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Gale duality

Gale duality for complete intersections asserts that systems of n polynomial
equations in m+n variables are equivalent to certain systems of l rational functions
in l+m variables. This allows us to conclude that

(2x− 3y)2(4x+ y − 7)3

(1 + x− 3y)2(x− 7y − 2)
=

(2x− 3y)(x− 7y − 2)3

(1 + x− 3y)3(4x+ y − 7)
= 1 .

has 17 solutions where (4x+ y − 7)(x− 7y − 2)(1 + x− 3y)(2x− 3y) 6= 0.

This is because the pentagon at
right (whose vertices annihilate the ex-
ponents in the equations) has area 17/2.
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Master Functions

Let H be an essential arrangement of hyperplanes in Cl+m defined by affine
functions p1(y), . . . , pl+m+n(y).

A weight for H is a vector β = (b1, . . . , bl+m+n) ∈ Zl+m+n of integers. This
defines the master function for H with weight β

p(y)β := p1(y)
b1 · p2(y)

b2 · · · pl+m+n(y)bl+m+n ,

which is a rational function defined on the complement MH of the arrangement.

A master function complete intersection with weights B = (β1, . . . , βl) is a
subscheme of MH of dimension m which may be defined by a system of master
functions

p(y)β1 = p(y)β2 = · · · = p(y)βl = 1 .

NB: The weights B are necessarily linearly independent.
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Sparse polynomials

Let A = {0, α1, . . . , αl+m+n} ⊂ Zm+n be integer vectors which are exponents
for Laurent monomials in x1, . . . , xm+n. A sparse polynomial f with support A is
a polynomial whose monomials are 1, xα1, . . . , xαl+m+n. Because the exponents can
be negative, f is a function on the algebraic torus, (C×)m+n.

A complete intersection with support A is a subscheme of (C×)m+n of dimension
m which may be defined by a system of polynomials,

f1(x1, . . . , xm+n) = f2(x1, . . . , xm+n) = · · · = fn(x1, . . . , xm+n) = 0 ,

here each polynomial fi has support A.

These are well-studied algebraic sets, but are in fact no different than master
function complete intersections.
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The geometry of master functions

The affine functions p1(y), . . . , pl+m+n(y) define an injective map

ψp : Cl+m −→ Cl+m+n (set L := ψp(C
l+m))

and the hyperplane complement MH is ψ−1
p ((C×)l+m+n).

The weights B = (β1, . . . , βl) define a subtorus of (C×)l+m+n

T := {z ∈ (C×)l+m+n | zβ1 = zβ2 = · · · = zβl = 1} ,

which is connected if and only if B is saturated (ZB = QB ∩ Zl+m+n).
In this way, the system of master functions

p(y)β1 = p(y)β2 = · · · = p(y)βl = 1 .

equals ψ−1
p (T), which is isomorphic to T ∩ L.
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The geometry of sparse polynomials

The map ϕA : (C×)m+n ∋ x 7−→ (xα1, . . . , xαl+m+n) ∈ (C×)l+m+n pulls an
affine function Λ := c0 +

∑

i cizi on Cl+m+n back to a sparse polynomial

ϕ∗
A(Λ) = c0 +

l+m+n
∑

i=1

cix
αi

with support A.

In this way, a system of sparse polynomials f1 = · · · = fn is the pullback of
a system of affine functions Λ1 = · · · = Λn on Cl+m+n. These define an affine
subspace L of Cl+m+n of dimension l+m and the system equals ϕ−1

A
(L).

When ZA = Zm+n (A is primitive), ϕA is injective. Set T := ϕA(C×)m+n.
Then the system ϕ−1

A
(L) is isomorphic to T ∩ L.
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Gale duality

The master function complete intersection with exponents B is isomorphic to
the complete intersection with support A when

(Master function) T ∩ L = T ∩ L (Sparse polynomial) .

Unpacking the definitions, we get

Theorem. Suppose that A is primitive, B is saturated, Λ1, . . . ,Λn define the sparse

polynomial system, and p1(y), . . . , pl+m+n(y) define H. If

• Λ1 = · · · = Λn defines the linear subspace L = ψp(C
l+m), and

• A · B = 0, where the matrix A has column vectors αi

and B has column vectors β,

then the master function complete intersection is isomorphic to the complete

intersection with support A.
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An Example

x2(1 − x− y)3

y2(1

2
− x+ y)

(

10

11
(1 + x− 3y)

)2
=

y3(1 − x− y)

x(1

2
− x+ y)3

(

10

11
(1 + x− 3y)

) = 1 ,

defines a 0-dimensional set
in the complement of the
lines defined by the linear
factors.
(We drew the curves.)
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Example Continued

If we order the affine functions,

x , y , (1 − x− y) , (1

2
− x+ y) , 10

11
(1 + x− 3y) ,

our master functions

x2(1 − x− y)3

y2(1

2
− x+ y)

(

10

11
(1 + x− 3y)

)2
and

y3(1 − x− y)

x(1

2
− x+ y)3

(

10

11
(1 + x− 3y)

)

have exponents (2,−2, 3,−1,−2) and (−1, 3, 1,−3,−1).

Observe that

(

u2v
)2

·
(

uv2w
)−2

·
(

v2w3
)3

·
(

v2w
)−1

·
(

uvw3
)−2

= 1, and
(

u2v
)−1

·
(

uv2w
)3

·
(

v2w3
)

·
(

v2w
)−3

·
(

uvw3
)−1

= 1 .
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Example completed

Because we have

(

u2v
)2

·
(

uv2w
)−2

·
(

v2w3
)3

·
(

v2w
)−1

·
(

uvw3
)−2

= 1, and
(

u2v
)−1

·
(

uv2w
)3

·
(

v2w3
)

·
(

v2w
)−3

·
(

uvw3
)−1

= 1 .

if we substitute u2v for x, uv2w for y, and the corresponding affine functions for
the last three monomials, we get the system

v2w3 = 1 − x− y = 1 − u2v − uv2w

v2w = 1

2
− x+ y = 1

2
− u2v + uv2w

uvw3 = 10

11
(1 + x− 3y) = 10

11
(1 + u2v − 3v2w3)

whose solutions are isomorphic to the solutions to the system of master functions.
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