cn+1/Cp ≃ Cn. This rational map is not defined at Cp.

Proof of Proposition 2. We argue that a projection from a generic point is a birational
map from a curve C ⊂ Pn to its image in Pn−1 for n ≥ 3. Birational maps preserve
(ir)reducibility.

Consider the incidence variety of triples (p, c, c′) ⊂ Pn
×C×C, where p, c, c′ are collinear.

Projecting to C × C shows that this incidence variety is three-dimensional because the
image is two-dimensional and generic fiber is one-dimensional. Moreover, the projection
to Pn is dense in the secant variety of C.

When n = 3, observe that this secant variety is either (1) not dense, so projecting from
a point not in its closure is a birational map from C onto a plane curve, or (2) dense. In
case (2), a general point p ∈ P3 has finitely many preimages (p, c, c′) ∈ Pn

×C ×C, so the
projection αp ∶P

3 ⇢ P2 gives a birational map from C to a plane curve C ′ with finitely
many points of self-intersection.

Note that for n > 3 only case (1) is possible.
Thus, we are always able to reduce the ambient dimension by one until n = 2. ¤

Proof of Proposition 15. Assume that n = n1 ≥ n2. Any inclusion Pn2 ↪ Pn1 = Pn gives an
isomorphism from C to a curve in Pn

×Pn. We may replace α2 with a generic linear map
Pn ⇢ P1 that it factors through.

For (p, q) ∈ Pn
× Pn consider the product of projection-from-a-point maps

αp × αq ∶ P
n
× P

n ⇢ P
n−1
× P

n−1 .

Let Γ be the incidence variety of triples (s, c, c′) ∈ (Pn
× Pn) × C × C, where s = (s1, s2),

c = (c1, c2), and c′ = (c′
1
, c′

2
) such that si, ci, c′i, are collinear for i = 1,2.

The projection of Γ to C×C has fibers P1
×P1, so it is four-dimensional. The projection

to Pn
× Pn is dense in a generalized secant variety of dimension four.

When n = 2, either this secant variety is (1) dense, or it is (2) not dense, so that αp × αq

for a point (p, q) not in its closure is a birational map from C to its image. In case (1),
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a general point (p, q) ∈ Pn
× Pn has finitely many preimages. This implies that the map

αp × αq is one-to-one on C with the exception of finitely many points, whose images are
self-intersections of the curve (αp × αq)(C).

For n > 2, case (2) is the only possibility.
Thus we are always able to reduce n by one until n = 1. ¤

Proof of Proposition 4. Let W be a subset of the fiber Ct of C over t ∈ ℓ ∖ ∆ whose
sum s(t) is an affine linear function of t. Note that local linearity in a neighborhood
of some t implies global linearity: in particular, an analytic continuation along any loop
γ ∶ [0,1]→ ℓ ∖∆ with γ(0) = γ(1) = t does not change the value of s(t).

Following points of Ct along the loop above γ gives a permutation of Ct. By our
assumption of general position and [1, Lemma on page 111], every permutation of Ct is
obtained by some loop γ.

Suppose that W is a proper subset of Ct. Then there is a point u ∈ W and a point
v ∈ Ct∖W , hence u ≠ v. Let γ be a loop in ℓ∖∆ based at t whose permutation interchanges
u and v and fixes the other points of Ct. In particular, u(γ(1)) = v. Since s(t) = ∑w∈W w(t)
has the same value at the beginning and the end of the loop, we have

∑
w∈W

w(γ(0)) = ∑
w∈W

w(γ(1)) .

Taking the difference gives 0 = u(γ(1)) − u(γ(0)) so that u = v, a contradiction. ¤

Proof of Proposition 13. Note that projections πi ∶P
n1 × Pn2 → Pni , for i = 1,2, satisfy the

assumptions on the map φ in Theorem 12. Applying the theorem mi − 1 times for πi, for
i = 1,2, gives the proof of the first part of the conclusion.

The rest of the conclusion follows from the case analysis: in the case dimπ1(V ′) ≥ 2,
one more application of Theorem 12 for the map π1 proves the statement. ¤
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