Gale duality for complete intersections

Special Session on Arrangements
AMS Regional Meeting, Baton Rouge, LA 30 March 2008

Frank Sottile
Texas A\&M University

Frédéric Bihan
HAMA Université de Savoie

Gale duality

Gale duality for complete intersections asserts that systems of n polynomial equations in $m+n$ variables are equivalent to certain systems of l rational functions in $l+m$ variables. This allows us to conclude that

$$
\frac{(2 x-3 y)^{2}(4 x+y-7)^{3}}{(1+x-3 y)^{2}(x-7 y-2)}=\frac{(2 x-3 y)(x-7 y-2)^{3}}{(1+x-3 y)^{3}(4 x+y-7)}=1 .
$$

has 17 solutions where $(4 x+y-7)(x-7 y-2)(1+x-3 y)(2 x-3 y) \neq 0$.

This is because the pentagon at right (whose vertices annihilate the exponents in the equations) has area 17/2.

Master Functions

Let \mathcal{H} be an essential arrangement of hyperplanes in \mathbb{C}^{l+m} defined by affine functions $p_{1}(y), \ldots, p_{l+m+n}(y)$.

A weight for \mathcal{H} is a vector $\beta=\left(b_{1}, \ldots, b_{l+m+n}\right) \in \mathbb{Z}^{l+m+n}$ of integers. This defines the master function for \mathcal{H} with weight β

$$
p(y)^{\beta}:=p_{1}(y)^{b_{1}} \cdot p_{2}(y)^{b_{2}} \cdots p_{l+m+n}(y)^{b_{l+m+n}}
$$

which is a rational function defined on the complement $M_{\mathcal{H}}$ of the arrangement.
A master function complete intersection with weights $\mathcal{B}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ is a subscheme of $M_{\mathcal{H}}$ of dimension m which may be defined by a system of master functions

$$
p(y)^{\beta_{1}}=p(y)^{\beta_{2}}=\cdots=p(y)^{\beta_{l}}=1
$$

NB: The weights \mathcal{B} are necessarily linearly independent.

Sparse polynomials

Let $\mathcal{A}=\left\{0, \alpha_{1}, \ldots, \alpha_{l+m+n}\right\} \subset \mathbb{Z}^{m+n}$ be integer vectors which are exponents for Laurent monomials in x_{1}, \ldots, x_{m+n}. A sparse polynomial f with support \mathcal{A} is a polynomial whose monomials are $1, x^{\alpha_{1}}, \ldots, x^{\alpha_{l+m+n}}$. Because the exponents can be negative, f is a function on the algebraic torus, $\left(\mathbb{C}^{\times}\right)^{m+n}$.

A complete intersection with support \mathcal{A} is a subscheme of $\left(\mathbb{C}^{\times}\right)^{m+n}$ of dimension m which may be defined by a system of polynomials,

$$
f_{1}\left(x_{1}, \ldots, x_{m+n}\right)=f_{2}\left(x_{1}, \ldots, x_{m+n}\right)=\cdots=f_{n}\left(x_{1}, \ldots, x_{m+n}\right)=0
$$

here each polynomial f_{i} has support \mathcal{A}.
These are well-studied algebraic sets, but are in fact no different than master function complete intersections.

The geometry of master functions

The affine functions $p_{1}(y), \ldots, p_{l+m+n}(y)$ define an injective map

$$
\psi_{p}: \mathbb{C}^{l+m} \longrightarrow \mathbb{C}^{l+m+n} \quad\left(\text { set } L:=\psi_{p}\left(\mathbb{C}^{l+m}\right)\right)
$$

and the hyperplane complement $M_{\mathcal{H}}$ is $\psi_{p}^{-1}\left(\left(\mathbb{C}^{\times}\right)^{l+m+n}\right)$.
The weights $\mathcal{B}=\left(\beta_{1}, \ldots, \beta_{l}\right)$ define a subtorus of $\left(\mathbb{C}^{\times}\right)^{l+m+n}$

$$
\mathbb{T}:=\left\{z \in\left(\mathbb{C}^{\times}\right)^{l+m+n} \mid z^{\beta_{1}}=z^{\beta_{2}}=\cdots=z^{\beta_{l}}=1\right\},
$$

which is connected if and only if \mathcal{B} is saturated $\left(\mathbb{Z B}=\mathbb{Q B} \cap \mathbb{Z}^{l+m+n}\right)$.
In this way, the system of master functions

$$
p(y)^{\beta_{1}}=p(y)^{\beta_{2}}=\cdots=p(y)^{\beta_{l}}=1 .
$$

equals $\psi_{p}^{-1}(\mathbb{T})$, which is isomorphic to $\mathbb{T} \cap L$.

The map $\varphi_{\mathcal{A}}:\left(\mathbb{C}^{\times}\right)^{m+n} \ni x \longmapsto\left(x^{\alpha_{1}}, \ldots, x^{\alpha_{l+m+n}}\right) \in\left(\mathbb{C}^{\times}\right)^{l+m+n}$ pulls an affine function $\Lambda:=c_{0}+\sum_{i} c_{i} z_{i}$ on \mathbb{C}^{l+m+n} back to a sparse polynomial

$$
\varphi_{\mathcal{A}}^{*}(\Lambda)=c_{0}+\sum_{i=1}^{l+m+n} c_{i} x^{\alpha_{i}}
$$

with support \mathcal{A}.
In this way, a system of sparse polynomials $f_{1}=\cdots=f_{n}$ is the pullback of a system of affine functions $\Lambda_{1}=\cdots=\Lambda_{n}$ on \mathbb{C}^{l+m+n}. These define an affine subspace L of \mathbb{C}^{l+m+n} of dimension $l+m$ and the system equals $\varphi_{\mathcal{A}}^{-1}(L)$.

When $\mathbb{Z} \mathcal{A}=\mathbb{Z}^{m+n}(\mathcal{A}$ is primitive $), \varphi_{\mathcal{A}}$ is injective. Set $\mathbb{T}:=\varphi_{\mathcal{A}}\left(\mathbb{C}^{\times}\right)^{m+n}$. Then the system $\varphi_{\mathcal{A}}^{-1}(L)$ is isomorphic to $\mathbb{T} \cap L$.

Gale duality

The master function complete intersection with exponents \mathcal{B} is isomorphic to the complete intersection with support \mathcal{A} when

$$
\text { (Master function) } \quad \mathbb{T} \cap L=\mathbb{T} \cap L \quad \text { (Sparse polynomial). }
$$

Unpacking the definitions, we get
Theorem. Suppose that \mathcal{A} is primitive, \mathcal{B} is saturated, $\Lambda_{1}, \ldots, \Lambda_{n}$ define the sparse polynomial system, and $p_{1}(y), \ldots, p_{l+m+n}(y)$ define \mathcal{H}. If

- $\Lambda_{1}=\cdots=\Lambda_{n}$ defines the linear subspace $L=\psi_{p}\left(\mathbb{C}^{l+m}\right)$, and
- $\mathcal{A} \cdot \mathcal{B}=0$, where the matrix \mathcal{A} has column vectors α_{i} and \mathcal{B} has column vectors β,
then the master function complete intersection is isomorphic to the complete intersection with support \mathcal{A}.

An Example

$$
\frac{x^{2}(1-x-y)^{3}}{y^{2}\left(\frac{1}{2}-x+y\right)\left(\frac{10}{11}(1+x-3 y)\right)^{2}}=\frac{y^{3}(1-x-y)}{x\left(\frac{1}{2}-x+y\right)^{3}\left(\frac{10}{11}(1+x-3 y)\right)}=1
$$

defines a 0-dimensional set in the complement of the lines defined by the linear factors.
(We drew the curves.)

If we order the affine functions,

$$
x, y,(1-x-y),\left(\frac{1}{2}-x+y\right), \frac{10}{11}(1+x-3 y),
$$

our master functions

$$
\frac{x^{2}(1-x-y)^{3}}{y^{2}\left(\frac{1}{2}-x+y\right)\left(\frac{10}{11}(1+x-3 y)\right)^{2}} \quad \text { and } \quad \frac{y^{3}(1-x-y)}{x\left(\frac{1}{2}-x+y\right)^{3}\left(\frac{10}{11}(1+x-3 y)\right)}
$$

have exponents $(2,-2,3,-1,-2)$ and $(-1,3,1,-3,-1)$.
Observe that

$$
\begin{aligned}
& \left(u^{2} v\right)^{2} \cdot\left(u v^{2} w\right)^{-2} \cdot\left(v^{2} w^{3}\right)^{3} \cdot\left(v^{2} w\right)^{-1} \cdot\left(u v w^{3}\right)^{-2}=1, \quad \text { and } \\
& \left(u^{2} v\right)^{-1} \cdot\left(u v^{2} w\right)^{3} \cdot\left(v^{2} w^{3}\right) \cdot\left(v^{2} w\right)^{-3} \cdot\left(u v w^{3}\right)^{-1}=1 .
\end{aligned}
$$

Example completed

Because we have

$$
\begin{aligned}
& \left(u^{2} v\right)^{2} \cdot\left(u v^{2} w\right)^{-2} \cdot\left(v^{2} w^{3}\right)^{3} \cdot\left(v^{2} w\right)^{-1} \cdot\left(u v w^{3}\right)^{-2}=1, \quad \text { and } \\
& \left(u^{2} v\right)^{-1} \cdot\left(u v^{2} w\right)^{3} \cdot\left(v^{2} w^{3}\right) \cdot\left(v^{2} w\right)^{-3} \cdot\left(u v w^{3}\right)^{-1}=1
\end{aligned}
$$

if we substitute $u^{2} v$ for $x, u v^{2} w$ for y, and the corresponding affine functions for the last three monomials, we get the system

$$
\begin{aligned}
v^{2} w^{3} & =1-x-y=1-u^{2} v-u v^{2} w \\
v^{2} w & =\frac{1}{2}-x+y=\frac{1}{2}-u^{2} v+u v^{2} w \\
u v w^{3} & =\frac{10}{11}(1+x-3 y)=\frac{10}{11}\left(1+u^{2} v-3 v^{2} w^{3}\right)
\end{aligned}
$$

whose solutions are isomorphic to the solutions to the system of master functions.

