Hopf Structures on Planar Binary Trees

$21^{\text {st }}$ International Conference on
Formal Power Series and Algebraic Combinatorics 21 July 2009, Hagenburg, Austria

Frank Sottile
sottile@math.tamu. edu

Work with Marcelo Aguiar, Nantel Bergeron, Stefan Forcey, and Aaron Lauve

Hopf algebras in combinatorics

A Hopf algebra H is an algebra whose linear dual is also an algebra, with some compatibility between the two structures.

This means that H has a coassociative coproduct, $\Delta: H \rightarrow H \otimes H$, which is an algebra homomorphism.

Joni and Rota ('79): coproducts are natural in combinatorics; they encode the disassembly of combinatorial objects.

Today, I'll discuss some old and new Hopf structures based on trees.

See also the poster by Aaron Lauve.

(Hopf) algebra of symmetric functions

Sym $:=\mathbb{Q}\left[h_{1}, h_{2}, \ldots\right]$ is the (Hopf) algebra of symmetric functions. (Newton, Jacobi (1841))

- Graded with bases indexed by partitions.
- Hopf structures described combinatorially.
- Self-dual.
$-\Delta h_{k}=\sum_{i+j=k} h_{i} \otimes h_{j}$.
\rightarrow Perhaps the most fundamental object in
Sym algebraic combinatorics.

Quasi-symmetric functions

QSym: Quasi-symmetric functions. (Gessel '83)

- Introduced for combinatorial enumeration.
- Aguiar-Bergeron-S.: Universal target for combinatorial generating functions.
- Bases F_{α}, M_{α} for α a composition.
$\Delta M_{\left(a_{1}, \ldots, a_{p}\right)}=\sum_{i=0}^{p} M_{\left(a_{1}, \ldots, a_{i}\right)} \otimes M_{\left(a_{i+1}, \ldots, a_{p}\right)}$

\Rightarrow Primitives are $\left\{M_{(n)} \mid n>0\right\}$ and $Q S y m$ is cofree.

Non-commutative symmetric functions

NSym $:=\mathbb{Q}\left\langle h_{1}, h_{2}, \ldots\right\rangle$. (Gel'fand, Krob,
Lascoux, Leclerc, Retakh, Thibon '95)
(also Malvenuto-Reutenauer '95)

- Related to Solomon's descent algebra.
- Graded dual to QSym, (product and coproduct are dual).

$$
\Delta h_{k}=\sum_{i+j=k} h_{i} \otimes h_{j}
$$

Malvenuto-Reutenauer Hopf algebra

SSym: Malvenuto-Reutenauer Hopf algebra
 Ordered tree: linear extension of node poset of
a planar binary tree. $\left(w \in \mathfrak{S}_{n}\right.$ has n nodes. $)$ Ordered tree: linear extension of node poset
a planar binary tree. $\left(w \in \mathfrak{S}_{n}\right.$ has n nodes. $)$ permutations $=$ ordered trees

Splitting and grafting trees

Split ordered tree w to get an ordered forest, $w \xrightarrow{\curlyvee}\left(w_{0}, \ldots, w_{p}\right)$,
 graft it onto $v \in \mathfrak{S}_{p}$, to get $\left(w_{0}, \ldots, w_{p}\right) / v$. If v is then $\left(w_{0}, \ldots, w_{p}\right) / v$ is

Hopf structure on $\mathfrak{S S y m}$

For $w \in \mathfrak{S}_{n}$ and $v \in \mathfrak{S}_{p}$,

$$
\begin{aligned}
F_{w} \cdot F_{v} & =\sum_{\substack{\curlyvee}} F_{\left(w_{0}, \ldots, w_{p}\right) / v}, \\
1 & =F_{1}, \text { and } \\
\Delta F_{w} & =\sum_{w \xrightarrow{\curlyvee}\left(w_{0}, w_{1}\right)} F_{w_{0}} \otimes F_{w_{1}} .
\end{aligned}
$$

Second basis for $\mathfrak{S S y m}$

Weak order on \mathfrak{S}_{n} has covers $w \lessdot(i, i+1) w$ if i is before $i+1$ in w.

Use Möbuis function $\mu\left({ }^{\circ},{ }^{\bullet}\right)$ to define a second basis, $M_{w}:=\sum_{v} \mu(w, v) F_{v}$.

Primitives and indecomposable trees

Prune w along its rightmost branch with all nodes above the cut smaller than all those below to get $w=u \backslash v$.
w is indecomposable if only trivial prunings are possible.
$w \in \mathfrak{S}_{n}$ is uniquely pruned $w=u_{1} \backslash \cdots \backslash u_{p}$ into indecomposables.
Theorem. (Aguiar-S.) $\Delta M_{w}=\sum_{w=u \backslash v} M_{u} \otimes M_{v}$.
\Rightarrow Primitives are $\left\{M_{w} \mid w\right.$ is indecomposable $\}$ and SSym is cofree (known previously, but not so explicitly).

Planar binary trees

$\mathcal{Y}_{n}:=$ planar binary trees with n nodes.

Forgetful map $\tau: \mathfrak{S}_{n} \rightarrow \mathcal{Y}_{n}$ induces Tamari order, (child nodes move from left to right across their parent), with 1-skeleton the associahedron.
τ induces constructions on trees:
splitting $t \xrightarrow{r}\left(t_{0}, \ldots, t_{p}\right)$,
grafting $\left(t_{0}, \ldots, t_{p}\right) / s$, and
pruning $t=r \backslash s$ (cut along rightmost branch).

Loday-Ronco Hopf algebra

YSym: Loday-Ronco Hopf algebra of trees Defined in 1998, and related to Connes-Kreimer Hopf algebra.

- Self-dual Hopf algebra.
- Basis $\left\{F_{t} \mid t \in \mathcal{Y}_{n}, n \geq 0\right\}$ of trees.
- $F_{w} \mapsto F_{\tau(w)}$ defines a map
$\tau:$ SSym $\rightarrow \mathcal{Y}$ Sym, which induces structure of Hopf algebra on \mathcal{Y} Sym:

SSym

For $s \in \mathcal{Y}_{p}, \quad F_{t} \cdot F_{s}=\quad \sum \quad F_{\left(t_{0}, \ldots, t_{p}\right) / s}$,

$$
t \stackrel{\curlyvee}{\longrightarrow}\left(t_{0}, \ldots, t_{p}\right)
$$

$$
1=F_{1}, \quad \text { and } \quad \Delta F_{t}=\sum_{t \xrightarrow{\curlyvee}(r, s)} F_{r} \otimes F_{s} \text {. }
$$

Möbius inversion and primitives

$\mu(\cdot, \cdot)=$ Möbius function of Tamari order.
Define $M_{t}:=\sum_{s} \mu(t, s) F_{s}$, a second basis for $\mathcal{Y} S y m$.
Theorem. (Aguiar-S.)

$$
\begin{aligned}
\boldsymbol{\tau}\left(M_{w}\right) & =\left\{\begin{array}{ll}
M_{\tau(w)} & \text { if } w \text { is } 132 \text {-avoiding } \\
0 & \text { otherwise }
\end{array},\right. \text { and } \\
\Delta M_{t} & =\sum_{t=r \backslash s} M_{r} \otimes M_{s} .
\end{aligned}
$$

\Rightarrow Primitives are $\left\{M_{t} \mid t\right.$ is indecomposable $\}$ and \mathcal{Y} Sym is cofree. (known previously, but not so explicitly).

Stasheff's multiplihedron

Stasheff, who introduced the associahedron to encode higher homotopy associativity of H-spaces ('63), introduced the multiplihedron to encode higher homomotopy associativity for maps of H-spaces (' 70).

Saneblidze and Umble ('04) described maps of cell complexes

$$
\text { permutahedra } \rightarrow \text { multiplihedra } \rightarrow \text { associahedra }
$$

Forcey ('08) gave a polytopal realization of the multiplihedra.

Bi-leveled trees

A bi-leveled tree $(t, \mathrm{~T})$ in \mathcal{M}_{n} is a tree $t \in \mathcal{Y}_{n}$ with an upper order ideal T of its node poset having leftmost node as a minimal element.

Poset maps

The map $\tau: \mathfrak{S}_{n} \rightarrow \mathcal{Y}_{n}$ factors through \mathcal{M}_{n}.
Define $\beta: \mathfrak{S}_{n} \rightarrow \mathcal{M}_{n}$ by
$\beta(w):=\left(\tau(w), w^{-1}\{w(1), 1+w(1), \ldots, n-1, n\}\right)$.

$(t, \mathrm{~T}) \mapsto t$ gives poset map $\phi: \mathcal{M}_{n} \rightarrow \mathcal{Y}_{n}$ and the composition

$$
\mathfrak{S}_{n} \xrightarrow{\beta} \mathcal{M}_{n} \xrightarrow{\phi} \mathcal{Y}_{n}
$$

is the $\operatorname{map} \tau: \mathfrak{S}_{n} \rightarrow \mathcal{Y}_{n}$.

The \mathfrak{S} Sym-module \mathcal{M} Sym

\mathcal{M} Sym : graded vector space with basis $\left\{F_{b} \mid b \in \mathcal{M}_{n}, n \geq 0\right\}$.
$F_{w} \mapsto F_{\beta(w)}$ and $F_{b} \mapsto F_{\phi(b)}$ for $w \in \mathfrak{S}_{n}$ and $b \in \mathcal{M}_{n}$ induce linear surjections SSym $\xrightarrow{\beta} \mathcal{M}$ Sym $\xrightarrow{\phi}$ YSym.

For $b=\beta(u) \in \mathcal{M}_{n}$ and $c=\beta(v) \in \mathcal{M}_{m}$, set $F_{b} \cdot F_{c}:=\beta\left(F_{w} \cdot F_{u}\right)$.

Theorem. This is well-defined and gives an associative product, so that \mathcal{M} Sym is a graded algebra and $\boldsymbol{\beta}$ is an algebra homomorphism. Furthermore, \mathcal{M} Sym is an $\mathfrak{S S y m}$ - $\mathfrak{S S y m}$ bimodule,

$$
F_{w} \cdot F_{b} \cdot F_{u}=F_{\beta(w)} \cdot F_{b} \cdot F_{\beta(u)}
$$

The product, combinatorially

$$
F_{b} \cdot F_{c}=\sum \quad F_{\overline{\left(b_{0}, \ldots, b_{p}\right) / c}} .
$$

Here are two different graftings for $b=$

If $b_{0}=\mid$, the order ideal is that of c.
If $b_{0} \neq 1$, the order ideal is all nodes of c and the order ideal of b.

YSym-comodule MSym

Splitting a bi-leveled tree does not give a pair of bi-leveled trees

The first tree is bi-leveled, but subsequent trees need not be.
Ignoring the order ideal in the second component gives a splitting $b \xrightarrow{\curlyvee}\left(b_{0}, t_{1}\right)$, where b_{0} is bi-leveled and t_{1} is an ordinary tree.

Theorem. $\quad F_{b} \mapsto \sum F_{c} \otimes F_{t}$ gives a coaction,

$$
b \stackrel{\curlyvee}{(c, t)}
$$

$\boldsymbol{\rho}: \mathcal{M}$ Sym $\rightarrow \mathcal{M}$ Sym $\otimes \mathcal{Y}$ Sym, endowing \mathcal{M} Sym with the structure of a \mathcal{Y} Sym-comodule. ϕ is a comodule map.
(restricts to \mathcal{M} Sym $_{+}=\operatorname{Span}\left\{F_{b}|b \neq|\right\}$, with structure map $\boldsymbol{\rho}_{+}$.)

Coinvariants and a second basis

Set $M_{b}:=\sum_{c} \mu(b, c) F_{c}$, a second basis.
For $c \in \mathcal{M}_{n}$ and $t \in \mathcal{Y}_{m}$, we have $c \backslash t \in \mathcal{M}_{n+m}$:

If $b=(t, \mathrm{~T})$ we can write $b=c \backslash s$ only when $\mathrm{T} \subset c$.
Theorem. Let $b \in \mathcal{M}_{n}$ with $n>0$. In $\mathcal{M} S y m_{+}$we have,

$$
\boldsymbol{\rho}\left(M_{b}\right)=\sum_{b=c \backslash t} M_{c} \otimes M_{t}
$$

$\Rightarrow\left\{M_{(t, \mathrm{~T})} \mid \mathrm{T} \ni\right.$ rightmost node of $\left.t\right\}$ spans coinvariants of \mathcal{M} Sym $_{+}$. \& its subset $\left\{M_{(t, \mathrm{~T})} \mid t \neq \widehat{\dagger} \backslash s\right\}$ spans coinvariants of \mathcal{M} Sym.

Covariant consequences

We have the generating series
$M(q):=\sum_{n \geq 0}\left|\mathcal{M}_{n}\right| q^{n}, \quad M_{+}(q):=\sum_{n>0}\left|\mathcal{M}_{n}\right| q^{n}$, and
$Y(q):=\sum_{n \geq 0}\left|\mathcal{Y}_{n}\right| q^{n}, \quad$ the Catalan generating series.
$\mathcal{B}_{n}:=\left\{(t, \mathrm{~T}) \in \mathcal{M}_{n} \mid \mathrm{T} \ni\right.$ rightmost node of $\left.t\right\} n>0$ $\mathcal{B}_{n}^{\prime}:=\left\{(t, \mathrm{~T}) \in \mathcal{B}_{n} \mid t \neq \widehat{\zeta} \backslash s\right\} \cup\{\mid\}$.

Corollary. $\quad M_{+}(q) / Y(q)=q Y(q Y(q))=\sum_{n>0}\left|\mathcal{B}_{n}\right| q^{n}$

$$
M(q) / Y(q)=\sum_{n \geq 0}\left|\mathcal{B}_{n}^{\prime}\right| q^{n} \quad \text { (Both are positive!) }
$$

Existence of coinvariants $\Rightarrow \mathcal{M}$ Sym must be a YSym Hopf module algebra, which can be understood combinatorially.

Conclusion

The middle polytope of the cellular surjections

corresponds to a type of tree nestled between ordered trees and planar binary trees and gives maps

$$
\mathfrak{S S y m} \rightarrow \mathcal{M S y m} \rightarrow \text { YSym }
$$

factoring the Hopf algebra map SSym \rightarrow YSym.
The Hopf structures weaken, but do not vanish, for \mathcal{M} Sym:
\mathcal{M} Sym is an algebra, a SSym-module, and a YSym-comodule.

Beyond MSym

There are many other polytopes/trees to be studied in this way:

