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In which the theory
of integrable systems
resolves a compelling
conjecture
in the real Schubert
calculus by reducing it
to an elementary
fact from linear algebra.



Polynomial systems with only real roots

Among the roots of a real univariate polynomial f , some are real and

the rest occur in complex-conjugate pairs.

Rarely are all roots of f real.

A primary example that comes to mind is when f is the characteristic

polynomial of a real symmetric matrix, which only has real eigenvalues.

Similarly, a first example of a system of multivariate polynomials with

only real solutions is the system for the eigenvalues/eigenvectors of a

symmetric matrix.

It will turn out that this is the elementary fact from linear algebra

behind this reality in Schubert calculus.
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Wronski map and MTV Theorem

The Wronskian of degree-d polynomials f0, . . . , fn ∈ C[t] is

Wr := det

0
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C
C
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Up to scalar, Wr depends only on the linear span P of the fi, and only

finitely many spans P have a given Wronskian.

Theorem. (Mukhin, Tarasov, Varchenko) If Wr(P ) has only real roots,

then P has a basis of real polynomials.

More generally, “Geometric problems in Schubert calculus on a Grass-

mannian involving osculating flags have only real solutions.”
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MTV Theorem in 3–space

Let γ(t) = (t, t2, t3) be the rational normal curve

A cubic polynomial f(t) ⇐⇒ affine function applied to γ

⇐⇒ affine hyperplane, f⊥

Two polynomials f, g ⇐⇒ two affine hyperplanes

⇐⇒ a line f⊥ ∩ g⊥

Wr(f, g)(s) = 0 ⇐⇒ the line f⊥ ∩ g⊥ meets

tangent line to γ at γ(s).

Wr(f, g) is a given

quartic F
⇐⇒ f⊥ ∩ g⊥ meets tangents to γ

at the four roots of F
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Numerical accident ?

The proof begins with a numerical accident.

In 1884, Schubert (essentially) determined that

#Wr
−1

(F (t)) = [(n+1)(d−n)]!
1!2! · · ·n!

(d−n)!(d−n+1)! · · · d!
.

Call this number deg(n, d).

deg(n, d) is also the dimension of the space of invariants

„“

C
n+1

”⊗(n+1)(d−n)
«sln+1C

.

Strengthening this coincidence is at the heart of our story.
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A remarkable function

For i = 0, . . . , n let yi(t) be a polynomial of degree (i+1)(d−n).

Define the master function

Φ :=

nY

i=0

Discr(yi)

,
nY

i=1

Res(yi−1, yi) ,

where Discr and Res are the classical discriminant and resultant.

Writing Φ in terms of the roots si,j of yi gives,

Φ(s) =

nY

i=0

Y

j 6=k

(si,j − si,k)
2
·

nY

i=1

Y

j,k

(si−1,j − si,k)
−1

.

(The exponents come from the Cartan matrix of type A.)

Remarkably, deg(n, d) counts the (orbits of) critical points of Φ(s).
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Schematic of proof

Critical points of Φ
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Schematic of proof
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Reprise: Schematic of proof

Critical points of Φ

­
­

­
­

­
­

­
­

­
­

­
­­À

J
J

J
J

J
J

J
J

J
J

J
JĴ
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Critical points of master function

For i = 0, . . . , n let yi(t) be a polynomial of degree (i+1)(d−n).

Recall the master function

Φ :=

nY

i=0

Discr(yi)

,
nY

i=1

Res(yi−1, yi) .

Fix yn(t) to be a polynomial of degree (n+1)(d−n) with roots

s = (s1, . . . , s(n+1)(d−n)). This will be our Wronski polynomial.

The master function Φs(x) depends on the roots x of the other yi.

Let x be a critical point of Φs(x), and y := (y0, . . . , yn−1) the

corresponding polynomials whose roots are x.

Theorem. (MV) There are deg(n, d) such critical points y.
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Spaces of polynomials from y

For polynomials y = (y0, . . . , yn−1), with deg yi = (i+1)(d − n),

the fundamental differential operator Dy is

`
d
dt

− ln
′` yn

yn−1

´´
· · ·

`
d
dt

− ln
′`y1

y0

´´`
d
dt

− ln
′`

y0

´´
.

Let Vy be the kernel of Dy.

Theorem. (MV)

1. Vy is a space of polynomials iff y is a critical point of Φs.

2. If f0, . . . , fn span Vy with deg fi = d−n+i, then

y0 = f0 ,

y1 = Wr(f0, f1) ,
...

yn = Wr(f0, f1 . . . , fn) .
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Periodic Gaudin model

V := dual of vector representation of sln+1C (also gln+1C). Let

ei,j ∈ gln+1C be the elementary matrix with 1 in i, j position.

Define an operator Xi,j(t) := δi,j

d

dt
−

(n+1)(d−n)
X

k=1

e
(k)
i,j

t − sk

,

where e
(k)
i,j acts on the kth factor in V ⊗(n+1)(d−n).

Formal conjugate of the expansion of the row determinant of (Xi,j) is

dn+1

dtn+1
+ K1(t)

dn

dtn
+ · · · + Kn(t)

d

dt
+ Kn+1(t) .

K1(t), . . . , Kn+1(t) are the Gaudin Hamiltonians. They form a family

of commuting operators on V ⊗(n+1)(d−n), centralizing gln+1C.
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Bethe Ansatz for Gaudin model

In the theory of integrable systems, Bethe Ansätze are conjectural

methods to find the joint eigenvectors and spectra of families of

commuting operators.

As the Gaudin Hamiltonians centralize the action of sln+1C, the Bethe

Ansatz also gives a precise way to understand
“

V ⊗(n+1)(d−n)
”sln+1C

.

The idea is to define a (rational) universal weight function

β :
spaces of roots of
y0, . . . , yn−1
| {z }

x

, yn|{z}
s

−→ 0-weight space of V ⊗(n+1)(d−n) ,

and then address for which values (x, s) is β(x, s) sln+1C-invariant.
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Completeness of the Bethe Ansatz
Theorem. (MTV) Let x be a critical point of the master function Φs.

1. β(x, s) is well-defined, non-zero, and a joint eigenvector of the

Gaudin Hamiltonians.

2. β(x, s) is a sln+1C-invariant.

3. When s is general, the vectors β(x, s) for x a critical point form a

basis of
`
V ⊗(n+1)(d−n)

´sln+1C
.

4. When s is general, the Gaudin Hamiltonians have simple spectrum.

5. The eigenvalues λi(t) of Ki(t) on β(x, s) satisfy

dn+1

dtn+1
+ λ1(t)

dn

dtn
+ · · · + λn(t)

d

dt
+ λn+1(t) =

`
d
dt

− ln
′` yn

yn−1

´´
· · ·

`
d
dt

− ln
′`y1

y0

´´`
d
dt

− ln
′`

y0

´´
,

the fundamental differential operator of the critical point x.
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Proof of the Shapiro Conjecture

Usual Euclidean inner product on V induces the Shapovalov form on

V ⊗(n+1)(d−n), which is sln+1C-invariant.

Gaudin Hamiltonians are symmetric w.r.t the Shapovalov form.

Therefore, when s and t are real, their eigenvalues λi(t) on a vector

β(x, s) for a critical point x are real.

Then the fundamental differential operator is real, and thus its kernel

Vx is also real.

This implies the Shapiro Conjecture, as spaces Vx for x a critical point

give all spaces of polynomials whose Wronskian has roots s.
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Thank you for your attention!
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