Gale duality for complete intersections

Special Session on Arrangements AMS Regional Meeting, Baton Rouge, LA 30 March 2008

Frank Sottile Texas A&M University

Frédéric Bihan Université de Savoie

1

Gale duality

Gale duality for complete intersections asserts that systems of n polynomial equations in m+n variables are equivalent to certain systems of l rational functions in l+m variables. This allows us to conclude that

$$\frac{(2x-3y)^2(4x+y-7)^3}{(1+x-3y)^2(x-7y-2)} = \frac{(2x-3y)(x-7y-2)^3}{(1+x-3y)^3(4x+y-7)} = 1.$$

has 17 solutions where $(4x + y - 7)(x - 7y - 2)(1 + x - 3y)(2x - 3y) \neq 0$.

This is because the pentagon at right (whose vertices annihilate the exponents in the equations) has area 17/2.

Master Functions

Let \mathcal{H} be an essential arrangement of hyperplanes in \mathbb{C}^{l+m} defined by affine functions $p_1(y), \ldots, p_{l+m+n}(y)$.

A weight for \mathcal{H} is a vector $\beta = (b_1, \dots, b_{l+m+n}) \in \mathbb{Z}^{l+m+n}$ of integers. This defines the master function for \mathcal{H} with weight β

$$p(y)^{\beta} := p_1(y)^{b_1} \cdot p_2(y)^{b_2} \cdots p_{l+m+n}(y)^{b_{l+m+n}},$$

which is a rational function defined on the complement $M_{\mathcal{H}}$ of the arrangement.

A master function complete intersection with weights $\mathcal{B} = (\beta_1, \dots, \beta_l)$ is a subscheme of $M_{\mathcal{H}}$ of dimension m which may be defined by a system of master functions

$$p(y)^{\beta_1} = p(y)^{\beta_2} = \cdots = p(y)^{\beta_l} = 1.$$

NB: The weights \mathcal{B} are necessarily linearly independent.

Sparse polynomials

Let $\mathcal{A} = \{0, \alpha_1, \dots, \alpha_{l+m+n}\} \subset \mathbb{Z}^{m+n}$ be integer vectors which are exponents for Laurent monomials in x_1, \dots, x_{m+n} . A sparse polynomial f with support \mathcal{A} is a polynomial whose monomials are $1, x^{\alpha_1}, \dots, x^{\alpha_{l+m+n}}$. Because the exponents can be negative, f is a function on the algebraic torus, $(\mathbb{C}^{\times})^{m+n}$.

A complete intersection with support \mathcal{A} is a subscheme of $(\mathbb{C}^{\times})^{m+n}$ of dimension m which may be defined by a system of polynomials,

$$f_1(x_1,\ldots,x_{m+n}) = f_2(x_1,\ldots,x_{m+n}) = \cdots = f_n(x_1,\ldots,x_{m+n}) = 0,$$

here each polynomial f_i has support \mathcal{A} .

These are well-studied algebraic sets, but are in fact no different than master function complete intersections.

The geometry of master functions

The affine functions $p_1(y), \ldots, p_{l+m+n}(y)$ define an injective map

$$\psi_p : \mathbb{C}^{l+m} \longrightarrow \mathbb{C}^{l+m+n}$$
 (set $L := \psi_p(\mathbb{C}^{l+m})$)

and the hyperplane complement $M_{\mathcal{H}}$ is $\psi_p^{-1}((\mathbb{C}^{\times})^{l+m+n})$. The weights $\mathcal{B} = (\beta_1, \dots, \beta_l)$ define a subtorus of $(\mathbb{C}^{\times})^{l+m+n}$

$$\mathbb{T} := \{ z \in (\mathbb{C}^{\times})^{l+m+n} \mid z^{\beta_1} = z^{\beta_2} = \dots = z^{\beta_l} = 1 \},\$$

which is connected if and only if \mathcal{B} is saturated $(\mathbb{Z}\mathcal{B} = \mathbb{Q}\mathcal{B} \cap \mathbb{Z}^{l+m+n})$. In this way, the system of master functions

$$p(y)^{\beta_1} = p(y)^{\beta_2} = \cdots = p(y)^{\beta_l} = 1.$$

equals $\psi_p^{-1}(\mathbb{T})$, which is isomorphic to $\mathbb{T} \cap L$.

The geometry of sparse polynomials

The map $\varphi_{\mathcal{A}}: (\mathbb{C}^{\times})^{m+n} \ni x \longmapsto (x^{\alpha_1}, \dots, x^{\alpha_{l+m+n}}) \in (\mathbb{C}^{\times})^{l+m+n}$ pulls an affine function $\Lambda := c_0 + \sum_i c_i z_i$ on \mathbb{C}^{l+m+n} back to a sparse polynomial

$$\varphi_{\mathcal{A}}^*(\Lambda) = c_0 + \sum_{i=1}^{l+m+n} c_i x^{\alpha_i}$$

with support \mathcal{A} .

In this way, a system of sparse polynomials $f_1 = \cdots = f_n$ is the pullback of a system of affine functions $\Lambda_1 = \cdots = \Lambda_n$ on \mathbb{C}^{l+m+n} . These define an affine subspace L of \mathbb{C}^{l+m+n} of dimension l+m and the system equals $\varphi_{\mathcal{A}}^{-1}(L)$.

When $\mathbb{Z}\mathcal{A} = \mathbb{Z}^{m+n}$ (\mathcal{A} is primitive), $\varphi_{\mathcal{A}}$ is injective. Set $\mathbb{T} := \varphi_{\mathcal{A}}(\mathbb{C}^{\times})^{m+n}$. Then the system $\varphi_{\mathcal{A}}^{-1}(L)$ is isomorphic to $\mathbb{T} \cap L$.

Gale duality

The master function complete intersection with exponents \mathcal{B} is isomorphic to the complete intersection with support \mathcal{A} when

(Master function) $\mathbb{T} \cap L = \mathbb{T} \cap L$ (Sparse polynomial).

Unpacking the definitions, we get

Theorem. Suppose that \mathcal{A} is primitive, \mathcal{B} is saturated, $\Lambda_1, \ldots, \Lambda_n$ define the sparse polynomial system, and $p_1(y), \ldots, p_{l+m+n}(y)$ define \mathcal{H} . If

- $\Lambda_1 = \cdots = \Lambda_n$ defines the linear subspace $L = \psi_p(\mathbb{C}^{l+m})$, and
- $\mathcal{A} \cdot \mathcal{B} = 0$, where the matrix \mathcal{A} has column vectors α_i

and \mathcal{B} has column vectors β ,

then the master function complete intersection is isomorphic to the complete intersection with support A.

An Example

$$\frac{x^2(1-x-y)^3}{y^2(\frac{1}{2}-x+y)\left(\frac{10}{11}(1+x-3y)\right)^2} = \frac{y^3(1-x-y)}{x(\frac{1}{2}-x+y)^3\left(\frac{10}{11}(1+x-3y)\right)} = 1,$$

defines a 0-dimensional set in the complement of the lines defined by the linear factors.

(We drew the curves.)

Example Continued

If we order the affine functions,

$$x, y, (1-x-y), (\frac{1}{2}-x+y), \frac{10}{11}(1+x-3y),$$

our master functions

$$\frac{x^{2}(1-x-y)^{3}}{y^{2}(\frac{1}{2}-x+y)\left(\frac{10}{11}(1+x-3y)\right)^{2}} \text{ and } \frac{y^{3}(1-x-y)}{x(\frac{1}{2}-x+y)^{3}\left(\frac{10}{11}(1+x-3y)\right)}$$

have exponents $(2,-2,3,-1,-2)$ and $(-1,3,1,-3,-1)$.
Observe that
 $(u^{2}v)^{2} \cdot (uv^{2}w)^{-2} \cdot (v^{2}w^{3})^{3} \cdot (v^{2}w)^{-1} \cdot (uvw^{3})^{-2} = 1, \text{ and}$
 $(u^{2}v)^{-1} \cdot (uv^{2}w)^{3} \cdot (v^{2}w^{3}) \cdot (v^{2}w)^{-3} \cdot (uvw^{3})^{-1} = 1.$

Example completed

Because we have

$$(u^{2}v)^{2} \cdot (uv^{2}w)^{-2} \cdot (v^{2}w^{3})^{3} \cdot (v^{2}w)^{-1} \cdot (uvw^{3})^{-2} = 1, \text{ and}$$
$$(u^{2}v)^{-1} \cdot (uv^{2}w)^{3} \cdot (v^{2}w^{3}) \cdot (v^{2}w)^{-3} \cdot (uvw^{3})^{-1} = 1.$$

if we substitute u^2v for x, uv^2w for y, and the corresponding affine functions for the last three monomials, we get the system

$$v^{2}w^{3} = 1 - x - y = 1 - u^{2}v - uv^{2}w$$

$$v^{2}w = \frac{1}{2} - x + y = \frac{1}{2} - u^{2}v + uv^{2}w$$

$$uvw^{3} = \frac{10}{11}(1 + x - 3y) = \frac{10}{11}(1 + u^{2}v - 3v^{2}w^{3})$$

whose solutions are isomorphic to the solutions to the system of master functions.