## Khovanskii-Rolle Continuation for Real Solutions

Computational Algebraic and Analytic Geometry for Low-Dimensional Varieties

6 January 2009, AMS National Meeting

Frank Sottile
sottile@math.tamu.edu
Dan Bates
Colorado State U


## Our numerical future

$$
\begin{aligned}
\text { Increasing parallelism } \Longrightarrow \begin{array}{c}
\text { The future of computation in } \\
\text { algebraic geometry is numerical. }
\end{array}
\end{aligned}
$$

We want to find all real solutions to a system of equations.
Current dominant numerical algorithm for solving, homotopy continuation, necessarily computes all solutions, both real and complex.

Two classes of numerical algorithms for real solutions:

- Exclusion methods.

Well-developed algorithms based on repeated subdivision.

- Semidefinite programming.

Recently proposed by Lasserre, Laurent, and Rostalski.

## A third method

Khovanskii-Rolle continuation is a third numerical method to compute real solutions.

- Based on proof of fewnomial bounds for real solutions.
- Uses 2 symbolic steps:

1) Gale duality reduces a (potentially high-degree) polynomial system to a system of rational functions on a different space.
2) Reducing this to solving some systems of low-degree polynomials \& some path-continuation.

- Complexity is essentially the fewnomial bound.


## Gale duality, via example

Suppose we have the system of polynomials,

$$
\begin{align*}
v^{2} w^{3} & =1-u^{2} v-u v^{2} w \\
v^{2} w & =\frac{1}{2}-u^{2} v+u v^{2} w  \tag{1}\\
u v w^{3} & =\frac{10}{11}\left(1+u^{2} v-3 u v^{2} w\right)
\end{align*}
$$

Observe that

$$
\begin{aligned}
\left(u^{2} v\right)^{2} \cdot\left(v^{2} w^{3}\right)^{3} & =\left(u v^{2} w\right)^{2} \cdot\left(v^{2} w\right) \cdot\left(u v w^{3}\right)^{2} \quad \text { and } \\
\left(u v^{2} w\right)^{3} \cdot\left(v^{2} w^{3}\right) & =\left(u^{2} v\right) \cdot\left(v^{2} w\right)^{3} \cdot\left(u v w^{3}\right)
\end{aligned}
$$

Substituting (1) into this, writing $x$ for $u^{2} v$ and $y$ for $u v^{2} w$, and solving for 0 , gives the Gale system of master functions

$$
\begin{aligned}
& f:=x^{2}(1-x-y)^{3}-y^{2}\left(\frac{1}{2}-x+y\right)\left(\frac{10}{11}(1+x-3 y)\right)^{2}=0 \\
& g:=y^{3}(1-x-y)-x\left(\frac{1}{2}-x+y\right)^{3} \frac{10}{11}(1+x-3 y)=0
\end{aligned}
$$

## Gale duality, continued

The original system is equivalent to the Gale system

$$
\begin{aligned}
& f:=x^{2}(1-x-y)^{3}-y^{2}\left(\frac{1}{2}-x+y\right)\left(\frac{10}{11}(1+x-3 y)\right)^{2}=0 \\
& g:=y^{3}(1-x-y)-x\left(\frac{1}{2}-x+y\right)^{3} \frac{10}{11}(1+x-3 y)=0
\end{aligned}
$$

in the complement of the lines given by the linear factors.


## Khovanskii-Rolle continuation

Given a system of master functions

$$
\begin{equation*}
\prod_{i=1}^{\ell+n} p_{i}(x)^{a_{i, j}}=1 \quad j=1, \ldots, \ell \tag{*}
\end{equation*}
$$

( $p_{i}(x)$ linear $)$, we find solutions in the polyhedron

$$
\Delta:=\left\{x \in \mathbb{R}^{\ell} \mid p_{i}(x)>0\right\}
$$

The Khovanskii-Rolle Theorem (next slide) reduces solving (*) to solving low degree polynomial systems, together with path continuation.

This is our new algorithm, which we now explain.

## Khovanskii-Rolle Theorem

Theorem. Between any two zeroes of $g$ along the curve $V(f): f=0$, lies at least one zero of the Jacobian $d f \wedge d g$.


Starting where $V(f)$ meets the boundary of the polyhedron $\Delta$ and where the Jacobian vanishes on $V(f)$, tracing the curve $V(f)$ in both directions finds all solutions $f=g=0$.

## Degree reduction $(\ell=2)$

A system of master functions

$$
\prod_{i=1}^{2+n} p_{i}(x)^{a_{i, j}}=1 \quad j=1,2
$$

in logarithmic form

$$
\varphi_{j}:=\sum_{i=1}^{2+n} a_{i, j} \log p_{i}(x)=0 \quad j=1,2
$$

has Jacobians of low degree

$$
J_{2}:=\operatorname{Jac}\left(\varphi_{1}, \varphi_{2}\right) \quad J_{1}:=\operatorname{Jac}\left(\varphi_{1}, J_{2}\right)
$$

Here, $n=\operatorname{deg}\left(J_{2}\right)$ and $2 n=\operatorname{deg}\left(J_{1}\right)$.

## An example

Consider the system with $\ell=2$ and $n=4$ :

$$
\begin{aligned}
& f_{1}:=\frac{(3500)^{12} x^{27}(3-x)^{8}(3-y)^{4}}{y^{15}(4-2 x+y)^{60}(2 x-y+1)^{60}}=1 \\
& f_{2}:=\frac{(3500)^{12} x^{8} y^{4}(3-y)^{45}}{(3-x)^{33}(4-2 x+y)^{60}(2 x-y+1)^{60}}=1 .
\end{aligned}
$$



## Low-Degree Jacobians

If $\varphi_{i}:=\log \left(f_{i}\right)$, then $J_{2}:=\operatorname{Jac}\left(\varphi_{1}, \varphi_{2}\right) \cdot \prod p_{i}(x, y)=$
$2736-15476 x+2564 y+32874 x^{2}-21075 x y+6969 y^{2}-10060 x^{3}$ $-7576 x^{2} y+8041 x y^{2}-869 y^{3}+7680 x^{3} y-7680 x^{2} y^{2}+1920 x y^{3}$. (polynomial of degree $n=4$.) $J_{1}:=\operatorname{Jac}\left(\varphi_{1}, \Gamma_{2}\right) \cdot \prod p_{i}(x, y)^{2}=$

$$
\begin{aligned}
& 8357040 x-2492208 y-25754040 x^{2}+4129596 x y-10847844 y^{2} \\
& -37659600 x^{3}+164344612 x^{2} y-65490898 x y^{2}+17210718 y^{3}+75054960 x^{4} \\
& -249192492 x^{3} y+55060800 x^{2} y^{2}+16767555 x y^{3}-2952855 y^{4}-36280440 x^{5} \\
& +143877620 x^{4} y+35420786 x^{3} y^{2}-80032121 x^{2} y^{3}+19035805 x y^{4}-1128978 y^{5} \\
& +5432400 x^{6}-33799848 x^{5} y-62600532 x^{4} y^{2}+71422518 x^{3} y^{3}-13347072 x^{2} y^{4} \\
& -1836633 x y^{5}+211167 y^{6}+2358480 x^{6} y+21170832 x^{5} y^{2}-13447848 x^{4} y^{3} \\
& -8858976 x^{3} y^{4}+7622421 x^{2} y^{5}-1312365 x y^{6}-1597440 x^{6} y^{2}-1228800 x^{5} y^{3} \\
& +4239360 x^{4} y^{4}-2519040 x^{3} y^{5}+453120 x^{2} y^{6} .
\end{aligned}
$$

(A polynomial of degree $8=2 n$.)

## Completing the example



Follow $V\left(J_{2}\right) \cap \partial \Delta$ and $J_{1}=J_{2}=0$ along $V\left(J_{2}\right)$ to find $J_{2}=\varphi_{1}=0$.


Follow $V\left(\varphi_{1}\right) \cap \partial \Delta$ and $\varphi_{1}=J_{2}=0$ along $V\left(\varphi_{1}\right)$ to find $\varphi_{1}=\varphi_{2}=0$.

