Départment de Mathématiques LAMA Université de Savoie Chambéry, France

1 Introduction

Unlike complex solutions, the number of real solutions to a system of polynomials depends upon the number of monomials and not on the degree.

In 1980, Askold Khovanskii [3] showed that there are at mos

$$
2^{\left({ }^{(++k}\right)}(n+1)^{n+k}
$$

nondegenerate positive real solutions to a system of Laurent polynomials

$$
\begin{equation*}
f_{1}\left(x_{1}, \ldots, x_{n}\right)=f_{2}\left(x_{1}, \ldots, x_{n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{n}\right)=0 \tag{1}
\end{equation*}
$$

having a total of $n+k+1$ distinct monomials
The fewnomial bound asserts that a system of 2 polynomials in 2 variables with 5 monomials ($k=n=2$) has at most 5184 positive solutions. The first concrete evidence that it was overstated was given by Li, Rojas, Wang in 2002 [4], who evidence that 2 trinomials in 2 variables have at most 5 positive solutions. This is
showed that
a (non-general) system with $n=k=2$. a (non-general) system with $n=k=2$.

2 New Fewnomial Bound

Theorem. A system (1) of n Laurent polynomials in n variables having a total of $n+k+1$ monomials has fewer than

$$
\frac{e^{2}+3}{4} 2^{\left(\frac{k}{2}\right)} n^{k}
$$

positive solutions [1]. For k fixed, this is asymptotically sharp in n [2]
The proof uses a completely different approach than Khovanskii's induction. When $n=k=2$, this bound is $20(\ll 5184)$!

3 Gale Dual System

Typically, a polynomial system (1) is formulated as an intersection

$$
X \cap L \subset \mathbb{P}^{n+k}
$$

X : The toric variety parametrized by the monomials in (1)
$L \simeq \mathbb{P}^{k}:$ A linear subspace (which depends upon the coefficients of the f_{i})
We may instead parametrize L by $n+k$ linear polynomials $p_{i}(y)$ for $y \in \mathbb{R}^{k}$, obtaining an equivalent Gale system

$$
\begin{equation*}
\prod_{i=1}^{n+k} p_{i}(y)^{a_{i, j}}=1 \quad \text { for } \quad j=1, \ldots, k \tag{2}
\end{equation*}
$$

(In the torus of \mathbb{P}^{n+k}, the toric variety is defined by $\prod_{i=1}^{n+k} z_{i}^{a_{i j}}=1$ for $j=1, \ldots, k$.) For example, the system

$$
\begin{aligned}
t^{-1183} u^{691} z^{5} w^{5} & =3-t^{492} \\
t^{-955} u^{463} z^{5} w^{5} & =3-u^{492} \\
z & =\sqrt[60]{35}\left(4-2 t^{492}+u^{492}\right) \\
w & =\sqrt[30]{10}\left(1+2 t^{492}-u^{492}\right)
\end{aligned}
$$

New fewnomial upper bounds

Frédéric Bihan, J. Maurice Rojas, and Frank Sottile 16 April 2007

J. Maurice Rojas and Frank Sottile Department of Mathematics Texas A\&M University College Station, Texas USA

becomes

$$
\begin{align*}
& F_{1}(x, y):=\frac{\left.3500^{12} x^{27}(3-x)\right)^{8}(3-y)^{8}}{y^{5}(4-2 x+y)^{60}(1+2 x-y)^{60}}=1 \\
& F_{2}(x, y):=\frac{3500^{12} x^{8} y^{4}(3-y-y)^{45}}{(3-x)^{38}(4-2 x+y)^{60}(1+2 x-y)^{60}}=1 \tag{3}
\end{align*}
$$

Theorem. The system (1) of polynomials on $\mathbb{R}_{>}^{n}$ is equivalent to the Gale sys em (2) of rational functions on the polyhedron

$$
\begin{equation*}
\Delta:=\left\{y \in \mathbb{R}^{k} \mid p_{i}(y)>0 \quad \text { for } \quad i=1, \ldots, n+k\right\} . \tag{4}
\end{equation*}
$$

4 Khovanskii-Rolle Theorem

The idea of the proof is to transform the difficult problem of solving the high degree equations (2) to solving relatively low degree polynomial systems.
Our tool is the Khovanskii-Rolle Theorem: Between any two points where $g=0$ along an arc of a curve C, there is a point where the differential $d g$ is normal to the curve. We illustrate this in 2 dimensions.

$$
d f \wedge d g(a)>0, d f \wedge d g(c)=0, \text { and } d f \wedge d g(b)<0 .
$$

Suppose C_{k} is defined by $f_{1}=\ldots=f_{k-1}=0$ and $g=f_{k}$. the Jacobian $J_{k}=\operatorname{Jac}\left(f_{1}, \ldots, f_{k}\right)$ vanishes where $d g$ is normal to the curve C_{k}. If $b\left(C_{k}\right)$ is the number of non-compact components of C_{k}, and we write $\left|f_{1}, \ldots, f_{k}\right|$ for the number of common zeroes in Δ to the f_{i}, then

$$
\begin{equation*}
\left|f_{1}, \ldots, f_{k}\right| \leq b\left(C_{k}\right)+\left|f_{1}, \ldots, f_{k-1}, J_{k}\right| \tag{5}
\end{equation*}
$$

5 Sketch

We replace the rational equations (2) by the transcendental equations

$$
f_{j}:=\sum_{i=1}^{n+k} a_{i, j} \log \left(p_{i}(y)\right)=0 \quad j=1, \ldots, k
$$

The two systems have the same zeroes in Δ (4). The advantage is that the Jacobian J_{k} is a polynomial of degreee n.

To iterate the Khovanskii-Rolle Theorem, define successive Jacobians $J_{i}:=$ $\operatorname{Jac}\left(f_{1}, \ldots, f_{i}, J_{i+1}, \ldots, J_{k}\right)$, which are polynomials of degree $2^{k-i} n$ and curves C_{i} by $f_{1}=\cdots=f_{i-1}=J_{i+1}=\cdots=J_{k}$. Then

$$
\left|f_{1}, \ldots, f_{k}\right| \leq b\left(C_{k}\right)+\cdots+b\left(C_{1}\right)+\left|J_{1}, \ldots, J_{k}\right| .
$$

Estimating the right hand side gives the new fewnomial bound $\frac{e^{2}+3}{4} 2\left(\begin{array}{c}\binom{2}{2}\end{array} n^{k}\right.$.

6 Example

The system (3) asks for the 6 intersection points of the two curves below

| $p_{1}(x, y):$ | $x \geq 0$ |
| ---: | ---: | ---: |
| $p_{2}(x, y):$ | $y \geq 0$ |
| $p_{3}(x, y):$ | $: 4-2 x+y \geq 0$ |
| $p_{4}(x, y):$ | $: x-y+1 \geq 0$ |
| $p_{5}(x, y):$ | $3-x \geq 0$ |
| $p_{6}(x, y):$ | $3-y \geq 0$ |

Here are the Jacobians

$\Gamma_{2}:=2736-15476 x+2564 y+32874 x^{2}-21075 x y+6969 y^{2}$
$-10060 x^{3}-7576 x^{2} y+8041 x y^{2}-869 y^{3}+7680 x^{3} y-7680 x^{2} y^{2}+1920 x y^{3}$
$\Gamma_{1}:=8357040 x-2492208 y-25754040 x^{2}+4129596 x y-10847844 y^{2}$
$-37659600 x^{3}+164344612 x^{2} y-65490898 x y^{2}+17210718 y^{3}+75054960 x^{4}$
$-249192492 x^{3} y+55060800 x^{2} y^{2}+16767555 x y^{3}-2952855 y^{4}-36280440 x^{5}$
$+143877620 x^{4} y+35420786 x^{3} y^{2}-80032121 x^{2} y^{3}+19035805 x y^{4}-1128978 y^{5}+5432400 x^{6}$ $-33799848 x^{5} y-62600532 x^{4} y^{2}+71422518 x^{3} y^{3}-13347072 x^{2} y^{4}-1836633 x y^{5}+211167 y^{6}$ $+2358480 x^{6} y+21170832 x^{5} y^{2}-13447848 x^{4} y^{3}-8858976 x^{3} y^{4}+7622421 x^{2} y^{5}-1312365 x y^{6}$ $-1597440 x^{6} y^{2}-1228800 x^{5} y^{3}+4239360 x^{4} y^{4}-2519040 x^{3} y^{5}+453120 x^{2} y^{6}$

Their solutions intersperse the solutions to $\Gamma_{2}=F_{1}=0$ in the hexagon, which gives us bounds

$\left|F_{1}, F_{2}\right| \leq b\left(F_{1}=0\right)+\left|F_{1}, \Gamma_{2}\right| \leq b\left(F_{1}=0\right)+b\left(\Gamma_{2}=0\right)+\left|\Gamma_{1}, \Gamma_{2}\right|$

References

[1]F. Bihan, F. Sottile, New Fewnomial Upper Bounds from Gale dual polynomial systems, Moscow Math. J., to appear. 2006. math. AG/0609544.
[2] F. Bihan, J.M. Rojas, F. Sottile, On sharpness of fewnomial bound F. Bihan, J.M. Rojas, F. Sottile, On sharpness of fewnomial bound
and the number of components of a fewnomial hypersurface, 2007 . math.AG/0701667.
3] A.G. Khovanskii, A class of systems of transcendental equations, Dokl. Akad. Nauk. SSSR 255 (1980), no. 4, 804-807.
[4]Tien-Yien Li, J. Maurice Rojas, and Xiaoshen Wang, Counting real connected components of trinomial curve intersections and m-nomial hypersurfaces, Discrete Comput. Geom. 30 (2003), no. 3, 379-414.

